sunflower_language_ID_improved

This model is a fine-tuned version of google/t5-efficient-tiny on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5044
  • Accuracy: 0.6293
  • F1 Macro: 0.5576
  • F1 Weighted: 0.5783
  • Precision Macro: 0.6310
  • Recall Macro: 0.6068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 60000

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Weighted Precision Macro Recall Macro
0.8129 0.0083 500 0.9712 0.0998 0.0544 0.0564 0.0925 0.0963
0.1835 0.0167 1000 0.9716 0.2110 0.1089 0.1089 0.1382 0.2110
0.1376 0.025 1500 1.1180 0.2453 0.1461 0.1515 0.2733 0.2365
0.1637 0.0333 2000 0.5585 0.4419 0.3848 0.3991 0.4617 0.4261
0.1382 0.0417 2500 0.6304 0.4811 0.4199 0.4355 0.5272 0.4639
0.0589 0.05 3000 0.7011 0.4349 0.3593 0.3726 0.4607 0.4194
0.1073 0.0583 3500 0.5442 0.4991 0.4470 0.4470 0.5804 0.4991
0.1461 0.0667 4000 0.4705 0.5609 0.4802 0.4980 0.5335 0.5408
0.059 0.075 4500 0.5019 0.5684 0.4987 0.4987 0.6235 0.5684
0.06 0.0833 5000 0.5568 0.6106 0.5485 0.5485 0.5973 0.6106
0.0617 0.0917 5500 0.4218 0.6231 0.5450 0.5651 0.5866 0.6008
0.0458 0.1 6000 0.4697 0.6276 0.5773 0.5773 0.6620 0.6276
0.0646 0.1083 6500 0.4356 0.6173 0.5432 0.5633 0.6516 0.5952
0.0447 0.1167 7000 0.4705 0.6358 0.5978 0.5978 0.6953 0.6358
0.0384 0.125 7500 0.4685 0.6173 0.5600 0.5600 0.6539 0.6173
0.0398 0.1333 8000 0.4796 0.6430 0.5722 0.5933 0.6100 0.6201
0.0323 0.1417 8500 0.6236 0.5705 0.5191 0.5191 0.5960 0.5705
0.0344 0.15 9000 0.4619 0.6296 0.5962 0.5962 0.7179 0.6296
0.0458 0.1583 9500 0.5044 0.6293 0.5576 0.5783 0.6310 0.6068

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
26
Safetensors
Model size
15.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yigagilbert/sunflower_language_ID_improved

Finetuned
(9)
this model

Evaluation results