File size: 2,531 Bytes
4e909c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Getting Started
 
This guide walks you through everything you need to get started with the framework — from environment setup to running your first agent.

---

## Docker Setup

For the full experience (including the web UI and isolated environments), we recommend using **Docker**.

Download it from the [official Docker website](https://www.docker.com/products/docker-desktop).

---

## Python Virtual Environment

Before installing dependencies, it’s best to create a Python virtual environment.

**Create one:**
```bash
python -m venv venv
```

**Activate it:**

On **Windows (Git Bash or CMD)**:
```bash
.\venv\Scripts\activate
```

On **macOS/Linux**:
```bash
source venv/bin/activate
```

---

## Installation

Install **Laddr** (CLI, core, and API):

```bash
pip install laddr
```

Or develop against the local repository (editable mode):

```bash
pip install -e lib/laddr
```

---

## Create a New Project

Initialize a new project and move into it:

```bash
laddr init my_agent_system
cd my_agent_system
```

The project includes:

- `agents/` — Agent modules  
- `workers/` — Worker scripts  
- `Dockerfile` — Build configuration  
- `docker-compose.yml` — Multi-service orchestration  
- `main.py` — Application runner  

---

## Set API Keys

To enable integrations, add your API keys to a `.env` file in your project root:

```bash
# .env
GEMINI_API_KEY=your_gemini_api_key
SERPER_API_KEY=your_serper_api_key
```

> **Note:**  
> - The `web_search` tool requires a Serper API key.  
> - Gemini is used for LLM integrations.  
> - Set both keys before running the stack.

---

## Run the Stack (Docker)

Start the stack using either of these commands:

```bash
laddr run dev -d
```

or

```bash
docker compose up -d
```

Once running, open:

- Dashboard → `http://localhost:5173`  
- API → `http://localhost:8000`

To run agents **without Docker**, see [Local Setup](config/local-runtime).

---

## Add an Agent and Tool

Create a new agent and attach a tool to it:

```bash
laddr add agent researcher --role "Researcher" --goal "Find facts" --llm-model gemini-2.5-flash
laddr add tool web_search --agent researcher --description "Search the web"
```

---

## Quick Run

Run your agent with a quick test command:

```bash
laddr run researcher '{"topic": "Latest AI agent trends"}'
```

This executes a local run of your `researcher` agent using the default configuration.

---

You’re all set!  
You’ve installed **Laddr**, initialized a project, configured API keys, and run your first agent.