File size: 20,460 Bytes
4e909c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
"""
修复版训练数据生成器
核心改进:
1. 直接基于代码内容生成准确的问答对
2. 不依赖LLM生成(避免循环依赖)
3. 使用模板化方法确保数据质量
4. 优化项目概览问题,使其更具项目特色
"""
import json
import yaml
import random
from pathlib import Path
from typing import List, Dict, Any
from dataclasses import dataclass, field # <--- 修复: dataclass 位于 dataclasses 模块
import re
from collections import defaultdict
@dataclass
class TrainingSample:
"""训练样本"""
conversations: List[Dict[str, str]]
metadata: Dict[str, Any]
class FixedDataGenerator:
"""修复版数据生成器 - 基于规则和模板"""
def __init__(self, config_path: str = "../config/default_config.yaml",
analysis_path: str = "../data/repository_analysis.json"):
with open(config_path, 'r', encoding='utf-8') as f:
self.config = yaml.safe_load(f)
try:
with open(analysis_path, 'r', encoding='utf-8') as f:
self.analysis_data = json.load(f)
except FileNotFoundError:
print(f"❌ 警告: 找不到分析文件 {analysis_path}。请先运行分析器。")
self.analysis_data = {'code_elements': [], 'project_context': {}}
self.code_elements = self.analysis_data.get('code_elements', [])
self.project_context = self.analysis_data.get('project_context', {})
self.project_name = self.project_context.get('project_name', 'Laddr')
self.training_samples = []
def generate_training_data(self):
"""生成训练数据"""
print(f"Generating training data for {self.project_name}...")
# 1. 代码解释任务(基于docstring + 代码结构)
print("Generating code explanation samples...")
self._generate_code_explanation_samples()
# 2. API使用示例(基于函数签名 + docstring)
print("Generating API usage samples...")
self._generate_api_usage_samples()
# 3. 项目概览问答(基于统计和结构信息)
print("Generating project overview samples...")
self._generate_project_overview_samples()
# 4. 代码定位任务("在哪个文件中...")
print("Generating code location samples...")
self._generate_code_location_samples()
print(f"Total samples generated: {len(self.training_samples)}")
def _generate_code_explanation_samples(self):
"""生成代码解释样本 - 基于真实代码和docstring"""
# 选择有docstring的元素
candidates = [e for e in self.code_elements
if e.get('docstring') and len(e.get('code', '')) > 50]
for element in candidates[:300]: # 增加数量限制
name = element['name']
docstring = element['docstring']
filepath = element['filepath']
element_type = element['type']
code = element.get('code', '')
# 提取函数签名
signature = self._extract_signature(code, element_type)
# 问题模板
questions = [
f"请解释 {self.project_name} 中 `{name}` 的作用。",
f"{self.project_name} 的 `{name}` 是做什么的?",
f"在 {self.project_name} 项目中,`{name}` 有什么功能?",
]
question = random.choice(questions)
# 构建高质量答案(基于真实信息)
answer_parts = []
# 1. 基本信息
answer_parts.append(f"`{name}` 是 {self.project_name} 项目中的一个 {self._type_to_cn(element_type)},位于 `{filepath}`。")
# 2. 功能描述(来自docstring)
if docstring:
# 清理docstring
clean_doc = self._clean_docstring(docstring)
answer_parts.append(f"\n**功能描述**:\n{clean_doc}")
# 3. 函数签名(如果有)
if signature:
answer_parts.append(f"\n**函数签名**:\n```python\n{signature}\n```")
# 4. 参数说明(如果有)
params = element.get('parameters', [])
if params and len(params) > 0:
param_desc = "\n**参数**:\n"
for param in params[:5]: # 最多5个参数
param_name = param.get('name', 'unknown')
param_type = param.get('type', 'Any')
# 尝试从 docstring 中提取参数描述,如果没有则使用类型
param_desc_from_doc = self._extract_param_desc(docstring, param_name)
if param_desc_from_doc:
param_info = f"- `{param_name}` ({param_type}): {param_desc_from_doc}\n"
else:
param_info = f"- `{param_name}` ({param_type})\n"
param_desc += param_info
answer_parts.append(param_desc)
# 5. 返回值(如果有)
return_type = element.get('return_type')
if return_type:
answer_parts.append(f"\n**返回值**:`{return_type}`")
answer = ''.join(answer_parts)
self.training_samples.append(TrainingSample(
conversations=[
{"role": "user", "content": question},
{"role": "assistant", "content": answer}
],
metadata={
"task_type": "code_explanation",
"element_name": name,
"filepath": filepath
}
))
def _generate_api_usage_samples(self):
"""生成API使用示例 - 基于函数签名"""
# 选择公共函数/方法
candidates = [e for e in self.code_elements
if e['type'] in ['function', 'method']
and not e['name'].startswith('_') # 排除私有方法
and e.get('parameters')]
for element in candidates[:150]: # 增加数量限制
name = element['name']
params = element.get('parameters', [])
filepath = element['filepath']
docstring = element.get('docstring', '')
question = f"如何在 {self.project_name} 中使用 `{name}` 函数?"
# 构建使用示例
answer_parts = []
answer_parts.append(f"`{name}` 位于 `{filepath}`,使用方法如下:")
# 生成示例代码
param_names = [p['name'] for p in params if p['name'] != 'self']
if param_names:
example_code = f"{name}("
param_examples = []
for p in param_names[:5]: # 最多5个参数
param_examples.append(f"{p}=...")
example_code += ", ".join(param_examples)
example_code += ")"
answer_parts.append(f"\n```python\n{example_code}\n```")
# 参数说明
if params:
answer_parts.append("\n**参数说明**:")
for param in params[:5]:
if param['name'] != 'self':
param_type = param.get('type', 'Any')
param_desc_from_doc = self._extract_param_desc(docstring, param['name'])
answer_parts.append(f"\n- `{param['name']}`: {param_type}")
if param_desc_from_doc:
answer_parts[-1] += f" - {param_desc_from_doc}" # 追加描述
# 添加docstring提示
if docstring:
clean_doc = self._clean_docstring(docstring)[:200]
if clean_doc:
answer_parts.append(f"\n\n**功能简述**:{clean_doc}...")
answer = ''.join(answer_parts)
self.training_samples.append(TrainingSample(
conversations=[
{"role": "user", "content": question},
{"role": "assistant", "content": answer}
],
metadata={
"task_type": "api_usage",
"element_name": name
}
))
def _generate_project_overview_samples(self):
"""生成项目概览问答 - 基于统计信息"""
stats = self.analysis_data.get('statistics', {})
description = self.project_context.get('description', '')
techs = self.project_context.get('main_technologies', [])
file_type_counts = self.analysis_data.get('statistics', {}).get('file_type_counts', {})
# --- 问题1: 项目主要功能 (更具项目特色) ---
q1_list = [
f"请用一句话描述 {self.project_name} 项目的主要功能。",
f"{self.project_name} 是一个什么样的项目?",
f"简单介绍一下 {self.project_name} 项目。"
]
q1 = random.choice(q1_list)
a1_parts = [
f"{self.project_name} 是一个 Python 项目。"
]
if description:
# 修复:确保项目描述清晰
a1_parts.append(f"\n**核心目标**:\n{description}")
else:
a1_parts.append("\n**核心目标**:此项目旨在提供一个可扩展的多代理系统框架(Agent Framework),支持任务规划、工具调用、消息队列和数据库集成等功能。")
# 添加技术栈
if techs:
a1_parts.append(f"\n\n**主要技术栈**:{', '.join(techs[:5])}等。")
a1_parts.append(f"\n\n项目包含 {stats.get('total_elements', 0)} 个代码元素,主要由 {stats.get('classes', 0)} 个类和 {stats.get('functions', 0) + stats.get('methods', 0)} 个函数/方法构成。")
a1 = ''.join(a1_parts)
self.training_samples.append(TrainingSample(
conversations=[
{"role": "user", "content": q1},
{"role": "assistant", "content": a1}
],
metadata={"task_type": "project_overview"}
))
# --- 问题2: 项目结构 ---
q2_list = [
f"{self.project_name} 的项目结构是怎样的?",
f"请列举 {self.project_name} 的核心模块。",
]
q2 = random.choice(q2_list)
a2_parts = [f"{self.project_name} 项目包含以下主要部分:\n"]
# 获取主要模块
modules = self.project_context.get('key_modules', [])
if modules:
a2_parts.append("\n**核心模块**:\n")
for mod in modules[:10]:
a2_parts.append(f"- `{mod}`\n")
else:
a2_parts.append("\n**核心模块**:\n- `core` (核心逻辑,如Agent Runtime, Tooling, Config)\n- `cli` (命令行接口)\n- `llms` (LLM后端实现)\n")
# 优化文件类型展示
if file_type_counts:
file_stats = ', '.join(f'{k.lstrip(".").upper()}: {v}' for k, v in file_type_counts.items() if k not in ['.other'])
a2_parts.append(f"\n**主要文件类型统计**:{file_stats}")
a2 = ''.join(a2_parts)
self.training_samples.append(TrainingSample(
conversations=[
{"role": "user", "content": q2},
{"role": "assistant", "content": a2}
],
metadata={"task_type": "project_structure"}
))
# --- 问题3: 核心类/函数 ---
top_elements = sorted(self.code_elements,
key=lambda x: x.get('complexity', 0),
reverse=True)[:10]
q3 = f"{self.project_name} 中有哪些核心类和函数?"
a3_parts = [f"{self.project_name} 的核心组件包括(基于复杂度和重要性):\n"]
for elem in top_elements:
name = elem['name']
filepath = elem['filepath']
elem_type = self._type_to_cn(elem['type'])
doc = elem.get('docstring', '')
short_doc = self._clean_docstring(doc).split('\n')[0][:80].strip()
line = f"\n- `{name}` ({elem_type}):位于 `{filepath}`"
if short_doc:
line += f" - {short_doc}..."
a3_parts.append(line)
if len(top_elements) > 0:
a3 = ''.join(a3_parts)
self.training_samples.append(TrainingSample(
conversations=[
{"role": "user", "content": q3},
{"role": "assistant", "content": a3}
],
metadata={"task_type": "core_components"}
))
def _generate_code_location_samples(self):
"""生成代码定位任务"""
# 选择不同文件中的元素
file_elements = defaultdict(list)
for elem in self.code_elements:
# 排除非核心的__init__
if elem['name'] == '__init__' and 'module' not in elem['type']:
continue
file_elements[elem['filepath']].append(elem)
for filepath, elements in list(file_elements.items())[:50]:
# 随机选择1-3个元素
selected = random.sample(elements, min(3, len(elements)))
for elem in selected:
name = elem['name']
elem_type = self._type_to_cn(elem['type'])
question = f"在 {self.project_name} 中,`{name}` {elem_type}在哪个文件里?"
# 答案优化:更简洁,减少冗余信息,模型只需学习路径
answer = f"`{name}` 位于 `{filepath}`。"
self.training_samples.append(TrainingSample(
conversations=[
{"role": "user", "content": question},
{"role": "assistant", "content": answer}
],
metadata={
"task_type": "code_location",
"element_name": name,
"filepath": filepath
}
))
def _extract_signature(self, code: str, element_type: str) -> str:
"""提取函数/类签名"""
if not code:
return ""
lines = code.strip().split('\n')
signature_lines = []
for line in lines:
line = line.strip()
if not line:
continue
signature_lines.append(line)
# 提取函数/方法定义行
if element_type in ['function', 'method'] and (line.startswith('def ') or line.startswith('async def ')):
# 兼容多行函数签名
if not line.endswith(':'):
continue
return '\n'.join(signature_lines)
# 提取类定义行
if element_type == 'class' and line.startswith('class '):
if not line.endswith(':'):
continue
return '\n'.join(signature_lines)
# 避免包含函数/方法体
if line.endswith((':')) and not line.startswith(('def ', 'class ')):
break
# 仅返回前几行,确保只包含定义
return '\n'.join(signature_lines[:5])
def _clean_docstring(self, docstring: str) -> str:
"""清理docstring"""
if not docstring:
return ""
# 移除多余空白
lines = docstring.strip().split('\n')
cleaned = []
for line in lines:
line = line.strip()
if line:
cleaned.append(line)
return ' '.join(cleaned)
def _extract_param_desc(self, docstring: str, param_name: str) -> str:
"""从 docstring 中尝试提取参数描述"""
if not docstring:
return ""
# 匹配各种格式的参数描述,例如 Args: key: The cache key.
match = re.search(rf"(?:Args|Parameters|Params):\s*(?:[\n\r]\s*-)?\s*`?{re.escape(param_name)}`?\s*[:\-]\s*(.*)", docstring, re.IGNORECASE)
if match:
desc = match.group(1).split('\n')[0].strip()
return desc if desc else "无描述"
return ""
def _type_to_cn(self, element_type: str) -> str:
"""元素类型转中文"""
mapping = {
'function': '函数',
'method': '方法',
'class': '类',
'variable': '变量',
'module': '模块'
}
return mapping.get(element_type, element_type)
def save_training_data(self):
"""保存训练数据"""
output_dir = Path(self.config['dataset']['output_dir'])
output_dir.mkdir(parents=True, exist_ok=True)
# 打乱
random.shuffle(self.training_samples)
# 分割
total = len(self.training_samples)
train_size = int(total * 0.8)
val_size = int(total * 0.1)
if total < 10: # 如果样本太少,平均分配
train_size = max(1, total // 2)
val_size = max(1, (total - train_size) // 2)
# 再次检查,确保分割不会导致索引错误
if train_size + val_size > total:
val_size = total - train_size
train_data = self.training_samples[:train_size]
val_data = self.training_samples[train_size:train_size + val_size]
test_data = self.training_samples[train_size + val_size:]
# 保存为JSONL
self._save_jsonl(train_data, output_dir / "train.jsonl")
self._save_jsonl(val_data, output_dir / "val.jsonl")
self._save_jsonl(test_data, output_dir / "test.jsonl")
# 元数据
metadata = {
'total_samples': total,
'train_samples': len(train_data),
'val_samples': len(val_data),
'test_samples': len(test_data),
'project_name': self.project_name,
'task_distribution': self._get_task_distribution()
}
with open(output_dir / "metadata.json", 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2, ensure_ascii=False)
print(f"\n✓ Training data saved:")
print(f" Train: {len(train_data)}")
print(f" Val: {len(val_data)}")
print(f" Test: {len(test_data)}")
print(f" Total: {total}")
# 显示样本示例
print(f"\n📝 Sample training example:")
if train_data:
sample = random.choice(train_data)
print(f"Q: {sample.conversations[0]['content'][:100]}...")
print(f"A: {sample.conversations[1]['content'][:150]}...")
def _save_jsonl(self, data: List[TrainingSample], filepath: Path):
"""保存为JSONL格式"""
with open(filepath, 'w', encoding='utf-8') as f:
for sample in data:
# 仅保存对话,不保存 metadata
json.dump({'conversations': sample.conversations}, f, ensure_ascii=False)
f.write('\n')
def _get_task_distribution(self) -> Dict[str, int]:
"""统计任务分布"""
dist = {}
for sample in self.training_samples:
task_type = sample.metadata.get('task_type', 'unknown')
dist[task_type] = dist.get(task_type, 0) + 1
return dist
def main():
print("="*60)
print("Fixed Training Data Generator (Project-Specific Answers Enhanced)")
print("="*60)
generator = FixedDataGenerator()
generator.generate_training_data()
generator.save_training_data()
print("\n" + "="*60)
print("✓ Data generation completed!")
print("="*60)
if __name__ == "__main__":
main()
|