VA-Count / util /FSC147.py
HopooLinZ's picture
Upload 35 files
dc066a6 verified
from argparse import Namespace
import json
from pathlib import Path
import numpy as np
import random
from torchvision import transforms
import torch
import cv2
import torchvision.transforms.functional as TF
import scipy.ndimage as ndimage
from PIL import Image
import argparse
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage
MAX_HW = 384
IM_NORM_MEAN = [0.485, 0.456, 0.406]
IM_NORM_STD = [0.229, 0.224, 0.225]
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='./data/FSC147/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str,
help='annotation json file')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--gt_dir', default='./data/FSC147/gt_density_map_adaptive_384_VarV2', type=str,
help='ground truth directory')
parser.add_argument('--output_dir', default='./data/out/pre_4_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='./weights/mae_pretrain_vit_base_full.pth', # mae_visualize_vit_base
help='resume from checkpoint')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument('--log_dir', default='./logs/pre_4_dir',
help='path where to tensorboard log')
parser.add_argument("--title", default="CounTR_pretraining", type=str)
parser.add_argument("--wandb", default="counting", type=str)
parser.add_argument("--team", default="wsense", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
parser.add_argument("--do_aug", default=True, type=bool)
parser.add_argument('--class_file', default='./data/FSC147/ImageClasses_FSC147.txt', type=str,
help='class json file')
return parser
args = get_args_parser()
args = args.parse_args()
class ResizeSomeImage(object):
def __init__(self, args):
args = get_args_parser()
args = args.parse_args()
# print(dir(args.im_dir.as_posix()))
self.data_path = Path(args.data_path)
self.im_dir = self.data_path/args.im_dir
anno_file = self.data_path/args.anno_file
data_split_file = self.data_path/args.data_split_file
with open(anno_file) as f:
self.annotations = json.load(f)
with open(data_split_file) as f:
data_split = json.load(f)
self.train_set = data_split['train']
self.class_dict = {}
if args.do_aug:
with open(args.class_file) as f:
for line in f:
key = line.split()[0]
val = line.split()[1:]
self.class_dict[key] = val
class ResizePreTrainImage(ResizeSomeImage):
"""
Resize the image so that:
1. Image is equal to 384 * 384
2. The new height and new width are divisible by 16
3. The aspect ratio is preserved
Density and boxes correctness not preserved(crop and horizontal flip)
"""
def __init__(self, args, MAX_HW=384):
super().__init__(args)
self.max_hw = MAX_HW
def __call__(self, sample):
image, lines_boxes, density = sample['image'], sample['lines_boxes'], sample['gt_density']
W, H = image.size
new_H = 16 * int(H / 16)
new_W = 16 * int(W / 16)
resized_image = transforms.Resize((new_H, new_W))(image)
resized_density = cv2.resize(density, (new_W, new_H))
orig_count = np.sum(density)
new_count = np.sum(resized_density)
if new_count > 0:
resized_density = resized_density * (orig_count / new_count)
boxes = list()
for box in lines_boxes:
box2 = [int(k) for k in box]
y1, x1, y2, x2 = box2[0], box2[1], box2[2], box2[3]
boxes.append([0, y1, x1, y2, x2])
boxes = torch.Tensor(boxes).unsqueeze(0)
resized_image = PreTrainNormalize(resized_image)
resized_density = torch.from_numpy(resized_density).unsqueeze(0).unsqueeze(0)
sample = {'image': resized_image, 'boxes': boxes, 'gt_density': resized_density}
return sample
class ResizeTrainImage(ResizeSomeImage):
"""
Resize the image so that:
1. Image is equal to 384 * 384
2. The new height and new width are divisible by 16
3. The aspect ratio is possibly preserved
Density map is cropped to have the same size(and position) with the cropped image
Exemplar boxes may be outside the cropped area.
Augmentation including Gaussian noise, Color jitter, Gaussian blur, Random affine, Random horizontal flip and Mosaic (or Random Crop if no Mosaic) is used.
"""
def __init__(self, args, MAX_HW=384, do_aug=True):
super().__init__(args)
self.max_hw = MAX_HW
self.do_aug = do_aug
def __call__(self, sample):
image, lines_boxes, neg_lines_boxes, dots, im_id, m_flag = sample['image'], sample['lines_boxes'], sample['neg_lines_boxes'], \
sample['dots'], sample['id'], sample['m_flag']
W, H = image.size
new_H = 16 * int(H / 16)
new_W = 16 * int(W / 16)
scale_factor_h = float(new_H) / H
scale_factor_w = float(new_W) / W
resized_image = transforms.Resize((new_H, new_W))(image)
resized_image = TTensor(resized_image)
resized_density = np.zeros((new_H, new_W), dtype='float32')
# Augmentation probability
aug_flag = self.do_aug
mosaic_flag = random.random() < 0.25
if aug_flag:
# Gaussian noise
noise = np.random.normal(0, 0.1, resized_image.size())
noise = torch.from_numpy(noise)
re_image = resized_image + noise
re_image = torch.clamp(re_image, 0, 1)
# Color jitter and Gaussian blur
re_image = Augmentation(re_image)
# Random affine
re1_image = re_image.transpose(0, 1).transpose(1, 2).numpy()
keypoints = []
for i in range(dots.shape[0]):
keypoints.append(Keypoint(x=min(new_W - 1, int(dots[i][0] * scale_factor_w)), y=min(new_H - 1, int(dots[i][1] * scale_factor_h))))
kps = KeypointsOnImage(keypoints, re1_image.shape)
seq = iaa.Sequential([
iaa.Affine(
rotate=(-15, 15),
scale=(0.8, 1.2),
shear=(-10, 10),
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}
)
])
re1_image, kps_aug = seq(image=re1_image, keypoints=kps)
# Produce dot annotation map
resized_density = np.zeros((resized_density.shape[0], resized_density.shape[1]), dtype='float32')
for i in range(len(kps.keypoints)):
if (int(kps_aug.keypoints[i].y) <= new_H - 1 and int(kps_aug.keypoints[i].x) <= new_W - 1) and not \
kps_aug.keypoints[i].is_out_of_image(re1_image):
resized_density[int(kps_aug.keypoints[i].y)][int(kps_aug.keypoints[i].x)] = 1
resized_density = torch.from_numpy(resized_density)
re_image = TTensor(re1_image)
# Random horizontal flip
flip_p = random.random()
if flip_p > 0.5:
re_image = TF.hflip(re_image)
resized_density = TF.hflip(resized_density)
# Random self mosaic
if mosaic_flag:
image_array = []
map_array = []
blending_l = random.randint(10, 20)
resize_l = 192 + 2 * blending_l
if dots.shape[0] >= 70:
for i in range(4):
length = random.randint(150, 384)
start_W = random.randint(0, new_W - length)
start_H = random.randint(0, new_H - length)
reresized_image1 = TF.crop(resized_image, start_H, start_W, length, length)
reresized_image1 = transforms.Resize((resize_l, resize_l))(reresized_image1)
reresized_density1 = np.zeros((resize_l, resize_l), dtype='float32')
for i in range(dots.shape[0]):
if start_H <= min(new_H - 1, int(dots[i][1] * scale_factor_h)) < start_H + length and start_W <= min(new_W - 1, int(dots[i][0] * scale_factor_w)) < start_W + length:
reresized_density1[min(resize_l-1,int((min(new_H-1,int(dots[i][1] * scale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_W-1,int(dots[i][0] * scale_factor_w))-start_W)*resize_l/length))]=1
reresized_density1 = torch.from_numpy(reresized_density1)
image_array.append(reresized_image1)
map_array.append(reresized_density1)
else:
m_flag = 1
prob = random.random()
if prob > 0.25:
gt_pos = random.randint(0, 3)
else:
gt_pos = random.randint(0, 4) # 5% 0 objects
for i in range(4):
if i == gt_pos:
Tim_id = im_id
r_image = resized_image
Tdots = dots
new_TH = new_H
new_TW = new_W
Tscale_factor_w = scale_factor_w
Tscale_factor_h = scale_factor_h
else:
Tim_id = self.train_set[random.randint(0, len(self.train_set) - 1)]
Tdots = np.array(self.annotations[Tim_id]['points'])
Timage = Image.open('{}/{}'.format(self.im_dir, Tim_id))
Timage.load()
new_TW = 16 * int(Timage.size[0] / 16)
new_TH = 16 * int(Timage.size[1] / 16)
Tscale_factor_w = float(new_TW) / Timage.size[0]
Tscale_factor_h = float(new_TH) / Timage.size[1]
r_image = TTensor(transforms.Resize((new_TH, new_TW))(Timage))
length = random.randint(250, 384)
start_W = random.randint(0, new_TW - length)
start_H = random.randint(0, new_TH - length)
r_image1 = TF.crop(r_image, start_H, start_W, length, length)
r_image1 = transforms.Resize((resize_l, resize_l))(r_image1)
r_density1 = np.zeros((resize_l, resize_l), dtype='float32')
# try:
# class_value = self.class_dict[im_id]
# Tim_value = self.class_dict[Tim_id]
# except KeyError:
# # Handle the case when the key doesn't exist
# class_value = None # Or any appropriate default value
# Tim_value = None # Or any appropriate default value
if self.class_dict[im_id] == self.class_dict[Tim_id]:
# if class_value == Tim_value:
# if im_id in self.class_dict and Tim_id in self.class_dict:
# if im_id in self.class_dict and Tim_id in self.class_dict:
# class_value = self.class_dict[im_id]
# Tim_value = self.class_dict[Tim_id]
# # Proceed with your comparison and processing here
# if class_value == Tim_value:
for i in range(Tdots.shape[0]):
if start_H <= min(new_TH - 1, int(Tdots[i][1] * Tscale_factor_h)) < start_H + length and start_W <= min(new_TW - 1, int(Tdots[i][0] * Tscale_factor_w)) < start_W + length:
r_density1[min(resize_l-1,int((min(new_TH-1, int(Tdots[i][1] * Tscale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_TW-1,int(Tdots[i][0] * Tscale_factor_w))-start_W)*resize_l/length))]=1
r_density1 = torch.from_numpy(r_density1)
image_array.append(r_image1)
map_array.append(r_density1)
reresized_image5 = torch.cat((image_array[0][:, blending_l:resize_l-blending_l], image_array[1][:, blending_l: resize_l-blending_l]), 1)
reresized_density5 = torch.cat((map_array[0][blending_l:resize_l-blending_l], map_array[1][blending_l: resize_l-blending_l]), 0)
for i in range(blending_l):
reresized_image5[:, 192+i] = image_array[0][:, resize_l-1-blending_l+i] * (blending_l-i)/(2 * blending_l) + reresized_image5[:, 192+i] * (i+blending_l)/(2*blending_l)
reresized_image5[:, 191-i] = image_array[1][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image5[:, 191-i] * (i+blending_l)/(2*blending_l)
reresized_image5 = torch.clamp(reresized_image5, 0, 1)
reresized_image6 = torch.cat((image_array[2][:, blending_l:resize_l-blending_l], image_array[3][:, blending_l: resize_l-blending_l]), 1)
reresized_density6 = torch.cat((map_array[2][blending_l:resize_l-blending_l], map_array[3][blending_l:resize_l-blending_l]), 0)
for i in range(blending_l):
reresized_image6[:, 192+i] = image_array[2][:, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 192+i] * (i+blending_l)/(2*blending_l)
reresized_image6[:, 191-i] = image_array[3][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 191-i] * (i+blending_l)/(2*blending_l)
reresized_image6 = torch.clamp(reresized_image6, 0, 1)
reresized_image = torch.cat((reresized_image5[:, :, blending_l:resize_l-blending_l], reresized_image6[:, :, blending_l:resize_l-blending_l]), 2)
reresized_density = torch.cat((reresized_density5[:, blending_l:resize_l-blending_l], reresized_density6[:, blending_l:resize_l-blending_l]), 1)
for i in range(blending_l):
reresized_image[:, :, 192+i] = reresized_image5[:, :, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 192+i] * (i+blending_l)/(2*blending_l)
reresized_image[:, :, 191-i] = reresized_image6[:, :, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 191-i] * (i+blending_l)/(2*blending_l)
reresized_image = torch.clamp(reresized_image, 0, 1)
else:
# Random 384*384 crop in a new_W*384 image and 384*new_W density map
start = random.randint(0, new_W - 1 - 383)
reresized_image = TF.crop(re_image, 0, start, 384, 384)
reresized_density = resized_density[:, start:start + 384]
else:
# Random 384*384 crop in a new_W*384 image and 384*new_W density map
for i in range(dots.shape[0]):
resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \
[min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1
resized_density = torch.from_numpy(resized_density)
start = random.randint(0, new_W - self.max_hw)
reresized_image = TF.crop(resized_image, 0, start, self.max_hw, self.max_hw)
reresized_density = resized_density[0:self.max_hw, start:start + self.max_hw]
# Gaussian distribution density map
reresized_density = ndimage.gaussian_filter(reresized_density.numpy(), sigma=(1, 1), order=0)
# Density map scale up
reresized_density = reresized_density * 60
reresized_density = torch.from_numpy(reresized_density)
# Crop bboxes and resize as 64x64
boxes = list()
rects = list()
cnt = 0
for box in lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
# print(y1,x1,y2,x2)
if not aug_flag:
rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)]))
bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
bbox = transforms.Resize((64, 64))(bbox)
boxes.append(bbox)
boxes = torch.stack(boxes)
neg_boxes = list()
neg_rects = list()
cnt = 0
for box in neg_lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
# print(y1,x1,y2,x2)
if not aug_flag:
neg_rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)]))
neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
neg_bbox = transforms.Resize((64, 64))(neg_bbox)
neg_boxes.append(neg_bbox)
neg_boxes = torch.stack(neg_boxes)
# if len(boxes) > 0:
# boxes = torch.stack(boxes) # 如果 boxes 非空,则正常执行 torch.stack
# boxes1 = boxes
# else:
# boxes = boxes1
# pass
# # 如果 boxes 为空,您可以选择跳过这个样本,或者提供一个默认的边界框
# # 例如,使用一个表示图像全区域的默认边界框
# default_box = torch.tensor([[0, 0],[0, 0],0, 0]) # 一个示例的默认边界框,具体值取决于您的应用
# boxes = default_box.unsqueeze(0) # 增加一个维度以符合 torch.stack 的要求
# # pass
if aug_flag:
pos = torch.tensor([])
else:
pos = torch.stack(rects)
# boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384]
sample = {'image': reresized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': reresized_density, 'm_flag': m_flag}
return sample
class ResizeValImage(ResizeSomeImage):
def __init__(self, args, MAX_HW=384):
super().__init__(args)
self.max_hw = MAX_HW
def __call__(self, sample):
image, dots, m_flag, lines_boxes, neg_lines_boxes = sample['image'], sample['dots'], sample['m_flag'], sample['lines_boxes'], sample['neg_lines_boxes']
W, H = image.size
new_H = new_W = self.max_hw
scale_factor_h = float(new_H) / H
scale_factor_w = float(new_W) / W
resized_image = transforms.Resize((new_H, new_W))(image)
resized_image = TTensor(resized_image)
# Resize density map
resized_density = np.zeros((new_H, new_W), dtype='float32')
for i in range(dots.shape[0]):
resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \
[min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1
# resized_density = ndimage.gaussian_filter(resized_density, sigma=4, radius=7, order=0)
resized_density = ndimage.gaussian_filter(resized_density, sigma=4, order=0)
resized_density = torch.from_numpy(resized_density) * 60
# Crop bboxes and resize as 64x64
boxes = list()
rects = list()
cnt = 0
for box in lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
rects.append(torch.tensor([y1, x1, y2, x2]))
bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
bbox = transforms.Resize((64, 64))(bbox)
boxes.append(bbox)
boxes = torch.stack(boxes)
pos = torch.stack(rects)
neg_boxes = list()
neg_rects = list()
cnt = 0
for box in neg_lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
neg_rects.append(torch.tensor([y1, x1, y2, x2]))
neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
neg_bbox = transforms.Resize((64, 64))(neg_bbox)
neg_boxes.append(neg_bbox)
neg_boxes = torch.stack(neg_boxes)
# boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384]
sample = {'image': resized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': resized_density, 'm_flag': m_flag}
return sample
PreTrainNormalize = transforms.Compose([
transforms.RandomResizedCrop(MAX_HW, scale=(0.2, 1.0), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD)
])
TTensor = transforms.Compose([
transforms.ToTensor(),
])
Augmentation = transforms.Compose([
transforms.ColorJitter(brightness=0.25, contrast=0.15, saturation=0.15, hue=0.15),
transforms.GaussianBlur(kernel_size=(7, 9))
])
Normalize = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD)
])
def transform_train(args: Namespace, do_aug=True):
return transforms.Compose([ResizeTrainImage(args, MAX_HW, do_aug)])
def transform_val(args: Namespace):
return transforms.Compose([ResizeValImage(args, MAX_HW)])
def transform_pre_train(args: Namespace):
return transforms.Compose([ResizePreTrainImage(args, MAX_HW)])