Snaseem2026's picture
Upload DistilBertForSequenceClassification
ff4fad7 verified
---
language: en
license: mit
tags:
- text-classification
- code-quality
- documentation
- code-comments
- developer-tools
- distilbert
datasets:
- synthetic
metrics:
- accuracy
- f1
- precision
- recall
pipeline_tag: text-classification
widget:
- text: 'This function calculates the Fibonacci sequence using dynamic programming
to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)'
example_title: Excellent Comment
- text: Calculates the sum of two numbers and returns the result
example_title: Helpful Comment
- text: does stuff with numbers
example_title: Unclear Comment
- text: 'DEPRECATED: Use calculate_new() instead. This method will be removed in v2.0'
example_title: Outdated Comment
---
# Code Comment Quality Classifier ๐Ÿ”
A machine learning model that automatically classifies code comments into quality categories to help improve code documentation and review processes.
## ๐ŸŽฏ What Does This Model Do?
This model analyzes code comments and classifies them into four categories:
- **Excellent**: Clear, comprehensive, and highly informative comments
- **Helpful**: Good comments that add value but could be improved
- **Unclear**: Vague or confusing comments that don't add much value
- **Outdated**: Comments that may no longer reflect the current code
## ๐Ÿš€ Quick Start
### Installation
```bash
pip install -r requirements.txt
```
### Using the Model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the model and tokenizer
model_name = "Snaseem2026/code-comment-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Classify a comment
comment = "This function calculates the fibonacci sequence using dynamic programming"
inputs = tokenizer(comment, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1).item()
labels = ["excellent", "helpful", "unclear", "outdated"]
print(f"Comment quality: {labels[predicted_class]}")
```
## ๐Ÿ‹๏ธ Training the Model
To train the model on your own data:
```bash
python train.py --config config.yaml
```
To generate synthetic training data:
```bash
python scripts/generate_data.py
```
## ๐Ÿ“Š Model Details
- **Base Model**: DistilBERT (distilbert-base-uncased)
- **Task**: Multi-class text classification
- **Classes**: 4 (excellent, helpful, unclear, outdated)
- **Training Data**: Synthetic code comments with quality labels
- **License**: MIT
## ๐ŸŽ“ Use Cases
- **Code Review Automation**: Automatically flag low-quality comments during PR reviews
- **Documentation Quality Checks**: Audit codebases for documentation quality
- **Developer Education**: Help developers learn what makes good code comments
- **IDE Integration**: Real-time feedback on comment quality while coding
## ๐Ÿ“ Project Structure
```
.
โ”œโ”€โ”€ README.md
โ”œโ”€โ”€ LICENSE
โ”œโ”€โ”€ requirements.txt
โ”œโ”€โ”€ config.yaml
โ”œโ”€โ”€ train.py # Main training script
โ”œโ”€โ”€ inference.py # Inference script
โ”œโ”€โ”€ src/
โ”‚ โ”œโ”€โ”€ __init__.py
โ”‚ โ”œโ”€โ”€ data_loader.py # Data loading utilities
โ”‚ โ”œโ”€โ”€ model.py # Model definition
โ”‚ โ””โ”€โ”€ utils.py # Helper functions
โ”œโ”€โ”€ scripts/
โ”‚ โ”œโ”€โ”€ generate_data.py # Generate synthetic training data
โ”‚ โ”œโ”€โ”€ evaluate.py # Evaluation script
โ”‚ โ””โ”€โ”€ upload_to_hub.py # Upload model to Hugging Face Hub
โ”œโ”€โ”€ data/
โ”‚ โ””โ”€โ”€ .gitkeep
โ””โ”€โ”€ MODEL_CARD.md # Hugging Face model card
```
## ๐Ÿค Contributing
This is an open-source project! Contributions are welcome. Please feel free to:
- Report bugs or issues
- Suggest new features
- Submit pull requests
- Improve documentation
## ๐Ÿ“ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## ๐Ÿ™ Acknowledgments
- Built with [Hugging Face Transformers](https://huggingface.co/transformers/)
- Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased)
## ๐Ÿ“ฎ Contact
For questions or feedback, please open a discussion on the model's [Hugging Face page](https://huggingface.co/Snaseem2026/code-comment-classifier/discussions) or reach out via Hugging Face.
---
**Note**: This model is designed for educational and productivity purposes. Always review automated suggestions with human judgment.