File size: 10,181 Bytes
4e909c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Laddr

**A transparent, Docker-native, observable, distributed agent framework.**

Laddr is a superset of CrewAI that removes excessive abstractions and introduces real distributed runtime, local observability, and explicit agent communication.

## ๐ŸŽฏ Philosophy

CrewAI is too abstract, making it nearly impossible to understand or debug what's happening under the hood.

Laddr fixes this by being:

- **Transparent** โ€” All logic (task flow, prompts, tool calls) visible and traceable
- **Pluggable** โ€” Configure your own queues, databases, models, or tools
- **Observable** โ€” Every agent action recorded via OpenTelemetry
- **Containerized** โ€” Everything runs inside Docker for predictable behavior

> **In short:** Laddr = CrewAI with explicit communication, Docker-native execution, local observability, and zero hidden magic.

## ๐Ÿ—๏ธ Architecture

### Communication Model

Unlike CrewAI's internal synchronous calls, Laddr uses **Redis Streams** for explicit message passing:

```
Controller โ†’ Redis Queue โ†’ Agent Worker โ†’ Redis Response Stream
```

Each agent runs in its own container and consumes tasks from a dedicated Redis stream.

### Services

- **PostgreSQL** (with pgvector) โ€” Stores traces, job history, agent metadata
- **Redis** โ€” Message bus for task distribution
- **MinIO** โ€” S3-compatible storage for artifacts and large payloads
- **Jaeger** โ€” OpenTelemetry trace collection and visualization
- **Prometheus** โ€” Metrics collection and monitoring
- **API Server** โ€” FastAPI server for job submission and queries
- **Worker Containers** โ€” One per agent, consumes and processes tasks
- **Dashboard** โ€” Real-time monitoring and agent interaction

## ๐Ÿš€ Quick Start

### Installation

```bash
# Clone the repository
cd lib/laddr

# Install locally (for now)
pip install -e .
```

### Create a Project

```bash
# Initialize a new project
laddr init my_project

# Navigate to project
cd my_project

# Configure API keys in .env
# Edit .env and add your GEMINI_API_KEY and SERPER_API_KEY

# Start the environment (includes default researcher agent)
laddr run dev
```

This will start all services with a working researcher agent and web_search tool ready to use.

**What's included out-of-the-box:**
- Default `researcher` agent with Gemini 2.0 Flash
- `web_search` tool powered by Serper.dev
- Sample `research_pipeline.yml`
- Full observability stack (Jaeger, Prometheus, Dashboard)

Access the dashboard at `http://localhost:5173` to interact with your agents.

## ๐Ÿ“ฆ Project Structure

```
my_project/
โ”œโ”€โ”€ laddr.yml              # Project configuration
โ”œโ”€โ”€ docker-compose.yml       # Docker services (auto-generated)
โ”œโ”€โ”€ Dockerfile               # Container definition
โ”œโ”€โ”€ .env                     # Environment variables
โ”œโ”€โ”€ agents/                  # Agent configurations
โ”‚   โ”œโ”€โ”€ summarizer/
โ”‚   โ”‚   โ””โ”€โ”€ agent.yml
โ”‚   โ””โ”€โ”€ analyzer/
โ”‚       โ””โ”€โ”€ agent.yml
โ”œโ”€โ”€ tools/                   # Custom tools
โ”‚   โ””โ”€โ”€ my_tool.py
โ””โ”€โ”€ pipelines/               # Pipeline definitions
    โ””โ”€โ”€ analysis_pipeline.yml
```

## ๐Ÿค– Creating Agents

### Add an Agent

```bash
laddr add agent researcher
```

This will:
1. Create `agents/researcher/agent.yml`
2. Add worker service to `docker-compose.yml`
3. Register agent in `laddr.yml`

**Note**: A default `researcher` agent with `web_search` tool is created automatically when you run `laddr init`.

### Agent Configuration

`agents/researcher/agent.yml`:

```yaml
name: researcher
role: Research Agent
goal: Research topics on the web and summarize findings concisely
backstory: A helpful researcher that gathers and condenses information from reliable web sources
llm:
  provider: gemini
  model: gemini-2.5-flash
  api_key: ${GEMINI_API_KEY}
  temperature: 0.7
  max_tokens: 2048
tools:
  - web_search
max_iterations: 15
allow_delegation: false
verbose: true
```

### LLM Providers

Laddr supports multiple LLM providers:
- **Gemini** (default) - Google's Gemini models
- **OpenAI** - GPT-4, GPT-3.5, etc.
- **Anthropic** - Claude models
- **Groq** - Fast inference
- **Ollama** - Local models
- **llama.cpp** - Local C++ inference

Set your API keys in `.env`:
```bash
GEMINI_API_KEY=your_key_here
OPENAI_API_KEY=your_key_here
ANTHROPIC_API_KEY=your_key_here
GROQ_API_KEY=your_key_here
```

## ๐Ÿ”ง Custom Tools

### Default Tool: web_search

A `web_search` tool using Serper.dev is included by default:

```python
# tools/web_search.py
def web_search(query: str, max_results: int = 5) -> str:
    """Search the web using Serper.dev API."""
    # Uses SERPER_API_KEY from .env
    # Get your free API key at https://serper.dev
```

**Setup**: Add your Serper.dev API key to `.env`:
```bash
SERPER_API_KEY=your_serper_key_here
```

### Add More Tools

```bash
laddr add tool my_custom_tool
```

Edit `tools/my_custom_tool.py`:

```python
def my_custom_tool(param: str) -> str:
    """Your custom tool logic."""
    return result
```

## ๐Ÿ“‹ Pipelines

A sample pipeline (`research_pipeline.yml`) is created automatically on init.

### Example Pipeline

`pipelines/research_pipeline.yml`:

```yaml
name: research_pipeline
description: Example research pipeline using the researcher agent
tasks:
  - name: search_topic
    description: "Search the web for information about: {topic}"
    agent: researcher
    expected_output: A comprehensive summary of web search results
    tools:
      - web_search
    async_execution: false
    
  - name: analyze_results
    description: Analyze the search results and extract key insights
    agent: researcher
    expected_output: Key insights and recommendations based on the research
    context:
      - search_topic
    async_execution: false
```

### Run a Pipeline

```bash
laddr run pipeline pipelines/analysis.yml
```

Note: Pipeline inputs are defined in the YAML file or can be passed via API.

## ๐Ÿ” Observability

### View Traces

Navigate to Jaeger at `http://localhost:16686` to see:
- Task execution traces
- LLM API calls
- Tool invocations
- Error spans

### View Metrics

Navigate to Prometheus at `http://localhost:9090` to query:
- `laddr_agent_task_duration_seconds` โ€” Task execution time
- `laddr_queue_depth` โ€” Pending tasks per agent
- `laddr_tokens_total` โ€” Token usage
- `laddr_errors_total` โ€” Error counts

### Agent Logs

```bash
# View logs for an agent
laddr logs summarizer

# Follow logs in real-time
laddr logs summarizer -f
```

## ๐ŸŒ API Reference

### Submit Job

```bash
curl -X POST http://localhost:8000/jobs \
  -H "Content-Type: application/json" \
  -d '{
    "pipeline_name": "analysis",
    "inputs": {"document": "report.pdf"}
  }'
```

### Get Job Status

```bash
curl http://localhost:8000/jobs/{job_id}
```

### List Agents

```bash
curl http://localhost:8000/agents
```

## ๐Ÿ“Š Dashboard

Access the dashboard at `http://localhost:5173` to:

- View all active agents
- Monitor real-time logs
- Inspect OpenTelemetry traces
- Interact with individual agents
- Visualize job workflows
- Check system health metrics

## ๐Ÿณ Docker Commands

```bash
# Start all services
laddr run dev

# View logs
laddr logs <agent_name>

# Stop all services
laddr stop

# Rebuild containers
docker compose up -d --build
```

## โš™๏ธ Configuration

### Environment Variables

Edit `.env` to customize:

```bash
DATABASE_URL=postgresql://postgres:postgres@postgres:5432/laddr
REDIS_URL=redis://redis:6379
MINIO_ENDPOINT=minio:9000
OTEL_EXPORTER_OTLP_ENDPOINT=http://jaeger:4318
API_HOST=0.0.0.0
API_PORT=8000
```

### Project Configuration

Edit `laddr.yml`:

```yaml
project:
  name: my_project
  broker: redis
  database: postgres
  storage: minio
  tracing: true
  metrics: true
  agents:
    - summarizer
    - analyzer
```

## ๐Ÿ”„ Message Format

### Task Message

```json
{
  "task_id": "uuid",
  "job_id": "uuid",
  "source_agent": "controller",
  "target_agent": "summarizer",
  "payload": {
    "description": "Summarize this document",
    "context": "...",
    "expected_output": "..."
  },
  "trace_parent": "trace-id",
  "created_at": "timestamp"
}
```

### Response Message

```json
{
  "task_id": "uuid",
  "job_id": "uuid",
  "agent_name": "summarizer",
  "status": "completed",
  "result": {"output": "..."},
  "metrics": {
    "tokens": 2200,
    "latency_ms": 5200
  },
  "trace_parent": "trace-id",
  "completed_at": "timestamp"
}
```

## ๐Ÿ”ง Development

### Prerequisites

- Python 3.10+
- Docker & Docker Compose
- Git

### Setup

```bash
# Clone repository
git clone https://github.com/laddr/laddr.git
cd laddr

# Install dependencies
cd lib/laddr
pip install -e .[dev]

# Run tests
pytest
```

## ๐Ÿ“ CLI Reference

```bash
laddr init [project_name]        # Initialize new project
laddr add agent <name>           # Add new agent
laddr add tool <name>            # Add custom tool
laddr run dev                      # Start development environment
laddr run agent <agent>            # Run single agent locally
laddr run pipeline <file.yml>      # Run a pipeline
laddr logs <agent>                 # View agent logs
laddr stop                       # Stop all services
```

## ๐Ÿ†š Laddr vs CrewAI

| Feature | CrewAI | Laddr |
|---------|--------|---------|
| **Communication** | Hidden internal calls | Explicit Redis message bus |
| **Runtime** | In-memory Python | Docker containers per agent |
| **Observability** | Limited logging | Full OpenTelemetry + Prometheus |
| **Scalability** | Single process | Distributed workers |
| **Transparency** | Opaque orchestration | Visible task flow |
| **Storage** | In-memory | MinIO/S3 for artifacts |
| **Monitoring** | None | Dashboard + Jaeger + Prometheus |
| **Configuration** | Code-based | YAML + Docker Compose |

## ๐Ÿค Contributing

Contributions are welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.

## ๐Ÿ“„ License

MIT License - see [LICENSE](LICENSE) for details.

## ๐Ÿ”— Links

- **Documentation**: Coming soon
- **GitHub**: https://github.com/laddr/laddr
- **Issues**: https://github.com/laddr/laddr/issues

---

**Built with transparency in mind. No hidden magic. Just distributed agents.**