|
|
import os |
|
|
import sys |
|
|
sys.path.append("/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything/recognize-anything") |
|
|
from typing import List |
|
|
|
|
|
import torchvision.transforms as TS |
|
|
from ram import inference_ram |
|
|
from ram.models import ram |
|
|
|
|
|
|
|
|
def run_tagging_model(cfg, raw_image, tagging_model): |
|
|
res = inference_ram(raw_image, tagging_model) |
|
|
caption = "NA" |
|
|
tags = res[0].strip(" ").replace(" ", " ").replace(" |", ",") |
|
|
print("Tags: ", tags) |
|
|
|
|
|
|
|
|
|
|
|
text_prompt = res[0].replace(" |", ",") |
|
|
|
|
|
if cfg.rm_bg_classes: |
|
|
cfg.remove_classes += cfg.bg_classes |
|
|
|
|
|
classes = process_tag_classes( |
|
|
text_prompt, |
|
|
add_classes=cfg.add_classes, |
|
|
remove_classes=cfg.remove_classes, |
|
|
) |
|
|
print("Tags (Final): ", classes) |
|
|
return classes |
|
|
|
|
|
|
|
|
def process_tag_classes(text_prompt: str, add_classes: List[str] = [], remove_classes: List[str] = []) -> list[str]: |
|
|
"""Convert a text prompt from Tag2Text to a list of classes.""" |
|
|
classes = text_prompt.split(",") |
|
|
classes = [obj_class.strip() for obj_class in classes] |
|
|
classes = [obj_class for obj_class in classes if obj_class != ""] |
|
|
|
|
|
for c in add_classes: |
|
|
if c not in classes: |
|
|
classes.append(c) |
|
|
|
|
|
for c in remove_classes: |
|
|
classes = [obj_class for obj_class in classes if c not in obj_class.lower()] |
|
|
|
|
|
return classes |
|
|
|
|
|
|
|
|
def get_tagging_model(cfg, device): |
|
|
RAM_CHECKPOINT_PATH = os.path.abspath( |
|
|
"osdsynth/external/Grounded-Segment-Anything/recognize-anything/ram_swin_large_14m.pth" |
|
|
) |
|
|
tagging_model = ram(pretrained=RAM_CHECKPOINT_PATH, image_size=384, vit="swin_l") |
|
|
|
|
|
tagging_model = tagging_model.eval().to(device) |
|
|
tagging_transform = TS.Compose( |
|
|
[ |
|
|
TS.Resize((384, 384)), |
|
|
TS.ToTensor(), |
|
|
TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
] |
|
|
) |
|
|
|
|
|
return tagging_transform, tagging_model |
|
|
|