|
|
import os |
|
|
import sys |
|
|
|
|
|
PPF_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields" |
|
|
sys.path.append(PPF_PATH) |
|
|
|
|
|
PPF_PATH_ABS = os.path.abspath(PPF_PATH) |
|
|
|
|
|
import copy |
|
|
import os |
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
import torch |
|
|
from perspective2d import PerspectiveFields |
|
|
from perspective2d.utils import draw_from_r_p_f_cx_cy, draw_perspective_fields |
|
|
|
|
|
|
|
|
def create_rotation_matrix( |
|
|
roll: float, |
|
|
pitch: float, |
|
|
yaw: float, |
|
|
degrees: bool = False, |
|
|
) -> np.ndarray: |
|
|
r"""Create rotation matrix from extrinsic parameters |
|
|
Args: |
|
|
roll (float): camera rotation about camera frame z-axis |
|
|
pitch (float): camera rotation about camera frame x-axis |
|
|
yaw (float): camera rotation about camera frame y-axis |
|
|
|
|
|
Returns: |
|
|
np.ndarray: rotation R_z @ R_x @ R_y |
|
|
""" |
|
|
if degrees: |
|
|
roll = np.radians(roll) |
|
|
pitch = np.radians(pitch) |
|
|
yaw = np.radians(yaw) |
|
|
|
|
|
R_x = np.array( |
|
|
[ |
|
|
[1.0, 0.0, 0.0], |
|
|
[0.0, np.cos(pitch), np.sin(pitch)], |
|
|
[0.0, -np.sin(pitch), np.cos(pitch)], |
|
|
] |
|
|
) |
|
|
|
|
|
R_y = np.array( |
|
|
[ |
|
|
[np.cos(yaw), 0.0, -np.sin(yaw)], |
|
|
[0.0, 1.0, 0.0], |
|
|
[np.sin(yaw), 0.0, np.cos(yaw)], |
|
|
] |
|
|
) |
|
|
|
|
|
R_z = np.array( |
|
|
[ |
|
|
[np.cos(roll), np.sin(roll), 0.0], |
|
|
[-np.sin(roll), np.cos(roll), 0.0], |
|
|
[0.0, 0.0, 1.0], |
|
|
] |
|
|
) |
|
|
|
|
|
return R_z @ R_x @ R_y |
|
|
|
|
|
|
|
|
def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None): |
|
|
height = img.shape[0] |
|
|
width = img.shape[1] |
|
|
if target_height is None: |
|
|
factor = target_width / width |
|
|
elif target_width is None: |
|
|
factor = target_height / height |
|
|
else: |
|
|
factor = max(target_width / width, target_height / height) |
|
|
if factor == target_width / width: |
|
|
target_height = int(height * factor) |
|
|
else: |
|
|
target_width = int(width * factor) |
|
|
|
|
|
img = cv2.resize(img, (target_width, target_height)) |
|
|
for key in field: |
|
|
if key not in ["up", "lati"]: |
|
|
continue |
|
|
tmp = field[key].numpy() |
|
|
transpose = len(tmp.shape) == 3 |
|
|
if transpose: |
|
|
tmp = tmp.transpose(1, 2, 0) |
|
|
tmp = cv2.resize(tmp, (target_width, target_height)) |
|
|
if transpose: |
|
|
tmp = tmp.transpose(2, 0, 1) |
|
|
field[key] = torch.tensor(tmp) |
|
|
return img, field |
|
|
|
|
|
|
|
|
def run_perspective_fields_model(model, image_bgr): |
|
|
|
|
|
pred = model.inference(img_bgr=image_bgr) |
|
|
field = { |
|
|
"up": pred["pred_gravity_original"].cpu().detach(), |
|
|
"lati": pred["pred_latitude_original"].cpu().detach(), |
|
|
} |
|
|
img, field = resize_fix_aspect_ratio(image_bgr[..., ::-1], field, 640) |
|
|
|
|
|
|
|
|
param_vis = draw_from_r_p_f_cx_cy( |
|
|
img, |
|
|
pred["pred_roll"].item(), |
|
|
pred["pred_pitch"].item(), |
|
|
pred["pred_general_vfov"].item(), |
|
|
pred["pred_rel_cx"].item(), |
|
|
pred["pred_rel_cy"].item(), |
|
|
"deg", |
|
|
up_color=(0, 1, 0), |
|
|
).astype(np.uint8) |
|
|
param_vis = cv2.cvtColor(param_vis, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
param = { |
|
|
"roll": pred["pred_roll"].cpu().item(), |
|
|
"pitch": pred["pred_pitch"].cpu().item(), |
|
|
} |
|
|
|
|
|
return param_vis, param |
|
|
|
|
|
|
|
|
def get_perspective_fields_model(cfg, device): |
|
|
MODEL_ID = "Paramnet-360Cities-edina-centered" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PerspectiveFields.versions() |
|
|
pf_model = PerspectiveFields(MODEL_ID).eval().cuda() |
|
|
return pf_model |
|
|
|