SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yandac/embedding_model_search_api")
# Run inference
sentences = [
'question: Je cherche une scie dans le magasin de Dinard. ----->query: query=Scie&context=178',
"question: J'aimerais savoir si vous avez des pinces à dénuder dans le magasin de Cabries. ----->query: query=pince a denuder&context=66",
"question: J'ai besoin d'une goulotte pour câble électrique, disponible dans le magasin de Vitry. ----->query: query=goulotte pour cable electrique&context=21",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,053 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 20 tokens
- mean: 45.16 tokens
- max: 67 tokens
- min: 17 tokens
- mean: 43.69 tokens
- max: 66 tokens
- min: 0.0
- mean: 0.24
- max: 0.9
- Samples:
sentence1 sentence2 label question: Peinture pour bois extérieur disponible dans le magasin de Mundolsheim ? ----->query: query=Peinture bois extérieur&context=197question: Avez-vous des plans de travail d'angle disponibles dans le magasin de Douai ? ----->query: query=plan de travail d'angle&context=1830.0question: Sac de granulés de bois disponible dans le magasin de Brive ? ----->query: query=sac granule bois&context=175question: Avez-vous des 1/2 ronds disponibles dans le magasin de Compiegne ? ----->query: query=1/2 rond&context=780.0question: Je cherche un rouleau d'étanchéité disponible dans le magasin de Cabries. ----->query: query=rouleau etancheite&context=66question: Je recherche un pied de table disponible dans le magasin d'Ivry sur Seine. ----->query: query=Pied de table&context=1420.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 1num_train_epochs: 4.8warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4.8max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 1.5152 | 100 | 0.0071 |
| 0.4748 | 500 | 0.0076 |
| 0.9497 | 1000 | 0.0162 |
| 1.4245 | 1500 | 0.0164 |
| 1.8993 | 2000 | 0.0155 |
| 2.3742 | 2500 | 0.0112 |
| 2.8490 | 3000 | 0.0106 |
| 3.3238 | 3500 | 0.0064 |
| 3.7987 | 4000 | 0.0055 |
| 4.2735 | 4500 | 0.0043 |
| 4.7483 | 5000 | 0.0027 |
| 0.4748 | 500 | 0.0046 |
| 0.9497 | 1000 | 0.0102 |
| 1.4245 | 1500 | 0.0134 |
| 1.8993 | 2000 | 0.0133 |
| 2.3742 | 2500 | 0.0086 |
| 2.8490 | 3000 | 0.007 |
| 3.3238 | 3500 | 0.0049 |
| 3.7987 | 4000 | 0.0037 |
| 4.2735 | 4500 | 0.0031 |
| 4.7483 | 5000 | 0.0022 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu118
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Model tree for yandac/embedding_model_search_api
Base model
sentence-transformers/all-MiniLM-L6-v2