File size: 20,460 Bytes
4e909c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
"""
修复版训练数据生成器
核心改进:
1. 直接基于代码内容生成准确的问答对
2. 不依赖LLM生成(避免循环依赖)
3. 使用模板化方法确保数据质量
4. 优化项目概览问题,使其更具项目特色
"""
import json
import yaml
import random
from pathlib import Path
from typing import List, Dict, Any
from dataclasses import dataclass, field # <--- 修复: dataclass 位于 dataclasses 模块
import re
from collections import defaultdict


@dataclass
class TrainingSample:
    """训练样本"""
    conversations: List[Dict[str, str]]
    metadata: Dict[str, Any]


class FixedDataGenerator:
    """修复版数据生成器 - 基于规则和模板"""
    
    def __init__(self, config_path: str = "../config/default_config.yaml", 
                 analysis_path: str = "../data/repository_analysis.json"):
        with open(config_path, 'r', encoding='utf-8') as f:
            self.config = yaml.safe_load(f)
        
        try:
            with open(analysis_path, 'r', encoding='utf-8') as f:
                self.analysis_data = json.load(f)
        except FileNotFoundError:
            print(f"❌ 警告: 找不到分析文件 {analysis_path}。请先运行分析器。")
            self.analysis_data = {'code_elements': [], 'project_context': {}}

        self.code_elements = self.analysis_data.get('code_elements', [])
        self.project_context = self.analysis_data.get('project_context', {})
        self.project_name = self.project_context.get('project_name', 'Laddr')
        
        self.training_samples = []
    
    def generate_training_data(self):
        """生成训练数据"""
        print(f"Generating training data for {self.project_name}...")
        
        # 1. 代码解释任务(基于docstring + 代码结构)
        print("Generating code explanation samples...")
        self._generate_code_explanation_samples()
        
        # 2. API使用示例(基于函数签名 + docstring)
        print("Generating API usage samples...")
        self._generate_api_usage_samples()
        
        # 3. 项目概览问答(基于统计和结构信息)
        print("Generating project overview samples...")
        self._generate_project_overview_samples()
        
        # 4. 代码定位任务("在哪个文件中...")
        print("Generating code location samples...")
        self._generate_code_location_samples()
        
        print(f"Total samples generated: {len(self.training_samples)}")
    
    def _generate_code_explanation_samples(self):
        """生成代码解释样本 - 基于真实代码和docstring"""
        # 选择有docstring的元素
        candidates = [e for e in self.code_elements 
                     if e.get('docstring') and len(e.get('code', '')) > 50]
        
        for element in candidates[:300]:  # 增加数量限制
            name = element['name']
            docstring = element['docstring']
            filepath = element['filepath']
            element_type = element['type']
            code = element.get('code', '')
            
            # 提取函数签名
            signature = self._extract_signature(code, element_type)
            
            # 问题模板
            questions = [
                f"请解释 {self.project_name} 中 `{name}` 的作用。",
                f"{self.project_name} 的 `{name}` 是做什么的?",
                f"在 {self.project_name} 项目中,`{name}` 有什么功能?",
            ]
            question = random.choice(questions)
            
            # 构建高质量答案(基于真实信息)
            answer_parts = []
            
            # 1. 基本信息
            answer_parts.append(f"`{name}` 是 {self.project_name} 项目中的一个 {self._type_to_cn(element_type)},位于 `{filepath}`。")
            
            # 2. 功能描述(来自docstring)
            if docstring:
                # 清理docstring
                clean_doc = self._clean_docstring(docstring)
                answer_parts.append(f"\n**功能描述**:\n{clean_doc}")
            
            # 3. 函数签名(如果有)
            if signature:
                answer_parts.append(f"\n**函数签名**:\n```python\n{signature}\n```")
            
            # 4. 参数说明(如果有)
            params = element.get('parameters', [])
            if params and len(params) > 0:
                param_desc = "\n**参数**:\n"
                for param in params[:5]:  # 最多5个参数
                    param_name = param.get('name', 'unknown')
                    param_type = param.get('type', 'Any')
                    # 尝试从 docstring 中提取参数描述,如果没有则使用类型
                    param_desc_from_doc = self._extract_param_desc(docstring, param_name)
                    if param_desc_from_doc:
                        param_info = f"- `{param_name}` ({param_type}): {param_desc_from_doc}\n"
                    else:
                        param_info = f"- `{param_name}` ({param_type})\n"

                    param_desc += param_info
                answer_parts.append(param_desc)
            
            # 5. 返回值(如果有)
            return_type = element.get('return_type')
            if return_type:
                answer_parts.append(f"\n**返回值**:`{return_type}`")
            
            answer = ''.join(answer_parts)
            
            self.training_samples.append(TrainingSample(
                conversations=[
                    {"role": "user", "content": question},
                    {"role": "assistant", "content": answer}
                ],
                metadata={
                    "task_type": "code_explanation",
                    "element_name": name,
                    "filepath": filepath
                }
            ))
    
    def _generate_api_usage_samples(self):
        """生成API使用示例 - 基于函数签名"""
        # 选择公共函数/方法
        candidates = [e for e in self.code_elements 
                     if e['type'] in ['function', 'method']
                     and not e['name'].startswith('_')  # 排除私有方法
                     and e.get('parameters')]
        
        for element in candidates[:150]: # 增加数量限制
            name = element['name']
            params = element.get('parameters', [])
            filepath = element['filepath']
            docstring = element.get('docstring', '')
            
            question = f"如何在 {self.project_name} 中使用 `{name}` 函数?"
            
            # 构建使用示例
            answer_parts = []
            answer_parts.append(f"`{name}` 位于 `{filepath}`,使用方法如下:")
            
            # 生成示例代码
            param_names = [p['name'] for p in params if p['name'] != 'self']
            if param_names:
                example_code = f"{name}("
                param_examples = []
                for p in param_names[:5]:  # 最多5个参数
                    param_examples.append(f"{p}=...")
                example_code += ", ".join(param_examples)
                example_code += ")"
                
                answer_parts.append(f"\n```python\n{example_code}\n```")
            
            # 参数说明
            if params:
                answer_parts.append("\n**参数说明**:")
                for param in params[:5]:
                    if param['name'] != 'self':
                        param_type = param.get('type', 'Any')
                        
                        param_desc_from_doc = self._extract_param_desc(docstring, param['name'])
                        
                        answer_parts.append(f"\n- `{param['name']}`: {param_type}")
                        if param_desc_from_doc:
                             answer_parts[-1] += f" - {param_desc_from_doc}" # 追加描述
            
            # 添加docstring提示
            if docstring:
                clean_doc = self._clean_docstring(docstring)[:200]
                if clean_doc:
                    answer_parts.append(f"\n\n**功能简述**:{clean_doc}...")
            
            answer = ''.join(answer_parts)
            
            self.training_samples.append(TrainingSample(
                conversations=[
                    {"role": "user", "content": question},
                    {"role": "assistant", "content": answer}
                ],
                metadata={
                    "task_type": "api_usage",
                    "element_name": name
                }
            ))
    
    def _generate_project_overview_samples(self):
        """生成项目概览问答 - 基于统计信息"""
        stats = self.analysis_data.get('statistics', {})
        description = self.project_context.get('description', '')
        techs = self.project_context.get('main_technologies', [])
        file_type_counts = self.analysis_data.get('statistics', {}).get('file_type_counts', {})
        
        # --- 问题1: 项目主要功能 (更具项目特色) ---
        q1_list = [
            f"请用一句话描述 {self.project_name} 项目的主要功能。",
            f"{self.project_name} 是一个什么样的项目?",
            f"简单介绍一下 {self.project_name} 项目。"
        ]
        q1 = random.choice(q1_list)
        
        a1_parts = [
            f"{self.project_name} 是一个 Python 项目。"
        ]
        
        if description:
            # 修复:确保项目描述清晰
            a1_parts.append(f"\n**核心目标**:\n{description}")
        else:
             a1_parts.append("\n**核心目标**:此项目旨在提供一个可扩展的多代理系统框架(Agent Framework),支持任务规划、工具调用、消息队列和数据库集成等功能。")
        
        # 添加技术栈
        if techs:
            a1_parts.append(f"\n\n**主要技术栈**:{', '.join(techs[:5])}等。")
        
        a1_parts.append(f"\n\n项目包含 {stats.get('total_elements', 0)} 个代码元素,主要由 {stats.get('classes', 0)} 个类和 {stats.get('functions', 0) + stats.get('methods', 0)} 个函数/方法构成。")
        
        a1 = ''.join(a1_parts)
        
        self.training_samples.append(TrainingSample(
            conversations=[
                {"role": "user", "content": q1},
                {"role": "assistant", "content": a1}
            ],
            metadata={"task_type": "project_overview"}
        ))
        
        # --- 问题2: 项目结构 ---
        q2_list = [
            f"{self.project_name} 的项目结构是怎样的?",
            f"请列举 {self.project_name} 的核心模块。",
        ]
        q2 = random.choice(q2_list)
        
        a2_parts = [f"{self.project_name} 项目包含以下主要部分:\n"]
        
        # 获取主要模块
        modules = self.project_context.get('key_modules', [])
        if modules:
            a2_parts.append("\n**核心模块**:\n")
            for mod in modules[:10]:
                a2_parts.append(f"- `{mod}`\n")
        else:
            a2_parts.append("\n**核心模块**:\n- `core` (核心逻辑,如Agent Runtime, Tooling, Config)\n- `cli` (命令行接口)\n- `llms` (LLM后端实现)\n")

        # 优化文件类型展示
        if file_type_counts:
             file_stats = ', '.join(f'{k.lstrip(".").upper()}: {v}' for k, v in file_type_counts.items() if k not in ['.other'])
             a2_parts.append(f"\n**主要文件类型统计**:{file_stats}")
        
        a2 = ''.join(a2_parts)
        
        self.training_samples.append(TrainingSample(
            conversations=[
                {"role": "user", "content": q2},
                {"role": "assistant", "content": a2}
            ],
            metadata={"task_type": "project_structure"}
        ))
        
        # --- 问题3: 核心类/函数 ---
        top_elements = sorted(self.code_elements, 
                             key=lambda x: x.get('complexity', 0), 
                             reverse=True)[:10]
        
        q3 = f"{self.project_name} 中有哪些核心类和函数?"
        a3_parts = [f"{self.project_name} 的核心组件包括(基于复杂度和重要性):\n"]
        
        for elem in top_elements:
            name = elem['name']
            filepath = elem['filepath']
            elem_type = self._type_to_cn(elem['type'])
            
            doc = elem.get('docstring', '')
            short_doc = self._clean_docstring(doc).split('\n')[0][:80].strip()
            
            line = f"\n- `{name}` ({elem_type}):位于 `{filepath}`"
            if short_doc:
                line += f" - {short_doc}..."
            a3_parts.append(line)
        
        if len(top_elements) > 0:
             a3 = ''.join(a3_parts)
             self.training_samples.append(TrainingSample(
                conversations=[
                    {"role": "user", "content": q3},
                    {"role": "assistant", "content": a3}
                ],
                metadata={"task_type": "core_components"}
            ))
    
    def _generate_code_location_samples(self):
        """生成代码定位任务"""
        # 选择不同文件中的元素
        file_elements = defaultdict(list)
        for elem in self.code_elements:
            # 排除非核心的__init__
            if elem['name'] == '__init__' and 'module' not in elem['type']:
                continue
            file_elements[elem['filepath']].append(elem)
        
        for filepath, elements in list(file_elements.items())[:50]:
            # 随机选择1-3个元素
            selected = random.sample(elements, min(3, len(elements)))
            
            for elem in selected:
                name = elem['name']
                elem_type = self._type_to_cn(elem['type'])
                
                question = f"在 {self.project_name} 中,`{name}` {elem_type}在哪个文件里?"
                
                # 答案优化:更简洁,减少冗余信息,模型只需学习路径
                answer = f"`{name}` 位于 `{filepath}`。"
                
                self.training_samples.append(TrainingSample(
                    conversations=[
                        {"role": "user", "content": question},
                        {"role": "assistant", "content": answer}
                    ],
                    metadata={
                        "task_type": "code_location",
                        "element_name": name,
                        "filepath": filepath
                    }
                ))
    
    def _extract_signature(self, code: str, element_type: str) -> str:
        """提取函数/类签名"""
        if not code:
            return ""
        
        lines = code.strip().split('\n')
        signature_lines = []
        
        for line in lines:
            line = line.strip()
            if not line:
                continue
            
            signature_lines.append(line)
            
            # 提取函数/方法定义行
            if element_type in ['function', 'method'] and (line.startswith('def ') or line.startswith('async def ')):
                # 兼容多行函数签名
                if not line.endswith(':'):
                    continue
                return '\n'.join(signature_lines)
            
            # 提取类定义行
            if element_type == 'class' and line.startswith('class '):
                 if not line.endswith(':'):
                    continue
                 return '\n'.join(signature_lines)

            # 避免包含函数/方法体
            if line.endswith((':')) and not line.startswith(('def ', 'class ')):
                break

        # 仅返回前几行,确保只包含定义
        return '\n'.join(signature_lines[:5])
    
    def _clean_docstring(self, docstring: str) -> str:
        """清理docstring"""
        if not docstring:
            return ""
        
        # 移除多余空白
        lines = docstring.strip().split('\n')
        cleaned = []
        for line in lines:
            line = line.strip()
            if line:
                cleaned.append(line)
        
        return ' '.join(cleaned)

    def _extract_param_desc(self, docstring: str, param_name: str) -> str:
        """从 docstring 中尝试提取参数描述"""
        if not docstring:
            return ""
        # 匹配各种格式的参数描述,例如 Args: key: The cache key.
        match = re.search(rf"(?:Args|Parameters|Params):\s*(?:[\n\r]\s*-)?\s*`?{re.escape(param_name)}`?\s*[:\-]\s*(.*)", docstring, re.IGNORECASE)
        if match:
             desc = match.group(1).split('\n')[0].strip()
             return desc if desc else "无描述"
        return ""
    
    def _type_to_cn(self, element_type: str) -> str:
        """元素类型转中文"""
        mapping = {
            'function': '函数',
            'method': '方法',
            'class': '类',
            'variable': '变量',
            'module': '模块'
        }
        return mapping.get(element_type, element_type)
    
    def save_training_data(self):
        """保存训练数据"""
        output_dir = Path(self.config['dataset']['output_dir'])
        output_dir.mkdir(parents=True, exist_ok=True)
        
        # 打乱
        random.shuffle(self.training_samples)
        
        # 分割
        total = len(self.training_samples)
        train_size = int(total * 0.8)
        val_size = int(total * 0.1)
        
        if total < 10: # 如果样本太少,平均分配
             train_size = max(1, total // 2)
             val_size = max(1, (total - train_size) // 2)
        
        # 再次检查,确保分割不会导致索引错误
        if train_size + val_size > total:
             val_size = total - train_size

        train_data = self.training_samples[:train_size]
        val_data = self.training_samples[train_size:train_size + val_size]
        test_data = self.training_samples[train_size + val_size:]
        
        # 保存为JSONL
        self._save_jsonl(train_data, output_dir / "train.jsonl")
        self._save_jsonl(val_data, output_dir / "val.jsonl")
        self._save_jsonl(test_data, output_dir / "test.jsonl")
        
        # 元数据
        metadata = {
            'total_samples': total,
            'train_samples': len(train_data),
            'val_samples': len(val_data),
            'test_samples': len(test_data),
            'project_name': self.project_name,
            'task_distribution': self._get_task_distribution()
        }
        
        with open(output_dir / "metadata.json", 'w', encoding='utf-8') as f:
            json.dump(metadata, f, indent=2, ensure_ascii=False)
        
        print(f"\n✓ Training data saved:")
        print(f"  Train: {len(train_data)}")
        print(f"  Val: {len(val_data)}")
        print(f"  Test: {len(test_data)}")
        print(f"  Total: {total}")
        
        # 显示样本示例
        print(f"\n📝 Sample training example:")
        if train_data:
            sample = random.choice(train_data)
            print(f"Q: {sample.conversations[0]['content'][:100]}...")
            print(f"A: {sample.conversations[1]['content'][:150]}...")
    
    def _save_jsonl(self, data: List[TrainingSample], filepath: Path):
        """保存为JSONL格式"""
        with open(filepath, 'w', encoding='utf-8') as f:
            for sample in data:
                # 仅保存对话,不保存 metadata
                json.dump({'conversations': sample.conversations}, f, ensure_ascii=False)
                f.write('\n')
    
    def _get_task_distribution(self) -> Dict[str, int]:
        """统计任务分布"""
        dist = {}
        for sample in self.training_samples:
            task_type = sample.metadata.get('task_type', 'unknown')
            dist[task_type] = dist.get(task_type, 0) + 1
        return dist


def main():
    print("="*60)
    print("Fixed Training Data Generator (Project-Specific Answers Enhanced)")
    print("="*60)
    
    generator = FixedDataGenerator()
    generator.generate_training_data()
    generator.save_training_data()
    
    print("\n" + "="*60)
    print("✓ Data generation completed!")
    print("="*60)


if __name__ == "__main__":
    main()