File size: 12,951 Bytes
a779a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "transformers>=4.45.0",
# "datasets>=3.0.0",
# "accelerate>=1.0.0",
# "huggingface_hub>=0.26.0",
# "torch>=2.4.0",
# "tqdm>=4.66.0",
# "pandas>=2.0.0",
# ]
# [tool.uv]
# extra-index-url = ["https://download.pytorch.org/whl/cu124"]
# ///
"""
Script d'évaluation pour le modèle n8n Expert.
Métriques:
1. JSON Validity - Le output est-il du JSON valide?
2. Schema Compliance - Le workflow suit-il le schéma n8n?
3. Node Accuracy - Les types de nodes sont-ils corrects?
4. Connection Logic - Les connexions sont-elles cohérentes?
5. Thinking Quality - Le raisonnement est-il présent et structuré?
Usage:
python eval_n8n_model.py --model stmasson/n8n-expert-14b --samples 100
"""
import os
import json
import argparse
import re
from typing import Dict, List, Any, Tuple
from dataclasses import dataclass
from tqdm import tqdm
import pandas as pd
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import login
# ============================================================================
# CONFIGURATION
# ============================================================================
# Types de nodes n8n valides (liste partielle)
VALID_NODE_TYPES = {
# Triggers
"n8n-nodes-base.webhookTrigger",
"n8n-nodes-base.scheduleTrigger",
"n8n-nodes-base.manualTrigger",
"n8n-nodes-base.emailTrigger",
# Actions
"n8n-nodes-base.httpRequest",
"n8n-nodes-base.set",
"n8n-nodes-base.if",
"n8n-nodes-base.switch",
"n8n-nodes-base.merge",
"n8n-nodes-base.splitInBatches",
"n8n-nodes-base.function",
"n8n-nodes-base.code",
"n8n-nodes-base.noOp",
# Intégrations
"n8n-nodes-base.slack",
"n8n-nodes-base.gmail",
"n8n-nodes-base.googleSheets",
"n8n-nodes-base.airtable",
"n8n-nodes-base.notion",
"n8n-nodes-base.discord",
"n8n-nodes-base.telegram",
"n8n-nodes-base.openAi",
"n8n-nodes-base.postgres",
"n8n-nodes-base.mysql",
"n8n-nodes-base.mongodb",
# AI
"@n8n/n8n-nodes-langchain.agent",
"@n8n/n8n-nodes-langchain.chainLlm",
}
# ============================================================================
# MÉTRIQUES
# ============================================================================
@dataclass
class EvalResult:
"""Résultat d'évaluation pour un exemple"""
task_type: str
valid_json: bool
has_nodes: bool
has_connections: bool
nodes_valid: bool
has_thinking: bool
thinking_structured: bool
error: str = ""
@property
def score(self) -> float:
"""Score global 0-1"""
scores = [
self.valid_json,
self.has_nodes,
self.has_connections,
self.nodes_valid,
self.has_thinking,
self.thinking_structured,
]
return sum(scores) / len(scores)
def extract_workflow_json(text: str) -> Tuple[str, str]:
"""
Extrait le JSON du workflow et le thinking de la réponse.
Retourne (thinking, workflow_json)
"""
thinking = ""
workflow_json = ""
# Extraire le thinking
thinking_match = re.search(r'<thinking>(.*?)</thinking>', text, re.DOTALL)
if thinking_match:
thinking = thinking_match.group(1).strip()
# Extraire le JSON (après le thinking ou dans un bloc code)
# Méthode 1: Bloc code JSON
json_block = re.search(r'```json\s*(.*?)\s*```', text, re.DOTALL)
if json_block:
workflow_json = json_block.group(1).strip()
else:
# Méthode 2: JSON brut après le thinking
after_thinking = text
if thinking_match:
after_thinking = text[thinking_match.end():]
# Chercher un objet JSON
json_match = re.search(r'\{[\s\S]*\}', after_thinking)
if json_match:
workflow_json = json_match.group(0).strip()
return thinking, workflow_json
def validate_workflow(workflow_json: str) -> Dict[str, Any]:
"""Valide un workflow n8n"""
result = {
"valid_json": False,
"has_nodes": False,
"has_connections": False,
"nodes_valid": False,
"node_count": 0,
"connection_count": 0,
"invalid_nodes": [],
}
# Test JSON valide
try:
wf = json.loads(workflow_json)
result["valid_json"] = True
except json.JSONDecodeError as e:
result["error"] = str(e)
return result
# Test nodes présents
nodes = wf.get("nodes", [])
result["has_nodes"] = len(nodes) > 0
result["node_count"] = len(nodes)
# Test connexions présentes
connections = wf.get("connections", {})
result["has_connections"] = len(connections) > 0
result["connection_count"] = sum(len(v) for v in connections.values())
# Test types de nodes valides
invalid_nodes = []
for node in nodes:
node_type = node.get("type", "")
if node_type and node_type not in VALID_NODE_TYPES:
# Accepter les types qui ressemblent à des nodes n8n
if not (node_type.startswith("n8n-nodes-base.") or
node_type.startswith("@n8n/")):
invalid_nodes.append(node_type)
result["invalid_nodes"] = invalid_nodes
result["nodes_valid"] = len(invalid_nodes) == 0
return result
def validate_thinking(thinking: str) -> Dict[str, bool]:
"""Valide la qualité du thinking"""
result = {
"has_thinking": len(thinking) > 50, # Au moins 50 caractères
"thinking_structured": False,
}
# Vérifier si le thinking est structuré (contient des points numérotés ou tirets)
if thinking:
has_structure = (
re.search(r'\d+\.', thinking) is not None or # Points numérotés
re.search(r'^-\s', thinking, re.MULTILINE) is not None or # Tirets
re.search(r'^\*\s', thinking, re.MULTILINE) is not None or # Étoiles
"étape" in thinking.lower() or
"step" in thinking.lower()
)
result["thinking_structured"] = has_structure
return result
def evaluate_example(
model_output: str,
task_type: str,
) -> EvalResult:
"""Évalue un exemple généré par le modèle"""
# Extraire thinking et JSON
thinking, workflow_json = extract_workflow_json(model_output)
# Valider le workflow
wf_validation = validate_workflow(workflow_json)
# Valider le thinking
thinking_validation = validate_thinking(thinking)
return EvalResult(
task_type=task_type,
valid_json=wf_validation["valid_json"],
has_nodes=wf_validation["has_nodes"],
has_connections=wf_validation["has_connections"],
nodes_valid=wf_validation["nodes_valid"],
has_thinking=thinking_validation["has_thinking"],
thinking_structured=thinking_validation["thinking_structured"],
error=wf_validation.get("error", ""),
)
# ============================================================================
# ÉVALUATION
# ============================================================================
def run_evaluation(
model_path: str,
dataset_repo: str = "stmasson/n8n-agentic-multitask",
data_file: str = "data/multitask_large/val.jsonl",
num_samples: int = 100,
output_file: str = "eval_results.json",
):
"""Lance l'évaluation complète du modèle"""
print("=" * 60)
print("ÉVALUATION DU MODÈLE N8N EXPERT")
print("=" * 60)
# Auth
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
# Charger le modèle
print(f"\nChargement du modèle: {model_path}")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
# Charger le dataset
print(f"\nChargement du dataset: {dataset_repo}")
dataset = load_dataset(
dataset_repo,
data_files={"validation": data_file},
split="validation"
)
# Échantillonner
if num_samples < len(dataset):
dataset = dataset.shuffle(seed=42).select(range(num_samples))
print(f"Évaluation sur {len(dataset)} exemples")
# Évaluer
results = []
task_counts = {}
for example in tqdm(dataset, desc="Évaluation"):
messages = example["messages"]
# Déterminer le type de tâche
system_msg = messages[0]["content"] if messages else ""
if "génère" in system_msg.lower() or "generate" in system_msg.lower():
task_type = "generate"
elif "édite" in system_msg.lower() or "edit" in system_msg.lower():
task_type = "edit"
elif "corrige" in system_msg.lower() or "fix" in system_msg.lower():
task_type = "fix"
elif "améliore" in system_msg.lower() or "improve" in system_msg.lower():
task_type = "improve"
elif "explique" in system_msg.lower() or "explain" in system_msg.lower():
task_type = "explain"
elif "débogue" in system_msg.lower() or "debug" in system_msg.lower():
task_type = "debug"
else:
task_type = "unknown"
task_counts[task_type] = task_counts.get(task_type, 0) + 1
# Construire le prompt
prompt = tokenizer.apply_chat_template(
messages[:-1], # Exclure la réponse attendue
tokenize=False,
add_generation_prompt=True,
)
# Générer
try:
output = pipe(
prompt,
max_new_tokens=4096,
do_sample=False,
temperature=None,
top_p=None,
return_full_text=False,
)
generated = output[0]["generated_text"]
except Exception as e:
generated = f"ERROR: {str(e)}"
# Évaluer
eval_result = evaluate_example(generated, task_type)
results.append(eval_result)
# Calculer les statistiques
print("\n" + "=" * 60)
print("RÉSULTATS")
print("=" * 60)
total = len(results)
# Métriques globales
metrics = {
"valid_json": sum(r.valid_json for r in results) / total,
"has_nodes": sum(r.has_nodes for r in results) / total,
"has_connections": sum(r.has_connections for r in results) / total,
"nodes_valid": sum(r.nodes_valid for r in results) / total,
"has_thinking": sum(r.has_thinking for r in results) / total,
"thinking_structured": sum(r.thinking_structured for r in results) / total,
"overall_score": sum(r.score for r in results) / total,
}
print("\nMétriques globales:")
for metric, value in metrics.items():
print(f" {metric}: {value:.1%}")
# Métriques par tâche
print("\nMétriques par tâche:")
for task_type in sorted(task_counts.keys()):
task_results = [r for r in results if r.task_type == task_type]
if task_results:
task_score = sum(r.score for r in task_results) / len(task_results)
task_json = sum(r.valid_json for r in task_results) / len(task_results)
print(f" {task_type}: score={task_score:.1%}, json={task_json:.1%} (n={len(task_results)})")
# Sauvegarder les résultats
output = {
"model": model_path,
"num_samples": total,
"metrics": metrics,
"by_task": {
task: {
"count": len([r for r in results if r.task_type == task]),
"score": sum(r.score for r in results if r.task_type == task) /
max(1, len([r for r in results if r.task_type == task])),
}
for task in task_counts.keys()
},
}
with open(output_file, "w") as f:
json.dump(output, f, indent=2)
print(f"\nRésultats sauvegardés dans: {output_file}")
return metrics
# ============================================================================
# MAIN
# ============================================================================
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Évaluation du modèle n8n Expert")
parser.add_argument("--model", type=str, required=True, help="Chemin du modèle à évaluer")
parser.add_argument("--samples", type=int, default=100, help="Nombre d'exemples à évaluer")
parser.add_argument("--output", type=str, default="eval_results.json", help="Fichier de sortie")
args = parser.parse_args()
run_evaluation(
model_path=args.model,
num_samples=args.samples,
output_file=args.output,
)
|