Model Details
- Input Dimensions: 4096 (Qwen embeddings)
- Output Dimensions: 768 (RWKV embeddings)
- Architecture: Linear layer (no bias)
- Training: Cosine similarity loss on L2-normalized pairs
- Dataset: takara-ai/micropajama_embedded_concat
Usage
Quick Start
import torch
from huggingface_hub import PyTorchModelHubMixin
# Define the model class (copy this exactly)
class QwenRwkvProjection(torch.nn.Module, PyTorchModelHubMixin,
library_name="takara-ai",
tags=["embedding", "projection", "qwen", "rwkv"],
license="mit"):
def __init__(self, din=4096, dout=768):
super().__init__()
self.linear = torch.nn.Linear(din, dout, bias=False)
def forward(self, x):
return self.linear(x)
# Load from Hub
model = QwenRwkvProjection.from_pretrained("takara-ai/qwen_rwkv_projection")
model.eval()
# Project embeddings (don't forget to normalize!)
normalized_qwen_embeddings = torch.nn.functional.normalize(your_qwen_embeddings, p=2, dim=-1, eps=1e-8)
projected_embeddings = model(normalized_qwen_embeddings)
Important Notes
- Dimensions: Input must be (batch_size, 4096), output will be (batch_size, 768)
- Bias: Model uses no bias term (trained on normalized pairs)
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support