Qwen3-4B-SFT-envbench_weave_2500
This model is a fine-tuned version of Qwen/Qwen3-4B on the envbench_weave_2500 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3336
- Accuracy: 0.9056
- Num Input Tokens Seen: 93658048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0a0+df5bbc09d1.nv24.12
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 36