|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Script d'entraînement SFT pour le modèle n8n Expert. |
|
|
|
|
|
Usage sur HuggingFace Jobs: |
|
|
hf jobs uv run \ |
|
|
--script train_n8n_sft.py \ |
|
|
--flavor h100x1 \ |
|
|
--name n8n-expert-sft \ |
|
|
--timeout 24h |
|
|
|
|
|
Variables d'environnement requises: |
|
|
- HF_TOKEN: Token HuggingFace avec accès en écriture |
|
|
- WANDB_API_KEY: (optionnel) Pour le tracking W&B |
|
|
""" |
|
|
|
|
|
import os |
|
|
import json |
|
|
import torch |
|
|
from datasets import Dataset |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
|
from trl import SFTTrainer, SFTConfig |
|
|
from huggingface_hub import login, hf_hub_download |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_NAME = os.environ.get("BASE_MODEL", "Qwen/Qwen2.5-14B-Instruct") |
|
|
|
|
|
|
|
|
DATASET_REPO = "stmasson/n8n-agentic-multitask" |
|
|
TRAIN_FILE = "data/multitask_large/train.jsonl" |
|
|
VAL_FILE = "data/multitask_large/val.jsonl" |
|
|
|
|
|
|
|
|
OUTPUT_DIR = "./n8n-expert-sft" |
|
|
HF_REPO = os.environ.get("HF_REPO", "stmasson/n8n-expert-14b-sft") |
|
|
|
|
|
|
|
|
NUM_EPOCHS = int(os.environ.get("NUM_EPOCHS", "3")) |
|
|
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", "2")) |
|
|
GRAD_ACCUM = int(os.environ.get("GRAD_ACCUM", "8")) |
|
|
LEARNING_RATE = float(os.environ.get("LEARNING_RATE", "2e-5")) |
|
|
MAX_SEQ_LENGTH = int(os.environ.get("MAX_SEQ_LENGTH", "8192")) |
|
|
|
|
|
|
|
|
LORA_R = int(os.environ.get("LORA_R", "64")) |
|
|
LORA_ALPHA = int(os.environ.get("LORA_ALPHA", "128")) |
|
|
LORA_DROPOUT = float(os.environ.get("LORA_DROPOUT", "0.05")) |
|
|
|
|
|
|
|
|
USE_4BIT = os.environ.get("USE_4BIT", "true").lower() == "true" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("=" * 60) |
|
|
print("ENTRAINEMENT SFT - N8N EXPERT") |
|
|
print("=" * 60) |
|
|
|
|
|
hf_token = os.environ.get("HF_TOKEN") |
|
|
if hf_token: |
|
|
login(token=hf_token) |
|
|
print("Authentifie sur HuggingFace") |
|
|
else: |
|
|
print("Warning: HF_TOKEN non defini, push desactive") |
|
|
|
|
|
|
|
|
report_to = "none" |
|
|
print("Tracking desactive (pas de wandb)") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\nChargement du modele: {MODEL_NAME}") |
|
|
|
|
|
|
|
|
if USE_4BIT: |
|
|
print("Mode 4-bit active") |
|
|
bnb_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_quant_type="nf4", |
|
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
|
bnb_4bit_use_double_quant=True, |
|
|
) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_NAME, |
|
|
quantization_config=bnb_config, |
|
|
device_map="auto", |
|
|
trust_remote_code=True, |
|
|
) |
|
|
model = prepare_model_for_kbit_training(model) |
|
|
else: |
|
|
print("Mode bfloat16") |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_NAME, |
|
|
torch_dtype=torch.bfloat16, |
|
|
attn_implementation="sdpa", |
|
|
device_map="auto", |
|
|
trust_remote_code=True, |
|
|
) |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
tokenizer.padding_side = "right" |
|
|
|
|
|
print(f"Modele charge: {model.config.num_hidden_layers} layers, {model.config.hidden_size} hidden size") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\nConfiguration LoRA: r={LORA_R}, alpha={LORA_ALPHA}") |
|
|
|
|
|
lora_config = LoraConfig( |
|
|
r=LORA_R, |
|
|
lora_alpha=LORA_ALPHA, |
|
|
target_modules=[ |
|
|
"q_proj", "k_proj", "v_proj", "o_proj", |
|
|
"gate_proj", "up_proj", "down_proj" |
|
|
], |
|
|
lora_dropout=LORA_DROPOUT, |
|
|
bias="none", |
|
|
task_type="CAUSAL_LM" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\nChargement du dataset: {DATASET_REPO}") |
|
|
|
|
|
def load_jsonl_dataset(repo_id: str, filename: str) -> Dataset: |
|
|
""" |
|
|
Charge un dataset JSONL directement en ne gardant que la colonne 'messages'. |
|
|
Evite les problemes de schema avec les colonnes struct comme 'nodes_used'. |
|
|
""" |
|
|
|
|
|
local_path = hf_hub_download( |
|
|
repo_id=repo_id, |
|
|
filename=filename, |
|
|
repo_type="dataset" |
|
|
) |
|
|
|
|
|
|
|
|
messages_list = [] |
|
|
with open(local_path, 'r', encoding='utf-8') as f: |
|
|
for line in f: |
|
|
data = json.loads(line) |
|
|
messages_list.append({"messages": data["messages"]}) |
|
|
|
|
|
|
|
|
return Dataset.from_list(messages_list) |
|
|
|
|
|
|
|
|
train_dataset = load_jsonl_dataset(DATASET_REPO, TRAIN_FILE) |
|
|
val_dataset = load_jsonl_dataset(DATASET_REPO, VAL_FILE) |
|
|
|
|
|
print(f"Train: {len(train_dataset)} exemples") |
|
|
print(f"Validation: {len(val_dataset)} exemples") |
|
|
|
|
|
|
|
|
def format_example(example): |
|
|
"""Formate les messages en texte pour l'entrainement""" |
|
|
messages = example["messages"] |
|
|
text = tokenizer.apply_chat_template( |
|
|
messages, |
|
|
tokenize=False, |
|
|
add_generation_prompt=False |
|
|
) |
|
|
return {"text": text} |
|
|
|
|
|
|
|
|
print("Formatage des donnees...") |
|
|
train_dataset = train_dataset.map(format_example, remove_columns=train_dataset.column_names) |
|
|
val_dataset = val_dataset.map(format_example, remove_columns=val_dataset.column_names) |
|
|
|
|
|
|
|
|
print("\nExemple de donnees formatees:") |
|
|
print(train_dataset[0]["text"][:500] + "...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\nConfiguration d'entrainement:") |
|
|
print(f" - Epochs: {NUM_EPOCHS}") |
|
|
print(f" - Batch size: {BATCH_SIZE}") |
|
|
print(f" - Gradient accumulation: {GRAD_ACCUM}") |
|
|
print(f" - Effective batch size: {BATCH_SIZE * GRAD_ACCUM}") |
|
|
print(f" - Learning rate: {LEARNING_RATE}") |
|
|
print(f" - Max sequence length: {MAX_SEQ_LENGTH}") |
|
|
|
|
|
training_args = SFTConfig( |
|
|
output_dir=OUTPUT_DIR, |
|
|
num_train_epochs=NUM_EPOCHS, |
|
|
per_device_train_batch_size=BATCH_SIZE, |
|
|
per_device_eval_batch_size=BATCH_SIZE, |
|
|
gradient_accumulation_steps=GRAD_ACCUM, |
|
|
learning_rate=LEARNING_RATE, |
|
|
lr_scheduler_type="cosine", |
|
|
warmup_ratio=0.1, |
|
|
weight_decay=0.01, |
|
|
bf16=True, |
|
|
tf32=True, |
|
|
logging_steps=10, |
|
|
save_strategy="steps", |
|
|
save_steps=500, |
|
|
save_total_limit=3, |
|
|
eval_strategy="steps", |
|
|
eval_steps=500, |
|
|
max_length=MAX_SEQ_LENGTH, |
|
|
packing=False, |
|
|
gradient_checkpointing=True, |
|
|
gradient_checkpointing_kwargs={"use_reentrant": False}, |
|
|
dataset_text_field="text", |
|
|
report_to=report_to, |
|
|
run_name="n8n-expert-sft", |
|
|
hub_model_id=HF_REPO if hf_token else None, |
|
|
push_to_hub=bool(hf_token), |
|
|
hub_strategy="checkpoint", |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("\nInitialisation du trainer...") |
|
|
|
|
|
trainer = SFTTrainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=val_dataset, |
|
|
peft_config=lora_config, |
|
|
processing_class=tokenizer, |
|
|
) |
|
|
|
|
|
|
|
|
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
total_params = sum(p.numel() for p in model.parameters()) |
|
|
print(f"\nParametres entrainables: {trainable_params:,} / {total_params:,} ({100 * trainable_params / total_params:.2f}%)") |
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("DEMARRAGE DE L'ENTRAINEMENT") |
|
|
print("=" * 60) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("\nSauvegarde du modele...") |
|
|
trainer.save_model(f"{OUTPUT_DIR}/final") |
|
|
|
|
|
if hf_token: |
|
|
print(f"Push vers {HF_REPO}...") |
|
|
trainer.push_to_hub() |
|
|
print(f"Modele disponible sur: https://huggingface.co/{HF_REPO}") |
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("ENTRAINEMENT TERMINE") |
|
|
print("=" * 60) |
|
|
|