distilbert_toxic / README.md
cike-dev's picture
cike-dev/Distilbert_toxic
a044f62 verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilbert_toxic
    results: []

distilbert_toxic

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5048
  • Accuracy: 0.8612
  • Precision: 0.8469
  • Recall: 0.8195
  • F1: 0.8330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 3407
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2971 1.0 4767 0.3258 0.8675 0.8643 0.8140 0.8384
0.2798 2.0 9534 0.3120 0.8708 0.8452 0.8498 0.8475
0.1481 3.0 14301 0.3898 0.8681 0.8466 0.8399 0.8432
0.1161 4.0 19068 0.5048 0.8612 0.8469 0.8195 0.8330

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0