File size: 18,157 Bytes
4e909c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""
修复版模型微调脚本
核心改进:
1. 鲁棒的标签掩码(只学习assistant的回答)- 最终、最鲁棒修正版
2. 解决 QwenTokenizer 没有 im_end_id 属性的兼容性问题。
3. 修复 TypeError: '<=' not supported between instances of 'float' and 'str' 问题。
"""
import os
import json
import yaml
import torch
from pathlib import Path
from dataclasses import dataclass, field
from typing import Optional, List
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TrainingArguments,
    Trainer,
    DataCollatorForSeq2Seq,
    TrainerCallback,
)
from peft import LoraConfig, get_peft_model, TaskType
from datasets import load_dataset
import numpy as np


@dataclass
class ModelArguments:
    """模型参数"""
    model_name_or_path: str = field(default="Qwen/Qwen3-8B")
    use_lora: bool = field(default=True)
    lora_r: int = field(default=64)  
    lora_alpha: int = field(default=128)  
    lora_dropout: float = field(default=0.05)
    lora_target_modules: List[str] = field(
        default_factory=lambda: [
            "q_proj", "k_proj", "v_proj", "o_proj", 
            "gate_proj", "up_proj", "down_proj"
        ]
    )


@dataclass
class DataArguments:
    """数据参数"""
    data_dir: str = field(default="./data/training_data")
    max_length: int = field(default=1024)
    preprocessing_num_workers: int = field(default=32)


class SampleInspectionCallback(TrainerCallback):
    """训练样本检查回调"""
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.checked = False
    
    def on_step_begin(self, args, state, control, **kwargs):
        """在第一步开始时检查样本"""
        if not self.checked and state.global_step == 0:
            print("\n" + "="*60)
            print("🔍 Inspecting training samples...")
            print("="*60)
            self.checked = True


class QwenFineTunerFixed:
    """Qwen模型微调器 - 修复版"""
    config_path = Path(__file__).parent.parent / "config" / "default_config.yaml"

    def __init__(self, config_path: str = config_path):
        with open(config_path, 'r', encoding='utf-8') as f:
            self.config = yaml.safe_load(f)
        
        self.model_args = ModelArguments(
            model_name_or_path=self.config['model']['base_model']
        )
        self.data_args = DataArguments(
            data_dir=self.config['dataset']['output_dir']
        )
        
        self.output_dir = Path(self.config['training']['output_dir'])
        self.output_dir.mkdir(parents=True, exist_ok=True)
        
        self.tokenizer = None
        self.model = None
        self.train_dataset = None
        self.eval_dataset = None
        # 新增属性:用于安全存储 im_end_id
        self.im_end_token_id = None 
        
    def load_tokenizer_and_model(self):
        """加载tokenizer和模型"""
        print(f"Loading tokenizer from {self.model_args.model_name_or_path}")
        self.tokenizer = AutoTokenizer.from_pretrained(
            self.model_args.model_name_or_path,
            trust_remote_code=True,
            padding_side='right'
        )
        
        # 安全获取 im_end_id (修复 im_end_id 属性错误)
        try:
             # Qwen token ID 是 151644
             self.im_end_token_id = self.tokenizer.convert_tokens_to_ids("<|im_end|>")
             if self.im_end_token_id is None:
                 raise ValueError("Could not convert <|im_end|> token to ID.")
        except Exception as e:
             print(f"Warning: Could not get <|im_end|> ID, trying fallback: {e}")
             self.im_end_token_id = self.tokenizer.eos_token_id
        print(f"Using im_end_id: {self.im_end_token_id}")

        
        # 设置pad_token
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
            
        if self.tokenizer.chat_template is None:
             print("Warning: Qwen chat template not found. Using default template logic.")
        
        print(f"Loading model from {self.model_args.model_name_or_path}")
        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_args.model_name_or_path,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            use_cache=False,
            low_cpu_mem_usage=True
        )
        
        # 准备LoRA
        print("Preparing model for LoRA training...")
        if self.model_args.use_lora:
             
            print("Applying LoRA configuration")
            lora_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM,
                r=self.model_args.lora_r,
                lora_alpha=self.model_args.lora_alpha,
                lora_dropout=self.model_args.lora_dropout,
                target_modules=self.model_args.lora_target_modules,
                bias="none",
                inference_mode=False,
            )
            
            self.model = get_peft_model(self.model, lora_config)
            self.model.print_trainable_parameters()
            self.model.train()
            
            # 验证
            trainable = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
            print(f"✓ Trainable parameters: {trainable:,}")
    
    def load_and_preprocess_data(self):
        """加载和预处理数据"""
        print("Loading datasets...")
        
        data_files = {
            'train': str(Path(self.data_args.data_dir) / 'train.jsonl'),
            'validation': str(Path(self.data_args.data_dir) / 'val.jsonl'),
        }
        
        raw_datasets = load_dataset('json', data_files=data_files)
        
        print("Preprocessing datasets...")
        self.train_dataset = raw_datasets['train'].map(
            self._preprocess_function,
            batched=True,
            num_proc=self.data_args.preprocessing_num_workers,
            remove_columns=raw_datasets['train'].column_names,
            desc="Preprocessing train dataset"
        )
        
        self.eval_dataset = raw_datasets['validation'].map(
            self._preprocess_function,
            batched=True,
            num_proc=self.data_args.preprocessing_num_workers,
            remove_columns=raw_datasets['validation'].column_names,
            desc="Preprocessing validation dataset"
        )
        
        # 过滤过长样本
        print("Filtering samples...")
        self.train_dataset = self.train_dataset.filter(
            lambda x: x is not None and len(x['input_ids']) <= self.data_args.max_length
        )
        self.eval_dataset = self.eval_dataset.filter(
            lambda x: x is not None and len(x['input_ids']) <= self.data_args.max_length
        )
        
        print(f"✓ Train samples: {len(self.train_dataset)}")
        print(f"✓ Validation samples: {len(self.eval_dataset)}")
        
        # 检查第一个样本
        if len(self.train_dataset) > 0:
            self._inspect_sample(self.train_dataset[0])
    
    def _preprocess_function(self, examples):
        """预处理函数 - 最终、最鲁棒修正版标签掩码"""
        model_inputs = {
            "input_ids": [],
            "attention_mask": [],
            "labels": []
        }
        
        for conversations in examples['conversations']:
            try:
                # 1. 完整对话文本
                full_text = self.tokenizer.apply_chat_template(
                    conversations,
                    tokenize=False,
                    add_generation_prompt=False 
                )
                
                # 找到最后一个 Assistant 消息的索引
                last_assistant_index = next((i for i, msg in reversed(list(enumerate(conversations))) if msg['role'] == 'assistant'), -1)
                
                if last_assistant_index == -1:
                    print("Warning: Skipping conversation with no assistant reply.")
                    continue
                
                # 构造 "仅问题" 的对话列表: 包含所有消息直到最后一个 Assistant 消息之前
                prompt_messages = conversations[:last_assistant_index]
                # 加上最后一个 Assistant 消息的 Role Prompt (例如 <|im_start|>assistant\n)
                prompt_messages.append({"role": "assistant", "content": ""}) 
                
                prompt_text = self.tokenizer.apply_chat_template(
                    prompt_messages,
                    tokenize=False,
                    add_generation_prompt=False 
                )
                
                # 3. 分词: 完整对话
                tokenized_full = self.tokenizer(
                    full_text,
                    max_length=self.data_args.max_length,
                    truncation=True,
                    padding=False,
                )
                
                # 4. 分词: 仅问题部分 (获取答案起始点)
                tokenized_prompt = self.tokenizer(
                    prompt_text,
                    max_length=self.data_args.max_length,
                    truncation=True,
                    padding=False,
                )
                
                input_ids = tokenized_full['input_ids']
                labels = input_ids.copy()
                
                # 答案内容的起始索引 = 仅问题部分的长度
                answer_start_index = len(tokenized_prompt['input_ids'])
                
                if answer_start_index >= len(labels):
                    print(f"Warning: Answer start index {answer_start_index} exceeds or matches total length {len(labels)}. Skipping.")
                    return None

                # 5. 标签掩码:
                # 掩盖掉答案起始点之前的所有 tokens
                labels[:answer_start_index] = [-100] * answer_start_index
                
                # 确保最后一个 token (通常是 EOS/PAD 或 <|im_end|>) 也被掩盖
                if len(labels) > 0:
                    last_token_id = labels[-1]
                    
                    # 检查是否是 EOS/PAD token
                    if last_token_id != -100 and last_token_id == self.tokenizer.eos_token_id:
                        labels[-1] = -100
                    
                    # 检查是否是 Qwen 的 <|im_end|> token (使用安全存储的 ID)
                    if self.im_end_token_id is not None and last_token_id != -100 and last_token_id == self.im_end_token_id:
                        labels[-1] = -100
                
                model_inputs["input_ids"].append(input_ids)
                model_inputs["attention_mask"].append(tokenized_full['attention_mask'])
                model_inputs["labels"].append(labels)
            
            except Exception as e:
                import sys
                import traceback
                traceback.print_exc(file=sys.stdout)
                print(f"Error processing conversation: {e}")
                return None
                
        return model_inputs
    
    # ... (_inspect_sample 方法保持不变)
    def _inspect_sample(self, sample):
        """检查样本质量"""
        print("\n" + "="*60)
        print("🔍 Sample Inspection (AFTER FINAL, MOST ROBUST FIXES)")
        print("="*60)
        
        input_ids = sample['input_ids']
        labels = sample['labels']
        
        # 解码
        input_text = self.tokenizer.decode(input_ids, skip_special_tokens=False)
        
        # 统计
        total_tokens = len(input_ids)
        masked_tokens = sum(1 for l in labels if l == -100)
        learning_tokens = total_tokens - masked_tokens
        
        print(f"Total tokens: {total_tokens}")
        print(f"Masked tokens (prompt/padding): {masked_tokens} ({masked_tokens/total_tokens*100:.1f}%)")
        print(f"Learning tokens (assistant): {learning_tokens} ({learning_tokens/total_tokens*100:.1f}%)")
        
        # 显示前200个token的掩码情况
        print("\n📊 First 200 tokens masking pattern:")
        preview_len = min(200, len(labels))
        mask_preview = ''.join(['█' if labels[i] == -100 else '░' for i in range(preview_len)])
        
        # 找到第一个学习 token 和第一个掩码 token
        first_learn_idx = next((i for i, l in enumerate(labels) if l != -100), -1)
        
        if first_learn_idx != -1:
             print(f"First 10 tokens: {self.tokenizer.decode(input_ids[:10], skip_special_tokens=False)}")
             print(f"First learning token index: {first_learn_idx}")
             print(f"First learning token: {self.tokenizer.decode(input_ids[first_learn_idx])}")
             # 打印学习内容周围的 tokens
             start = max(0, first_learn_idx - 5)
             end = min(len(input_ids), first_learn_idx + 5)
             print(f"Around learning start: {self.tokenizer.decode(input_ids[start:end], skip_special_tokens=False)}")

        print(mask_preview)
        print("█ = masked (prompt/padding) | ░ = learning (assistant)")
        
        # 显示学习内容示例
        learning_ids = [input_ids[i] for i in range(len(labels)) if labels[i] != -100]
        if learning_ids:
            learning_text = self.tokenizer.decode(learning_ids[:100], skip_special_tokens=True)
            print(f"\n📝 Learning content preview:")
            print(f"{learning_text[:200]}...")
        
        print("="*60 + "\n")
    
    def train(self):
        """训练模型"""
        print("Setting up training arguments...")
        
        # 改进的训练配置
        training_args = TrainingArguments(
            output_dir=str(self.output_dir),
            num_train_epochs=self.config['training']['num_epochs'],
            
            # 批次配置
            per_device_train_batch_size=2, 
            per_device_eval_batch_size=2,
            gradient_accumulation_steps=8, 
            
            # 学习率
            learning_rate=float(self.config['training']['learning_rate']), # <--- 修复: 强制类型转换 float
            warmup_ratio=float(self.config['training']['warmup_ratio']), # <--- 修复: 强制类型转换 float
            lr_scheduler_type="cosine",
            
            # 优化器
            optim="adamw_torch",
            weight_decay=float(self.config['training']['weight_decay']), # <--- 修复: 强制类型转换 float
            max_grad_norm=float(self.config['training']['max_grad_norm']), # <--- 修复: 强制类型转换 float
            
            # 日志和保存
            logging_steps=10,
            save_steps=100,
            eval_steps=100,
            save_total_limit=3,
            
            # 评估
            eval_strategy="steps",
            save_strategy="steps",
            load_best_model_at_end=True,
            metric_for_best_model="eval_loss",
            greater_is_better=False,
            
            # 精度
            bf16=True,
            bf16_full_eval=True,
            
            # DeepSpeed
            deepspeed="../config/deepspeed_zero3.json",
            
            # 其他
            report_to=["tensorboard"],
            logging_dir=str(self.output_dir / "logs"),
            remove_unused_columns=False,
            dataloader_pin_memory=True,
            dataloader_num_workers=0,
            logging_first_step=True,
            logging_nan_inf_filter=True,
        )
        
        # Data collator
        data_collator = DataCollatorForSeq2Seq(
            tokenizer=self.tokenizer,
            model=self.model,
            label_pad_token_id=-100,
            padding=True,
        )
        
        # Callbacks
        callbacks = [SampleInspectionCallback(self.tokenizer)]
        
        # Trainer
        trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=self.train_dataset,
            eval_dataset=self.eval_dataset,
            data_collator=data_collator,
            tokenizer=self.tokenizer,
            callbacks=callbacks,
        )
        
        # 训练前验证
        print("\n" + "="*60)
        print("Pre-training Validation")
        print("="*60)
        print(f"✓ Model in training mode: {self.model.training}")
        
        lora_params = sum(p.numel() for n, p in self.model.named_parameters() 
                         if p.requires_grad and 'lora' in n.lower())
        print(f"✓ LoRA parameters: {lora_params:,}")
        
        # 开始训练
        print("\n" + "="*60)
        print("Starting Training")
        print("="*60)
        
        train_result = trainer.train()
        
        # 保存
        print("\nSaving model...")
        trainer.save_model(str(self.output_dir / "final_model"))
        
        # 保存指标
        metrics = train_result.metrics
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        
        # 评估
        print("\nEvaluating...")
        eval_metrics = trainer.evaluate()
        trainer.log_metrics("eval", eval_metrics)
        trainer.save_metrics("eval", eval_metrics)
        
        print("\n✓ Training completed!")
        return trainer


def main():
    """主函数"""
    if 'CUDA_VISIBLE_DEVICES' not in os.environ:
         os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
    if 'TOKENIZERS_PARALLELISM' not in os.environ:
         os.environ['TOKENIZERS_PARALLELISM'] = 'false'
    if 'PYTORCH_CUDA_ALLOC_CONF' not in os.environ:
         os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
    
    print("="*60)
    print("Qwen3-8B Fine-tuning - Fixed Version (Label Masking/LoRA Params Improved)")
    print("="*60)
    print()
    
    finetuner = QwenFineTunerFixed()
    finetuner.load_tokenizer_and_model()
    finetuner.load_and_preprocess_data()
    trainer = finetuner.train()
    
    print("\n" + "="*60)
    print("✓ Fine-tuning Complete!")
    print(f"Model saved to: {finetuner.output_dir}")
    print("="*60)


if __name__ == "__main__":
    main()