Add arXiv metadata and update citation with paper links

#40
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +17 -3
README.md CHANGED
@@ -1,10 +1,11 @@
1
  ---
2
  language:
3
- - en
4
- - zh
5
  library_name: transformers
6
  license: mit
7
  pipeline_tag: text-generation
 
8
  ---
9
 
10
  # GLM-5
@@ -22,6 +23,11 @@ pipeline_tag: text-generation
22
  👉 One click to <a href="https://chat.z.ai">GLM-5</a>.
23
  </p>
24
 
 
 
 
 
 
25
  ## Introduction
26
 
27
  We are launching GLM-5, targeting complex systems engineering and long-horizon agentic tasks. Scaling is still one of the most important ways to improve the intelligence efficiency of Artificial General Intelligence (AGI). Compared to GLM-4.5, GLM-5 scales from 355B parameters (32B active) to 744B parameters (40B active), and increases pre-training data from 23T to 28.5T tokens. GLM-5 also integrates DeepSeek Sparse Attention (DSA), largely reducing deployment cost while preserving long-context capacity.
@@ -149,4 +155,12 @@ vLLM, SGLang, KTransformers, and xLLM all support local deployment of GLM-5. A s
149
 
150
  ## Citation
151
 
152
- Our technical report is coming soon.
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
+ - en
4
+ - zh
5
  library_name: transformers
6
  license: mit
7
  pipeline_tag: text-generation
8
+ arxiv: 2602.15763
9
  ---
10
 
11
  # GLM-5
 
23
  👉 One click to <a href="https://chat.z.ai">GLM-5</a>.
24
  </p>
25
 
26
+ <p align="center">
27
+ [<a href="https://huggingface.co/papers/2602.15763" target="_blank">Paper</a>]
28
+ [<a href="https://github.com/zai-org/GLM-5" target="_blank">GitHub</a>]
29
+ </p>
30
+
31
  ## Introduction
32
 
33
  We are launching GLM-5, targeting complex systems engineering and long-horizon agentic tasks. Scaling is still one of the most important ways to improve the intelligence efficiency of Artificial General Intelligence (AGI). Compared to GLM-4.5, GLM-5 scales from 355B parameters (32B active) to 744B parameters (40B active), and increases pre-training data from 23T to 28.5T tokens. GLM-5 also integrates DeepSeek Sparse Attention (DSA), largely reducing deployment cost while preserving long-context capacity.
 
155
 
156
  ## Citation
157
 
158
+ ```bibtex
159
+ @article{glm5team2026glm5,
160
+ title={GLM-5: from Vibe Coding to Agentic Engineering},
161
+ author={GLM-5 Team and Aohan Zeng and Xin Lv and Zhenyu Hou and Zhengxiao Du and Qinkai Zheng and Bin Chen and Da Yin and Chendi Ge and Chengxing Xie and others},
162
+ journal={arXiv preprint arXiv:2602.15763},
163
+ year={2026},
164
+ url={https://huggingface.co/papers/2602.15763}
165
+ }
166
+ ```