File size: 5,074 Bytes
4e909c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Tool Development Guide

Tools are functions that agents can call to interact with external systems, perform calculations, or access data.  
The `@tool` decorator registers a Python function as an agent tool with proper schema and tracing.

---

## Basic Tool Structure

```python
from laddr import tool
from typing import Dict

@tool(
    name="weather_lookup",
    description="Fetches current weather for a given city",
    parameters={
        "type": "object",
        "properties": {
            "city": {"type": "string", "description": "City name"},
            "units": {"type": "string", "description": "Units (metric/imperial)", "default": "metric"}
        },
        "required": ["city"]
    }
)
def weather_lookup(city: str, units: str = "metric") -> Dict:
    """Tool docstring: fetch current weather."""
    try:
        result = get_weather(city, units)
        return {"status": "success", "data": result}
    except Exception as e:
        return {"status": "error", "error": str(e)}
```

---

## The `@tool` Decorator

**Syntax:**
```python
@tool(
    name: str,
    description: str,
    parameters: dict,
    trace: bool = True,
    trace_mask: list = []
)
```

---

## Key Features

| Parameter | Type | Required | Description |
|------------|------|-----------|-------------|
| name | str | ✅ | Unique identifier used by agents |
| description | str | ✅ | Summary of the tool’s purpose |
| parameters | dict | ✅ | JSON Schema for tool inputs |
| trace | bool | ❌ | Enables or disables logging |
| trace_mask | list | ❌ | Redacts sensitive trace fields |

---

### Parameter Descriptions

#### `name`

**Rules:**
- Must be unique and descriptive  
- Use lowercase `snake_case`  
- Avoid generic names  

**Examples:**
```python
name="web_search"
name="calculate_area"
name="query_database"
```

---

#### `description`

**Best Practices:**
- Begin with an action verb  
- Limit to 100 characters  
- Avoid redundant phrasing like “use this tool to…”  

**Examples:**
```python
description="Scrape text content from a webpage"
description="Translate text from English to French"
```

---

#### `parameters`

Each tool defines a **JSON Schema** describing its accepted parameters.

**Example:**
```python
parameters={
    "type": "object",
    "properties": {
        "url": {"type": "string", "description": "Page URL"},
        "timeout": {"type": "integer", "description": "Timeout seconds", "default": 10}
    },
    "required": ["url"]
}
```

**Supported JSON Schema Types:**

| Type | Description | Example |
|------|--------------|---------|
| string | Text input | `"hello"` |
| integer | Whole numbers | `42` |
| number | Decimals | `3.14` |
| boolean | True/False | `true` |
| array | Lists | `["a", "b"]` |
| object | Nested dict | `{"key": "value"}` |

---

#### `trace`

Enables or disables trace logging.

**Example:**
```python
trace=True  # Default
```

Set to `False` when:
- Handling sensitive user data  
- Reducing log volume for high-frequency tools  

---

#### `trace_mask`

Redacts specified fields in traces.

**Example:**
```python
trace_mask=["api_key", "token", "password"]
```

Fields matching these keys will appear as:
```
***REDACTED***
```
in logs.

---

## Example Tool Patterns

### Pattern 1: API Wrapper

```python
@tool(name="api_call", description="Perform a GET request to external API")
def api_call(endpoint: str) -> Dict:
    api_key = os.getenv("API_KEY")
    response = requests.get(
        f"https://api.example.com/{endpoint}",
        headers={"Authorization": f"Bearer {api_key}"},
        timeout=10
    )
    return {"status": "success", "data": response.json()}
```

---

### Pattern 2: Data Transformer

```python
@tool(name="convert_format", description="Convert data between formats")
def convert_format(data: str, to_format: str = "json") -> Dict:
    if to_format == "json":
        return {"result": json.loads(data)}
    elif to_format == "csv":
        return {"result": parse_csv(data)}
    else:
        return {"error": f"Unsupported format {to_format}"}
```

---

### Pattern 3: File Operations

```python
@tool(name="list_files", description="List files by pattern")
def list_files(directory: str, pattern: str = "*") -> Dict:
    import glob
    files = glob.glob(f"{directory}/{pattern}")
    return {"files": files, "count": len(files)}
```

---

## Registering Tools with Agents

Tools must be passed to an agent during instantiation:

```python
from laddr import Agent
from tools.web_tools import web_search
from tools.math_tools import calculate

agent = Agent(
    name="researcher",
    tools=[web_search, calculate]
)
```

Agents automatically load the tool schemas and metadata for decision-making.

---

## Testing Tools

### Manual Testing (Python)
```python
from tools.web_tools import web_search

result = web_search(query="AI trends", max_results=3)
print(result)
```

### Manual Testing (API)
```bash
curl -X POST http://localhost:8000/api/agents/researcher/chat \
  -H "Content-Type: application/json" \
  -d '{"message": "search for AI trends"}'
```