keyword
stringclasses
7 values
repo_name
stringlengths
8
98
file_path
stringlengths
4
244
file_extension
stringclasses
29 values
file_size
int64
0
84.1M
line_count
int64
0
1.6M
content
stringlengths
1
84.1M
language
stringclasses
14 values
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h
.h
9,419
275
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H #define EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H namespace Eigen { template <typename Environment> class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface { public: typedef typename Environment::Task Task; typedef RunQueue<Task, 1024> Queue; NonBlockingThreadPoolTempl(int num_threads, Environment env = Environment()) : env_(env), threads_(num_threads), queues_(num_threads), coprimes_(num_threads), waiters_(num_threads), blocked_(0), spinning_(0), done_(false), ec_(waiters_) { waiters_.resize(num_threads); // Calculate coprimes of num_threads. // Coprimes are used for a random walk over all threads in Steal // and NonEmptyQueueIndex. Iteration is based on the fact that if we take // a walk starting thread index t and calculate num_threads - 1 subsequent // indices as (t + coprime) % num_threads, we will cover all threads without // repetitions (effectively getting a presudo-random permutation of thread // indices). for (int i = 1; i <= num_threads; i++) { unsigned a = i; unsigned b = num_threads; // If GCD(a, b) == 1, then a and b are coprimes. while (b != 0) { unsigned tmp = a; a = b; b = tmp % b; } if (a == 1) { coprimes_.push_back(i); } } for (int i = 0; i < num_threads; i++) { queues_.push_back(new Queue()); } for (int i = 0; i < num_threads; i++) { threads_.push_back(env_.CreateThread([this, i]() { WorkerLoop(i); })); } } ~NonBlockingThreadPoolTempl() { done_ = true; // Now if all threads block without work, they will start exiting. // But note that threads can continue to work arbitrary long, // block, submit new work, unblock and otherwise live full life. ec_.Notify(true); // Join threads explicitly to avoid destruction order issues. for (size_t i = 0; i < threads_.size(); i++) delete threads_[i]; for (size_t i = 0; i < threads_.size(); i++) delete queues_[i]; } void Schedule(std::function<void()> fn) { Task t = env_.CreateTask(std::move(fn)); PerThread* pt = GetPerThread(); if (pt->pool == this) { // Worker thread of this pool, push onto the thread's queue. Queue* q = queues_[pt->thread_id]; t = q->PushFront(std::move(t)); } else { // A free-standing thread (or worker of another pool), push onto a random // queue. Queue* q = queues_[Rand(&pt->rand) % queues_.size()]; t = q->PushBack(std::move(t)); } // Note: below we touch this after making w available to worker threads. // Strictly speaking, this can lead to a racy-use-after-free. Consider that // Schedule is called from a thread that is neither main thread nor a worker // thread of this pool. Then, execution of w directly or indirectly // completes overall computations, which in turn leads to destruction of // this. We expect that such scenario is prevented by program, that is, // this is kept alive while any threads can potentially be in Schedule. if (!t.f) ec_.Notify(false); else env_.ExecuteTask(t); // Push failed, execute directly. } int NumThreads() const final { return static_cast<int>(threads_.size()); } int CurrentThreadId() const final { const PerThread* pt = const_cast<NonBlockingThreadPoolTempl*>(this)->GetPerThread(); if (pt->pool == this) { return pt->thread_id; } else { return -1; } } private: typedef typename Environment::EnvThread Thread; struct PerThread { constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) { } NonBlockingThreadPoolTempl* pool; // Parent pool, or null for normal threads. uint64_t rand; // Random generator state. int thread_id; // Worker thread index in pool. }; Environment env_; MaxSizeVector<Thread*> threads_; MaxSizeVector<Queue*> queues_; MaxSizeVector<unsigned> coprimes_; MaxSizeVector<EventCount::Waiter> waiters_; std::atomic<unsigned> blocked_; std::atomic<bool> spinning_; std::atomic<bool> done_; EventCount ec_; // Main worker thread loop. void WorkerLoop(int thread_id) { PerThread* pt = GetPerThread(); pt->pool = this; pt->rand = std::hash<std::thread::id>()(std::this_thread::get_id()); pt->thread_id = thread_id; Queue* q = queues_[thread_id]; EventCount::Waiter* waiter = &waiters_[thread_id]; for (;;) { Task t = q->PopFront(); if (!t.f) { t = Steal(); if (!t.f) { // Leave one thread spinning. This reduces latency. // TODO(dvyukov): 1000 iterations is based on fair dice roll, tune it. // Also, the time it takes to attempt to steal work 1000 times depends // on the size of the thread pool. However the speed at which the user // of the thread pool submit tasks is independent of the size of the // pool. Consider a time based limit instead. if (!spinning_ && !spinning_.exchange(true)) { for (int i = 0; i < 1000 && !t.f; i++) { t = Steal(); } spinning_ = false; } if (!t.f) { if (!WaitForWork(waiter, &t)) { return; } } } } if (t.f) { env_.ExecuteTask(t); } } } // Steal tries to steal work from other worker threads in best-effort manner. Task Steal() { PerThread* pt = GetPerThread(); const size_t size = queues_.size(); unsigned r = Rand(&pt->rand); unsigned inc = coprimes_[r % coprimes_.size()]; unsigned victim = r % size; for (unsigned i = 0; i < size; i++) { Task t = queues_[victim]->PopBack(); if (t.f) { return t; } victim += inc; if (victim >= size) { victim -= size; } } return Task(); } // WaitForWork blocks until new work is available (returns true), or if it is // time to exit (returns false). Can optionally return a task to execute in t // (in such case t.f != nullptr on return). bool WaitForWork(EventCount::Waiter* waiter, Task* t) { eigen_assert(!t->f); // We already did best-effort emptiness check in Steal, so prepare for // blocking. ec_.Prewait(waiter); // Now do a reliable emptiness check. int victim = NonEmptyQueueIndex(); if (victim != -1) { ec_.CancelWait(waiter); *t = queues_[victim]->PopBack(); return true; } // Number of blocked threads is used as termination condition. // If we are shutting down and all worker threads blocked without work, // that's we are done. blocked_++; if (done_ && blocked_ == threads_.size()) { ec_.CancelWait(waiter); // Almost done, but need to re-check queues. // Consider that all queues are empty and all worker threads are preempted // right after incrementing blocked_ above. Now a free-standing thread // submits work and calls destructor (which sets done_). If we don't // re-check queues, we will exit leaving the work unexecuted. if (NonEmptyQueueIndex() != -1) { // Note: we must not pop from queues before we decrement blocked_, // otherwise the following scenario is possible. Consider that instead // of checking for emptiness we popped the only element from queues. // Now other worker threads can start exiting, which is bad if the // work item submits other work. So we just check emptiness here, // which ensures that all worker threads exit at the same time. blocked_--; return true; } // Reached stable termination state. ec_.Notify(true); return false; } ec_.CommitWait(waiter); blocked_--; return true; } int NonEmptyQueueIndex() { PerThread* pt = GetPerThread(); const size_t size = queues_.size(); unsigned r = Rand(&pt->rand); unsigned inc = coprimes_[r % coprimes_.size()]; unsigned victim = r % size; for (unsigned i = 0; i < size; i++) { if (!queues_[victim]->Empty()) { return victim; } victim += inc; if (victim >= size) { victim -= size; } } return -1; } static EIGEN_STRONG_INLINE PerThread* GetPerThread() { EIGEN_THREAD_LOCAL PerThread per_thread_; PerThread* pt = &per_thread_; return pt; } static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) { uint64_t current = *state; // Update the internal state *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; // Generate the random output (using the PCG-XSH-RS scheme) return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61))); } }; typedef NonBlockingThreadPoolTempl<StlThreadEnvironment> NonBlockingThreadPool; } // namespace Eigen #endif // EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h
.h
8,450
211
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_ #define EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_ namespace Eigen { // RunQueue is a fixed-size, partially non-blocking deque or Work items. // Operations on front of the queue must be done by a single thread (owner), // operations on back of the queue can be done by multiple threads concurrently. // // Algorithm outline: // All remote threads operating on the queue back are serialized by a mutex. // This ensures that at most two threads access state: owner and one remote // thread (Size aside). The algorithm ensures that the occupied region of the // underlying array is logically continuous (can wraparound, but no stray // occupied elements). Owner operates on one end of this region, remote thread // operates on the other end. Synchronization between these threads // (potential consumption of the last element and take up of the last empty // element) happens by means of state variable in each element. States are: // empty, busy (in process of insertion of removal) and ready. Threads claim // elements (empty->busy and ready->busy transitions) by means of a CAS // operation. The finishing transition (busy->empty and busy->ready) are done // with plain store as the element is exclusively owned by the current thread. // // Note: we could permit only pointers as elements, then we would not need // separate state variable as null/non-null pointer value would serve as state, // but that would require malloc/free per operation for large, complex values // (and this is designed to store std::function<()>). template <typename Work, unsigned kSize> class RunQueue { public: RunQueue() : front_(0), back_(0) { // require power-of-two for fast masking eigen_assert((kSize & (kSize - 1)) == 0); eigen_assert(kSize > 2); // why would you do this? eigen_assert(kSize <= (64 << 10)); // leave enough space for counter for (unsigned i = 0; i < kSize; i++) array_[i].state.store(kEmpty, std::memory_order_relaxed); } ~RunQueue() { eigen_plain_assert(Size() == 0); } // PushFront inserts w at the beginning of the queue. // If queue is full returns w, otherwise returns default-constructed Work. Work PushFront(Work w) { unsigned front = front_.load(std::memory_order_relaxed); Elem* e = &array_[front & kMask]; uint8_t s = e->state.load(std::memory_order_relaxed); if (s != kEmpty || !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) return w; front_.store(front + 1 + (kSize << 1), std::memory_order_relaxed); e->w = std::move(w); e->state.store(kReady, std::memory_order_release); return Work(); } // PopFront removes and returns the first element in the queue. // If the queue was empty returns default-constructed Work. Work PopFront() { unsigned front = front_.load(std::memory_order_relaxed); Elem* e = &array_[(front - 1) & kMask]; uint8_t s = e->state.load(std::memory_order_relaxed); if (s != kReady || !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) return Work(); Work w = std::move(e->w); e->state.store(kEmpty, std::memory_order_release); front = ((front - 1) & kMask2) | (front & ~kMask2); front_.store(front, std::memory_order_relaxed); return w; } // PushBack adds w at the end of the queue. // If queue is full returns w, otherwise returns default-constructed Work. Work PushBack(Work w) { std::unique_lock<std::mutex> lock(mutex_); unsigned back = back_.load(std::memory_order_relaxed); Elem* e = &array_[(back - 1) & kMask]; uint8_t s = e->state.load(std::memory_order_relaxed); if (s != kEmpty || !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) return w; back = ((back - 1) & kMask2) | (back & ~kMask2); back_.store(back, std::memory_order_relaxed); e->w = std::move(w); e->state.store(kReady, std::memory_order_release); return Work(); } // PopBack removes and returns the last elements in the queue. // Can fail spuriously. Work PopBack() { if (Empty()) return Work(); std::unique_lock<std::mutex> lock(mutex_, std::try_to_lock); if (!lock) return Work(); unsigned back = back_.load(std::memory_order_relaxed); Elem* e = &array_[back & kMask]; uint8_t s = e->state.load(std::memory_order_relaxed); if (s != kReady || !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) return Work(); Work w = std::move(e->w); e->state.store(kEmpty, std::memory_order_release); back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed); return w; } // PopBackHalf removes and returns half last elements in the queue. // Returns number of elements removed. But can also fail spuriously. unsigned PopBackHalf(std::vector<Work>* result) { if (Empty()) return 0; std::unique_lock<std::mutex> lock(mutex_, std::try_to_lock); if (!lock) return 0; unsigned back = back_.load(std::memory_order_relaxed); unsigned size = Size(); unsigned mid = back; if (size > 1) mid = back + (size - 1) / 2; unsigned n = 0; unsigned start = 0; for (; static_cast<int>(mid - back) >= 0; mid--) { Elem* e = &array_[mid & kMask]; uint8_t s = e->state.load(std::memory_order_relaxed); if (n == 0) { if (s != kReady || !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) continue; start = mid; } else { // Note: no need to store temporal kBusy, we exclusively own these // elements. eigen_assert(s == kReady); } result->push_back(std::move(e->w)); e->state.store(kEmpty, std::memory_order_release); n++; } if (n != 0) back_.store(start + 1 + (kSize << 1), std::memory_order_relaxed); return n; } // Size returns current queue size. // Can be called by any thread at any time. unsigned Size() const { // Emptiness plays critical role in thread pool blocking. So we go to great // effort to not produce false positives (claim non-empty queue as empty). for (;;) { // Capture a consistent snapshot of front/tail. unsigned front = front_.load(std::memory_order_acquire); unsigned back = back_.load(std::memory_order_acquire); unsigned front1 = front_.load(std::memory_order_relaxed); if (front != front1) continue; int size = (front & kMask2) - (back & kMask2); // Fix overflow. if (size < 0) size += 2 * kSize; // Order of modification in push/pop is crafted to make the queue look // larger than it is during concurrent modifications. E.g. pop can // decrement size before the corresponding push has incremented it. // So the computed size can be up to kSize + 1, fix it. if (size > static_cast<int>(kSize)) size = kSize; return size; } } // Empty tests whether container is empty. // Can be called by any thread at any time. bool Empty() const { return Size() == 0; } private: static const unsigned kMask = kSize - 1; static const unsigned kMask2 = (kSize << 1) - 1; struct Elem { std::atomic<uint8_t> state; Work w; }; enum { kEmpty, kBusy, kReady, }; std::mutex mutex_; // Low log(kSize) + 1 bits in front_ and back_ contain rolling index of // front/back, repsectively. The remaining bits contain modification counters // that are incremented on Push operations. This allows us to (1) distinguish // between empty and full conditions (if we would use log(kSize) bits for // position, these conditions would be indistinguishable); (2) obtain // consistent snapshot of front_/back_ for Size operation using the // modification counters. std::atomic<unsigned> front_; std::atomic<unsigned> back_; Elem array_[kSize]; RunQueue(const RunQueue&) = delete; void operator=(const RunQueue&) = delete; }; } // namespace Eigen #endif // EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/ThreadPool/SimpleThreadPool.h
.h
4,323
155
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H #define EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H namespace Eigen { // The implementation of the ThreadPool type ensures that the Schedule method // runs the functions it is provided in FIFO order when the scheduling is done // by a single thread. // Environment provides a way to create threads and also allows to intercept // task submission and execution. template <typename Environment> class SimpleThreadPoolTempl : public ThreadPoolInterface { public: // Construct a pool that contains "num_threads" threads. explicit SimpleThreadPoolTempl(int num_threads, Environment env = Environment()) : env_(env), threads_(num_threads), waiters_(num_threads) { for (int i = 0; i < num_threads; i++) { threads_.push_back(env.CreateThread([this, i]() { WorkerLoop(i); })); } } // Wait until all scheduled work has finished and then destroy the // set of threads. ~SimpleThreadPoolTempl() { { // Wait for all work to get done. std::unique_lock<std::mutex> l(mu_); while (!pending_.empty()) { empty_.wait(l); } exiting_ = true; // Wakeup all waiters. for (auto w : waiters_) { w->ready = true; w->task.f = nullptr; w->cv.notify_one(); } } // Wait for threads to finish. for (auto t : threads_) { delete t; } } // Schedule fn() for execution in the pool of threads. The functions are // executed in the order in which they are scheduled. void Schedule(std::function<void()> fn) final { Task t = env_.CreateTask(std::move(fn)); std::unique_lock<std::mutex> l(mu_); if (waiters_.empty()) { pending_.push_back(std::move(t)); } else { Waiter* w = waiters_.back(); waiters_.pop_back(); w->ready = true; w->task = std::move(t); w->cv.notify_one(); } } int NumThreads() const final { return static_cast<int>(threads_.size()); } int CurrentThreadId() const final { const PerThread* pt = this->GetPerThread(); if (pt->pool == this) { return pt->thread_id; } else { return -1; } } protected: void WorkerLoop(int thread_id) { std::unique_lock<std::mutex> l(mu_); PerThread* pt = GetPerThread(); pt->pool = this; pt->thread_id = thread_id; Waiter w; Task t; while (!exiting_) { if (pending_.empty()) { // Wait for work to be assigned to me w.ready = false; waiters_.push_back(&w); while (!w.ready) { w.cv.wait(l); } t = w.task; w.task.f = nullptr; } else { // Pick up pending work t = std::move(pending_.front()); pending_.pop_front(); if (pending_.empty()) { empty_.notify_all(); } } if (t.f) { mu_.unlock(); env_.ExecuteTask(t); t.f = nullptr; mu_.lock(); } } } private: typedef typename Environment::Task Task; typedef typename Environment::EnvThread Thread; struct Waiter { std::condition_variable cv; Task task; bool ready; }; struct PerThread { constexpr PerThread() : pool(NULL), thread_id(-1) { } SimpleThreadPoolTempl* pool; // Parent pool, or null for normal threads. int thread_id; // Worker thread index in pool. }; Environment env_; std::mutex mu_; MaxSizeVector<Thread*> threads_; // All threads MaxSizeVector<Waiter*> waiters_; // Stack of waiting threads. std::deque<Task> pending_; // Queue of pending work std::condition_variable empty_; // Signaled on pending_.empty() bool exiting_ = false; PerThread* GetPerThread() const { EIGEN_THREAD_LOCAL PerThread per_thread; return &per_thread; } }; typedef SimpleThreadPoolTempl<StlThreadEnvironment> SimpleThreadPool; } // namespace Eigen #endif // EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h
.h
715
21
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H #define EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H // Try to come up with a portable way to yield #if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7) #define EIGEN_THREAD_YIELD() sched_yield() #else #define EIGEN_THREAD_YIELD() std::this_thread::yield() #endif #endif // EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h
.h
9,086
237
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H #define EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H namespace Eigen { namespace internal { template<typename list> struct tensor_static_symgroup_permutate; template<int... nn> struct tensor_static_symgroup_permutate<numeric_list<int, nn...>> { constexpr static std::size_t N = sizeof...(nn); template<typename T> constexpr static inline std::array<T, N> run(const std::array<T, N>& indices) { return {{indices[nn]...}}; } }; template<typename indices_, int flags_> struct tensor_static_symgroup_element { typedef indices_ indices; constexpr static int flags = flags_; }; template<typename Gen, int N> struct tensor_static_symgroup_element_ctor { typedef tensor_static_symgroup_element< typename gen_numeric_list_swapped_pair<int, N, Gen::One, Gen::Two>::type, Gen::Flags > type; }; template<int N> struct tensor_static_symgroup_identity_ctor { typedef tensor_static_symgroup_element< typename gen_numeric_list<int, N>::type, 0 > type; }; template<typename iib> struct tensor_static_symgroup_multiply_helper { template<int... iia> constexpr static inline numeric_list<int, get<iia, iib>::value...> helper(numeric_list<int, iia...>) { return numeric_list<int, get<iia, iib>::value...>(); } }; template<typename A, typename B> struct tensor_static_symgroup_multiply { private: typedef typename A::indices iia; typedef typename B::indices iib; constexpr static int ffa = A::flags; constexpr static int ffb = B::flags; public: static_assert(iia::count == iib::count, "Cannot multiply symmetry elements with different number of indices."); typedef tensor_static_symgroup_element< decltype(tensor_static_symgroup_multiply_helper<iib>::helper(iia())), ffa ^ ffb > type; }; template<typename A, typename B> struct tensor_static_symgroup_equality { typedef typename A::indices iia; typedef typename B::indices iib; constexpr static int ffa = A::flags; constexpr static int ffb = B::flags; static_assert(iia::count == iib::count, "Cannot compare symmetry elements with different number of indices."); constexpr static bool value = is_same<iia, iib>::value; private: /* this should be zero if they are identical, or else the tensor * will be forced to be pure real, pure imaginary or even pure zero */ constexpr static int flags_cmp_ = ffa ^ ffb; /* either they are not equal, then we don't care whether the flags * match, or they are equal, and then we have to check */ constexpr static bool is_zero = value && flags_cmp_ == NegationFlag; constexpr static bool is_real = value && flags_cmp_ == ConjugationFlag; constexpr static bool is_imag = value && flags_cmp_ == (NegationFlag | ConjugationFlag); public: constexpr static int global_flags = (is_real ? GlobalRealFlag : 0) | (is_imag ? GlobalImagFlag : 0) | (is_zero ? GlobalZeroFlag : 0); }; template<std::size_t NumIndices, typename... Gen> struct tensor_static_symgroup { typedef StaticSGroup<Gen...> type; constexpr static std::size_t size = type::static_size; }; template<typename Index, std::size_t N, int... ii, int... jj> constexpr static inline std::array<Index, N> tensor_static_symgroup_index_permute(std::array<Index, N> idx, internal::numeric_list<int, ii...>, internal::numeric_list<int, jj...>) { return {{ idx[ii]..., idx[jj]... }}; } template<typename Index, int... ii> static inline std::vector<Index> tensor_static_symgroup_index_permute(std::vector<Index> idx, internal::numeric_list<int, ii...>) { std::vector<Index> result{{ idx[ii]... }}; std::size_t target_size = idx.size(); for (std::size_t i = result.size(); i < target_size; i++) result.push_back(idx[i]); return result; } template<typename T> struct tensor_static_symgroup_do_apply; template<typename first, typename... next> struct tensor_static_symgroup_do_apply<internal::type_list<first, next...>> { template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> static inline RV run(const std::array<Index, NumIndices>& idx, RV initial, Args&&... args) { static_assert(NumIndices >= SGNumIndices, "Can only apply symmetry group to objects that have at least the required amount of indices."); typedef typename internal::gen_numeric_list<int, NumIndices - SGNumIndices, SGNumIndices>::type remaining_indices; initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices(), remaining_indices()), first::flags, initial, std::forward<Args>(args)...); return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); } template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> static inline RV run(const std::vector<Index>& idx, RV initial, Args&&... args) { eigen_assert(idx.size() >= SGNumIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices()), first::flags, initial, std::forward<Args>(args)...); return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); } }; template<EIGEN_TPL_PP_SPEC_HACK_DEF(typename, empty)> struct tensor_static_symgroup_do_apply<internal::type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>> { template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> static inline RV run(const std::array<Index, NumIndices>&, RV initial, Args&&...) { // do nothing return initial; } template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> static inline RV run(const std::vector<Index>&, RV initial, Args&&...) { // do nothing return initial; } }; } // end namespace internal template<typename... Gen> class StaticSGroup { constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value; typedef internal::group_theory::enumerate_group_elements< internal::tensor_static_symgroup_multiply, internal::tensor_static_symgroup_equality, typename internal::tensor_static_symgroup_identity_ctor<NumIndices>::type, internal::type_list<typename internal::tensor_static_symgroup_element_ctor<Gen, NumIndices>::type...> > group_elements; typedef typename group_elements::type ge; public: constexpr inline StaticSGroup() {} constexpr inline StaticSGroup(const StaticSGroup<Gen...>&) {} constexpr inline StaticSGroup(StaticSGroup<Gen...>&&) {} template<typename Op, typename RV, typename Index, std::size_t N, typename... Args> static inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) { return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...); } template<typename Op, typename RV, typename Index, typename... Args> static inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) { eigen_assert(idx.size() == NumIndices); return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...); } constexpr static std::size_t static_size = ge::count; constexpr static inline std::size_t size() { return ge::count; } constexpr static inline int globalFlags() { return group_elements::global_flags; } template<typename Tensor_, typename... IndexTypes> inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const { static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); } template<typename Tensor_> inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const { return internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>>(tensor, *this, indices); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H /* * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; */
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h
.h
10,857
294
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H #define EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H namespace Eigen { class DynamicSGroup { public: inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) { m_elements.push_back(ge(Generator(0, 0, 0))); } inline DynamicSGroup(const DynamicSGroup& o) : m_numIndices(o.m_numIndices), m_elements(o.m_elements), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { } inline DynamicSGroup(DynamicSGroup&& o) : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { std::swap(m_elements, o.m_elements); } inline DynamicSGroup& operator=(const DynamicSGroup& o) { m_numIndices = o.m_numIndices; m_elements = o.m_elements; m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; } inline DynamicSGroup& operator=(DynamicSGroup&& o) { m_numIndices = o.m_numIndices; std::swap(m_elements, o.m_elements); m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; } void add(int one, int two, int flags = 0); template<typename Gen_> inline void add(Gen_) { add(Gen_::One, Gen_::Two, Gen_::Flags); } inline void addSymmetry(int one, int two) { add(one, two, 0); } inline void addAntiSymmetry(int one, int two) { add(one, two, NegationFlag); } inline void addHermiticity(int one, int two) { add(one, two, ConjugationFlag); } inline void addAntiHermiticity(int one, int two) { add(one, two, NegationFlag | ConjugationFlag); } template<typename Op, typename RV, typename Index, std::size_t N, typename... Args> inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) const { eigen_assert(N >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); for (std::size_t i = 0; i < size(); i++) initial = Op::run(h_permute(i, idx, typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags, initial, std::forward<Args>(args)...); return initial; } template<typename Op, typename RV, typename Index, typename... Args> inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) const { eigen_assert(idx.size() >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); for (std::size_t i = 0; i < size(); i++) initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...); return initial; } inline int globalFlags() const { return m_globalFlags; } inline std::size_t size() const { return m_elements.size(); } template<typename Tensor_, typename... IndexTypes> inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const { static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); } template<typename Tensor_> inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const { return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *this, indices); } private: struct GroupElement { std::vector<int> representation; int flags; bool isId() const { for (std::size_t i = 0; i < representation.size(); i++) if (i != (size_t)representation[i]) return false; return true; } }; struct Generator { int one; int two; int flags; constexpr inline Generator(int one_, int two_, int flags_) : one(one_), two(two_), flags(flags_) {} }; std::size_t m_numIndices; std::vector<GroupElement> m_elements; std::vector<Generator> m_generators; int m_globalFlags; template<typename Index, std::size_t N, int... n> inline std::array<Index, N> h_permute(std::size_t which, const std::array<Index, N>& idx, internal::numeric_list<int, n...>) const { return std::array<Index, N>{{ idx[n >= m_numIndices ? n : m_elements[which].representation[n]]... }}; } template<typename Index> inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx) const { std::vector<Index> result; result.reserve(idx.size()); for (auto k : m_elements[which].representation) result.push_back(idx[k]); for (std::size_t i = m_numIndices; i < idx.size(); i++) result.push_back(idx[i]); return result; } inline GroupElement ge(Generator const& g) const { GroupElement result; result.representation.reserve(m_numIndices); result.flags = g.flags; for (std::size_t k = 0; k < m_numIndices; k++) { if (k == (std::size_t)g.one) result.representation.push_back(g.two); else if (k == (std::size_t)g.two) result.representation.push_back(g.one); else result.representation.push_back(int(k)); } return result; } GroupElement mul(GroupElement, GroupElement) const; inline GroupElement mul(Generator g1, GroupElement g2) const { return mul(ge(g1), g2); } inline GroupElement mul(GroupElement g1, Generator g2) const { return mul(g1, ge(g2)); } inline GroupElement mul(Generator g1, Generator g2) const { return mul(ge(g1), ge(g2)); } inline int findElement(GroupElement e) const { for (auto ee : m_elements) { if (ee.representation == e.representation) return ee.flags ^ e.flags; } return -1; } void updateGlobalFlags(int flagDiffOfSameGenerator); }; // dynamic symmetry group that auto-adds the template parameters in the constructor template<typename... Gen> class DynamicSGroupFromTemplateArgs : public DynamicSGroup { public: inline DynamicSGroupFromTemplateArgs() : DynamicSGroup() { add_all(internal::type_list<Gen...>()); } inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs const& other) : DynamicSGroup(other) { } inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs&& other) : DynamicSGroup(other) { } inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(const DynamicSGroupFromTemplateArgs<Gen...>& o) { DynamicSGroup::operator=(o); return *this; } inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(DynamicSGroupFromTemplateArgs<Gen...>&& o) { DynamicSGroup::operator=(o); return *this; } private: template<typename Gen1, typename... GenNext> inline void add_all(internal::type_list<Gen1, GenNext...>) { add(Gen1()); add_all(internal::type_list<GenNext...>()); } inline void add_all(internal::type_list<>) { } }; inline DynamicSGroup::GroupElement DynamicSGroup::mul(GroupElement g1, GroupElement g2) const { eigen_internal_assert(g1.representation.size() == m_numIndices); eigen_internal_assert(g2.representation.size() == m_numIndices); GroupElement result; result.representation.reserve(m_numIndices); for (std::size_t i = 0; i < m_numIndices; i++) { int v = g2.representation[g1.representation[i]]; eigen_assert(v >= 0); result.representation.push_back(v); } result.flags = g1.flags ^ g2.flags; return result; } inline void DynamicSGroup::add(int one, int two, int flags) { eigen_assert(one >= 0); eigen_assert(two >= 0); eigen_assert(one != two); if ((std::size_t)one >= m_numIndices || (std::size_t)two >= m_numIndices) { std::size_t newNumIndices = (one > two) ? one : two + 1; for (auto& gelem : m_elements) { gelem.representation.reserve(newNumIndices); for (std::size_t i = m_numIndices; i < newNumIndices; i++) gelem.representation.push_back(i); } m_numIndices = newNumIndices; } Generator g{one, two, flags}; GroupElement e = ge(g); /* special case for first generator */ if (m_elements.size() == 1) { while (!e.isId()) { m_elements.push_back(e); e = mul(e, g); } if (e.flags > 0) updateGlobalFlags(e.flags); // only add in case we didn't have identity if (m_elements.size() > 1) m_generators.push_back(g); return; } int p = findElement(e); if (p >= 0) { updateGlobalFlags(p); return; } std::size_t coset_order = m_elements.size(); m_elements.push_back(e); for (std::size_t i = 1; i < coset_order; i++) m_elements.push_back(mul(m_elements[i], e)); m_generators.push_back(g); std::size_t coset_rep = coset_order; do { for (auto g : m_generators) { e = mul(m_elements[coset_rep], g); p = findElement(e); if (p < 0) { // element not yet in group m_elements.push_back(e); for (std::size_t i = 1; i < coset_order; i++) m_elements.push_back(mul(m_elements[i], e)); } else if (p > 0) { updateGlobalFlags(p); } } coset_rep += coset_order; } while (coset_rep < m_elements.size()); } inline void DynamicSGroup::updateGlobalFlags(int flagDiffOfSameGenerator) { switch (flagDiffOfSameGenerator) { case 0: default: // nothing happened break; case NegationFlag: // every element is it's own negative => whole tensor is zero m_globalFlags |= GlobalZeroFlag; break; case ConjugationFlag: // every element is it's own conjugate => whole tensor is real m_globalFlags |= GlobalRealFlag; break; case (NegationFlag | ConjugationFlag): // every element is it's own negative conjugate => whole tensor is imaginary m_globalFlags |= GlobalImagFlag; break; /* NOTE: * since GlobalZeroFlag == GlobalRealFlag | GlobalImagFlag, if one generator * causes the tensor to be real and the next one to be imaginary, this will * trivially give the correct result */ } } } // end namespace Eigen #endif // EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H /* * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; */
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h
.h
13,021
339
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H #define EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H namespace Eigen { enum { NegationFlag = 0x01, ConjugationFlag = 0x02 }; enum { GlobalRealFlag = 0x01, GlobalImagFlag = 0x02, GlobalZeroFlag = 0x03 }; namespace internal { template<std::size_t NumIndices, typename... Sym> struct tensor_symmetry_pre_analysis; template<std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup; template<bool instantiate, std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup_if; template<typename Tensor_> struct tensor_symmetry_calculate_flags; template<typename Tensor_> struct tensor_symmetry_assign_value; template<typename... Sym> struct tensor_symmetry_num_indices; } // end namespace internal template<int One_, int Two_> struct Symmetry { static_assert(One_ != Two_, "Symmetries must cover distinct indices."); constexpr static int One = One_; constexpr static int Two = Two_; constexpr static int Flags = 0; }; template<int One_, int Two_> struct AntiSymmetry { static_assert(One_ != Two_, "Symmetries must cover distinct indices."); constexpr static int One = One_; constexpr static int Two = Two_; constexpr static int Flags = NegationFlag; }; template<int One_, int Two_> struct Hermiticity { static_assert(One_ != Two_, "Symmetries must cover distinct indices."); constexpr static int One = One_; constexpr static int Two = Two_; constexpr static int Flags = ConjugationFlag; }; template<int One_, int Two_> struct AntiHermiticity { static_assert(One_ != Two_, "Symmetries must cover distinct indices."); constexpr static int One = One_; constexpr static int Two = Two_; constexpr static int Flags = ConjugationFlag | NegationFlag; }; /** \class DynamicSGroup * \ingroup TensorSymmetry_Module * * \brief Dynamic symmetry group * * The %DynamicSGroup class represents a symmetry group that need not be known at * compile time. It is useful if one wants to support arbitrary run-time defineable * symmetries for tensors, but it is also instantiated if a symmetry group is defined * at compile time that would be either too large for the compiler to reasonably * generate (using templates to calculate this at compile time is very inefficient) * or that the compiler could generate the group but that it wouldn't make sense to * unroll the loop for setting coefficients anymore. */ class DynamicSGroup; /** \internal * * \class DynamicSGroupFromTemplateArgs * \ingroup TensorSymmetry_Module * * \brief Dynamic symmetry group, initialized from template arguments * * This class is a child class of DynamicSGroup. It uses the template arguments * specified to initialize itself. */ template<typename... Gen> class DynamicSGroupFromTemplateArgs; /** \class StaticSGroup * \ingroup TensorSymmetry_Module * * \brief Static symmetry group * * This class represents a symmetry group that is known and resolved completely * at compile time. Ideally, no run-time penalty is incurred compared to the * manual unrolling of the symmetry. * * <b><i>CAUTION:</i></b> * * Do not use this class directly for large symmetry groups. The compiler * may run into a limit, or segfault or in the very least will take a very, * very, very long time to compile the code. Use the SGroup class instead * if you want a static group. That class contains logic that will * automatically select the DynamicSGroup class instead if the symmetry * group becomes too large. (In that case, unrolling may not even be * beneficial.) */ template<typename... Gen> class StaticSGroup; /** \class SGroup * \ingroup TensorSymmetry_Module * * \brief Symmetry group, initialized from template arguments * * This class represents a symmetry group whose generators are already * known at compile time. It may or may not be resolved at compile time, * depending on the estimated size of the group. * * \sa StaticSGroup * \sa DynamicSGroup */ template<typename... Gen> class SGroup : public internal::tensor_symmetry_pre_analysis<internal::tensor_symmetry_num_indices<Gen...>::value, Gen...>::root_type { public: constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value; typedef typename internal::tensor_symmetry_pre_analysis<NumIndices, Gen...>::root_type Base; // make standard constructors + assignment operators public inline SGroup() : Base() { } inline SGroup(const SGroup<Gen...>& other) : Base(other) { } inline SGroup(SGroup<Gen...>&& other) : Base(other) { } inline SGroup<Gen...>& operator=(const SGroup<Gen...>& other) { Base::operator=(other); return *this; } inline SGroup<Gen...>& operator=(SGroup<Gen...>&& other) { Base::operator=(other); return *this; } // all else is defined in the base class }; namespace internal { template<typename... Sym> struct tensor_symmetry_num_indices { constexpr static std::size_t value = 1; }; template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> { private: constexpr static std::size_t One = static_cast<std::size_t>(One_); constexpr static std::size_t Two = static_cast<std::size_t>(Two_); constexpr static std::size_t Three = tensor_symmetry_num_indices<Sym...>::value; // don't use std::max, since it's not constexpr until C++14... constexpr static std::size_t maxOneTwoPlusOne = ((One > Two) ? One : Two) + 1; public: constexpr static std::size_t value = (maxOneTwoPlusOne > Three) ? maxOneTwoPlusOne : Three; }; template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiSymmetry<One_, Two_>, Sym...> : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Hermiticity<One_, Two_>, Sym...> : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiHermiticity<One_, Two_>, Sym...> : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; /** \internal * * \class tensor_symmetry_pre_analysis * \ingroup TensorSymmetry_Module * * \brief Pre-select whether to use a static or dynamic symmetry group * * When a symmetry group could in principle be determined at compile time, * this template implements the logic whether to actually do that or whether * to rather defer that to runtime. * * The logic is as follows: * <dl> * <dt><b>No generators (trivial symmetry):</b></dt> * <dd>Use a trivial static group. Ideally, this has no performance impact * compared to not using symmetry at all. In practice, this might not * be the case.</dd> * <dt><b>More than 4 generators:</b></dt> * <dd>Calculate the group at run time, it is likely far too large for the * compiler to be able to properly generate it in a realistic time.</dd> * <dt><b>Up to and including 4 generators:</b></dt> * <dd>Actually enumerate all group elements, but then check how many there * are. If there are more than 16, it is unlikely that unrolling the * loop (as is done in the static compile-time case) is sensible, so * use a dynamic group instead. If there are at most 16 elements, actually * use that static group. Note that the largest group with 4 generators * still compiles with reasonable resources.</dd> * </dl> * * Note: Example compile time performance with g++-4.6 on an Intenl Core i5-3470 * with 16 GiB RAM (all generators non-redundant and the subgroups don't * factorize): * * # Generators -O0 -ggdb -O2 * ------------------------------------------------------------------- * 1 0.5 s / 250 MiB 0.45s / 230 MiB * 2 0.5 s / 260 MiB 0.5 s / 250 MiB * 3 0.65s / 310 MiB 0.62s / 310 MiB * 4 2.2 s / 860 MiB 1.7 s / 770 MiB * 5 130 s / 13000 MiB 120 s / 11000 MiB * * It is clear that everything is still very efficient up to 4 generators, then * the memory and CPU requirements become unreasonable. Thus we only instantiate * the template group theory logic if the number of generators supplied is 4 or * lower, otherwise this will be forced to be done during runtime, where the * algorithm is reasonably fast. */ template<std::size_t NumIndices> struct tensor_symmetry_pre_analysis<NumIndices> { typedef StaticSGroup<> root_type; }; template<std::size_t NumIndices, typename Gen_, typename... Gens_> struct tensor_symmetry_pre_analysis<NumIndices, Gen_, Gens_...> { constexpr static std::size_t max_static_generators = 4; constexpr static std::size_t max_static_elements = 16; typedef tensor_static_symgroup_if<(sizeof...(Gens_) + 1 <= max_static_generators), NumIndices, Gen_, Gens_...> helper; constexpr static std::size_t possible_size = helper::size; typedef typename conditional< possible_size == 0 || possible_size >= max_static_elements, DynamicSGroupFromTemplateArgs<Gen_, Gens_...>, typename helper::type >::type root_type; }; template<bool instantiate, std::size_t NumIndices, typename... Gens> struct tensor_static_symgroup_if { constexpr static std::size_t size = 0; typedef void type; }; template<std::size_t NumIndices, typename... Gens> struct tensor_static_symgroup_if<true, NumIndices, Gens...> : tensor_static_symgroup<NumIndices, Gens...> {}; template<typename Tensor_> struct tensor_symmetry_assign_value { typedef typename Tensor_::Index Index; typedef typename Tensor_::Scalar Scalar; constexpr static std::size_t NumIndices = Tensor_::NumIndices; static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transformation_flags, int dummy, Tensor_& tensor, const Scalar& value_) { Scalar value(value_); if (transformation_flags & ConjugationFlag) value = numext::conj(value); if (transformation_flags & NegationFlag) value = -value; tensor.coeffRef(transformed_indices) = value; return dummy; } }; template<typename Tensor_> struct tensor_symmetry_calculate_flags { typedef typename Tensor_::Index Index; constexpr static std::size_t NumIndices = Tensor_::NumIndices; static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transform_flags, int current_flags, const std::array<Index, NumIndices>& orig_indices) { if (transformed_indices == orig_indices) { if (transform_flags & (ConjugationFlag | NegationFlag)) return current_flags | GlobalImagFlag; // anti-hermitian diagonal else if (transform_flags & ConjugationFlag) return current_flags | GlobalRealFlag; // hermitian diagonal else if (transform_flags & NegationFlag) return current_flags | GlobalZeroFlag; // anti-symmetric diagonal } return current_flags; } }; template<typename Tensor_, typename Symmetry_, int Flags = 0> class tensor_symmetry_value_setter { public: typedef typename Tensor_::Index Index; typedef typename Tensor_::Scalar Scalar; constexpr static std::size_t NumIndices = Tensor_::NumIndices; inline tensor_symmetry_value_setter(Tensor_& tensor, Symmetry_ const& symmetry, std::array<Index, NumIndices> const& indices) : m_tensor(tensor), m_symmetry(symmetry), m_indices(indices) { } inline tensor_symmetry_value_setter<Tensor_, Symmetry_, Flags>& operator=(Scalar const& value) { doAssign(value); return *this; } private: Tensor_& m_tensor; Symmetry_ m_symmetry; std::array<Index, NumIndices> m_indices; inline void doAssign(Scalar const& value) { #ifdef EIGEN_TENSOR_SYMMETRY_CHECK_VALUES int value_flags = m_symmetry.template apply<internal::tensor_symmetry_calculate_flags<Tensor_>, int>(m_indices, m_symmetry.globalFlags(), m_indices); if (value_flags & GlobalRealFlag) eigen_assert(numext::imag(value) == 0); if (value_flags & GlobalImagFlag) eigen_assert(numext::real(value) == 0); #endif m_symmetry.template apply<internal::tensor_symmetry_assign_value<Tensor_>, int>(m_indices, 0, m_tensor, value); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H /* * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; */
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h
.h
21,047
670
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H #define EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H namespace Eigen { namespace internal { namespace group_theory { /** \internal * \file CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h * This file contains C++ templates that implement group theory algorithms. * * The algorithms allow for a compile-time analysis of finite groups. * * Currently only Dimino's algorithm is implemented, which returns a list * of all elements in a group given a set of (possibly redundant) generators. * (One could also do that with the so-called orbital algorithm, but that * is much more expensive and usually has no advantages.) */ /********************************************************************** * "Ok kid, here is where it gets complicated." * - Amelia Pond in the "Doctor Who" episode * "The Big Bang" * * Dimino's algorithm * ================== * * The following is Dimino's algorithm in sequential form: * * Input: identity element, list of generators, equality check, * multiplication operation * Output: list of group elements * * 1. add identity element * 2. remove identities from list of generators * 3. add all powers of first generator that aren't the * identity element * 4. go through all remaining generators: * a. if generator is already in the list of elements * -> do nothing * b. otherwise * i. remember current # of elements * (i.e. the size of the current subgroup) * ii. add all current elements (which includes * the identity) each multiplied from right * with the current generator to the group * iii. add all remaining cosets that are generated * by products of the new generator with itself * and all other generators seen so far * * In functional form, this is implemented as a long set of recursive * templates that have a complicated relationship. * * The main interface for Dimino's algorithm is the template * enumerate_group_elements. All lists are implemented as variadic * type_list<typename...> and numeric_list<typename = int, int...> * templates. * * 'Calling' templates is usually done via typedefs. * * This algorithm is an extended version of the basic version. The * extension consists in the fact that each group element has a set * of flags associated with it. Multiplication of two group elements * with each other results in a group element whose flags are the * XOR of the flags of the previous elements. Each time the algorithm * notices that a group element it just calculated is already in the * list of current elements, the flags of both will be compared and * added to the so-called 'global flags' of the group. * * The rationale behind this extension is that this allows not only * for the description of symmetries between tensor indices, but * also allows for the description of hermiticity, antisymmetry and * antihermiticity. Negation and conjugation each are specific bit * in the flags value and if two different ways to reach a group * element lead to two different flags, this poses a constraint on * the allowed values of the resulting tensor. For example, if a * group element is reach both with and without the conjugation * flags, it is clear that the resulting tensor has to be real. * * Note that this flag mechanism is quite generic and may have other * uses beyond tensor properties. * * IMPORTANT: * This algorithm assumes the group to be finite. If you try to * run it with a group that's infinite, the algorithm will only * terminate once you hit a compiler limit (max template depth). * Also note that trying to use this implementation to create a * very large group will probably either make you hit the same * limit, cause the compiler to segfault or at the very least * take a *really* long time (hours, days, weeks - sic!) to * compile. It is not recommended to plug in more than 4 * generators, unless they are independent of each other. */ /** \internal * * \class strip_identities * \ingroup CXX11_TensorSymmetry_Module * * \brief Cleanse a list of group elements of the identity element * * This template is used to make a first pass through all initial * generators of Dimino's algorithm and remove the identity * elements. * * \sa enumerate_group_elements */ template<template<typename, typename> class Equality, typename id, typename L> struct strip_identities; template< template<typename, typename> class Equality, typename id, typename t, typename... ts > struct strip_identities<Equality, id, type_list<t, ts...>> { typedef typename conditional< Equality<id, t>::value, typename strip_identities<Equality, id, type_list<ts...>>::type, typename concat<type_list<t>, typename strip_identities<Equality, id, type_list<ts...>>::type>::type >::type type; constexpr static int global_flags = Equality<id, t>::global_flags | strip_identities<Equality, id, type_list<ts...>>::global_flags; }; template< template<typename, typename> class Equality, typename id EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, ts) > struct strip_identities<Equality, id, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(ts)>> { typedef type_list<> type; constexpr static int global_flags = 0; }; /** \internal * * \class dimino_first_step_elements_helper * \ingroup CXX11_TensorSymmetry_Module * * \brief Recursive template that adds powers of the first generator to the list of group elements * * This template calls itself recursively to add powers of the first * generator to the list of group elements. It stops if it reaches * the identity element again. * * \sa enumerate_group_elements, dimino_first_step_elements */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename g, typename current_element, typename elements, bool dont_add_current_element // = false > struct dimino_first_step_elements_helper #ifndef EIGEN_PARSED_BY_DOXYGEN : // recursive inheritance is too difficult for Doxygen public dimino_first_step_elements_helper< Multiply, Equality, id, g, typename Multiply<current_element, g>::type, typename concat<elements, type_list<current_element>>::type, Equality<typename Multiply<current_element, g>::type, id>::value > {}; template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename g, typename current_element, typename elements > struct dimino_first_step_elements_helper<Multiply, Equality, id, g, current_element, elements, true> #endif // EIGEN_PARSED_BY_DOXYGEN { typedef elements type; constexpr static int global_flags = Equality<current_element, id>::global_flags; }; /** \internal * * \class dimino_first_step_elements * \ingroup CXX11_TensorSymmetry_Module * * \brief Add all powers of the first generator to the list of group elements * * This template takes the first non-identity generator and generates the initial * list of elements which consists of all powers of that generator. For a group * with just one generated, it would be enumerated after this. * * \sa enumerate_group_elements */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename generators > struct dimino_first_step_elements { typedef typename get<0, generators>::type first_generator; typedef typename skip<1, generators>::type next_generators; typedef type_list<first_generator> generators_done; typedef dimino_first_step_elements_helper< Multiply, Equality, id, first_generator, first_generator, type_list<id>, false > helper; typedef typename helper::type type; constexpr static int global_flags = helper::global_flags; }; /** \internal * * \class dimino_get_coset_elements * \ingroup CXX11_TensorSymmetry_Module * * \brief Generate all elements of a specific coset * * This template generates all the elements of a specific coset by * multiplying all elements in the given subgroup with the new * coset representative. Note that the first element of the * subgroup is always the identity element, so the first element of * ther result of this template is going to be the coset * representative itself. * * Note that this template accepts an additional boolean parameter * that specifies whether to actually generate the coset (true) or * just return an empty list (false). * * \sa enumerate_group_elements, dimino_add_cosets_for_rep */ template< template<typename, typename> class Multiply, typename sub_group_elements, typename new_coset_rep, bool generate_coset // = true > struct dimino_get_coset_elements { typedef typename apply_op_from_right<Multiply, new_coset_rep, sub_group_elements>::type type; }; template< template<typename, typename> class Multiply, typename sub_group_elements, typename new_coset_rep > struct dimino_get_coset_elements<Multiply, sub_group_elements, new_coset_rep, false> { typedef type_list<> type; }; /** \internal * * \class dimino_add_cosets_for_rep * \ingroup CXX11_TensorSymmetry_Module * * \brief Recursive template for adding coset spaces * * This template multiplies the coset representative with a generator * from the list of previous generators. If the new element is not in * the group already, it adds the corresponding coset. Finally it * proceeds to call itself with the next generator from the list. * * \sa enumerate_group_elements, dimino_add_all_coset_spaces */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename sub_group_elements, typename elements, typename generators, typename rep_element, int sub_group_size > struct dimino_add_cosets_for_rep; template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename sub_group_elements, typename elements, typename g, typename... gs, typename rep_element, int sub_group_size > struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<g, gs...>, rep_element, sub_group_size> { typedef typename Multiply<rep_element, g>::type new_coset_rep; typedef contained_in_list_gf<Equality, new_coset_rep, elements> _cil; constexpr static bool add_coset = !_cil::value; typedef typename dimino_get_coset_elements< Multiply, sub_group_elements, new_coset_rep, add_coset >::type coset_elements; typedef dimino_add_cosets_for_rep< Multiply, Equality, id, sub_group_elements, typename concat<elements, coset_elements>::type, type_list<gs...>, rep_element, sub_group_size > _helper; typedef typename _helper::type type; constexpr static int global_flags = _cil::global_flags | _helper::global_flags; /* Note that we don't have to update global flags here, since * we will only add these elements if they are not part of * the group already. But that only happens if the coset rep * is not already in the group, so the check for the coset rep * will catch this. */ }; template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename sub_group_elements, typename elements EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), typename rep_element, int sub_group_size > struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, rep_element, sub_group_size> { typedef elements type; constexpr static int global_flags = 0; }; /** \internal * * \class dimino_add_all_coset_spaces * \ingroup CXX11_TensorSymmetry_Module * * \brief Recursive template for adding all coset spaces for a new generator * * This template tries to go through the list of generators (with * the help of the dimino_add_cosets_for_rep template) as long as * it still finds elements that are not part of the group and add * the corresponding cosets. * * \sa enumerate_group_elements, dimino_add_cosets_for_rep */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename sub_group_elements, typename elements, typename generators, int sub_group_size, int rep_pos, bool stop_condition // = false > struct dimino_add_all_coset_spaces { typedef typename get<rep_pos, elements>::type rep_element; typedef dimino_add_cosets_for_rep< Multiply, Equality, id, sub_group_elements, elements, generators, rep_element, sub_group_elements::count > _ac4r; typedef typename _ac4r::type new_elements; constexpr static int new_rep_pos = rep_pos + sub_group_elements::count; constexpr static bool new_stop_condition = new_rep_pos >= new_elements::count; typedef dimino_add_all_coset_spaces< Multiply, Equality, id, sub_group_elements, new_elements, generators, sub_group_size, new_rep_pos, new_stop_condition > _helper; typedef typename _helper::type type; constexpr static int global_flags = _helper::global_flags | _ac4r::global_flags; }; template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename sub_group_elements, typename elements, typename generators, int sub_group_size, int rep_pos > struct dimino_add_all_coset_spaces<Multiply, Equality, id, sub_group_elements, elements, generators, sub_group_size, rep_pos, true> { typedef elements type; constexpr static int global_flags = 0; }; /** \internal * * \class dimino_add_generator * \ingroup CXX11_TensorSymmetry_Module * * \brief Enlarge the group by adding a new generator. * * It accepts a boolean parameter that determines if the generator is redundant, * i.e. was already seen in the group. In that case, it reduces to a no-op. * * \sa enumerate_group_elements, dimino_add_all_coset_spaces */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename elements, typename generators_done, typename current_generator, bool redundant // = false > struct dimino_add_generator { /* this template is only called if the generator is not redundant * => all elements of the group multiplied with the new generator * are going to be new elements of the most trivial coset space */ typedef typename apply_op_from_right<Multiply, current_generator, elements>::type multiplied_elements; typedef typename concat<elements, multiplied_elements>::type new_elements; constexpr static int rep_pos = elements::count; typedef dimino_add_all_coset_spaces< Multiply, Equality, id, elements, // elements of previous subgroup new_elements, typename concat<generators_done, type_list<current_generator>>::type, elements::count, // size of previous subgroup rep_pos, false // don't stop (because rep_pos >= new_elements::count is always false at this point) > _helper; typedef typename _helper::type type; constexpr static int global_flags = _helper::global_flags; }; template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename elements, typename generators_done, typename current_generator > struct dimino_add_generator<Multiply, Equality, id, elements, generators_done, current_generator, true> { // redundant case typedef elements type; constexpr static int global_flags = 0; }; /** \internal * * \class dimino_add_remaining_generators * \ingroup CXX11_TensorSymmetry_Module * * \brief Recursive template that adds all remaining generators to a group * * Loop through the list of generators that remain and successively * add them to the group. * * \sa enumerate_group_elements, dimino_add_generator */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename generators_done, typename remaining_generators, typename elements > struct dimino_add_remaining_generators { typedef typename get<0, remaining_generators>::type first_generator; typedef typename skip<1, remaining_generators>::type next_generators; typedef contained_in_list_gf<Equality, first_generator, elements> _cil; typedef dimino_add_generator< Multiply, Equality, id, elements, generators_done, first_generator, _cil::value > _helper; typedef typename _helper::type new_elements; typedef dimino_add_remaining_generators< Multiply, Equality, id, typename concat<generators_done, type_list<first_generator>>::type, next_generators, new_elements > _next_iter; typedef typename _next_iter::type type; constexpr static int global_flags = _cil::global_flags | _helper::global_flags | _next_iter::global_flags; }; template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename generators_done, typename elements > struct dimino_add_remaining_generators<Multiply, Equality, id, generators_done, type_list<>, elements> { typedef elements type; constexpr static int global_flags = 0; }; /** \internal * * \class enumerate_group_elements_noid * \ingroup CXX11_TensorSymmetry_Module * * \brief Helper template that implements group element enumeration * * This is a helper template that implements the actual enumeration * of group elements. This has been split so that the list of * generators can be cleansed of the identity element before * performing the actual operation. * * \sa enumerate_group_elements */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename generators, int initial_global_flags = 0 > struct enumerate_group_elements_noid { typedef dimino_first_step_elements<Multiply, Equality, id, generators> first_step; typedef typename first_step::type first_step_elements; typedef dimino_add_remaining_generators< Multiply, Equality, id, typename first_step::generators_done, typename first_step::next_generators, // remaining_generators typename first_step::type // first_step elements > _helper; typedef typename _helper::type type; constexpr static int global_flags = initial_global_flags | first_step::global_flags | _helper::global_flags; }; // in case when no generators are specified template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, int initial_global_flags > struct enumerate_group_elements_noid<Multiply, Equality, id, type_list<>, initial_global_flags> { typedef type_list<id> type; constexpr static int global_flags = initial_global_flags; }; /** \internal * * \class enumerate_group_elements * \ingroup CXX11_TensorSymmetry_Module * * \brief Enumerate all elements in a finite group * * This template enumerates all elements in a finite group. It accepts * the following template parameters: * * \tparam Multiply The multiplication operation that multiplies two group elements * with each other. * \tparam Equality The equality check operation that checks if two group elements * are equal to another. * \tparam id The identity element * \tparam _generators A list of (possibly redundant) generators of the group */ template< template<typename, typename> class Multiply, template<typename, typename> class Equality, typename id, typename _generators > struct enumerate_group_elements : public enumerate_group_elements_noid< Multiply, Equality, id, typename strip_identities<Equality, id, _generators>::type, strip_identities<Equality, id, _generators>::global_flags > { }; } // end namespace group_theory } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H /* * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; */
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/util/EmulateCXX11Meta.h
.h
9,377
312
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_EMULATE_CXX11_META_H #define EIGEN_EMULATE_CXX11_META_H namespace Eigen { namespace internal { /** \internal * \file CXX11/util/EmulateCXX11Meta.h * This file emulates a subset of the functionality provided by CXXMeta.h for * compilers that don't yet support cxx11 such as nvcc. */ struct empty_list { static const std::size_t count = 0; }; template<typename T, typename Tail=empty_list> struct type_list { typedef T HeadType; typedef Tail TailType; static const T head; static const Tail tail; static const std::size_t count = 1 + Tail::count; }; struct null_type { }; template<typename T1 = null_type, typename T2 = null_type, typename T3 = null_type, typename T4 = null_type, typename T5 = null_type, typename T6 = null_type, typename T7 = null_type, typename T8 = null_type> struct make_type_list { typedef typename make_type_list<T2, T3, T4, T5, T6, T7, T8>::type tailresult; typedef type_list<T1, tailresult> type; }; template<> struct make_type_list<> { typedef empty_list type; }; template <std::size_t index, class TList> struct get_type; template <class Head, class Tail> struct get_type<0, type_list<Head, Tail> > { typedef Head type; }; template <std::size_t i, class Head, class Tail> struct get_type<i, type_list<Head, Tail> > { typedef typename get_type<i-1, Tail>::type type; }; /* numeric list */ template <typename T, T n> struct type2val { typedef T type; static const T value = n; }; template<typename T, size_t n, T V> struct gen_numeric_list_repeated; template<typename T, T V> struct gen_numeric_list_repeated<T, 1, V> { typedef typename make_type_list<type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 2, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 3, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 4, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 5, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 6, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 7, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type; }; template<typename T, T V> struct gen_numeric_list_repeated<T, 8, V> { typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type; }; template <std::size_t index, class NList> struct get; template <std::size_t i> struct get<i, empty_list> { get() { eigen_assert(false && "index overflow"); } typedef void type; static const char value = '\0'; }; template <std::size_t i, class Head> struct get<i, type_list<Head, empty_list> > { get() { eigen_assert(false && "index overflow"); } typedef void type; static const char value = '\0'; }; template <class Head> struct get<0, type_list<Head, empty_list> > { typedef typename Head::type type; static const type value = Head::value; }; template <class Head, class Tail> struct get<0, type_list<Head, Tail> > { typedef typename Head::type type; static const type value = Head::value; }; template <std::size_t i, class Head, class Tail> struct get<i, type_list<Head, Tail> > { typedef typename Tail::HeadType::type type; static const type value = get<i-1, Tail>::value; }; template <class NList> struct arg_prod { static const typename NList::HeadType::type value = get<0, NList>::value * arg_prod<typename NList::TailType>::value; }; template <> struct arg_prod<empty_list> { static const int value = 1; }; template<int n, typename t> array<t, n> repeat(t v) { array<t, n> array; array.fill(v); return array; } template<std::size_t I, class Head, class Tail> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Head::type array_get(type_list<Head, Tail>&) { return get<I, type_list<Head, Tail> >::value; } template<std::size_t I, class Head, class Tail> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Head::type array_get(const type_list<Head, Tail>&) { return get<I, type_list<Head, Tail> >::value; } template <class NList> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NList::HeadType::type array_prod(const NList&) { return arg_prod<NList>::value; } template<typename t, std::size_t n> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const array<t, n>& a) { t prod = 1; for (size_t i = 0; i < n; ++i) { prod *= a[i]; } return prod; } template<typename t> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const array<t, 0>& /*a*/) { return 1; } template<typename t> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) { eigen_assert(a.size() > 0); t prod = 1; for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; } return prod; } template<std::size_t I, class T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& array_get(std::vector<T>& a) { return a[I]; } template<std::size_t I, class T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const std::vector<T>& a) { return a[I]; } struct sum_op { template<typename A, typename B> static inline bool run(A a, B b) { return a + b; } }; struct product_op { template<typename A, typename B> static inline bool run(A a, B b) { return a * b; } }; struct logical_and_op { template<typename A, typename B> static inline bool run(A a, B b) { return a && b; } }; struct logical_or_op { template<typename A, typename B> static inline bool run(A a, B b) { return a || b; } }; struct equal_op { template<typename A, typename B> static inline bool run(A a, B b) { return a == b; } }; struct not_equal_op { template<typename A, typename B> static inline bool run(A a, B b) { return a != b; } }; struct lesser_op { template<typename A, typename B> static inline bool run(A a, B b) { return a < b; } }; struct lesser_equal_op { template<typename A, typename B> static inline bool run(A a, B b) { return a <= b; } }; struct greater_op { template<typename A, typename B> static inline bool run(A a, B b) { return a > b; } }; struct greater_equal_op { template<typename A, typename B> static inline bool run(A a, B b) { return a >= b; } }; struct not_op { template<typename A> static inline bool run(A a) { return !a; } }; struct negation_op { template<typename A> static inline bool run(A a) { return -a; } }; struct greater_equal_zero_op { template<typename A> static inline bool run(A a) { return a >= 0; } }; template<typename Reducer, typename Op, typename A, std::size_t N> struct ArrayApplyAndReduce { static inline bool run(const array<A, N>& a) { EIGEN_STATIC_ASSERT(N >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE); bool result = Reducer::run(Op::run(a[0]), Op::run(a[1])); for (size_t i = 2; i < N; ++i) { result = Reducer::run(result, Op::run(a[i])); } return result; } }; template<typename Reducer, typename Op, typename A> struct ArrayApplyAndReduce<Reducer, Op, A, 1> { static inline bool run(const array<A, 1>& a) { return Op::run(a[0]); } }; template<typename Reducer, typename Op, typename A, std::size_t N> inline bool array_apply_and_reduce(const array<A, N>& a) { return ArrayApplyAndReduce<Reducer, Op, A, N>::run(a); } template<typename Reducer, typename Op, typename A, typename B, std::size_t N> struct ArrayZipAndReduce { static inline bool run(const array<A, N>& a, const array<B, N>& b) { EIGEN_STATIC_ASSERT(N >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE); bool result = Reducer::run(Op::run(a[0], b[0]), Op::run(a[1], b[1])); for (size_t i = 2; i < N; ++i) { result = Reducer::run(result, Op::run(a[i], b[i])); } return result; } }; template<typename Reducer, typename Op, typename A, typename B> struct ArrayZipAndReduce<Reducer, Op, A, B, 1> { static inline bool run(const array<A, 1>& a, const array<B, 1>& b) { return Op::run(a[0], b[0]); } }; template<typename Reducer, typename Op, typename A, typename B, std::size_t N> inline bool array_zip_and_reduce(const array<A, N>& a, const array<B, N>& b) { return ArrayZipAndReduce<Reducer, Op, A, B, N>::run(a, b); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_EMULATE_CXX11_META_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h
.h
4,137
89
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11WORKAROUNDS_H #define EIGEN_CXX11WORKAROUNDS_H /* COMPATIBILITY CHECKS * (so users of compilers that are too old get some realistic error messages) */ #if defined(__INTEL_COMPILER) && (__INTEL_COMPILER < 1310) #error Intel Compiler only supports required C++ features since version 13.1. // note that most stuff in principle works with 13.0 but when combining // some features, at some point 13.0 will just fail with an internal assertion #elif defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (__GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 6)) // G++ < 4.6 by default will continue processing the source files - even if we use #error to make // it error out. For this reason, we use the pragma to make sure G++ aborts at the first error // it sees. Unfortunately, that is still not our #error directive, but at least the output is // short enough the user has a chance to see that the compiler version is not sufficient for // the funky template mojo we use. #pragma GCC diagnostic error "-Wfatal-errors" #error GNU C++ Compiler (g++) only supports required C++ features since version 4.6. #endif /* Check that the compiler at least claims to support C++11. It might not be sufficient * because the compiler may not implement it correctly, but at least we'll know. * On the other hand, visual studio still doesn't claim to support C++11 although it's * compliant enugh for our purpose. */ #if (__cplusplus <= 199711L) && (EIGEN_COMP_MSVC < 1900) #if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) #pragma GCC diagnostic error "-Wfatal-errors" #endif #error This library needs at least a C++11 compliant compiler. If you use g++/clang, please enable the -std=c++11 compiler flag. (-std=c++0x on older versions.) #endif namespace Eigen { namespace internal { /* std::get is only constexpr in C++14, not yet in C++11 */ template<std::size_t I, class T> constexpr inline T& array_get(std::vector<T>& a) { return a[I]; } template<std::size_t I, class T> constexpr inline T&& array_get(std::vector<T>&& a) { return a[I]; } template<std::size_t I, class T> constexpr inline T const& array_get(std::vector<T> const& a) { return a[I]; } /* Suppose you have a template of the form * template<typename T> struct X; * And you want to specialize it in such a way: * template<typename S1, typename... SN> struct X<Foo<S1, SN...>> { ::: }; * template<> struct X<Foo<>> { ::: }; * This will work in Intel's compiler 13.0, but only to some extent in g++ 4.6, since * g++ can only match templates called with parameter packs if the number of template * arguments is not a fixed size (so inside the first specialization, referencing * X<Foo<Sn...>> will fail in g++). On the other hand, g++ will accept the following: * template<typename S...> struct X<Foo<S...>> { ::: }: * as an additional (!) specialization, which will then only match the empty case. * But Intel's compiler 13.0 won't accept that, it will only accept the empty syntax, * so we have to create a workaround for this. */ #if defined(__GNUC__) && !defined(__INTEL_COMPILER) #define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) mt... n #define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n) , EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) #define EIGEN_TPL_PP_SPEC_HACK_USE(n) n... #define EIGEN_TPL_PP_SPEC_HACK_USEC(n) , n... #else #define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) #define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n) #define EIGEN_TPL_PP_SPEC_HACK_USE(n) #define EIGEN_TPL_PP_SPEC_HACK_USEC(n) #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11WORKAROUNDS_H /* * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; */
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h
.h
3,760
142
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FIXEDSIZEVECTOR_H #define EIGEN_FIXEDSIZEVECTOR_H namespace Eigen { /** \class MaxSizeVector * \ingroup Core * * \brief The MaxSizeVector class. * * The %MaxSizeVector provides a subset of std::vector functionality. * * The goal is to provide basic std::vector operations when using * std::vector is not an option (e.g. on GPU or when compiling using * FMA/AVX, as this can cause either compilation failures or illegal * instruction failures). * * Beware: The constructors are not API compatible with these of * std::vector. */ template <typename T> class MaxSizeVector { public: // Construct a new MaxSizeVector, reserve n elements. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit MaxSizeVector(size_t n) : reserve_(n), size_(0), data_(static_cast<T*>(internal::aligned_malloc(n * sizeof(T)))) { for (size_t i = 0; i < n; ++i) { new (&data_[i]) T; } } // Construct a new MaxSizeVector, reserve and resize to n. // Copy the init value to all elements. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MaxSizeVector(size_t n, const T& init) : reserve_(n), size_(n), data_(static_cast<T*>(internal::aligned_malloc(n * sizeof(T)))) { for (size_t i = 0; i < n; ++i) { new (&data_[i]) T(init); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~MaxSizeVector() { for (size_t i = 0; i < size_; ++i) { data_[i].~T(); } internal::aligned_free(data_); } void resize(size_t n) { eigen_assert(n <= reserve_); for (size_t i = size_; i < n; ++i) { new (&data_[i]) T; } for (size_t i = n; i < size_; ++i) { data_[i].~T(); } size_ = n; } // Append new elements (up to reserved size). EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void push_back(const T& t) { eigen_assert(size_ < reserve_); data_[size_++] = t; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& operator[] (size_t i) const { eigen_assert(i < size_); return data_[i]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& operator[] (size_t i) { eigen_assert(i < size_); return data_[i]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& back() { eigen_assert(size_ > 0); return data_[size_ - 1]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& back() const { eigen_assert(size_ > 0); return data_[size_ - 1]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pop_back() { // NOTE: This does not destroy the value at the end the way // std::vector's version of pop_back() does. That happens when // the Vector is destroyed. eigen_assert(size_ > 0); size_--; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t size() const { return size_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool empty() const { return size_ == 0; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T* data() { return data_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T* data() const { return data_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T* begin() { return data_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T* end() { return data_ + size_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T* begin() const { return data_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T* end() const { return data_ + size_; } private: size_t reserve_; size_t size_; T* data_; }; } // namespace Eigen #endif // EIGEN_FIXEDSIZEVECTOR_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/util/EmulateArray.h
.h
8,298
268
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_EMULATE_ARRAY_H #define EIGEN_EMULATE_ARRAY_H // The array class is only available starting with cxx11. Emulate our own here // if needed. Beware, msvc still doesn't advertise itself as a c++11 compiler! // Moreover, CUDA doesn't support the STL containers, so we use our own instead. #if (__cplusplus <= 199711L && EIGEN_COMP_MSVC < 1900) || defined(__CUDACC__) || defined(EIGEN_AVOID_STL_ARRAY) namespace Eigen { template <typename T, size_t n> class array { public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& operator[] (size_t index) { return values[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& operator[] (size_t index) const { return values[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& front() { return values[0]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& front() const { return values[0]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& back() { return values[n-1]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& back() const { return values[n-1]; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static std::size_t size() { return n; } T values[n]; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v) { EIGEN_STATIC_ASSERT(n==1, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v1, const T& v2) { EIGEN_STATIC_ASSERT(n==2, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3) { EIGEN_STATIC_ASSERT(n==3, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; values[2] = v3; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4) { EIGEN_STATIC_ASSERT(n==4, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; values[2] = v3; values[3] = v4; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5) { EIGEN_STATIC_ASSERT(n==5, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; values[2] = v3; values[3] = v4; values[4] = v5; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6) { EIGEN_STATIC_ASSERT(n==6, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; values[2] = v3; values[3] = v4; values[4] = v5; values[5] = v6; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7) { EIGEN_STATIC_ASSERT(n==7, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; values[2] = v3; values[3] = v4; values[4] = v5; values[5] = v6; values[6] = v7; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array( const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8) { EIGEN_STATIC_ASSERT(n==8, YOU_MADE_A_PROGRAMMING_MISTAKE) values[0] = v1; values[1] = v2; values[2] = v3; values[3] = v4; values[4] = v5; values[5] = v6; values[6] = v7; values[7] = v8; } #if EIGEN_HAS_VARIADIC_TEMPLATES EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array(std::initializer_list<T> l) { eigen_assert(l.size() == n); internal::smart_copy(l.begin(), l.end(), values); } #endif }; // Specialize array for zero size template <typename T> class array<T, 0> { public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& operator[] (size_t) { eigen_assert(false && "Can't index a zero size array"); return dummy; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& operator[] (size_t) const { eigen_assert(false && "Can't index a zero size array"); return dummy; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& front() { eigen_assert(false && "Can't index a zero size array"); return dummy; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& front() const { eigen_assert(false && "Can't index a zero size array"); return dummy; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& back() { eigen_assert(false && "Can't index a zero size array"); return dummy; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& back() const { eigen_assert(false && "Can't index a zero size array"); return dummy; } static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::size_t size() { return 0; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array() : dummy() { } #if EIGEN_HAS_VARIADIC_TEMPLATES EIGEN_DEVICE_FUNC array(std::initializer_list<T> l) : dummy() { eigen_assert(l.size() == 0); } #endif private: T dummy; }; // Comparison operator // Todo: implement !=, <, <=, >, and >= template<class T, std::size_t N> EIGEN_DEVICE_FUNC bool operator==(const array<T,N>& lhs, const array<T,N>& rhs) { for (std::size_t i = 0; i < N; ++i) { if (lhs[i] != rhs[i]) { return false; } } return true; } namespace internal { template<std::size_t I, class T, std::size_t N> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& array_get(array<T,N>& a) { return a[I]; } template<std::size_t I, class T, std::size_t N> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const array<T,N>& a) { return a[I]; } template <typename T> struct array_size; template<class T, std::size_t N> struct array_size<array<T,N> > { static const size_t value = N; }; template <typename T> struct array_size; template<class T, std::size_t N> struct array_size<array<T,N>& > { static const size_t value = N; }; template <typename T> struct array_size; template<class T, std::size_t N> struct array_size<const array<T,N> > { static const size_t value = N; }; template <typename T> struct array_size; template<class T, std::size_t N> struct array_size<const array<T,N>& > { static const size_t value = N; }; } // end namespace internal } // end namespace Eigen #else // The compiler supports c++11, and we're not targetting cuda: use std::array as Eigen::array #include <array> namespace Eigen { template <typename T, std::size_t N> using array = std::array<T, N>; namespace internal { /* std::get is only constexpr in C++14, not yet in C++11 * - libstdc++ from version 4.7 onwards has it nevertheless, * so use that * - libstdc++ older versions: use _M_instance directly * - libc++ all versions so far: use __elems_ directly * - all other libs: use std::get to be portable, but * this may not be constexpr */ #if defined(__GLIBCXX__) && __GLIBCXX__ < 20120322 #define STD_GET_ARR_HACK a._M_instance[I] #elif defined(_LIBCPP_VERSION) #define STD_GET_ARR_HACK a.__elems_[I] #else #define STD_GET_ARR_HACK std::template get<I, T, N>(a) #endif template<std::size_t I, class T, std::size_t N> constexpr inline T& array_get(std::array<T,N>& a) { return (T&) STD_GET_ARR_HACK; } template<std::size_t I, class T, std::size_t N> constexpr inline T&& array_get(std::array<T,N>&& a) { return (T&&) STD_GET_ARR_HACK; } template<std::size_t I, class T, std::size_t N> constexpr inline T const& array_get(std::array<T,N> const& a) { return (T const&) STD_GET_ARR_HACK; } #undef STD_GET_ARR_HACK template <typename T> struct array_size; template<class T, std::size_t N> struct array_size<const std::array<T,N> > { static const size_t value = N; }; template <typename T> struct array_size; template<class T, std::size_t N> struct array_size<std::array<T,N> > { static const size_t value = N; }; } // end namespace internal } // end namespace Eigen #endif #endif // EIGEN_EMULATE_ARRAY_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/util/CXX11Meta.h
.h
22,317
543
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11META_H #define EIGEN_CXX11META_H #include <vector> #include "EmulateArray.h" // Emulate the cxx11 functionality that we need if the compiler doesn't support it. // Visual studio 2015 doesn't advertise itself as cxx11 compliant, although it // supports enough of the standard for our needs #if __cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900 #include "CXX11Workarounds.h" namespace Eigen { namespace internal { /** \internal * \file CXX11/util/CXX11Meta.h * This file contains generic metaprogramming classes which are not specifically related to Eigen. * This file expands upon Core/util/Meta.h and adds support for C++11 specific features. */ template<typename... tt> struct type_list { constexpr static int count = sizeof...(tt); }; template<typename t, typename... tt> struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; }; template<typename T, T... nn> struct numeric_list { constexpr static std::size_t count = sizeof...(nn); }; template<typename T, T n, T... nn> struct numeric_list<T, n, nn...> { constexpr static std::size_t count = sizeof...(nn) + 1; constexpr static T first_value = n; }; /* numeric list constructors * * equivalencies: * constructor result * typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4> * typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0> * typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4> * typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0> */ template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, start, start + n-1, ii...> {}; template<typename T, T start, T... ii> struct gen_numeric_list<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, start, ii..., start + n-1> {}; template<typename T, T start, T... ii> struct gen_numeric_list_reversed<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; template<typename T, std::size_t n, T a, T b, T start = 0, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, start, (start + n-1) == a ? b : ((start + n-1) == b ? a : (start + n-1)), ii...> {}; template<typename T, T a, T b, T start, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, start, ii...> { typedef numeric_list<T, ii...> type; }; template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {}; template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; }; /* list manipulation: concatenate */ template<class a, class b> struct concat; template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; }; template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; }; template<typename... p> struct mconcat; template<typename a> struct mconcat<a> { typedef a type; }; template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {}; template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {}; /* list manipulation: extract slices */ template<int n, typename x> struct take; template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {}; template<int n> struct take<n, type_list<>> { typedef type_list<> type; }; template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; }; template<> struct take<0, type_list<>> { typedef type_list<> type; }; template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {}; template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; }; template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; }; template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; }; template<typename T, int n, T... ii> struct h_skip_helper_numeric; template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {}; template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; }; template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; }; template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; }; template<int n, typename... tt> struct h_skip_helper_type; template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {}; template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; }; template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; }; template<> struct h_skip_helper_type<0> { typedef type_list<> type; }; template<int n> struct h_skip { template<typename T, T... ii> constexpr static inline typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); } template<typename... tt> constexpr static inline typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); } }; template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; }; template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {}; /* list manipulation: retrieve single element from list */ template<int n, typename x> struct get; template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {}; template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; }; template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {}; template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static T value = a; }; /* always get type, regardless of dummy; good for parameter pack expansion */ template<typename T, T dummy, typename t> struct id_numeric { typedef t type; }; template<typename dummy, typename t> struct id_type { typedef t type; }; /* equality checking, flagged version */ template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; }; /* apply_op to list */ template< bool from_left, // false template<typename, typename> class op, typename additional_param, typename... values > struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; }; template< template<typename, typename> class op, typename additional_param, typename... values > struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; }; template< bool from_left, template<typename, typename> class op, typename additional_param > struct h_apply_op { template<typename... values> constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>) { return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); } }; template< template<typename, typename> class op, typename additional_param, typename a > struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; }; template< template<typename, typename> class op, typename additional_param, typename a > struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; }; /* see if an element is in a list */ template< template<typename, typename> class test, typename check_against, typename h_list, bool last_check_positive = false > struct contained_in_list; template< template<typename, typename> class test, typename check_against, typename h_list > struct contained_in_list<test, check_against, h_list, true> { constexpr static bool value = true; }; template< template<typename, typename> class test, typename check_against, typename a, typename... as > struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {}; template< template<typename, typename> class test, typename check_against EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty) > struct contained_in_list<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, false> { constexpr static bool value = false; }; /* see if an element is in a list and check for global flags */ template< template<typename, typename> class test, typename check_against, typename h_list, int default_flags = 0, bool last_check_positive = false, int last_check_flags = default_flags > struct contained_in_list_gf; template< template<typename, typename> class test, typename check_against, typename h_list, int default_flags, int last_check_flags > struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags> { constexpr static bool value = true; constexpr static int global_flags = last_check_flags; }; template< template<typename, typename> class test, typename check_against, typename a, typename... as, int default_flags, int last_check_flags > struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {}; template< template<typename, typename> class test, typename check_against EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), int default_flags, int last_check_flags > struct contained_in_list_gf<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; }; /* generic reductions */ template< typename Reducer, typename... Ts > struct reduce; template< typename Reducer > struct reduce<Reducer> { constexpr static inline int run() { return Reducer::Identity; } }; template< typename Reducer, typename A > struct reduce<Reducer, A> { constexpr static inline A run(A a) { return a; } }; template< typename Reducer, typename A, typename... Ts > struct reduce<Reducer, A, Ts...> { constexpr static inline auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, Ts...>::run(ts...))) { return Reducer::run(a, reduce<Reducer, Ts...>::run(ts...)); } }; /* generic binary operations */ struct sum_op { template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static inline auto run(A a, B b) -> decltype(a + b) { return a + b; } static constexpr int Identity = 0; }; struct product_op { template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static inline auto run(A a, B b) -> decltype(a * b) { return a * b; } static constexpr int Identity = 1; }; struct logical_and_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a && b) { return a && b; } }; struct logical_or_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a || b) { return a || b; } }; struct equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a == b) { return a == b; } }; struct not_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a != b) { return a != b; } }; struct lesser_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } }; struct lesser_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a <= b) { return a <= b; } }; struct greater_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a > b) { return a > b; } }; struct greater_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a >= b) { return a >= b; } }; /* generic unary operations */ struct not_op { template<typename A> constexpr static inline auto run(A a) -> decltype(!a) { return !a; } }; struct negation_op { template<typename A> constexpr static inline auto run(A a) -> decltype(-a) { return -a; } }; struct greater_equal_zero_op { template<typename A> constexpr static inline auto run(A a) -> decltype(a >= 0) { return a >= 0; } }; /* reductions for lists */ // using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it // together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1 // does... template<typename... Ts> constexpr inline decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts) { return reduce<product_op, Ts...>::run(ts...); } template<typename... Ts> constexpr inline decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts) { return reduce<sum_op, Ts...>::run(ts...); } /* reverse arrays */ template<typename Array, int... n> constexpr inline Array h_array_reverse(Array arr, numeric_list<int, n...>) { return {{array_get<sizeof...(n) - n - 1>(arr)...}}; } template<typename T, std::size_t N> constexpr inline array<T, N> array_reverse(array<T, N> arr) { return h_array_reverse(arr, typename gen_numeric_list<int, N>::type()); } /* generic array reductions */ // can't reuse standard reduce() interface above because Intel's Compiler // *really* doesn't like it, so we just reimplement the stuff // (start from N - 1 and work down to 0 because specialization for // n == N - 1 also doesn't work in Intel's compiler, so it goes into // an infinite loop) template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1> struct h_array_reduce { EIGEN_DEVICE_FUNC constexpr static inline auto run(array<T, N> arr, T identity) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr))) { return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr)); } }; template<typename Reducer, typename T, std::size_t N> struct h_array_reduce<Reducer, T, N, 0> { EIGEN_DEVICE_FUNC constexpr static inline T run(const array<T, N>& arr, T) { return array_get<0>(arr); } }; template<typename Reducer, typename T> struct h_array_reduce<Reducer, T, 0> { EIGEN_DEVICE_FUNC constexpr static inline T run(const array<T, 0>&, T identity) { return identity; } }; template<typename Reducer, typename T, std::size_t N> EIGEN_DEVICE_FUNC constexpr inline auto array_reduce(const array<T, N>& arr, T identity) -> decltype(h_array_reduce<Reducer, T, N>::run(arr, identity)) { return h_array_reduce<Reducer, T, N>::run(arr, identity); } /* standard array reductions */ template<typename T, std::size_t N> EIGEN_DEVICE_FUNC constexpr inline auto array_sum(const array<T, N>& arr) -> decltype(array_reduce<sum_op, T, N>(arr, static_cast<T>(0))) { return array_reduce<sum_op, T, N>(arr, static_cast<T>(0)); } template<typename T, std::size_t N> EIGEN_DEVICE_FUNC constexpr inline auto array_prod(const array<T, N>& arr) -> decltype(array_reduce<product_op, T, N>(arr, static_cast<T>(1))) { return array_reduce<product_op, T, N>(arr, static_cast<T>(1)); } template<typename t> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) { eigen_assert(a.size() > 0); t prod = 1; for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; } return prod; } /* zip an array */ template<typename Op, typename A, typename B, std::size_t N, int... n> constexpr inline array<decltype(Op::run(A(), B())),N> h_array_zip(array<A, N> a, array<B, N> b, numeric_list<int, n...>) { return array<decltype(Op::run(A(), B())),N>{{ Op::run(array_get<n>(a), array_get<n>(b))... }}; } template<typename Op, typename A, typename B, std::size_t N> constexpr inline array<decltype(Op::run(A(), B())),N> array_zip(array<A, N> a, array<B, N> b) { return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type()); } /* zip an array and reduce the result */ template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n> constexpr inline auto h_array_zip_and_reduce(array<A, N> a, array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...)) { return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...); } template<typename Reducer, typename Op, typename A, typename B, std::size_t N> constexpr inline auto array_zip_and_reduce(array<A, N> a, array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type())) { return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()); } /* apply stuff to an array */ template<typename Op, typename A, std::size_t N, int... n> constexpr inline array<decltype(Op::run(A())),N> h_array_apply(array<A, N> a, numeric_list<int, n...>) { return array<decltype(Op::run(A())),N>{{ Op::run(array_get<n>(a))... }}; } template<typename Op, typename A, std::size_t N> constexpr inline array<decltype(Op::run(A())),N> array_apply(array<A, N> a) { return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type()); } /* apply stuff to an array and reduce */ template<typename Reducer, typename Op, typename A, std::size_t N, int... n> constexpr inline auto h_array_apply_and_reduce(array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...)) { return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...); } template<typename Reducer, typename Op, typename A, std::size_t N> constexpr inline auto array_apply_and_reduce(array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type())) { return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()); } /* repeat a value n times (and make an array out of it * usage: * array<int, 16> = repeat<16>(42); */ template<int n> struct h_repeat { template<typename t, int... ii> constexpr static inline array<t, n> run(t v, numeric_list<int, ii...>) { return {{ typename id_numeric<int, ii, t>::type(v)... }}; } }; template<int n, typename t> constexpr array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); } /* instantiate a class by a C-style array */ template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps> struct h_instantiate_by_c_array; template<class InstType, typename ArrType, std::size_t N, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...> { static InstType run(ArrType* arr, Ps... args) { return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]); } }; template<class InstType, typename ArrType, std::size_t N, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...> { static InstType run(ArrType* arr, Ps... args) { return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...); } }; template<class InstType, typename ArrType, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...> { static InstType run(ArrType* arr, Ps... args) { (void)arr; return InstType(args...); } }; template<class InstType, typename ArrType, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...> { static InstType run(ArrType* arr, Ps... args) { (void)arr; return InstType(args...); } }; template<class InstType, typename ArrType, std::size_t N, bool Reverse = false> InstType instantiate_by_c_array(ArrType* arr) { return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr); } } // end namespace internal } // end namespace Eigen #else // Non C++11, fallback to emulation mode #include "EmulateCXX11Meta.h" #endif #endif // EIGEN_CXX11META_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h
.h
15,529
429
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H #define EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H namespace Eigen { /** \internal * * \class TensorDimensions * \ingroup CXX11_Tensor_Module * * \brief Set of classes used to encode and store the dimensions of a Tensor. * * The Sizes class encodes as part of the type the number of dimensions and the * sizes corresponding to each dimension. It uses no storage space since it is * entirely known at compile time. * The DSizes class is its dynamic sibling: the number of dimensions is known * at compile time but the sizes are set during execution. * * \sa Tensor */ // Boilerplate code namespace internal { template<std::size_t n, typename Dimension> struct dget { static const std::size_t value = get<n, Dimension>::value; }; template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor> struct fixed_size_tensor_index_linearization_helper { template <typename Dimensions> EIGEN_DEVICE_FUNC static inline Index run(array<Index, NumIndices> const& indices, const Dimensions& dimensions) { return array_get<RowMajor ? n - 1 : (NumIndices - n)>(indices) + dget<RowMajor ? n - 1 : (NumIndices - n), Dimensions>::value * fixed_size_tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions); } }; template<typename Index, std::size_t NumIndices, bool RowMajor> struct fixed_size_tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor> { template <typename Dimensions> EIGEN_DEVICE_FUNC static inline Index run(array<Index, NumIndices> const&, const Dimensions&) { return 0; } }; template<typename Index, std::size_t n> struct fixed_size_tensor_index_extraction_helper { template <typename Dimensions> EIGEN_DEVICE_FUNC static inline Index run(const Index index, const Dimensions& dimensions) { const Index mult = (index == n-1) ? 1 : 0; return array_get<n-1>(dimensions) * mult + fixed_size_tensor_index_extraction_helper<Index, n - 1>::run(index, dimensions); } }; template<typename Index> struct fixed_size_tensor_index_extraction_helper<Index, 0> { template <typename Dimensions> EIGEN_DEVICE_FUNC static inline Index run(const Index, const Dimensions&) { return 0; } }; } // end namespace internal // Fixed size #ifndef EIGEN_EMULATE_CXX11_META_H template <typename std::ptrdiff_t... Indices> struct Sizes : internal::numeric_list<std::ptrdiff_t, Indices...> { typedef internal::numeric_list<std::ptrdiff_t, Indices...> Base; static const std::ptrdiff_t total_size = internal::arg_prod(Indices...); EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t rank() const { return Base::count; } static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t TotalSize() { return internal::arg_prod(Indices...); } EIGEN_DEVICE_FUNC Sizes() { } template <typename DenseIndex> explicit EIGEN_DEVICE_FUNC Sizes(const array<DenseIndex, Base::count>& /*indices*/) { // todo: add assertion } #if EIGEN_HAS_VARIADIC_TEMPLATES template <typename... DenseIndex> EIGEN_DEVICE_FUNC Sizes(DenseIndex...) { } explicit EIGEN_DEVICE_FUNC Sizes(std::initializer_list<std::ptrdiff_t> /*l*/) { // todo: add assertion } #endif template <typename T> Sizes& operator = (const T& /*other*/) { // add assertion failure if the size of other is different return *this; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t operator[] (const std::size_t index) const { return internal::fixed_size_tensor_index_extraction_helper<std::ptrdiff_t, Base::count>::run(index, *this); } template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const { return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *static_cast<const Base*>(this)); } template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const { return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *static_cast<const Base*>(this)); } }; namespace internal { template <typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<Indices...>&) { return Sizes<Indices...>::total_size; } } #else template <std::size_t n> struct non_zero_size { typedef internal::type2val<std::size_t, n> type; }; template <> struct non_zero_size<0> { typedef internal::null_type type; }; template <std::size_t V1=0, std::size_t V2=0, std::size_t V3=0, std::size_t V4=0, std::size_t V5=0> struct Sizes { typedef typename internal::make_type_list<typename non_zero_size<V1>::type, typename non_zero_size<V2>::type, typename non_zero_size<V3>::type, typename non_zero_size<V4>::type, typename non_zero_size<V5>::type >::type Base; static const size_t count = Base::count; static const std::size_t total_size = internal::arg_prod<Base>::value; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const { return count; } static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t TotalSize() { return internal::arg_prod<Base>::value; } Sizes() { } template <typename DenseIndex> explicit Sizes(const array<DenseIndex, Base::count>& /*indices*/) { // todo: add assertion } template <typename T> Sizes& operator = (const T& /*other*/) { // add assertion failure if the size of other is different return *this; } #if EIGEN_HAS_VARIADIC_TEMPLATES template <typename... DenseIndex> Sizes(DenseIndex... /*indices*/) { } explicit Sizes(std::initializer_list<std::size_t>) { // todo: add assertion } #else EIGEN_DEVICE_FUNC explicit Sizes(const DenseIndex) { } EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex) { } EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex) { } EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) { } EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) { } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index operator[] (const Index index) const { switch (index) { case 0: return internal::get<0, Base>::value; case 1: return internal::get<1, Base>::value; case 2: return internal::get<2, Base>::value; case 3: return internal::get<3, Base>::value; case 4: return internal::get<4, Base>::value; default: eigen_assert(false && "index overflow"); return static_cast<Index>(-1); } } template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const { return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *reinterpret_cast<const Base*>(this)); } template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const { return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *reinterpret_cast<const Base*>(this)); } }; namespace internal { template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_prod(const Sizes<V1, V2, V3, V4, V5>&) { return Sizes<V1, V2, V3, V4, V5>::total_size; } } #endif // Boilerplate namespace internal { template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor> struct tensor_index_linearization_helper { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const& dimensions) { return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) + array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) * tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions); } }; template<typename Index, std::size_t NumIndices, bool RowMajor> struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const&) { return array_get<RowMajor ? 0 : NumIndices - 1>(indices); } }; } // end namespace internal // Dynamic size template <typename DenseIndex, int NumDims> struct DSizes : array<DenseIndex, NumDims> { typedef array<DenseIndex, NumDims> Base; static const int count = NumDims; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const { return NumDims; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const { return (NumDims == 0) ? 1 : internal::array_prod(*static_cast<const Base*>(this)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DSizes() { for (int i = 0 ; i < NumDims; ++i) { (*this)[i] = 0; } } EIGEN_DEVICE_FUNC explicit DSizes(const array<DenseIndex, NumDims>& a) : Base(a) { } EIGEN_DEVICE_FUNC explicit DSizes(const DenseIndex i0) { eigen_assert(NumDims == 1); (*this)[0] = i0; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit DSizes(DenseIndex firstDimension, DenseIndex secondDimension, IndexTypes... otherDimensions) : Base({{firstDimension, secondDimension, otherDimensions...}}) { EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 2 == NumDims, YOU_MADE_A_PROGRAMMING_MISTAKE) } #else EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1) { eigen_assert(NumDims == 2); (*this)[0] = i0; (*this)[1] = i1; } EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2) { eigen_assert(NumDims == 3); (*this)[0] = i0; (*this)[1] = i1; (*this)[2] = i2; } EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3) { eigen_assert(NumDims == 4); (*this)[0] = i0; (*this)[1] = i1; (*this)[2] = i2; (*this)[3] = i3; } EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3, const DenseIndex i4) { eigen_assert(NumDims == 5); (*this)[0] = i0; (*this)[1] = i1; (*this)[2] = i2; (*this)[3] = i3; (*this)[4] = i4; } #endif EIGEN_DEVICE_FUNC DSizes& operator = (const array<DenseIndex, NumDims>& other) { *static_cast<Base*>(this) = other; return *this; } // A constexpr would be so much better here EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfColMajor(const array<DenseIndex, NumDims>& indices) const { return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, false>::run(indices, *static_cast<const Base*>(this)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfRowMajor(const array<DenseIndex, NumDims>& indices) const { return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, true>::run(indices, *static_cast<const Base*>(this)); } }; // Boilerplate namespace internal { template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor> struct tensor_vsize_index_linearization_helper { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const& dimensions) { return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) + array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) * tensor_vsize_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions); } }; template<typename Index, std::size_t NumIndices, bool RowMajor> struct tensor_vsize_index_linearization_helper<Index, NumIndices, 0, RowMajor> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const&) { return array_get<RowMajor ? 0 : NumIndices - 1>(indices); } }; } // end namespace internal namespace internal { template <typename DenseIndex, int NumDims> struct array_size<const DSizes<DenseIndex, NumDims> > { static const size_t value = NumDims; }; template <typename DenseIndex, int NumDims> struct array_size<DSizes<DenseIndex, NumDims> > { static const size_t value = NumDims; }; #ifndef EIGEN_EMULATE_CXX11_META_H template <typename std::ptrdiff_t... Indices> struct array_size<const Sizes<Indices...> > { static const std::ptrdiff_t value = Sizes<Indices...>::count; }; template <typename std::ptrdiff_t... Indices> struct array_size<Sizes<Indices...> > { static const std::ptrdiff_t value = Sizes<Indices...>::count; }; template <std::ptrdiff_t n, typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<Indices...>&) { return get<n, internal::numeric_list<std::size_t, Indices...> >::value; } template <std::ptrdiff_t n> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<>&) { eigen_assert(false && "should never be called"); return -1; } #else template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<const Sizes<V1,V2,V3,V4,V5> > { static const size_t value = Sizes<V1,V2,V3,V4,V5>::count; }; template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<Sizes<V1,V2,V3,V4,V5> > { static const size_t value = Sizes<V1,V2,V3,V4,V5>::count; }; template <std::size_t n, std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_get(const Sizes<V1,V2,V3,V4,V5>&) { return get<n, typename Sizes<V1,V2,V3,V4,V5>::Base>::value; } #endif template <typename Dims1, typename Dims2, size_t n, size_t m> struct sizes_match_below_dim { static EIGEN_DEVICE_FUNC inline bool run(Dims1&, Dims2&) { return false; } }; template <typename Dims1, typename Dims2, size_t n> struct sizes_match_below_dim<Dims1, Dims2, n, n> { static EIGEN_DEVICE_FUNC inline bool run(Dims1& dims1, Dims2& dims2) { return (array_get<n-1>(dims1) == array_get<n-1>(dims2)) & sizes_match_below_dim<Dims1, Dims2, n-1, n-1>::run(dims1, dims2); } }; template <typename Dims1, typename Dims2> struct sizes_match_below_dim<Dims1, Dims2, 0, 0> { static EIGEN_DEVICE_FUNC inline bool run(Dims1&, Dims2&) { return true; } }; } // end namespace internal template <typename Dims1, typename Dims2> EIGEN_DEVICE_FUNC bool dimensions_match(Dims1& dims1, Dims2& dims2) { return internal::sizes_match_below_dim<Dims1, Dims2, internal::array_size<Dims1>::value, internal::array_size<Dims2>::value>::run(dims1, dims2); } } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
.h
5,288
115
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclLeafCount.h * * \brief: * The leaf count used the pre-order expression tree traverse in order to name * count the number of leaf nodes in the expression * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP namespace Eigen { namespace TensorSycl { namespace internal { /// \brief LeafCount used to counting terminal nodes. The total number of /// leaf nodes is used by MakePlaceHolderExprHelper to find the order /// of the leaf node in a expression tree at compile time. template <typename Expr> struct LeafCount; template<typename... Args> struct CategoryCount; template<> struct CategoryCount<> { static const size_t Count =0; }; template<typename Arg, typename... Args> struct CategoryCount<Arg,Args...>{ static const size_t Count = LeafCount<Arg>::Count + CategoryCount<Args...>::Count; }; /// specialisation of the \ref LeafCount struct when the node type is const TensorMap template <typename PlainObjectType, int Options_, template <class> class MakePointer_> struct LeafCount<const TensorMap<PlainObjectType, Options_, MakePointer_> > { static const size_t Count =1; }; /// specialisation of the \ref LeafCount struct when the node type is TensorMap template <typename PlainObjectType, int Options_, template <class> class MakePointer_> struct LeafCount<TensorMap<PlainObjectType, Options_, MakePointer_> > :LeafCount<const TensorMap<PlainObjectType, Options_, MakePointer_> >{}; // const TensorCwiseUnaryOp, const TensorCwiseNullaryOp, const TensorCwiseBinaryOp, const TensorCwiseTernaryOp, and Const TensorBroadcastingOp template <template <class, class...> class CategoryExpr, typename OP, typename... RHSExpr> struct LeafCount<const CategoryExpr<OP, RHSExpr...> >: CategoryCount<RHSExpr...> {}; // TensorCwiseUnaryOp, TensorCwiseNullaryOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp, and TensorBroadcastingOp template <template <class, class...> class CategoryExpr, typename OP, typename... RHSExpr> struct LeafCount<CategoryExpr<OP, RHSExpr...> > :LeafCount<const CategoryExpr<OP, RHSExpr...> >{}; /// specialisation of the \ref LeafCount struct when the node type is const TensorSelectOp is an exception template <typename IfExpr, typename ThenExpr, typename ElseExpr> struct LeafCount<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr> > : CategoryCount<IfExpr, ThenExpr, ElseExpr> {}; /// specialisation of the \ref LeafCount struct when the node type is TensorSelectOp template <typename IfExpr, typename ThenExpr, typename ElseExpr> struct LeafCount<TensorSelectOp<IfExpr, ThenExpr, ElseExpr> >: LeafCount<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr> > {}; /// specialisation of the \ref LeafCount struct when the node type is const TensorAssignOp template <typename LHSExpr, typename RHSExpr> struct LeafCount<const TensorAssignOp<LHSExpr, RHSExpr> >: CategoryCount<LHSExpr,RHSExpr> {}; /// specialisation of the \ref LeafCount struct when the node type is /// TensorAssignOp is an exception. It is not the same as Unary template <typename LHSExpr, typename RHSExpr> struct LeafCount<TensorAssignOp<LHSExpr, RHSExpr> > :LeafCount<const TensorAssignOp<LHSExpr, RHSExpr> >{}; /// specialisation of the \ref LeafCount struct when the node type is const TensorForcedEvalOp template <typename Expr> struct LeafCount<const TensorForcedEvalOp<Expr> > { static const size_t Count =1; }; /// specialisation of the \ref LeafCount struct when the node type is TensorForcedEvalOp template <typename Expr> struct LeafCount<TensorForcedEvalOp<Expr> >: LeafCount<const TensorForcedEvalOp<Expr> > {}; /// specialisation of the \ref LeafCount struct when the node type is const TensorEvalToOp template <typename Expr> struct LeafCount<const TensorEvalToOp<Expr> > { static const size_t Count = 1 + CategoryCount<Expr>::Count; }; /// specialisation of the \ref LeafCount struct when the node type is const TensorReductionOp template <typename OP, typename Dim, typename Expr> struct LeafCount<const TensorReductionOp<OP, Dim, Expr> > { static const size_t Count =1; }; /// specialisation of the \ref LeafCount struct when the node type is TensorReductionOp template <typename OP, typename Dim, typename Expr> struct LeafCount<TensorReductionOp<OP, Dim, Expr> >: LeafCount<const TensorReductionOp<OP, Dim, Expr> >{}; /// specialisation of the \ref LeafCount struct when the node type is TensorEvalToOp template <typename Expr> struct LeafCount<TensorEvalToOp<Expr> >: LeafCount<const TensorEvalToOp<Expr> >{}; } /// namespace TensorSycl } /// namespace internal } /// namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
.h
9,298
277
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H #define EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H namespace Eigen { namespace internal { namespace { EIGEN_DEVICE_FUNC uint64_t get_random_seed() { #ifdef __CUDA_ARCH__ // We don't support 3d kernels since we currently only use 1 and // 2d kernels. assert(threadIdx.z == 0); return clock64() + blockIdx.x * blockDim.x + threadIdx.x + gridDim.x * blockDim.x * (blockIdx.y * blockDim.y + threadIdx.y); #elif defined _WIN32 // Use the current time as a baseline. SYSTEMTIME st; GetSystemTime(&st); int time = st.wSecond + 1000 * st.wMilliseconds; // Mix in a random number to make sure that we get different seeds if // we try to generate seeds faster than the clock resolution. // We need 2 random values since the generator only generate 16 bits at // a time (https://msdn.microsoft.com/en-us/library/398ax69y.aspx) int rnd1 = ::rand(); int rnd2 = ::rand(); uint64_t rnd = (rnd1 | rnd2 << 16) ^ time; return rnd; #elif defined __APPLE__ // Same approach as for win32, except that the random number generator // is better (// https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/random.3.html#//apple_ref/doc/man/3/random). uint64_t rnd = ::random() ^ mach_absolute_time(); return rnd; #else // Augment the current time with pseudo random number generation // to ensure that we get different seeds if we try to generate seeds // faster than the clock resolution. timespec ts; clock_gettime(CLOCK_REALTIME, &ts); uint64_t rnd = ::random() ^ ts.tv_nsec; return rnd; #endif } static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE unsigned PCG_XSH_RS_generator(uint64_t* state) { // TODO: Unify with the implementation in the non blocking thread pool. uint64_t current = *state; // Update the internal state *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; // Generate the random output (using the PCG-XSH-RS scheme) return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61))); } static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE uint64_t PCG_XSH_RS_state(uint64_t seed) { seed = seed ? seed : get_random_seed(); return seed * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; } } // namespace template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T RandomToTypeUniform(uint64_t* state) { unsigned rnd = PCG_XSH_RS_generator(state); return static_cast<T>(rnd); } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state) { Eigen::half result; // Generate 10 random bits for the mantissa unsigned rnd = PCG_XSH_RS_generator(state); result.x = static_cast<uint16_t>(rnd & 0x3ffu); // Set the exponent result.x |= (static_cast<uint16_t>(15) << 10); // Return the final result return result - Eigen::half(1.0f); } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float RandomToTypeUniform<float>(uint64_t* state) { typedef union { uint32_t raw; float fp; } internal; internal result; // Generate 23 random bits for the mantissa mantissa const unsigned rnd = PCG_XSH_RS_generator(state); result.raw = rnd & 0x7fffffu; // Set the exponent result.raw |= (static_cast<uint32_t>(127) << 23); // Return the final result return result.fp - 1.0f; } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double RandomToTypeUniform<double>(uint64_t* state) { typedef union { uint64_t raw; double dp; } internal; internal result; result.raw = 0; // Generate 52 random bits for the mantissa // First generate the upper 20 bits unsigned rnd1 = PCG_XSH_RS_generator(state) & 0xfffffu; // The generate the lower 32 bits unsigned rnd2 = PCG_XSH_RS_generator(state); result.raw = (static_cast<uint64_t>(rnd1) << 32) | rnd2; // Set the exponent result.raw |= (static_cast<uint64_t>(1023) << 52); // Return the final result return result.dp - 1.0; } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<float> RandomToTypeUniform<std::complex<float> >(uint64_t* state) { return std::complex<float>(RandomToTypeUniform<float>(state), RandomToTypeUniform<float>(state)); } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<double> RandomToTypeUniform<std::complex<double> >(uint64_t* state) { return std::complex<double>(RandomToTypeUniform<double>(state), RandomToTypeUniform<double>(state)); } template <typename T> class UniformRandomGenerator { public: static const bool PacketAccess = true; // Uses the given "seed" if non-zero, otherwise uses a random seed. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator( uint64_t seed = 0) { m_state = PCG_XSH_RS_state(seed); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator( const UniformRandomGenerator& other) { m_state = other.m_state; } template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(Index i) const { uint64_t local_state = m_state + i; T result = RandomToTypeUniform<T>(&local_state); m_state = local_state; return result; } template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(Index i) const { const int packetSize = internal::unpacket_traits<Packet>::size; EIGEN_ALIGN_MAX T values[packetSize]; uint64_t local_state = m_state + i; for (int j = 0; j < packetSize; ++j) { values[j] = RandomToTypeUniform<T>(&local_state); } m_state = local_state; return internal::pload<Packet>(values); } private: mutable uint64_t m_state; }; template <typename Scalar> struct functor_traits<UniformRandomGenerator<Scalar> > { enum { // Rough estimate for floating point, multiplied by ceil(sizeof(T) / sizeof(float)). Cost = 12 * NumTraits<Scalar>::AddCost * ((sizeof(Scalar) + sizeof(float) - 1) / sizeof(float)), PacketAccess = UniformRandomGenerator<Scalar>::PacketAccess }; }; template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T RandomToTypeNormal(uint64_t* state) { // Use the ratio of uniform method to generate numbers following a normal // distribution. See for example Numerical Recipes chapter 7.3.9 for the // details. T u, v, q; do { u = RandomToTypeUniform<T>(state); v = T(1.7156) * (RandomToTypeUniform<T>(state) - T(0.5)); const T x = u - T(0.449871); const T y = numext::abs(v) + T(0.386595); q = x*x + y * (T(0.196)*y - T(0.25472)*x); } while (q > T(0.27597) && (q > T(0.27846) || v*v > T(-4) * numext::log(u) * u*u)); return v/u; } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<float> RandomToTypeNormal<std::complex<float> >(uint64_t* state) { return std::complex<float>(RandomToTypeNormal<float>(state), RandomToTypeNormal<float>(state)); } template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<double> RandomToTypeNormal<std::complex<double> >(uint64_t* state) { return std::complex<double>(RandomToTypeNormal<double>(state), RandomToTypeNormal<double>(state)); } template <typename T> class NormalRandomGenerator { public: static const bool PacketAccess = true; // Uses the given "seed" if non-zero, otherwise uses a random seed. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(uint64_t seed = 0) { m_state = PCG_XSH_RS_state(seed); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator( const NormalRandomGenerator& other) { m_state = other.m_state; } template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(Index i) const { uint64_t local_state = m_state + i; T result = RandomToTypeNormal<T>(&local_state); m_state = local_state; return result; } template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(Index i) const { const int packetSize = internal::unpacket_traits<Packet>::size; EIGEN_ALIGN_MAX T values[packetSize]; uint64_t local_state = m_state + i; for (int j = 0; j < packetSize; ++j) { values[j] = RandomToTypeNormal<T>(&local_state); } m_state = local_state; return internal::pload<Packet>(values); } private: mutable uint64_t m_state; }; template <typename Scalar> struct functor_traits<NormalRandomGenerator<Scalar> > { enum { // On average, we need to generate about 3 random numbers // 15 mul, 8 add, 1.5 logs Cost = 3 * functor_traits<UniformRandomGenerator<Scalar> >::Cost + 15 * NumTraits<Scalar>::AddCost + 8 * NumTraits<Scalar>::AddCost + 3 * functor_traits<scalar_log_op<Scalar> >::Cost / 2, PacketAccess = NormalRandomGenerator<Scalar>::PacketAccess }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
.h
26,680
629
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H namespace Eigen { /** \class TensorContraction * \ingroup CXX11_Tensor_Module * * \brief Tensor contraction class. * * */ namespace internal { template<typename Dimensions, typename LhsXprType, typename RhsXprType> struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type, typename remove_const<typename RhsXprType::Scalar>::type>::ResScalar Scalar; typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, typename traits<RhsXprType>::StorageKind>::ret StorageKind; typedef typename promote_index_type<typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index; typedef typename LhsXprType::Nested LhsNested; typedef typename RhsXprType::Nested RhsNested; typedef typename remove_reference<LhsNested>::type _LhsNested; typedef typename remove_reference<RhsNested>::type _RhsNested; // From NumDims below. static const int NumDimensions = traits<RhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value; static const int Layout = traits<LhsXprType>::Layout; enum { Flags = 0 }; }; template<typename Dimensions, typename LhsXprType, typename RhsXprType> struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, Eigen::Dense> { typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType>& type; }; template<typename Dimensions, typename LhsXprType, typename RhsXprType> struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >::type> { typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType> type; }; template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename Device_> struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_>, Device_> > { typedef Indices_ Indices; typedef LeftArgType_ LeftArgType; typedef RightArgType_ RightArgType; typedef Device_ Device; // From NumDims below. static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value; }; } // end namespace internal template<typename Indices, typename LhsXprType, typename RhsXprType> class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar; typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType, typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType; typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested; typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp( const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims) : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims) {} EIGEN_DEVICE_FUNC const Indices& indices() const { return m_indices; } /** \returns the nested expressions */ EIGEN_DEVICE_FUNC const typename internal::remove_all<typename LhsXprType::Nested>::type& lhsExpression() const { return m_lhs_xpr; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename RhsXprType::Nested>::type& rhsExpression() const { return m_rhs_xpr; } protected: typename LhsXprType::Nested m_lhs_xpr; typename RhsXprType::Nested m_rhs_xpr; const Indices m_indices; }; template<typename Derived> struct TensorContractionEvaluatorBase { typedef typename internal::traits<Derived>::Indices Indices; typedef typename internal::traits<Derived>::LeftArgType LeftArgType; typedef typename internal::traits<Derived>::RightArgType RightArgType; typedef typename internal::traits<Derived>::Device Device; typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef typename XprType::Index Index; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; enum { IsAligned = true, PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1), Layout = TensorEvaluator<LeftArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = true }; // Most of the code is assuming that both input tensors are ColMajor. If the // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: // If we want to compute A * B = C, where A is LHS and B is RHS, the code // will pretend B is LHS and A is RHS. typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; static const int LDims = internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; static const int RDims = internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; static const int ContractDims = internal::array_size<Indices>::value; static const int NumDims = LDims + RDims - 2 * ContractDims; typedef array<Index, ContractDims> contract_t; typedef array<Index, LDims - ContractDims> left_nocontract_t; typedef array<Index, RDims - ContractDims> right_nocontract_t; typedef DSizes<Index, NumDims> Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionEvaluatorBase(const XprType& op, const Device& device) : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), op.lhsExpression(), op.rhsExpression()), device), m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), op.rhsExpression(), op.lhsExpression()), device), m_device(device), m_result(NULL) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); DSizes<Index, LDims> eval_left_dims; DSizes<Index, RDims> eval_right_dims; array<IndexPair<Index>, ContractDims> eval_op_indices; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { // For ColMajor, we keep using the existing dimensions for (int i = 0; i < LDims; i++) { eval_left_dims[i] = m_leftImpl.dimensions()[i]; } for (int i = 0; i < RDims; i++) { eval_right_dims[i] = m_rightImpl.dimensions()[i]; } // We keep the pairs of contracting indices. for (int i = 0; i < ContractDims; i++) { eval_op_indices[i].first = op.indices()[i].first; eval_op_indices[i].second = op.indices()[i].second; } } else { // For RowMajor, we need to reverse the existing dimensions for (int i = 0; i < LDims; i++) { eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1]; } for (int i = 0; i < RDims; i++) { eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1]; } // We need to flip all the pairs of contracting indices as well as // reversing the dimensions. for (int i = 0; i < ContractDims; i++) { eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second; eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first; } } // Check for duplicate axes and make sure the first index in eval_op_indices // is increasing. Using O(n^2) sorting is OK since ContractDims is small for (int i = 0; i < ContractDims; i++) { for (int j = i + 1; j < ContractDims; j++) { eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first && eval_op_indices[j].second != eval_op_indices[i].second && "contraction axes should be unique"); if (eval_op_indices[j].first < eval_op_indices[i].first) { numext::swap(eval_op_indices[j], eval_op_indices[i]); } } } array<Index, LDims> lhs_strides; lhs_strides[0] = 1; for (int i = 0; i < LDims-1; ++i) { lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i]; } array<Index, RDims> rhs_strides; rhs_strides[0] = 1; for (int i = 0; i < RDims-1; ++i) { rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i]; } if (m_i_strides.size() > 0) m_i_strides[0] = 1; if (m_j_strides.size() > 0) m_j_strides[0] = 1; if (m_k_strides.size() > 0) m_k_strides[0] = 1; m_i_size = 1; m_j_size = 1; m_k_size = 1; // To compute the dimension, we simply concatenate the non-contracting // dimensions of the left and then the right tensor. Additionally, we also // compute the strides corresponding to the left non-contracting // dimensions and right non-contracting dimensions. m_lhs_inner_dim_contiguous = true; int dim_idx = 0; unsigned int nocontract_idx = 0; for (int i = 0; i < LDims; i++) { // find if we are contracting on index i of left tensor bool contracting = false; for (int j = 0; j < ContractDims; j++) { if (eval_op_indices[j].first == i) { contracting = true; break; } } if (!contracting) { // add dimension size to output dimensions m_dimensions[dim_idx] = eval_left_dims[i]; m_left_nocontract_strides[nocontract_idx] = lhs_strides[i]; if (dim_idx != i) { m_lhs_inner_dim_contiguous = false; } if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) { m_i_strides[nocontract_idx+1] = m_i_strides[nocontract_idx] * eval_left_dims[i]; } else { m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i]; } dim_idx++; nocontract_idx++; } } nocontract_idx = 0; for (int i = 0; i < RDims; i++) { bool contracting = false; // find if we are contracting on index i of right tensor for (int j = 0; j < ContractDims; j++) { if (eval_op_indices[j].second == i) { contracting = true; break; } } if (!contracting) { m_dimensions[dim_idx] = eval_right_dims[i]; if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) { m_j_strides[nocontract_idx+1] = m_j_strides[nocontract_idx] * eval_right_dims[i]; } else { m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i]; } m_right_nocontract_strides[nocontract_idx] = rhs_strides[i]; dim_idx++; nocontract_idx++; } } // Now compute the strides corresponding to the contracting dimensions. We // assumed above that non-contracting axes are represented in the same order // in the matrix as they are in the tensor. This is not the case for // contracting axes. As the contracting axes must be of the same size in // each tensor, we'll only look at the first tensor here. m_rhs_inner_dim_contiguous = true; m_rhs_inner_dim_reordered = false; for (int i = 0; i < ContractDims; i++) { Index left = eval_op_indices[i].first; Index right = eval_op_indices[i].second; Index size = eval_left_dims[left]; eigen_assert(size == eval_right_dims[right] && "Contraction axes must be same size"); if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) { m_k_strides[i+1] = m_k_strides[i] * size; } else { m_k_size = m_k_strides[i] * size; } m_left_contracting_strides[i] = lhs_strides[left]; m_right_contracting_strides[i] = rhs_strides[right]; if (i > 0 && right < eval_op_indices[i-1].second) { m_rhs_inner_dim_reordered = true; } if (right != i) { m_rhs_inner_dim_contiguous = false; } } // If the layout is RowMajor, we need to reverse the m_dimensions if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) { for (int i = 0, j = NumDims - 1; i < j; i++, j--) { numext::swap(m_dimensions[i], m_dimensions[j]); } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { m_leftImpl.evalSubExprsIfNeeded(NULL); m_rightImpl.evalSubExprsIfNeeded(NULL); if (data) { evalTo(data); return false; } else { m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); evalTo(m_result); return true; } } EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const { if (this->m_lhs_inner_dim_contiguous) { if (this->m_rhs_inner_dim_contiguous) { if (this->m_rhs_inner_dim_reordered) { static_cast<const Derived*>(this)->template evalProduct<true, true, true, Unaligned>(buffer); } else { static_cast<const Derived*>(this)->template evalProduct<true, true, false, Unaligned>(buffer); } } else { if (this->m_rhs_inner_dim_reordered) { static_cast<const Derived*>(this)->template evalProduct<true, false, true, Unaligned>(buffer); } else { static_cast<const Derived*>(this)->template evalProduct<true, false, false, Unaligned>(buffer); } } } else { if (this->m_rhs_inner_dim_contiguous) { if (this->m_rhs_inner_dim_reordered) { static_cast<const Derived*>(this)->template evalProduct<false, true, true, Unaligned>(buffer); } else { static_cast<const Derived*>(this)->template evalProduct<false, true, false, Unaligned>(buffer); } } else { if (this->m_rhs_inner_dim_reordered) { static_cast<const Derived*>(this)->template evalProduct<false, false, true, Unaligned>(buffer); } else { static_cast<const Derived*>(this)->template evalProduct<false, false, false, Unaligned>(buffer); } } } } template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> EIGEN_DEVICE_FUNC void evalGemv(Scalar* buffer) const { const Index rows = m_i_size; const Index cols = m_k_size; typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned; const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned; typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, lhs_packet_size, lhs_inner_dim_contiguous, false, lhs_alignment> LhsMapper; typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, contract_t, rhs_packet_size, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, rhs_alignment> RhsMapper; LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides, m_left_contracting_strides, m_k_strides); RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides, m_right_contracting_strides, m_k_strides); const Scalar alpha(1); const Index resIncr(1); // zero out the result buffer (which must be of size at least rows * sizeof(Scalar) m_device.memset(buffer, 0, rows * sizeof(Scalar)); internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run( rows, cols, lhs, rhs, buffer, resIncr, alpha); } template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> EIGEN_DEVICE_FUNC void evalGemm(Scalar* buffer) const { // columns in left side, rows in right side const Index k = this->m_k_size; // rows in left side const Index m = this->m_i_size; // columns in right side const Index n = this->m_j_size; // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar) this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); // define mr, nr, and all of my data mapper types typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits; const Index nr = Traits::nr; const Index mr = Traits::mr; typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, lhs_packet_size, lhs_inner_dim_contiguous, false, Unaligned> LhsMapper; typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, contract_t, rhs_packet_size, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned> RhsMapper; typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; // Declare GEBP packing and kernel structs internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, ColMajor> pack_lhs; internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs; internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp; // initialize data mappers LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, this->m_left_contracting_strides, this->m_k_strides); RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, this->m_right_contracting_strides, this->m_k_strides); OutputMapper output(buffer, m); // Sizes of the blocks to load in cache. See the Goto paper for details. internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, 1); const Index kc = blocking.kc(); const Index mc = numext::mini(m, blocking.mc()); const Index nc = numext::mini(n, blocking.nc()); const Index sizeA = mc * kc; const Index sizeB = kc * nc; LhsScalar* blockA = static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))); RhsScalar* blockB = static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))); for(Index i2=0; i2<m; i2+=mc) { const Index actual_mc = numext::mini(i2+mc,m)-i2; for (Index k2 = 0; k2 < k; k2 += kc) { // make sure we don't overshoot right edge of left matrix, then pack vertical panel const Index actual_kc = numext::mini(k2 + kc, k) - k2; pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0); // series of horizontal blocks for (Index j2 = 0; j2 < n; j2 += nc) { // make sure we don't overshoot right edge of right matrix, then pack block const Index actual_nc = numext::mini(j2 + nc, n) - j2; pack_rhs(blockB, rhs.getSubMapper(k2, j2), actual_kc, actual_nc, 0, 0); // call gebp (matrix kernel) // The parameters here are copied from Eigen's GEMM implementation gebp(output.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, Scalar(1), -1, -1, 0, 0); } } } this->m_device.deallocate(blockA); this->m_device.deallocate(blockB); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_leftImpl.cleanup(); m_rightImpl.cleanup(); if (m_result != NULL) { m_device.deallocate(m_result); m_result = NULL; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_result[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return m_result; } protected: // Prevent assignment TensorContractionEvaluatorBase& operator = (const TensorContractionEvaluatorBase&); Dimensions m_dimensions; contract_t m_k_strides; contract_t m_left_contracting_strides; contract_t m_right_contracting_strides; bool m_lhs_inner_dim_contiguous; bool m_rhs_inner_dim_contiguous; bool m_rhs_inner_dim_reordered; left_nocontract_t m_i_strides; right_nocontract_t m_j_strides; left_nocontract_t m_left_nocontract_strides; right_nocontract_t m_right_nocontract_strides; Index m_i_size; Index m_j_size; Index m_k_size; TensorEvaluator<EvalLeftArgType, Device> m_leftImpl; TensorEvaluator<EvalRightArgType, Device> m_rightImpl; const Device& m_device; Scalar* m_result; }; // evaluator for default device template<typename Indices, typename LeftArgType, typename RightArgType, typename Device> struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> : public TensorContractionEvaluatorBase< TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > { typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self; typedef TensorContractionEvaluatorBase<Self> Base; typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef typename XprType::Index Index; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; enum { Layout = TensorEvaluator<LeftArgType, Device>::Layout }; // Most of the code is assuming that both input tensors are ColMajor. If the // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: // If we want to compute A * B = C, where A is LHS and B is RHS, the code // will pretend B is LHS and A is RHS. typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; static const int LDims = internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; static const int RDims = internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; static const int ContractDims = internal::array_size<Indices>::value; typedef array<Index, ContractDims> contract_t; typedef array<Index, LDims - ContractDims> left_nocontract_t; typedef array<Index, RDims - ContractDims> right_nocontract_t; static const int NumDims = LDims + RDims - 2 * ContractDims; // Could we use NumDimensions here? typedef DSizes<Index, NumDims> Dimensions; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> EIGEN_DEVICE_FUNC void evalProduct(Scalar* buffer) const { if (this->m_j_size == 1) { this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer); return; } this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h
.h
25,810
726
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H #define EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H #if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES #define EIGEN_HAS_INDEX_LIST namespace Eigen { /** \internal * * \class TensorIndexList * \ingroup CXX11_Tensor_Module * * \brief Set of classes used to encode a set of Tensor dimensions/indices. * * The indices in the list can be known at compile time or at runtime. A mix * of static and dynamic indices can also be provided if needed. The tensor * code will attempt to take advantage of the indices that are known at * compile time to optimize the code it generates. * * This functionality requires a c++11 compliant compiler. If your compiler * is older you need to use arrays of indices instead. * * Several examples are provided in the cxx11_tensor_index_list.cpp file. * * \sa Tensor */ template <DenseIndex n> struct type2index { static const DenseIndex value = n; EIGEN_DEVICE_FUNC constexpr operator DenseIndex() const { return n; } EIGEN_DEVICE_FUNC void set(DenseIndex val) { eigen_assert(val == n); } }; // This can be used with IndexPairList to get compile-time constant pairs, // such as IndexPairList<type2indexpair<1,2>, type2indexpair<3,4>>(). template <DenseIndex f, DenseIndex s> struct type2indexpair { static const DenseIndex first = f; static const DenseIndex second = s; constexpr EIGEN_DEVICE_FUNC operator IndexPair<DenseIndex>() const { return IndexPair<DenseIndex>(f, s); } EIGEN_DEVICE_FUNC void set(const IndexPair<DenseIndex>& val) { eigen_assert(val.first == f); eigen_assert(val.second == s); } }; template<DenseIndex n> struct NumTraits<type2index<n> > { typedef DenseIndex Real; enum { IsComplex = 0, RequireInitialization = false, ReadCost = 1, AddCost = 1, MulCost = 1 }; EIGEN_DEVICE_FUNC static inline Real epsilon() { return 0; } EIGEN_DEVICE_FUNC static inline Real dummy_precision() { return 0; } EIGEN_DEVICE_FUNC static inline Real highest() { return n; } EIGEN_DEVICE_FUNC static inline Real lowest() { return n; } }; namespace internal { template <typename T> EIGEN_DEVICE_FUNC void update_value(T& val, DenseIndex new_val) { val = new_val; } template <DenseIndex n> EIGEN_DEVICE_FUNC void update_value(type2index<n>& val, DenseIndex new_val) { val.set(new_val); } template <typename T> EIGEN_DEVICE_FUNC void update_value(T& val, IndexPair<DenseIndex> new_val) { val = new_val; } template <DenseIndex f, DenseIndex s> EIGEN_DEVICE_FUNC void update_value(type2indexpair<f, s>& val, IndexPair<DenseIndex> new_val) { val.set(new_val); } template <typename T> struct is_compile_time_constant { static constexpr bool value = false; }; template <DenseIndex idx> struct is_compile_time_constant<type2index<idx> > { static constexpr bool value = true; }; template <DenseIndex idx> struct is_compile_time_constant<const type2index<idx> > { static constexpr bool value = true; }; template <DenseIndex idx> struct is_compile_time_constant<type2index<idx>& > { static constexpr bool value = true; }; template <DenseIndex idx> struct is_compile_time_constant<const type2index<idx>& > { static constexpr bool value = true; }; template <DenseIndex f, DenseIndex s> struct is_compile_time_constant<type2indexpair<f, s> > { static constexpr bool value = true; }; template <DenseIndex f, DenseIndex s> struct is_compile_time_constant<const type2indexpair<f, s> > { static constexpr bool value = true; }; template <DenseIndex f, DenseIndex s> struct is_compile_time_constant<type2indexpair<f, s>& > { static constexpr bool value = true; }; template <DenseIndex f, DenseIndex s> struct is_compile_time_constant<const type2indexpair<f, s>& > { static constexpr bool value = true; }; template<typename... T> struct IndexTuple; template<typename T, typename... O> struct IndexTuple<T, O...> { EIGEN_DEVICE_FUNC constexpr IndexTuple() : head(), others() { } EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v, const O... o) : head(v), others(o...) { } constexpr static int count = 1 + sizeof...(O); T head; IndexTuple<O...> others; typedef T Head; typedef IndexTuple<O...> Other; }; template<typename T> struct IndexTuple<T> { EIGEN_DEVICE_FUNC constexpr IndexTuple() : head() { } EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v) : head(v) { } constexpr static int count = 1; T head; typedef T Head; }; template<int N, typename... T> struct IndexTupleExtractor; template<int N, typename T, typename... O> struct IndexTupleExtractor<N, T, O...> { typedef typename IndexTupleExtractor<N-1, O...>::ValType ValType; EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) { return IndexTupleExtractor<N-1, O...>::get_val(val.others); } EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) { return IndexTupleExtractor<N-1, O...>::get_val(val.others); } template <typename V> EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) { IndexTupleExtractor<N-1, O...>::set_val(val.others, new_val); } }; template<typename T, typename... O> struct IndexTupleExtractor<0, T, O...> { typedef T ValType; EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) { return val.head; } EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) { return val.head; } template <typename V> EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) { val.head = new_val; } }; template <int N, typename T, typename... O> EIGEN_DEVICE_FUNC constexpr typename IndexTupleExtractor<N, T, O...>::ValType& array_get(IndexTuple<T, O...>& tuple) { return IndexTupleExtractor<N, T, O...>::get_val(tuple); } template <int N, typename T, typename... O> EIGEN_DEVICE_FUNC constexpr const typename IndexTupleExtractor<N, T, O...>::ValType& array_get(const IndexTuple<T, O...>& tuple) { return IndexTupleExtractor<N, T, O...>::get_val(tuple); } template <typename T, typename... O> struct array_size<IndexTuple<T, O...> > { static const size_t value = IndexTuple<T, O...>::count; }; template <typename T, typename... O> struct array_size<const IndexTuple<T, O...> > { static const size_t value = IndexTuple<T, O...>::count; }; template <DenseIndex Idx, typename ValueT> struct tuple_coeff { template <typename... T> EIGEN_DEVICE_FUNC static constexpr ValueT get(const DenseIndex i, const IndexTuple<T...>& t) { // return array_get<Idx>(t) * (i == Idx) + tuple_coeff<Idx-1>::get(i, t) * (i != Idx); return (i == Idx ? array_get<Idx>(t) : tuple_coeff<Idx-1, ValueT>::get(i, t)); } template <typename... T> EIGEN_DEVICE_FUNC static void set(const DenseIndex i, IndexTuple<T...>& t, const ValueT& value) { if (i == Idx) { update_value(array_get<Idx>(t), value); } else { tuple_coeff<Idx-1, ValueT>::set(i, t, value); } } template <typename... T> EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const DenseIndex i, const IndexTuple<T...>& t) { return ((i == Idx) & is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value) || tuple_coeff<Idx-1, ValueT>::value_known_statically(i, t); } template <typename... T> EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>& t) { return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value && tuple_coeff<Idx-1, ValueT>::values_up_to_known_statically(t); } template <typename... T> EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>& t) { return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value && is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value && array_get<Idx>(t) > array_get<Idx-1>(t) && tuple_coeff<Idx-1, ValueT>::values_up_to_statically_known_to_increase(t); } }; template <typename ValueT> struct tuple_coeff<0, ValueT> { template <typename... T> EIGEN_DEVICE_FUNC static constexpr ValueT get(const DenseIndex /*i*/, const IndexTuple<T...>& t) { // eigen_assert (i == 0); // gcc fails to compile assertions in constexpr return array_get<0>(t)/* * (i == 0)*/; } template <typename... T> EIGEN_DEVICE_FUNC static void set(const DenseIndex i, IndexTuple<T...>& t, const ValueT value) { eigen_assert (i == 0); update_value(array_get<0>(t), value); } template <typename... T> EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const DenseIndex i, const IndexTuple<T...>&) { return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value & (i == 0); } template <typename... T> EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>&) { return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value; } template <typename... T> EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>&) { return true; } }; } // namespace internal template<typename FirstType, typename... OtherTypes> struct IndexList : internal::IndexTuple<FirstType, OtherTypes...> { EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr DenseIndex operator[] (const DenseIndex i) const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::get(i, *this); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr DenseIndex get(const DenseIndex i) const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::get(i, *this); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const DenseIndex i, const DenseIndex value) { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::set(i, *this, value); } EIGEN_DEVICE_FUNC constexpr IndexList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { } EIGEN_DEVICE_FUNC constexpr IndexList(FirstType& first, OtherTypes... other) : internal::IndexTuple<FirstType, OtherTypes...>(first, other...) { } EIGEN_DEVICE_FUNC constexpr IndexList() : internal::IndexTuple<FirstType, OtherTypes...>() { } EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const DenseIndex i) const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::value_known_statically(i, *this); } EIGEN_DEVICE_FUNC constexpr bool all_values_known_statically() const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::values_up_to_known_statically(*this); } EIGEN_DEVICE_FUNC constexpr bool values_statically_known_to_increase() const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::values_up_to_statically_known_to_increase(*this); } }; template<typename FirstType, typename... OtherTypes> constexpr IndexList<FirstType, OtherTypes...> make_index_list(FirstType val1, OtherTypes... other_vals) { return IndexList<FirstType, OtherTypes...>(val1, other_vals...); } template<typename FirstType, typename... OtherTypes> struct IndexPairList : internal::IndexTuple<FirstType, OtherTypes...> { EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr IndexPair<DenseIndex> operator[] (const DenseIndex i) const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, IndexPair<DenseIndex>>::get(i, *this); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const DenseIndex i, const IndexPair<DenseIndex> value) { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...>>::value-1, IndexPair<DenseIndex> >::set(i, *this, value); } EIGEN_DEVICE_FUNC constexpr IndexPairList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { } EIGEN_DEVICE_FUNC constexpr IndexPairList() : internal::IndexTuple<FirstType, OtherTypes...>() { } EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const DenseIndex i) const { return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::value_known_statically(i, *this); } }; namespace internal { template<typename FirstType, typename... OtherTypes> size_t array_prod(const IndexList<FirstType, OtherTypes...>& sizes) { size_t result = 1; for (int i = 0; i < array_size<IndexList<FirstType, OtherTypes...> >::value; ++i) { result *= sizes[i]; } return result; } template<typename FirstType, typename... OtherTypes> struct array_size<IndexList<FirstType, OtherTypes...> > { static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value; }; template<typename FirstType, typename... OtherTypes> struct array_size<const IndexList<FirstType, OtherTypes...> > { static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value; }; template<typename FirstType, typename... OtherTypes> struct array_size<IndexPairList<FirstType, OtherTypes...> > { static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value; }; template<typename FirstType, typename... OtherTypes> struct array_size<const IndexPairList<FirstType, OtherTypes...> > { static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value; }; template<DenseIndex N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr DenseIndex array_get(IndexList<FirstType, OtherTypes...>& a) { return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a); } template<DenseIndex N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr DenseIndex array_get(const IndexList<FirstType, OtherTypes...>& a) { return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a); } template <typename T> struct index_known_statically_impl { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_known_statically_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i); } }; template <typename FirstType, typename... OtherTypes> struct index_known_statically_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i); } }; template <typename T> struct all_indices_known_statically_impl { static constexpr bool run() { return false; } }; template <typename FirstType, typename... OtherTypes> struct all_indices_known_statically_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return IndexList<FirstType, OtherTypes...>().all_values_known_statically(); } }; template <typename FirstType, typename... OtherTypes> struct all_indices_known_statically_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return IndexList<FirstType, OtherTypes...>().all_values_known_statically(); } }; template <typename T> struct indices_statically_known_to_increase_impl { EIGEN_DEVICE_FUNC static constexpr bool run() { return false; } }; template <typename FirstType, typename... OtherTypes> struct indices_statically_known_to_increase_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase(); } }; template <typename FirstType, typename... OtherTypes> struct indices_statically_known_to_increase_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase(); } }; template <typename Tx> struct index_statically_eq_impl { EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_statically_eq_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) == value); } }; template <typename FirstType, typename... OtherTypes> struct index_statically_eq_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) == value); } }; template <typename T> struct index_statically_ne_impl { EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_statically_ne_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) != value); } }; template <typename FirstType, typename... OtherTypes> struct index_statically_ne_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) != value); } }; template <typename T> struct index_statically_gt_impl { EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_statically_gt_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) > value); } }; template <typename FirstType, typename... OtherTypes> struct index_statically_gt_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) > value); } }; template <typename T> struct index_statically_lt_impl { EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_statically_lt_impl<IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) < value); } }; template <typename FirstType, typename... OtherTypes> struct index_statically_lt_impl<const IndexList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexList<FirstType, OtherTypes...>().get(i) < value); } }; template <typename Tx> struct index_pair_first_statically_eq_impl { EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_pair_first_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value); } }; template <typename FirstType, typename... OtherTypes> struct index_pair_first_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value); } }; template <typename Tx> struct index_pair_second_statically_eq_impl { EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) { return false; } }; template <typename FirstType, typename... OtherTypes> struct index_pair_second_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value); } }; template <typename FirstType, typename... OtherTypes> struct index_pair_second_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value); } }; } // end namespace internal } // end namespace Eigen #else namespace Eigen { namespace internal { template <typename T> struct index_known_statically_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex) { return false; } }; template <typename T> struct all_indices_known_statically_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { return false; } }; template <typename T> struct indices_statically_known_to_increase_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { return false; } }; template <typename T> struct index_statically_eq_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) { return false; } }; template <typename T> struct index_statically_ne_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) { return false; } }; template <typename T> struct index_statically_gt_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) { return false; } }; template <typename T> struct index_statically_lt_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) { return false; } }; template <typename Tx> struct index_pair_first_statically_eq_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) { return false; } }; template <typename Tx> struct index_pair_second_statically_eq_impl { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) { return false; } }; } // end namespace internal } // end namespace Eigen #endif namespace Eigen { namespace internal { template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_known_statically(DenseIndex i) { return index_known_statically_impl<T>::run(i); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool all_indices_known_statically() { return all_indices_known_statically_impl<T>::run(); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool indices_statically_known_to_increase() { return indices_statically_known_to_increase_impl<T>::run(); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_eq(DenseIndex i, DenseIndex value) { return index_statically_eq_impl<T>::run(i, value); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_ne(DenseIndex i, DenseIndex value) { return index_statically_ne_impl<T>::run(i, value); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_gt(DenseIndex i, DenseIndex value) { return index_statically_gt_impl<T>::run(i, value); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_lt(DenseIndex i, DenseIndex value) { return index_statically_lt_impl<T>::run(i, value); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_first_statically_eq(DenseIndex i, DenseIndex value) { return index_pair_first_statically_eq_impl<T>::run(i, value); } template <typename T> static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_second_statically_eq(DenseIndex i, DenseIndex value) { return index_pair_second_statically_eq_impl<T>::run(i, value); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
.h
9,941
288
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H #define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H namespace Eigen { namespace internal { template <typename Op, typename XprType> struct traits<TensorScanOp<Op, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename Op, typename XprType> struct eval<TensorScanOp<Op, XprType>, Eigen::Dense> { typedef const TensorScanOp<Op, XprType>& type; }; template<typename Op, typename XprType> struct nested<TensorScanOp<Op, XprType>, 1, typename eval<TensorScanOp<Op, XprType> >::type> { typedef TensorScanOp<Op, XprType> type; }; } // end namespace internal /** \class TensorScan * \ingroup CXX11_Tensor_Module * * \brief Tensor scan class. */ template <typename Op, typename XprType> class TensorScanOp : public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorScanOp>::type Nested; typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorScanOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp( const XprType& expr, const Index& axis, bool exclusive = false, const Op& op = Op()) : m_expr(expr), m_axis(axis), m_accumulator(op), m_exclusive(exclusive) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index axis() const { return m_axis; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& expression() const { return m_expr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op accumulator() const { return m_accumulator; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const { return m_exclusive; } protected: typename XprType::Nested m_expr; const Index m_axis; const Op m_accumulator; const bool m_exclusive; }; template <typename Self, typename Reducer, typename Device> struct ScanLauncher; // Eval as rvalue template <typename Op, typename ArgType, typename Device> struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> { typedef TensorScanOp<Op, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self; enum { IsAligned = false, PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1), BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = true }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_device(device), m_exclusive(op.exclusive()), m_accumulator(op.accumulator()), m_size(m_impl.dimensions()[op.axis()]), m_stride(1), m_output(NULL) { // Accumulating a scalar isn't supported. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(op.axis() >= 0 && op.axis() < NumDims); // Compute stride of scan axis const Dimensions& dims = m_impl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < op.axis(); ++i) { m_stride = m_stride * dims[i]; } } else { for (int i = NumDims - 1; i > op.axis(); --i) { m_stride = m_stride * dims[i]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const { return m_stride; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const { return m_size; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const { return m_accumulator; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const { return m_exclusive; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const { return m_impl; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; } EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { m_impl.evalSubExprsIfNeeded(NULL); ScanLauncher<Self, Op, Device> launcher; if (data) { launcher(*this, data); return false; } const Index total_size = internal::array_prod(dimensions()); m_output = static_cast<CoeffReturnType*>(m_device.allocate(total_size * sizeof(Scalar))); launcher(*this, m_output); return true; } template<int LoadMode> EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_output + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return m_output; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_output[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { if (m_output != NULL) { m_device.deallocate(m_output); m_output = NULL; } m_impl.cleanup(); } protected: TensorEvaluator<ArgType, Device> m_impl; const Device& m_device; const bool m_exclusive; Op m_accumulator; const Index m_size; Index m_stride; CoeffReturnType* m_output; }; // CPU implementation of scan // TODO(ibab) This single-threaded implementation should be parallelized, // at least by running multiple scans at the same time. template <typename Self, typename Reducer, typename Device> struct ScanLauncher { void operator()(Self& self, typename Self::CoeffReturnType *data) { Index total_size = internal::array_prod(self.dimensions()); // We fix the index along the scan axis to 0 and perform a // scan per remaining entry. The iteration is split into two nested // loops to avoid an integer division by keeping track of each idx1 and idx2. for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) { for (Index idx2 = 0; idx2 < self.stride(); idx2++) { // Calculate the starting offset for the scan Index offset = idx1 + idx2; // Compute the scan along the axis, starting at the calculated offset typename Self::CoeffReturnType accum = self.accumulator().initialize(); for (Index idx3 = 0; idx3 < self.size(); idx3++) { Index curr = offset + idx3 * self.stride(); if (self.exclusive()) { data[curr] = self.accumulator().finalize(accum); self.accumulator().reduce(self.inner().coeff(curr), &accum); } else { self.accumulator().reduce(self.inner().coeff(curr), &accum); data[curr] = self.accumulator().finalize(accum); } } } } } }; #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) // GPU implementation of scan // TODO(ibab) This placeholder implementation performs multiple scans in // parallel, but it would be better to use a parallel scan algorithm and // optimize memory access. template <typename Self, typename Reducer> __global__ void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) { // Compute offset as in the CPU version Index val = threadIdx.x + blockIdx.x * blockDim.x; Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride(); if (offset + (self.size() - 1) * self.stride() < total_size) { // Compute the scan along the axis, starting at the calculated offset typename Self::CoeffReturnType accum = self.accumulator().initialize(); for (Index idx = 0; idx < self.size(); idx++) { Index curr = offset + idx * self.stride(); if (self.exclusive()) { data[curr] = self.accumulator().finalize(accum); self.accumulator().reduce(self.inner().coeff(curr), &accum); } else { self.accumulator().reduce(self.inner().coeff(curr), &accum); data[curr] = self.accumulator().finalize(accum); } } } __syncthreads(); } template <typename Self, typename Reducer> struct ScanLauncher<Self, Reducer, GpuDevice> { void operator()(const Self& self, typename Self::CoeffReturnType* data) { Index total_size = internal::array_prod(self.dimensions()); Index num_blocks = (total_size / self.size() + 63) / 64; Index block_size = 64; LAUNCH_CUDA_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data); } }; #endif // EIGEN_USE_GPU && __CUDACC__ } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h
.h
7,674
237
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H #define EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H namespace Eigen { /** \internal * * \class TensorDimensionList * \ingroup CXX11_Tensor_Module * * \brief Special case of tensor index list used to list all the dimensions of a tensor of rank n. * * \sa Tensor */ template <typename Index, std::size_t Rank> struct DimensionList { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const Index operator[] (const Index i) const { return i; } }; namespace internal { template<typename Index, std::size_t Rank> struct array_size<DimensionList<Index, Rank> > { static const size_t value = Rank; }; template<typename Index, std::size_t Rank> struct array_size<const DimensionList<Index, Rank> > { static const size_t value = Rank; }; template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(DimensionList<Index, Rank>&) { return n; } template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(const DimensionList<Index, Rank>&) { return n; } #if EIGEN_HAS_CONSTEXPR template <typename Index, std::size_t Rank> struct index_known_statically_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { return true; } }; template <typename Index, std::size_t Rank> struct index_known_statically_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { return true; } }; template <typename Index, std::size_t Rank> struct all_indices_known_statically_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return true; } }; template <typename Index, std::size_t Rank> struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return true; } }; template <typename Index, std::size_t Rank> struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return true; } }; template <typename Index, std::size_t Rank> struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run() { return true; } }; template <typename Index, std::size_t Rank> struct index_statically_eq_impl<DimensionList<Index, Rank> > { static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i == value; } }; template <typename Index, std::size_t Rank> struct index_statically_eq_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i == value; } }; template <typename Index, std::size_t Rank> struct index_statically_ne_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i != value; } }; template <typename Index, std::size_t Rank> struct index_statically_ne_impl<const DimensionList<Index, Rank> > { static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i != value; } }; template <typename Index, std::size_t Rank> struct index_statically_gt_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i > value; } }; template <typename Index, std::size_t Rank> struct index_statically_gt_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i > value; } }; template <typename Index, std::size_t Rank> struct index_statically_lt_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i < value; } }; template <typename Index, std::size_t Rank> struct index_statically_lt_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { return i < value; } }; #else template <typename Index, std::size_t Rank> struct index_known_statically_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) { return true; } }; template <typename Index, std::size_t Rank> struct index_known_statically_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) { return true; } }; template <typename Index, std::size_t Rank> struct all_indices_known_statically_impl<DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() { return true; } }; template <typename Index, std::size_t Rank> struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > { EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() { return true; } }; template <typename Index, std::size_t Rank> struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { return true; } }; template <typename Index, std::size_t Rank> struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { return true; } }; template <typename Index, std::size_t Rank> struct index_statically_eq_impl<DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; template <typename Index, std::size_t Rank> struct index_statically_eq_impl<const DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; template <typename Index, std::size_t Rank> struct index_statically_ne_impl<DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex){ return false; } }; template <typename Index, std::size_t Rank> struct index_statically_ne_impl<const DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; template <typename Index, std::size_t Rank> struct index_statically_gt_impl<DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; template <typename Index, std::size_t Rank> struct index_statically_gt_impl<const DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; template <typename Index, std::size_t Rank> struct index_statically_lt_impl<DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; template <typename Index, std::size_t Rank> struct index_statically_lt_impl<const DimensionList<Index, Rank> > { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { return false; } }; #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
.h
23,098
510
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H #define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H namespace Eigen { /** \class TensorImagePatch * \ingroup CXX11_Tensor_Module * * \brief Patch extraction specialized for image processing. * This assumes that the input has a least 3 dimensions ordered as follow: * 1st dimension: channels (of size d) * 2nd dimension: rows (of size r) * 3rd dimension: columns (of size c) * There can be additional dimensions such as time (for video) or batch (for * bulk processing after the first 3. * Calling the image patch code with patch_rows and patch_cols is equivalent * to calling the regular patch extraction code with parameters d, patch_rows, * patch_cols, and 1 for all the additional dimensions. */ namespace internal { template<DenseIndex Rows, DenseIndex Cols, typename XprType> struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType> { typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions + 1; static const int Layout = XprTraits::Layout; }; template<DenseIndex Rows, DenseIndex Cols, typename XprType> struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense> { typedef const TensorImagePatchOp<Rows, Cols, XprType>& type; }; template<DenseIndex Rows, DenseIndex Cols, typename XprType> struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type> { typedef TensorImagePatchOp<Rows, Cols, XprType> type; }; } // end namespace internal template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested; typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value) : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_row_strides(row_strides), m_col_strides(col_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0), m_padding_type(padding_type), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value) : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_row_strides(row_strides), m_col_strides(col_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom), m_padding_left(padding_left), m_padding_right(padding_right), m_padding_type(PADDING_VALID), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC DenseIndex patch_rows() const { return m_patch_rows; } EIGEN_DEVICE_FUNC DenseIndex patch_cols() const { return m_patch_cols; } EIGEN_DEVICE_FUNC DenseIndex row_strides() const { return m_row_strides; } EIGEN_DEVICE_FUNC DenseIndex col_strides() const { return m_col_strides; } EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const { return m_in_row_strides; } EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const { return m_in_col_strides; } EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const { return m_row_inflate_strides; } EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const { return m_col_inflate_strides; } EIGEN_DEVICE_FUNC bool padding_explicit() const { return m_padding_explicit; } EIGEN_DEVICE_FUNC DenseIndex padding_top() const { return m_padding_top; } EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const { return m_padding_bottom; } EIGEN_DEVICE_FUNC DenseIndex padding_left() const { return m_padding_left; } EIGEN_DEVICE_FUNC DenseIndex padding_right() const { return m_padding_right; } EIGEN_DEVICE_FUNC PaddingType padding_type() const { return m_padding_type; } EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const DenseIndex m_patch_rows; const DenseIndex m_patch_cols; const DenseIndex m_row_strides; const DenseIndex m_col_strides; const DenseIndex m_in_row_strides; const DenseIndex m_in_col_strides; const DenseIndex m_row_inflate_strides; const DenseIndex m_col_inflate_strides; const bool m_padding_explicit; const DenseIndex m_padding_top; const DenseIndex m_padding_bottom; const DenseIndex m_padding_left; const DenseIndex m_padding_right; const PaddingType m_padding_type; const Scalar m_padding_value; }; // Eval as rvalue template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device> struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device> { typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType; typedef typename XprType::Index Index; static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; static const int NumDims = NumInputDims + 1; typedef DSizes<Index, NumDims> Dimensions; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device> Self; typedef TensorEvaluator<ArgType, Device> Impl; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE); m_paddingValue = op.padding_value(); const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); // Caches a few variables. if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputDepth = input_dims[0]; m_inputRows = input_dims[1]; m_inputCols = input_dims[2]; } else { m_inputDepth = input_dims[NumInputDims-1]; m_inputRows = input_dims[NumInputDims-2]; m_inputCols = input_dims[NumInputDims-3]; } m_row_strides = op.row_strides(); m_col_strides = op.col_strides(); // Input strides and effective input/patch size m_in_row_strides = op.in_row_strides(); m_in_col_strides = op.in_col_strides(); m_row_inflate_strides = op.row_inflate_strides(); m_col_inflate_strides = op.col_inflate_strides(); // The "effective" input rows and input cols are the input rows and cols // after inflating them with zeros. // For examples, a 2x3 matrix with row_inflate_strides and // col_inflate_strides of 2 comes from: // A B C // D E F // // to a matrix is 3 x 5: // // A . B . C // . . . . . // D . E . F m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1; m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1; m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1); m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1); if (op.padding_explicit()) { m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); m_rowPaddingTop = op.padding_top(); m_colPaddingLeft = op.padding_left(); } else { // Computing padding from the type switch (op.padding_type()) { case PADDING_VALID: m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); // Calculate the padding m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2); m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2); break; case PADDING_SAME: m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides)); m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides)); // Calculate the padding m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2; m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2; break; default: eigen_assert(false && "unexpected padding"); } } eigen_assert(m_outputRows > 0); eigen_assert(m_outputCols > 0); // Dimensions for result of extraction. if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { // ColMajor // 0: depth // 1: patch_rows // 2: patch_cols // 3: number of patches // 4 and beyond: anything else (such as batch). m_dimensions[0] = input_dims[0]; m_dimensions[1] = op.patch_rows(); m_dimensions[2] = op.patch_cols(); m_dimensions[3] = m_outputRows * m_outputCols; for (int i = 4; i < NumDims; ++i) { m_dimensions[i] = input_dims[i-1]; } } else { // RowMajor // NumDims-1: depth // NumDims-2: patch_rows // NumDims-3: patch_cols // NumDims-4: number of patches // NumDims-5 and beyond: anything else (such as batch). m_dimensions[NumDims-1] = input_dims[NumInputDims-1]; m_dimensions[NumDims-2] = op.patch_rows(); m_dimensions[NumDims-3] = op.patch_cols(); m_dimensions[NumDims-4] = m_outputRows * m_outputCols; for (int i = NumDims-5; i >= 0; --i) { m_dimensions[i] = input_dims[i]; } } // Strides for moving the patch in various dimensions. if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_colStride = m_dimensions[1]; m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0]; m_otherStride = m_patchStride * m_dimensions[3]; } else { m_colStride = m_dimensions[NumDims-2]; m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1]; m_otherStride = m_patchStride * m_dimensions[NumDims-4]; } // Strides for navigating through the input tensor. m_rowInputStride = m_inputDepth; m_colInputStride = m_inputDepth * m_inputRows; m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols; // Fast representations of different variables. m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride); m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride); m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride); m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides); m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides); m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff); // Number of patches in the width dimension. m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]); } else { m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { // Patch index corresponding to the passed in index. const Index patchIndex = index / m_fastPatchStride; // Find the offset of the element wrt the location of the first element. const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth; // Other ways to index this element. const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride; const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride; // Calculate col index in the input original tensor. const Index colIndex = patch2DIndex / m_fastOutputRows; const Index colOffset = patchOffset / m_fastColStride; const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft; const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0); if (inputCol < 0 || inputCol >= m_input_cols_eff || ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) { return Scalar(m_paddingValue); } // Calculate row index in the original input tensor. const Index rowIndex = patch2DIndex - colIndex * m_outputRows; const Index rowOffset = patchOffset - colOffset * m_colStride; const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop; const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0); if (inputRow < 0 || inputRow >= m_input_rows_eff || ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) { return Scalar(m_paddingValue); } const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride; return m_impl.coeff(inputIndex); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) { return packetWithPossibleZero(index); } const Index indices[2] = {index, index + PacketSize - 1}; const Index patchIndex = indices[0] / m_fastPatchStride; if (patchIndex != indices[1] / m_fastPatchStride) { return packetWithPossibleZero(index); } const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride; eigen_assert(otherIndex == indices[1] / m_fastOtherStride); // Find the offset of the element wrt the location of the first element. const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth, (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth}; const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride; eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride); const Index colIndex = patch2DIndex / m_fastOutputRows; const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride}; // Calculate col indices in the original input tensor. const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft}; if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) { return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); } if (inputCols[0] == inputCols[1]) { const Index rowIndex = patch2DIndex - colIndex * m_outputRows; const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride}; eigen_assert(rowOffsets[0] <= rowOffsets[1]); // Calculate col indices in the original input tensor. const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop}; if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) { return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); } if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) { // no padding const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride; return m_impl.template packet<Unaligned>(inputIndex); } } return packetWithPossibleZero(index); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } Index rowPaddingTop() const { return m_rowPaddingTop; } Index colPaddingLeft() const { return m_colPaddingLeft; } Index outputRows() const { return m_outputRows; } Index outputCols() const { return m_outputCols; } Index userRowStride() const { return m_row_strides; } Index userColStride() const { return m_col_strides; } Index userInRowStride() const { return m_in_row_strides; } Index userInColStride() const { return m_in_col_strides; } Index rowInflateStride() const { return m_row_inflate_strides; } Index colInflateStride() const { return m_col_inflate_strides; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // We conservatively estimate the cost for the code path where the computed // index is inside the original image and // TensorEvaluator<ArgType, Device>::CoordAccess is false. const double compute_cost = 3 * TensorOpCost::DivCost<Index>() + 6 * TensorOpCost::MulCost<Index>() + 8 * TensorOpCost::MulCost<Index>(); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } Dimensions m_dimensions; Index m_otherStride; Index m_patchStride; Index m_colStride; Index m_row_strides; Index m_col_strides; Index m_in_row_strides; Index m_in_col_strides; Index m_row_inflate_strides; Index m_col_inflate_strides; Index m_input_rows_eff; Index m_input_cols_eff; Index m_patch_rows_eff; Index m_patch_cols_eff; internal::TensorIntDivisor<Index> m_fastOtherStride; internal::TensorIntDivisor<Index> m_fastPatchStride; internal::TensorIntDivisor<Index> m_fastColStride; internal::TensorIntDivisor<Index> m_fastInflateRowStride; internal::TensorIntDivisor<Index> m_fastInflateColStride; internal::TensorIntDivisor<Index> m_fastInputColsEff; Index m_rowInputStride; Index m_colInputStride; Index m_patchInputStride; Index m_inputDepth; Index m_inputRows; Index m_inputCols; Index m_outputRows; Index m_outputCols; Index m_rowPaddingTop; Index m_colPaddingLeft; internal::TensorIntDivisor<Index> m_fastOutputRows; internal::TensorIntDivisor<Index> m_fastOutputDepth; Scalar m_paddingValue; TensorEvaluator<ArgType, Device> m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h
.h
6,595
170
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H #define EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H namespace Eigen { namespace internal { template<typename XprType, template <class> class MakePointer_> struct traits<TensorForcedEvalOp<XprType, MakePointer_> > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename traits<XprType>::StorageKind StorageKind; typedef typename traits<XprType>::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; enum { Flags = 0 }; template <class T> struct MakePointer { // Intermediate typedef to workaround MSVC issue. typedef MakePointer_<T> MakePointerT; typedef typename MakePointerT::Type Type; }; }; template<typename XprType, template <class> class MakePointer_> struct eval<TensorForcedEvalOp<XprType, MakePointer_>, Eigen::Dense> { typedef const TensorForcedEvalOp<XprType, MakePointer_>& type; }; template<typename XprType, template <class> class MakePointer_> struct nested<TensorForcedEvalOp<XprType, MakePointer_>, 1, typename eval<TensorForcedEvalOp<XprType, MakePointer_> >::type> { typedef TensorForcedEvalOp<XprType, MakePointer_> type; }; } // end namespace internal // FIXME use proper doxygen documentation (e.g. \tparam MakePointer_) /** \class TensorForcedEvalOp * \ingroup CXX11_Tensor_Module * * \brief Tensor reshaping class. * * */ /// `template <class> class MakePointer_` is added to convert the host pointer to the device pointer. /// It is added due to the fact that for our device compiler `T*` is not allowed. /// If we wanted to use the same Evaluator functions we have to convert that type to our pointer `T`. /// This is done through our `MakePointer_` class. By default the Type in the `MakePointer_<T>` is `T*` . /// Therefore, by adding the default value, we managed to convert the type and it does not break any /// existing code as its default value is `T*`. template<typename XprType, template <class> class MakePointer_> class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType, MakePointer_>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested; typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorForcedEvalOp(const XprType& expr) : m_xpr(expr) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; }; template<typename ArgType, typename Device, template <class> class MakePointer_> struct TensorEvaluator<const TensorForcedEvalOp<ArgType, MakePointer_>, Device> { typedef TensorForcedEvalOp<ArgType, MakePointer_> XprType; typedef typename ArgType::Scalar Scalar; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; typedef typename XprType::Index Index; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = true, PacketAccess = (PacketSize > 1), Layout = TensorEvaluator<ArgType, Device>::Layout, RawAccess = true }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) /// op_ is used for sycl : m_impl(op.expression(), device), m_op(op.expression()), m_device(device), m_buffer(NULL) { } EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { const Index numValues = internal::array_prod(m_impl.dimensions()); m_buffer = (CoeffReturnType*)m_device.allocate(numValues * sizeof(CoeffReturnType)); // Should initialize the memory in case we're dealing with non POD types. if (NumTraits<CoeffReturnType>::RequireInitialization) { for (Index i = 0; i < numValues; ++i) { new(m_buffer+i) CoeffReturnType(); } } typedef TensorEvalToOp< const typename internal::remove_const<ArgType>::type > EvalTo; EvalTo evalToTmp(m_buffer, m_op); const bool PacketAccess = internal::IsVectorizable<Device, const ArgType>::value; internal::TensorExecutor<const EvalTo, typename internal::remove_const<Device>::type, PacketAccess>::run(evalToTmp, m_device); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_device.deallocate(m_buffer); m_buffer = NULL; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_buffer[index]; } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); } EIGEN_DEVICE_FUNC typename MakePointer<Scalar>::Type data() const { return m_buffer; } /// required by sycl in order to extract the sycl accessor const TensorEvaluator<ArgType, Device>& impl() { return m_impl; } /// used by sycl in order to build the sycl buffer const Device& device() const{return m_device;} private: TensorEvaluator<ArgType, Device> m_impl; const ArgType m_op; const Device& m_device; typename MakePointer<CoeffReturnType>::Type m_buffer; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h
.h
62,023
1,392
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // Copyright (C) 2015 Navdeep Jaitly <ndjaitly@google.com> // Copyright (C) 2014 Eric Martin <eric@ericmart.in> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) namespace Eigen { template<typename Scalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper, bool needs_edge_check> __device__ EIGEN_STRONG_INLINE void EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs, const OutputMapper output, Scalar* lhs_shmem, Scalar* rhs_shmem, const Index m_size, const Index n_size, const Index k_size) { const Index m_block_idx = blockIdx.x; const Index n_block_idx = blockIdx.y; const Index base_m = 64 * m_block_idx; const Index base_n = 64 * n_block_idx; // declare and initialize 64 registers for output 8x8 block // prefetch registers Scalar lhs_pf0; Scalar lhs_pf1; Scalar lhs_pf2; Scalar lhs_pf3; Scalar lhs_pf4; Scalar lhs_pf5; Scalar lhs_pf6; Scalar lhs_pf7; Scalar rhs_pf0; Scalar rhs_pf1; Scalar rhs_pf2; Scalar rhs_pf3; Scalar rhs_pf4; Scalar rhs_pf5; Scalar rhs_pf6; Scalar rhs_pf7; // shared memory is formatted // (contract idx in block, nocontract idx in block, block idx) // where block idx is column major. This transposition limits the number of // bank conflicts when reading the LHS. The core idea is that since the contracting // index is shared by both sides, then the contracting index should be in threadIdx.x. // On the LHS, we pad each row inside of each block with an extra element. This makes // each block 8 rows of 9 elements, which is 72 elements. This gives no bank conflicts // on writes and very few 2-way conflicts on reads. There is an 8x8 grid of these blocks. // On the RHS we just add 8 padding elements to the end of each block. This gives no bank // conflicts on writes and also none on reads. // storage indices const Index lhs_store_idx_base = threadIdx.y * 72 + threadIdx.x * 9 + threadIdx.z; const Index rhs_store_idx_base = threadIdx.y * 72 + threadIdx.z * 8 + threadIdx.x; const Index lhs_store_idx_0 = lhs_store_idx_base + 576 * 0; const Index lhs_store_idx_1 = lhs_store_idx_base + 576 * 1; const Index lhs_store_idx_2 = lhs_store_idx_base + 576 * 2; const Index lhs_store_idx_3 = lhs_store_idx_base + 576 * 3; const Index lhs_store_idx_4 = lhs_store_idx_base + 576 * 4; const Index lhs_store_idx_5 = lhs_store_idx_base + 576 * 5; const Index lhs_store_idx_6 = lhs_store_idx_base + 576 * 6; const Index lhs_store_idx_7 = lhs_store_idx_base + 576 * 7; const Index rhs_store_idx_0 = rhs_store_idx_base + 576 * 0; const Index rhs_store_idx_1 = rhs_store_idx_base + 576 * 1; const Index rhs_store_idx_2 = rhs_store_idx_base + 576 * 2; const Index rhs_store_idx_3 = rhs_store_idx_base + 576 * 3; const Index rhs_store_idx_4 = rhs_store_idx_base + 576 * 4; const Index rhs_store_idx_5 = rhs_store_idx_base + 576 * 5; const Index rhs_store_idx_6 = rhs_store_idx_base + 576 * 6; const Index rhs_store_idx_7 = rhs_store_idx_base + 576 * 7; // in the loading code, the following variables are important: // threadIdx.x: the vertical position in an 8x8 block // threadIdx.y: the vertical index of the 8x8 block in the grid // threadIdx.z: the horizontal position in an 8x8 block // k: the horizontal index of the 8x8 block in the grid // // The k parameter is implicit (it was the loop counter for a loop that went // from 0 to <8, but now that loop is unrolled in the below code. const Index load_idx_vert = threadIdx.x + 8 * threadIdx.y; const Index lhs_vert = base_m + load_idx_vert; #define prefetchIntoRegisters(base_k) \ { \ lhs_pf0 = conv(0); \ lhs_pf1 = conv(0); \ lhs_pf2 = conv(0); \ lhs_pf3 = conv(0); \ lhs_pf4 = conv(0); \ lhs_pf5 = conv(0); \ lhs_pf6 = conv(0); \ lhs_pf7 = conv(0); \ \ rhs_pf0 = conv(0); \ rhs_pf1 = conv(0); \ rhs_pf2 = conv(0); \ rhs_pf3 = conv(0); \ rhs_pf4 = conv(0); \ rhs_pf5 = conv(0); \ rhs_pf6 = conv(0); \ rhs_pf7 = conv(0); \ \ if (!needs_edge_check || lhs_vert < m_size) { \ const Index lhs_horiz_0 = base_k + threadIdx.z + 0 * 8; \ const Index lhs_horiz_1 = base_k + threadIdx.z + 1 * 8; \ const Index lhs_horiz_2 = base_k + threadIdx.z + 2 * 8; \ const Index lhs_horiz_3 = base_k + threadIdx.z + 3 * 8; \ const Index lhs_horiz_4 = base_k + threadIdx.z + 4 * 8; \ const Index lhs_horiz_5 = base_k + threadIdx.z + 5 * 8; \ const Index lhs_horiz_6 = base_k + threadIdx.z + 6 * 8; \ const Index lhs_horiz_7 = base_k + threadIdx.z + 7 * 8; \ \ if (!needs_edge_check || lhs_horiz_7 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \ lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \ lhs_pf7 = lhs(lhs_vert, lhs_horiz_7); \ } else if (lhs_horiz_6 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \ lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \ } else if (lhs_horiz_5 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \ } else if (lhs_horiz_4 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ } else if (lhs_horiz_3 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ } else if (lhs_horiz_2 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ } else if (lhs_horiz_1 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ } else if (lhs_horiz_0 < k_size) { \ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ } \ } \ \ const Index rhs_vert = base_k + load_idx_vert; \ if (!needs_edge_check || rhs_vert < k_size) { \ const Index rhs_horiz_0 = base_n + threadIdx.z + 0 * 8; \ const Index rhs_horiz_1 = base_n + threadIdx.z + 1 * 8; \ const Index rhs_horiz_2 = base_n + threadIdx.z + 2 * 8; \ const Index rhs_horiz_3 = base_n + threadIdx.z + 3 * 8; \ const Index rhs_horiz_4 = base_n + threadIdx.z + 4 * 8; \ const Index rhs_horiz_5 = base_n + threadIdx.z + 5 * 8; \ const Index rhs_horiz_6 = base_n + threadIdx.z + 6 * 8; \ const Index rhs_horiz_7 = base_n + threadIdx.z + 7 * 8; \ \ if (rhs_horiz_7 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \ rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \ rhs_pf7 = rhs(rhs_vert, rhs_horiz_7); \ } else if (rhs_horiz_6 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \ rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \ } else if (rhs_horiz_5 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \ } else if (rhs_horiz_4 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ } else if (rhs_horiz_3 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ } else if (rhs_horiz_2 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ } else if (rhs_horiz_1 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ } else if (rhs_horiz_0 < n_size) { \ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ } \ } \ } \ #define writeRegToShmem(_) \ lhs_shmem[lhs_store_idx_0] = lhs_pf0; \ rhs_shmem[rhs_store_idx_0] = rhs_pf0; \ \ lhs_shmem[lhs_store_idx_1] = lhs_pf1; \ rhs_shmem[rhs_store_idx_1] = rhs_pf1; \ \ lhs_shmem[lhs_store_idx_2] = lhs_pf2; \ rhs_shmem[rhs_store_idx_2] = rhs_pf2; \ \ lhs_shmem[lhs_store_idx_3] = lhs_pf3; \ rhs_shmem[rhs_store_idx_3] = rhs_pf3; \ \ lhs_shmem[lhs_store_idx_4] = lhs_pf4; \ rhs_shmem[rhs_store_idx_4] = rhs_pf4; \ \ lhs_shmem[lhs_store_idx_5] = lhs_pf5; \ rhs_shmem[rhs_store_idx_5] = rhs_pf5; \ \ lhs_shmem[lhs_store_idx_6] = lhs_pf6; \ rhs_shmem[rhs_store_idx_6] = rhs_pf6; \ \ lhs_shmem[lhs_store_idx_7] = lhs_pf7; \ rhs_shmem[rhs_store_idx_7] = rhs_pf7; \ // declare and initialize result array #define res(i, j) _res_##i##j #define initResultRow(i) \ Scalar res(i, 0) = conv(0); \ Scalar res(i, 1) = conv(0); \ Scalar res(i, 2) = conv(0); \ Scalar res(i, 3) = conv(0); \ Scalar res(i, 4) = conv(0); \ Scalar res(i, 5) = conv(0); \ Scalar res(i, 6) = conv(0); \ Scalar res(i, 7) = conv(0); \ internal::scalar_cast_op<int, Scalar> conv; initResultRow(0); initResultRow(1); initResultRow(2); initResultRow(3); initResultRow(4); initResultRow(5); initResultRow(6); initResultRow(7); #undef initResultRow for (Index base_k = 0; base_k < k_size; base_k += 64) { // wait for previous iteration to finish with shmem. Despite common sense, // the code is a bit faster with this here then at bottom of loop __syncthreads(); prefetchIntoRegisters(base_k); writeRegToShmem(); #undef prefetchIntoRegisters #undef writeRegToShmem // wait for shared mem packing to be done before starting computation __syncthreads(); // compute 8x8 matrix product by outer product. This involves packing one column // of LHS and one row of RHS into registers (takes 16 registers). #define lcol(i) _lcol##i Scalar lcol(0); Scalar lcol(1); Scalar lcol(2); Scalar lcol(3); Scalar lcol(4); Scalar lcol(5); Scalar lcol(6); Scalar lcol(7); #define rrow(j) _rrow##j Scalar rrow(0); Scalar rrow(1); Scalar rrow(2); Scalar rrow(3); Scalar rrow(4); Scalar rrow(5); Scalar rrow(6); Scalar rrow(7); // Now x corresponds to k, y to m, and z to n const Scalar* lhs_block = &lhs_shmem[threadIdx.x + 9 * threadIdx.y]; const Scalar* rhs_block = &rhs_shmem[threadIdx.x + 8 * threadIdx.z]; #define lhs_element(i, j) lhs_block[72 * ((i) + 8 * (j))] #define rhs_element(i, j) rhs_block[72 * ((i) + 8 * (j))] #define loadData(i, j) \ lcol(0) = lhs_element(0, j); \ rrow(0) = rhs_element(i, 0); \ lcol(1) = lhs_element(1, j); \ rrow(1) = rhs_element(i, 1); \ lcol(2) = lhs_element(2, j); \ rrow(2) = rhs_element(i, 2); \ lcol(3) = lhs_element(3, j); \ rrow(3) = rhs_element(i, 3); \ lcol(4) = lhs_element(4, j); \ rrow(4) = rhs_element(i, 4); \ lcol(5) = lhs_element(5, j); \ rrow(5) = rhs_element(i, 5); \ lcol(6) = lhs_element(6, j); \ rrow(6) = rhs_element(i, 6); \ lcol(7) = lhs_element(7, j); \ rrow(7) = rhs_element(i, 7); \ #define computeCol(j) \ res(0, j) += lcol(0) * rrow(j); \ res(1, j) += lcol(1) * rrow(j); \ res(2, j) += lcol(2) * rrow(j); \ res(3, j) += lcol(3) * rrow(j); \ res(4, j) += lcol(4) * rrow(j); \ res(5, j) += lcol(5) * rrow(j); \ res(6, j) += lcol(6) * rrow(j); \ res(7, j) += lcol(7) * rrow(j); \ #define computePass(i) \ loadData(i, i); \ \ computeCol(0); \ computeCol(1); \ computeCol(2); \ computeCol(3); \ computeCol(4); \ computeCol(5); \ computeCol(6); \ computeCol(7); \ computePass(0); computePass(1); computePass(2); computePass(3); computePass(4); computePass(5); computePass(6); computePass(7); #undef lcol #undef rrow #undef lhs_element #undef rhs_element #undef loadData #undef computeCol #undef computePass } // end loop over k // we've now iterated over all of the large (ie width 64) k blocks and // accumulated results in registers. At this point thread (x, y, z) contains // the sum across all big k blocks of the product of little k block of index (x, y) // with block of index (y, z). To compute the final output, we need to reduce // the 8 threads over y by summation. #define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask) #define reduceRow(i, mask) \ shuffleInc(i, 0, mask); \ shuffleInc(i, 1, mask); \ shuffleInc(i, 2, mask); \ shuffleInc(i, 3, mask); \ shuffleInc(i, 4, mask); \ shuffleInc(i, 5, mask); \ shuffleInc(i, 6, mask); \ shuffleInc(i, 7, mask); \ #define reduceMatrix(mask) \ reduceRow(0, mask); \ reduceRow(1, mask); \ reduceRow(2, mask); \ reduceRow(3, mask); \ reduceRow(4, mask); \ reduceRow(5, mask); \ reduceRow(6, mask); \ reduceRow(7, mask); \ // actually perform the reduction, now each thread of index (_, y, z) // contains the correct values in its registers that belong in the output // block reduceMatrix(1); reduceMatrix(2); reduceMatrix(4); #undef shuffleInc #undef reduceRow #undef reduceMatrix // now we need to copy the 64 values into main memory. We can't split work // among threads because all variables are in registers. There's 2 ways // to do this: // (1) have 1 thread do 64 writes from registers into global memory // (2) have 1 thread do 64 writes into shared memory, and then 8 threads // each do 8 writes into global memory. We can just overwrite the shared // memory from the problem we just solved. // (2) is slightly faster than (1) due to less branching and more ILP // TODO: won't yield much gain, but could just use currently unused shared mem // and then we won't have to sync // wait for shared mem to be out of use __syncthreads(); #define writeResultShmem(i, j) \ lhs_shmem[i + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j] = res(i, j); \ #define writeRow(i) \ writeResultShmem(i, 0); \ writeResultShmem(i, 1); \ writeResultShmem(i, 2); \ writeResultShmem(i, 3); \ writeResultShmem(i, 4); \ writeResultShmem(i, 5); \ writeResultShmem(i, 6); \ writeResultShmem(i, 7); \ if (threadIdx.x == 0) { writeRow(0); writeRow(1); writeRow(2); writeRow(3); writeRow(4); writeRow(5); writeRow(6); writeRow(7); } #undef writeResultShmem #undef writeRow const int max_i_write = numext::mini((int)((m_size - base_m - threadIdx.y + 7) / 8), 8); const int max_j_write = numext::mini((int)((n_size - base_n - threadIdx.z + 7) / 8), 8); if (threadIdx.x < max_i_write) { if (max_j_write == 8) { // TODO: can i trade bank conflicts for coalesced writes? Scalar val0 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 0]; Scalar val1 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 1]; Scalar val2 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 2]; Scalar val3 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 3]; Scalar val4 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 4]; Scalar val5 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 5]; Scalar val6 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 6]; Scalar val7 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 7]; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 0) = val0; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 1) = val1; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 2) = val2; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 3) = val3; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 4) = val4; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 5) = val5; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 6) = val6; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 7) = val7; } else { #pragma unroll 7 for (int j = 0; j < max_j_write; j++) { Scalar val = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j]; output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * j) = val; } } } #undef res } template<typename Scalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> __global__ void __launch_bounds__(512) EigenContractionKernel(const LhsMapper lhs, const RhsMapper rhs, const OutputMapper output, const Index m_size, const Index n_size, const Index k_size) { __shared__ Scalar lhs_shmem[72 * 64]; __shared__ Scalar rhs_shmem[72 * 64]; const Index m_block_idx = blockIdx.x; const Index n_block_idx = blockIdx.y; const Index base_m = 64 * m_block_idx; const Index base_n = 64 * n_block_idx; if (base_m + 63 < m_size && base_n + 63 < n_size) { EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size); } else { EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size); } } template<typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY, bool CHECK_RHS_BOUNDARY> __device__ EIGEN_STRONG_INLINE void EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rhs, const OutputMapper output, float2 lhs_shmem2[][16], float2 rhs_shmem2[][8], const Index m_size, const Index n_size, const Index k_size, const Index base_m, const Index base_n) { typedef float Scalar; // prefetch registers float4 lhs_pf0, rhs_pf0; float4 results[4]; for (int i=0; i < 4; i++) { results[i].x = results[i].y = results[i].z = results[i].w = 0; } #define prefetch_lhs(reg, row, col) \ if (!CHECK_LHS_BOUNDARY) { \ if (col < k_size) { \ reg =lhs.loadPacket<Unaligned>(row, col); \ } \ } else { \ if (col < k_size) { \ if (row + 3 < m_size) { \ reg =lhs.loadPacket<Unaligned>(row, col); \ } else if (row + 2 < m_size) { \ reg.x =lhs(row + 0, col); \ reg.y =lhs(row + 1, col); \ reg.z =lhs(row + 2, col); \ } else if (row + 1 < m_size) { \ reg.x =lhs(row + 0, col); \ reg.y =lhs(row + 1, col); \ } else if (row < m_size) { \ reg.x =lhs(row + 0, col); \ } \ } \ } \ Index lhs_vert = base_m+threadIdx.x*4; for (Index k = 0; k < k_size; k += 16) { lhs_pf0 = internal::pset1<float4>(0); rhs_pf0 = internal::pset1<float4>(0); Index lhs_horiz = threadIdx.y+k; prefetch_lhs(lhs_pf0, lhs_vert, lhs_horiz) Index rhs_vert = k+(threadIdx.x%4)*4; Index rhs_horiz0 = (threadIdx.x>>2)+threadIdx.y*4+base_n; if (!CHECK_RHS_BOUNDARY) { if ((rhs_vert + 3) < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0); } else if (rhs_vert + 2 < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); } else if (rhs_vert + 1 < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); } else if (rhs_vert < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); } } else { if (rhs_horiz0 < n_size) { if ((rhs_vert + 3) < k_size) { rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0); } else if ((rhs_vert + 2) < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); } else if ((rhs_vert + 1) < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); } else if (rhs_vert < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); } } } float x1, x2 ; // the following can be a bitwise operation..... some day. if((threadIdx.x%8) < 4) { x1 = rhs_pf0.y; x2 = rhs_pf0.w; } else { x1 = rhs_pf0.x; x2 = rhs_pf0.z; } x1 = __shfl_xor(x1, 4); x2 = __shfl_xor(x2, 4); if((threadIdx.x%8) < 4) { rhs_pf0.y = x1; rhs_pf0.w = x2; } else { rhs_pf0.x = x1; rhs_pf0.z = x2; } // We have 64 features. // Row 0 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 0, 1. // Row 1 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 2, 3. // ... // Row 31 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 62, 63 // Row 32 -> times (2, 6, 10, 14, 3, 7, 11, 15) for features 0, 1 // ... rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2][threadIdx.x%8] = make_float2(rhs_pf0.x, rhs_pf0.y); rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2+32][threadIdx.x%8] = make_float2(rhs_pf0.z, rhs_pf0.w); // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) // ... // Row 15 (time 15) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) // Row 16 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) // ... lhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(lhs_pf0.x, lhs_pf0.y); lhs_shmem2[threadIdx.y+16][threadIdx.x] = make_float2(lhs_pf0.z, lhs_pf0.w); #define add_vals(fl1, fl2, fr1, fr2)\ results[0].x += fl1.x * fr1.x;\ results[0].y += fl1.y * fr1.x;\ results[0].z += fl2.x * fr1.x;\ results[0].w += fl2.y * fr1.x;\ \ results[1].x += fl1.x * fr1.y;\ results[1].y += fl1.y * fr1.y;\ results[1].z += fl2.x * fr1.y;\ results[1].w += fl2.y * fr1.y;\ \ results[2].x += fl1.x * fr2.x;\ results[2].y += fl1.y * fr2.x;\ results[2].z += fl2.x * fr2.x;\ results[2].w += fl2.y * fr2.x;\ \ results[3].x += fl1.x * fr2.y;\ results[3].y += fl1.y * fr2.y;\ results[3].z += fl2.x * fr2.y;\ results[3].w += fl2.y * fr2.y;\ __syncthreads(); // Do the multiplies. #pragma unroll for (int koff = 0; koff < 16; koff ++) { // 32 x threads. float2 fl1 = lhs_shmem2[koff][threadIdx.x]; float2 fl2 = lhs_shmem2[koff + 16][threadIdx.x]; int start_feature = threadIdx.y * 4; float2 fr1 = rhs_shmem2[(start_feature>>1) + 32*((koff%4)/2)][koff/4 + (koff%2)*4]; float2 fr2 = rhs_shmem2[(start_feature>>1) + 1 + 32*((koff%4)/2)][koff/4 + (koff%2)*4]; add_vals(fl1, fl2, fr1, fr2) } __syncthreads(); } #undef prefetch_lhs #undef add_vals Index horiz_base = threadIdx.y*4+base_n; if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) { for (int i = 0; i < 4; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; } } else if (!CHECK_RHS_BOUNDARY) { // CHECK LHS if (lhs_vert + 3 < m_size) { for (int i = 0; i < 4; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; } } else if (lhs_vert + 2 < m_size) { for (int i = 0; i < 4; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; } } else if (lhs_vert + 1 < m_size) { for (int i = 0; i < 4; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; } } else if (lhs_vert < m_size) { for (int i = 0; i < 4; i++) { output(lhs_vert, horiz_base + i) = results[i].x; } } } else if (!CHECK_LHS_BOUNDARY) { // CHECK RHS /* int ncols_rem = fminf(n_size- horiz_base, 4); for (int i = 0; i < ncols_rem; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; }*/ for (int i = 0; i < 4; i++) { if (horiz_base+i < n_size) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; } } } else { // CHECK both boundaries. for (int i = 0; i < 4; i++) { if (horiz_base+i < n_size) { if (lhs_vert < m_size) output(lhs_vert, horiz_base + i) = results[i].x; if (lhs_vert + 1 < m_size) output(lhs_vert + 1, horiz_base + i) = results[i].y; if (lhs_vert + 2 < m_size) output(lhs_vert + 2, horiz_base + i) = results[i].z; if (lhs_vert + 3 < m_size) output(lhs_vert + 3, horiz_base + i) = results[i].w; } } } } template<typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY, bool CHECK_RHS_BOUNDARY> __device__ EIGEN_STRONG_INLINE void EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs, const OutputMapper output, float2 lhs_shmem2[][32], float2 rhs_shmem2[][8], const Index m_size, const Index n_size, const Index k_size, const Index base_m, const Index base_n) { typedef float Scalar; // prefetch registers float4 lhs_pf0, lhs_pf1, lhs_pf2, lhs_pf3; float4 rhs_pf0, rhs_pf1; float4 results[8]; for (int i=0; i < 8; i++) { results[i].x = results[i].y = results[i].z = results[i].w = 0; } Index lhs_vert = base_m+threadIdx.x*4+(threadIdx.y%4)*32; for (Index k = 0; k < k_size; k += 32) { lhs_pf0 = internal::pset1<float4>(0); lhs_pf1 = internal::pset1<float4>(0); lhs_pf2 = internal::pset1<float4>(0); lhs_pf3 = internal::pset1<float4>(0); rhs_pf0 = internal::pset1<float4>(0); rhs_pf1 = internal::pset1<float4>(0); if (!CHECK_LHS_BOUNDARY) { if ((threadIdx.y/4+k+24) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); lhs_pf3 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24)); } else if ((threadIdx.y/4+k+16) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); } else if ((threadIdx.y/4+k+8) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); } else if ((threadIdx.y/4+k) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); } } else { // just CHECK_LHS_BOUNDARY if (lhs_vert + 3 < m_size) { if ((threadIdx.y/4+k+24) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); lhs_pf3 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24)); } else if ((threadIdx.y/4+k+16) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); } else if ((threadIdx.y/4+k+8) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); } else if ((threadIdx.y/4+k) < k_size) { lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k)); } } else if (lhs_vert + 2 < m_size) { if ((threadIdx.y/4+k+24) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16)); lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24)); lhs_pf3.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+24)); } else if ((threadIdx.y/4+k+16) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16)); } else if ((threadIdx.y/4+k+8) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); } else if ((threadIdx.y/4+k) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); } } else if (lhs_vert + 1 < m_size) { if ((threadIdx.y/4+k+24) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24)); } else if ((threadIdx.y/4+k+16) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); } else if ((threadIdx.y/4+k+8) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); } else if ((threadIdx.y/4+k) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); } } else if (lhs_vert < m_size) { if ((threadIdx.y/4+k+24) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); } else if ((threadIdx.y/4+k+16) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); } else if ((threadIdx.y/4+k+8) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); } else if ((threadIdx.y/4+k) < k_size) { lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); } } } __syncthreads(); Index rhs_vert = k+threadIdx.x*4; Index rhs_horiz0 = threadIdx.y*2+base_n; Index rhs_horiz1 = threadIdx.y*2+1+base_n; if (!CHECK_RHS_BOUNDARY) { if ((rhs_vert + 3) < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0); rhs_pf1 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz1); } else if (rhs_vert + 2 < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1); } else if (rhs_vert + 1 < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); } else if (rhs_vert < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); } } else { if (rhs_horiz1 < n_size) { if ((rhs_vert + 3) < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0); rhs_pf1 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz1); } else if (rhs_vert + 2 < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1); } else if (k+threadIdx.x*4 + 1 < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); } else if (k+threadIdx.x*4 < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); } } else if (rhs_horiz0 < n_size) { if ((rhs_vert + 3) < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0); } else if ((rhs_vert + 2) < k_size) { // just CHECK_RHS_BOUNDARY rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); } else if ((rhs_vert + 1) < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); } else if (rhs_vert < k_size) { rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); } } } __syncthreads(); // Loaded. Do computation // Row 0 -> times (0, 4, 8, .. 28) for features 0, 1. // Row 1 -> times (0, 4, 8, .. 28) for features 2, 3. // .. // Row 31 -> times (0, 4, 8, .. 28) for features 62, 63 rhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(rhs_pf0.x, rhs_pf1.x); // Row 32 -> times (1, 5, 9, .. 29) for features 0, 1. // Row 33 -> times (1, 5, 9, .. 29) for features 2, 3. // .. rhs_shmem2[threadIdx.y+32][threadIdx.x] = make_float2(rhs_pf0.y, rhs_pf1.y); // Row 64 -> times (2, 6, 10, .. 30) for features 0, 1. // Row 65 -> times (2, 6, 10, .. 30) for features 2, 3. rhs_shmem2[threadIdx.y+64][threadIdx.x] = make_float2(rhs_pf0.z, rhs_pf1.z); // Row 96 -> times (3, 7, 11, .. 31) for features 0, 1. // Row 97 -> times (3, 7, 11, .. 31) for features 2, 3. rhs_shmem2[threadIdx.y+96][threadIdx.x] = make_float2(rhs_pf0.w, rhs_pf1.w); // LHS. // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125) // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125) // ... // Row 8 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127) // Row 15 (time 7) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127) #define add_vals(a_feat1, a_feat2, f1, f2, f3, f4)\ results[0].x += a_feat1.x * f1.x;\ results[1].x += a_feat1.x * f1.y;\ results[2].x += a_feat1.x * f2.x;\ results[3].x += a_feat1.x * f2.y;\ results[4].x += a_feat1.x * f3.x;\ results[5].x += a_feat1.x * f3.y;\ results[6].x += a_feat1.x * f4.x;\ results[7].x += a_feat1.x * f4.y;\ \ results[0].y += a_feat1.y * f1.x;\ results[1].y += a_feat1.y * f1.y;\ results[2].y += a_feat1.y * f2.x;\ results[3].y += a_feat1.y * f2.y;\ results[4].y += a_feat1.y * f3.x;\ results[5].y += a_feat1.y * f3.y;\ results[6].y += a_feat1.y * f4.x;\ results[7].y += a_feat1.y * f4.y;\ \ results[0].z += a_feat2.x * f1.x;\ results[1].z += a_feat2.x * f1.y;\ results[2].z += a_feat2.x * f2.x;\ results[3].z += a_feat2.x * f2.y;\ results[4].z += a_feat2.x * f3.x;\ results[5].z += a_feat2.x * f3.y;\ results[6].z += a_feat2.x * f4.x;\ results[7].z += a_feat2.x * f4.y;\ \ results[0].w += a_feat2.y * f1.x;\ results[1].w += a_feat2.y * f1.y;\ results[2].w += a_feat2.y * f2.x;\ results[3].w += a_feat2.y * f2.y;\ results[4].w += a_feat2.y * f3.x;\ results[5].w += a_feat2.y * f3.y;\ results[6].w += a_feat2.y * f4.x;\ results[7].w += a_feat2.y * f4.y;\ lhs_shmem2[threadIdx.y/4][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.x, lhs_pf0.y); lhs_shmem2[threadIdx.y/4+8][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.x, lhs_pf1.y); lhs_shmem2[threadIdx.y/4+16][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.x, lhs_pf2.y); lhs_shmem2[threadIdx.y/4+24][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.x, lhs_pf3.y); lhs_shmem2[threadIdx.y/4 + 32][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.z, lhs_pf0.w); lhs_shmem2[threadIdx.y/4 + 40][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.z, lhs_pf1.w); lhs_shmem2[threadIdx.y/4 + 48][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.z, lhs_pf2.w); lhs_shmem2[threadIdx.y/4 + 56][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.z, lhs_pf3.w); __syncthreads(); // Do the multiplies. #pragma unroll for (int koff = 0; koff < 32; koff ++) { float2 a3 = lhs_shmem2[koff][threadIdx.x + (threadIdx.y % 4) * 8]; float2 a4 = lhs_shmem2[koff + 32][threadIdx.x + (threadIdx.y % 4) * 8]; // first feature is at (threadIdx.y/4) * 8 last is at start + 8. int start_feature = (threadIdx.y / 4) * 8; float2 br1 = rhs_shmem2[start_feature/2 + (koff % 4) * 32][koff/4]; float2 br2 = rhs_shmem2[start_feature/2 + 1 + (koff % 4) * 32][koff/4]; float2 br3 = rhs_shmem2[start_feature/2 + 2 + (koff % 4) * 32][koff/4]; float2 br4 = rhs_shmem2[start_feature/2 + 3 + (koff % 4) * 32][koff/4]; add_vals(a3, a4, br1, br2, br3, br4) } __syncthreads(); } // end loop over k __syncthreads(); Index horiz_base = (threadIdx.y/4)*8+base_n; if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) { for (int i = 0; i < 8; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; } } else if (!CHECK_RHS_BOUNDARY) { if (lhs_vert + 3 < m_size) { for (int i = 0; i < 8; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; } } else if (lhs_vert + 2 < m_size) { for (int i = 0; i < 8; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; } } else if (lhs_vert + 1 < m_size) { for (int i = 0; i < 8; i++) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; } } else if (lhs_vert < m_size) { for (int i = 0; i < 8; i++) { output(lhs_vert, horiz_base + i) = results[i].x; } } } else if (!CHECK_LHS_BOUNDARY) { // CHECK BOUNDARY_B for (int i = 0; i < 8; i++) { if (horiz_base + i < n_size) { output(lhs_vert, horiz_base + i) = results[i].x; output(lhs_vert + 1, horiz_base + i) = results[i].y; output(lhs_vert + 2, horiz_base + i) = results[i].z; output(lhs_vert + 3, horiz_base + i) = results[i].w; } } } else { // CHECK both boundaries. for (int i = 0; i < 8; i++) { if (horiz_base + i < n_size) { if (lhs_vert < m_size) output(lhs_vert, horiz_base + i) = results[i].x; if (lhs_vert + 1 < m_size) output(lhs_vert + 1, horiz_base + i) = results[i].y; if (lhs_vert + 2 < m_size) output(lhs_vert + 2, horiz_base + i) = results[i].z; if (lhs_vert + 3 < m_size) output(lhs_vert + 3, horiz_base + i) = results[i].w; } } } } template<typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> __global__ void __launch_bounds__(256) EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs, const OutputMapper output, const Index m_size, const Index n_size, const Index k_size) { __shared__ float2 lhs_shmem[64*32]; __shared__ float2 rhs_shmem[128*8]; typedef float2 LHS_MEM[64][32]; typedef float2 RHS_MEM[128][8]; typedef float2 LHS_MEM16x16[32][16]; typedef float2 RHS_MEM16x16[64][8]; const Index m_block_idx = blockIdx.x; const Index n_block_idx = blockIdx.y; const Index base_m = 128 * m_block_idx; const Index base_n = 64 * n_block_idx; bool check_rhs = (base_n + 63) >= n_size; bool check_lhs128 = (base_m + 127) >= m_size; if (!check_rhs) { if (!check_lhs128) { // >= 128 rows left EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, false>( lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); } else { EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, false>( lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); } } else { if (!check_lhs128) { // >= 128 rows left EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, true>( lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); } else { EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, true>( lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); } } } template<typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> __global__ void __launch_bounds__(256) EigenFloatContractionKernel16x16(const LhsMapper lhs, const RhsMapper rhs, const OutputMapper output, const Index m_size, const Index n_size, const Index k_size) { __shared__ float2 lhs_shmem[32][16]; __shared__ float2 rhs_shmem[64][8]; const Index m_block_idx = blockIdx.x; const Index n_block_idx = blockIdx.y; const Index base_m = 64 * m_block_idx; const Index base_n = 64 * n_block_idx; if (base_m + 63 < m_size) { if (base_n + 63 < n_size) { EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); } else { EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); } } else { if (base_n + 63 < n_size) { EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); } else { EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); } } } template<typename Indices, typename LeftArgType, typename RightArgType> struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, GpuDevice> : public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, GpuDevice> > { typedef GpuDevice Device; typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self; typedef TensorContractionEvaluatorBase<Self> Base; typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef typename XprType::Index Index; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType; enum { Layout = TensorEvaluator<LeftArgType, Device>::Layout, }; // Most of the code is assuming that both input tensors are ColMajor. If the // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: // If we want to compute A * B = C, where A is LHS and B is RHS, the code // will pretend B is LHS and A is RHS. typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; static const int LDims = internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; static const int RDims = internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; static const int ContractDims = internal::array_size<Indices>::value; typedef array<Index, LDims> left_dim_mapper_t; typedef array<Index, RDims> right_dim_mapper_t; typedef array<Index, ContractDims> contract_t; typedef array<Index, LDims - ContractDims> left_nocontract_t; typedef array<Index, RDims - ContractDims> right_nocontract_t; static const int NumDims = LDims + RDims - 2 * ContractDims; typedef DSizes<Index, NumDims> Dimensions; // typedefs needed in evalTo typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; typedef typename LeftEvaluator::Dimensions LeftDimensions; typedef typename RightEvaluator::Dimensions RightDimensions; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} // We need to redefine this method to make nvcc happy EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { this->m_leftImpl.evalSubExprsIfNeeded(NULL); this->m_rightImpl.evalSubExprsIfNeeded(NULL); if (data) { evalTo(data); return false; } else { this->m_result = static_cast<Scalar *>(this->m_device.allocate(this->dimensions().TotalSize() * sizeof(Scalar))); evalTo(this->m_result); return true; } } void evalTo(Scalar* buffer) const { if (this->m_lhs_inner_dim_contiguous) { if (this->m_rhs_inner_dim_contiguous) { if (this->m_rhs_inner_dim_reordered) { evalTyped<true, true, true, Unaligned>(buffer); } else { evalTyped<true, true, false, Unaligned>(buffer); } } else { if (this->m_rhs_inner_dim_reordered) { evalTyped<true, false, true, Unaligned>(buffer); } else { evalTyped<true, false, false, Unaligned>(buffer); } } } else { if (this->m_rhs_inner_dim_contiguous) { if (this->m_rhs_inner_dim_reordered) { evalTyped<false, true, true, Unaligned>(buffer); } else { evalTyped<false, true, false, Unaligned>(buffer); } } else { if (this->m_rhs_inner_dim_reordered) { evalTyped<false, false, true, Unaligned>(buffer); } else { evalTyped<false, false, false, Unaligned>(buffer); } } } } template <typename LhsScalar, typename RhsScalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels { static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) { const Index m_blocks = (m + 63) / 64; const Index n_blocks = (n + 63) / 64; const dim3 num_blocks(m_blocks, n_blocks, 1); const dim3 block_size(8, 8, 8); LAUNCH_CUDA_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); } }; template <typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels<float, float, Index, LhsMapper, RhsMapper, OutputMapper> { static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) { if (m < 768 || n < 768) { const Index m_blocks = (m + 63) / 64; const Index n_blocks = (n + 63) / 64; const dim3 num_blocks(m_blocks, n_blocks, 1); const dim3 block_size(16, 16, 1); LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); } else { const Index m_blocks = (m + 127) / 128; const Index n_blocks = (n + 63) / 64; const dim3 num_blocks(m_blocks, n_blocks, 1); const dim3 block_size(8, 32, 1); LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); } } }; template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> void evalTyped(Scalar* buffer) const { // columns in left side, rows in right side const Index k = this->m_k_size; EIGEN_UNUSED_VARIABLE(k) // rows in left side const Index m = this->m_i_size; // columns in right side const Index n = this->m_j_size; // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar) this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, 4, lhs_inner_dim_contiguous, false, Unaligned> LhsMapper; typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, contract_t, 4, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned> RhsMapper; typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; // initialize data mappers LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, this->m_left_contracting_strides, this->m_k_strides); RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, this->m_right_contracting_strides, this->m_k_strides); OutputMapper output(buffer, m); setCudaSharedMemConfig(cudaSharedMemBankSizeEightByte); LaunchKernels<LhsScalar, RhsScalar, Index, LhsMapper, RhsMapper, OutputMapper>::Run(lhs, rhs, output, m, n, k, this->m_device); } }; } // end namespace Eigen #endif // EIGEN_USE_GPU and __CUDACC__ #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
.h
23,299
652
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Jianwei Cui <thucjw@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_FFT_H #define EIGEN_CXX11_TENSOR_TENSOR_FFT_H // This code requires the ability to initialize arrays of constant // values directly inside a class. #if __cplusplus >= 201103L || EIGEN_COMP_MSVC >= 1900 namespace Eigen { /** \class TensorFFT * \ingroup CXX11_Tensor_Module * * \brief Tensor FFT class. * * TODO: * Vectorize the Cooley Tukey and the Bluestein algorithm * Add support for multithreaded evaluation * Improve the performance on GPU */ template <bool NeedUprade> struct MakeComplex { template <typename T> EIGEN_DEVICE_FUNC T operator() (const T& val) const { return val; } }; template <> struct MakeComplex<true> { template <typename T> EIGEN_DEVICE_FUNC std::complex<T> operator() (const T& val) const { return std::complex<T>(val, 0); } }; template <> struct MakeComplex<false> { template <typename T> EIGEN_DEVICE_FUNC std::complex<T> operator() (const std::complex<T>& val) const { return val; } }; template <int ResultType> struct PartOf { template <typename T> T operator() (const T& val) const { return val; } }; template <> struct PartOf<RealPart> { template <typename T> T operator() (const std::complex<T>& val) const { return val.real(); } }; template <> struct PartOf<ImagPart> { template <typename T> T operator() (const std::complex<T>& val) const { return val.imag(); } }; namespace internal { template <typename FFT, typename XprType, int FFTResultType, int FFTDir> struct traits<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir> > : public traits<XprType> { typedef traits<XprType> XprTraits; typedef typename NumTraits<typename XprTraits::Scalar>::Real RealScalar; typedef typename std::complex<RealScalar> ComplexScalar; typedef typename XprTraits::Scalar InputScalar; typedef typename conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template <typename FFT, typename XprType, int FFTResultType, int FFTDirection> struct eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, Eigen::Dense> { typedef const TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>& type; }; template <typename FFT, typename XprType, int FFTResultType, int FFTDirection> struct nested<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, 1, typename eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> >::type> { typedef TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> type; }; } // end namespace internal template <typename FFT, typename XprType, int FFTResultType, int FFTDir> class TensorFFTOp : public TensorBase<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorFFTOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename std::complex<RealScalar> ComplexScalar; typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar; typedef OutputScalar CoeffReturnType; typedef typename Eigen::internal::nested<TensorFFTOp>::type Nested; typedef typename Eigen::internal::traits<TensorFFTOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorFFTOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFFTOp(const XprType& expr, const FFT& fft) : m_xpr(expr), m_fft(fft) {} EIGEN_DEVICE_FUNC const FFT& fft() const { return m_fft; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const FFT m_fft; }; // Eval as rvalue template <typename FFT, typename ArgType, typename Device, int FFTResultType, int FFTDir> struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, Device> { typedef TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename std::complex<RealScalar> ComplexScalar; typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; typedef internal::traits<XprType> XprTraits; typedef typename XprTraits::Scalar InputScalar; typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar; typedef OutputScalar CoeffReturnType; typedef typename PacketType<OutputScalar, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = true, BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) { const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); for (int i = 0; i < NumDims; ++i) { eigen_assert(input_dims[i] > 0); m_dimensions[i] = input_dims[i]; } if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_strides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1]; } } else { m_strides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1]; } } m_size = m_dimensions.TotalSize(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(OutputScalar* data) { m_impl.evalSubExprsIfNeeded(NULL); if (data) { evalToBuf(data); return false; } else { m_data = (CoeffReturnType*)m_device.allocate(sizeof(CoeffReturnType) * m_size); evalToBuf(m_data); return true; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { if (m_data) { m_device.deallocate(m_data); m_data = NULL; } m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const { return m_data[index]; } template <int LoadMode> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_data + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return m_data; } private: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(OutputScalar* data) { const bool write_to_out = internal::is_same<OutputScalar, ComplexScalar>::value; ComplexScalar* buf = write_to_out ? (ComplexScalar*)data : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * m_size); for (Index i = 0; i < m_size; ++i) { buf[i] = MakeComplex<internal::is_same<InputScalar, RealScalar>::value>()(m_impl.coeff(i)); } for (size_t i = 0; i < m_fft.size(); ++i) { Index dim = m_fft[i]; eigen_assert(dim >= 0 && dim < NumDims); Index line_len = m_dimensions[dim]; eigen_assert(line_len >= 1); ComplexScalar* line_buf = (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * line_len); const bool is_power_of_two = isPowerOfTwo(line_len); const Index good_composite = is_power_of_two ? 0 : findGoodComposite(line_len); const Index log_len = is_power_of_two ? getLog2(line_len) : getLog2(good_composite); ComplexScalar* a = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite); ComplexScalar* b = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite); ComplexScalar* pos_j_base_powered = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * (line_len + 1)); if (!is_power_of_two) { // Compute twiddle factors // t_n = exp(sqrt(-1) * pi * n^2 / line_len) // for n = 0, 1,..., line_len-1. // For n > 2 we use the recurrence t_n = t_{n-1}^2 / t_{n-2} * t_1^2 pos_j_base_powered[0] = ComplexScalar(1, 0); if (line_len > 1) { const RealScalar pi_over_len(EIGEN_PI / line_len); const ComplexScalar pos_j_base = ComplexScalar( std::cos(pi_over_len), std::sin(pi_over_len)); pos_j_base_powered[1] = pos_j_base; if (line_len > 2) { const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base; for (int j = 2; j < line_len + 1; ++j) { pos_j_base_powered[j] = pos_j_base_powered[j - 1] * pos_j_base_powered[j - 1] / pos_j_base_powered[j - 2] * pos_j_base_sq; } } } } for (Index partial_index = 0; partial_index < m_size / line_len; ++partial_index) { const Index base_offset = getBaseOffsetFromIndex(partial_index, dim); // get data into line_buf const Index stride = m_strides[dim]; if (stride == 1) { memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar)); } else { Index offset = base_offset; for (int j = 0; j < line_len; ++j, offset += stride) { line_buf[j] = buf[offset]; } } // processs the line if (is_power_of_two) { processDataLineCooleyTukey(line_buf, line_len, log_len); } else { processDataLineBluestein(line_buf, line_len, good_composite, log_len, a, b, pos_j_base_powered); } // write back if (FFTDir == FFT_FORWARD && stride == 1) { memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar)); } else { Index offset = base_offset; const ComplexScalar div_factor = ComplexScalar(1.0 / line_len, 0); for (int j = 0; j < line_len; ++j, offset += stride) { buf[offset] = (FFTDir == FFT_FORWARD) ? line_buf[j] : line_buf[j] * div_factor; } } } m_device.deallocate(line_buf); if (!is_power_of_two) { m_device.deallocate(a); m_device.deallocate(b); m_device.deallocate(pos_j_base_powered); } } if(!write_to_out) { for (Index i = 0; i < m_size; ++i) { data[i] = PartOf<FFTResultType>()(buf[i]); } m_device.deallocate(buf); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static bool isPowerOfTwo(Index x) { eigen_assert(x > 0); return !(x & (x - 1)); } // The composite number for padding, used in Bluestein's FFT algorithm EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index findGoodComposite(Index n) { Index i = 2; while (i < 2 * n - 1) i *= 2; return i; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index getLog2(Index m) { Index log2m = 0; while (m >>= 1) log2m++; return log2m; } // Call Cooley Tukey algorithm directly, data length must be power of 2 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineCooleyTukey(ComplexScalar* line_buf, Index line_len, Index log_len) { eigen_assert(isPowerOfTwo(line_len)); scramble_FFT(line_buf, line_len); compute_1D_Butterfly<FFTDir>(line_buf, line_len, log_len); } // Call Bluestein's FFT algorithm, m is a good composite number greater than (2 * n - 1), used as the padding length EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineBluestein(ComplexScalar* line_buf, Index line_len, Index good_composite, Index log_len, ComplexScalar* a, ComplexScalar* b, const ComplexScalar* pos_j_base_powered) { Index n = line_len; Index m = good_composite; ComplexScalar* data = line_buf; for (Index i = 0; i < n; ++i) { if(FFTDir == FFT_FORWARD) { a[i] = data[i] * numext::conj(pos_j_base_powered[i]); } else { a[i] = data[i] * pos_j_base_powered[i]; } } for (Index i = n; i < m; ++i) { a[i] = ComplexScalar(0, 0); } for (Index i = 0; i < n; ++i) { if(FFTDir == FFT_FORWARD) { b[i] = pos_j_base_powered[i]; } else { b[i] = numext::conj(pos_j_base_powered[i]); } } for (Index i = n; i < m - n; ++i) { b[i] = ComplexScalar(0, 0); } for (Index i = m - n; i < m; ++i) { if(FFTDir == FFT_FORWARD) { b[i] = pos_j_base_powered[m-i]; } else { b[i] = numext::conj(pos_j_base_powered[m-i]); } } scramble_FFT(a, m); compute_1D_Butterfly<FFT_FORWARD>(a, m, log_len); scramble_FFT(b, m); compute_1D_Butterfly<FFT_FORWARD>(b, m, log_len); for (Index i = 0; i < m; ++i) { a[i] *= b[i]; } scramble_FFT(a, m); compute_1D_Butterfly<FFT_REVERSE>(a, m, log_len); //Do the scaling after ifft for (Index i = 0; i < m; ++i) { a[i] /= m; } for (Index i = 0; i < n; ++i) { if(FFTDir == FFT_FORWARD) { data[i] = a[i] * numext::conj(pos_j_base_powered[i]); } else { data[i] = a[i] * pos_j_base_powered[i]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void scramble_FFT(ComplexScalar* data, Index n) { eigen_assert(isPowerOfTwo(n)); Index j = 1; for (Index i = 1; i < n; ++i){ if (j > i) { std::swap(data[j-1], data[i-1]); } Index m = n >> 1; while (m >= 2 && j > m) { j -= m; m >>= 1; } j += m; } } template <int Dir> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_2(ComplexScalar* data) { ComplexScalar tmp = data[1]; data[1] = data[0] - data[1]; data[0] += tmp; } template <int Dir> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_4(ComplexScalar* data) { ComplexScalar tmp[4]; tmp[0] = data[0] + data[1]; tmp[1] = data[0] - data[1]; tmp[2] = data[2] + data[3]; if (Dir == FFT_FORWARD) { tmp[3] = ComplexScalar(0.0, -1.0) * (data[2] - data[3]); } else { tmp[3] = ComplexScalar(0.0, 1.0) * (data[2] - data[3]); } data[0] = tmp[0] + tmp[2]; data[1] = tmp[1] + tmp[3]; data[2] = tmp[0] - tmp[2]; data[3] = tmp[1] - tmp[3]; } template <int Dir> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_8(ComplexScalar* data) { ComplexScalar tmp_1[8]; ComplexScalar tmp_2[8]; tmp_1[0] = data[0] + data[1]; tmp_1[1] = data[0] - data[1]; tmp_1[2] = data[2] + data[3]; if (Dir == FFT_FORWARD) { tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, -1); } else { tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, 1); } tmp_1[4] = data[4] + data[5]; tmp_1[5] = data[4] - data[5]; tmp_1[6] = data[6] + data[7]; if (Dir == FFT_FORWARD) { tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, -1); } else { tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, 1); } tmp_2[0] = tmp_1[0] + tmp_1[2]; tmp_2[1] = tmp_1[1] + tmp_1[3]; tmp_2[2] = tmp_1[0] - tmp_1[2]; tmp_2[3] = tmp_1[1] - tmp_1[3]; tmp_2[4] = tmp_1[4] + tmp_1[6]; // SQRT2DIV2 = sqrt(2)/2 #define SQRT2DIV2 0.7071067811865476 if (Dir == FFT_FORWARD) { tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, -SQRT2DIV2); tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, -1); tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, -SQRT2DIV2); } else { tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, SQRT2DIV2); tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, 1); tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, SQRT2DIV2); } data[0] = tmp_2[0] + tmp_2[4]; data[1] = tmp_2[1] + tmp_2[5]; data[2] = tmp_2[2] + tmp_2[6]; data[3] = tmp_2[3] + tmp_2[7]; data[4] = tmp_2[0] - tmp_2[4]; data[5] = tmp_2[1] - tmp_2[5]; data[6] = tmp_2[2] - tmp_2[6]; data[7] = tmp_2[3] - tmp_2[7]; } template <int Dir> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_1D_merge( ComplexScalar* data, Index n, Index n_power_of_2) { // Original code: // RealScalar wtemp = std::sin(M_PI/n); // RealScalar wpi = -std::sin(2 * M_PI/n); const RealScalar wtemp = m_sin_PI_div_n_LUT[n_power_of_2]; const RealScalar wpi = (Dir == FFT_FORWARD) ? m_minus_sin_2_PI_div_n_LUT[n_power_of_2] : -m_minus_sin_2_PI_div_n_LUT[n_power_of_2]; const ComplexScalar wp(wtemp, wpi); const ComplexScalar wp_one = wp + ComplexScalar(1, 0); const ComplexScalar wp_one_2 = wp_one * wp_one; const ComplexScalar wp_one_3 = wp_one_2 * wp_one; const ComplexScalar wp_one_4 = wp_one_3 * wp_one; const Index n2 = n / 2; ComplexScalar w(1.0, 0.0); for (Index i = 0; i < n2; i += 4) { ComplexScalar temp0(data[i + n2] * w); ComplexScalar temp1(data[i + 1 + n2] * w * wp_one); ComplexScalar temp2(data[i + 2 + n2] * w * wp_one_2); ComplexScalar temp3(data[i + 3 + n2] * w * wp_one_3); w = w * wp_one_4; data[i + n2] = data[i] - temp0; data[i] += temp0; data[i + 1 + n2] = data[i + 1] - temp1; data[i + 1] += temp1; data[i + 2 + n2] = data[i + 2] - temp2; data[i + 2] += temp2; data[i + 3 + n2] = data[i + 3] - temp3; data[i + 3] += temp3; } } template <int Dir> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_1D_Butterfly( ComplexScalar* data, Index n, Index n_power_of_2) { eigen_assert(isPowerOfTwo(n)); if (n > 8) { compute_1D_Butterfly<Dir>(data, n / 2, n_power_of_2 - 1); compute_1D_Butterfly<Dir>(data + n / 2, n / 2, n_power_of_2 - 1); butterfly_1D_merge<Dir>(data, n, n_power_of_2); } else if (n == 8) { butterfly_8<Dir>(data); } else if (n == 4) { butterfly_4<Dir>(data); } else if (n == 2) { butterfly_2<Dir>(data); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getBaseOffsetFromIndex(Index index, Index omitted_dim) const { Index result = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > omitted_dim; --i) { const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim]; const Index idx = index / partial_m_stride; index -= idx * partial_m_stride; result += idx * m_strides[i]; } result += index; } else { for (Index i = 0; i < omitted_dim; ++i) { const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim]; const Index idx = index / partial_m_stride; index -= idx * partial_m_stride; result += idx * m_strides[i]; } result += index; } // Value of index_coords[omitted_dim] is not determined to this step return result; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getIndexFromOffset(Index base, Index omitted_dim, Index offset) const { Index result = base + offset * m_strides[omitted_dim] ; return result; } protected: Index m_size; const FFT& m_fft; Dimensions m_dimensions; array<Index, NumDims> m_strides; TensorEvaluator<ArgType, Device> m_impl; CoeffReturnType* m_data; const Device& m_device; // This will support a maximum FFT size of 2^32 for each dimension // m_sin_PI_div_n_LUT[i] = (-2) * std::sin(M_PI / std::pow(2,i)) ^ 2; const RealScalar m_sin_PI_div_n_LUT[32] = { RealScalar(0.0), RealScalar(-2), RealScalar(-0.999999999999999), RealScalar(-0.292893218813453), RealScalar(-0.0761204674887130), RealScalar(-0.0192147195967696), RealScalar(-0.00481527332780311), RealScalar(-0.00120454379482761), RealScalar(-3.01181303795779e-04), RealScalar(-7.52981608554592e-05), RealScalar(-1.88247173988574e-05), RealScalar(-4.70619042382852e-06), RealScalar(-1.17654829809007e-06), RealScalar(-2.94137117780840e-07), RealScalar(-7.35342821488550e-08), RealScalar(-1.83835707061916e-08), RealScalar(-4.59589268710903e-09), RealScalar(-1.14897317243732e-09), RealScalar(-2.87243293150586e-10), RealScalar( -7.18108232902250e-11), RealScalar(-1.79527058227174e-11), RealScalar(-4.48817645568941e-12), RealScalar(-1.12204411392298e-12), RealScalar(-2.80511028480785e-13), RealScalar(-7.01277571201985e-14), RealScalar(-1.75319392800498e-14), RealScalar(-4.38298482001247e-15), RealScalar(-1.09574620500312e-15), RealScalar(-2.73936551250781e-16), RealScalar(-6.84841378126949e-17), RealScalar(-1.71210344531737e-17), RealScalar(-4.28025861329343e-18) }; // m_minus_sin_2_PI_div_n_LUT[i] = -std::sin(2 * M_PI / std::pow(2,i)); const RealScalar m_minus_sin_2_PI_div_n_LUT[32] = { RealScalar(0.0), RealScalar(0.0), RealScalar(-1.00000000000000e+00), RealScalar(-7.07106781186547e-01), RealScalar(-3.82683432365090e-01), RealScalar(-1.95090322016128e-01), RealScalar(-9.80171403295606e-02), RealScalar(-4.90676743274180e-02), RealScalar(-2.45412285229123e-02), RealScalar(-1.22715382857199e-02), RealScalar(-6.13588464915448e-03), RealScalar(-3.06795676296598e-03), RealScalar(-1.53398018628477e-03), RealScalar(-7.66990318742704e-04), RealScalar(-3.83495187571396e-04), RealScalar(-1.91747597310703e-04), RealScalar(-9.58737990959773e-05), RealScalar(-4.79368996030669e-05), RealScalar(-2.39684498084182e-05), RealScalar(-1.19842249050697e-05), RealScalar(-5.99211245264243e-06), RealScalar(-2.99605622633466e-06), RealScalar(-1.49802811316901e-06), RealScalar(-7.49014056584716e-07), RealScalar(-3.74507028292384e-07), RealScalar(-1.87253514146195e-07), RealScalar(-9.36267570730981e-08), RealScalar(-4.68133785365491e-08), RealScalar(-2.34066892682746e-08), RealScalar(-1.17033446341373e-08), RealScalar(-5.85167231706864e-09), RealScalar(-2.92583615853432e-09) }; }; } // end namespace Eigen #endif // EIGEN_HAS_CONSTEXPR #endif // EIGEN_CXX11_TENSOR_TENSOR_FFT_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
.h
44,052
1,044
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H // evaluator for thread pool device #ifdef EIGEN_USE_THREADS namespace Eigen { #ifdef EIGEN_USE_SIMPLE_THREAD_POOL namespace internal { template<typename LhsScalar, typename LhsMapper, typename Index> struct packLhsArg { LhsScalar* blockA; const LhsMapper& lhs; const Index m_start; const Index k_start; const Index mc; const Index kc; }; template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index> struct packRhsAndKernelArg { const MaxSizeVector<LhsScalar*>* blockAs; RhsScalar* blockB; const RhsMapper& rhs; OutputMapper& output; const Index m; const Index k; const Index n; const Index mc; const Index kc; const Index nc; const Index num_threads; const Index num_blockAs; const Index max_m; const Index k_block_idx; const Index m_block_idx; const Index n_block_idx; const Index m_blocks; const Index n_blocks; MaxSizeVector<Notification*>* kernel_notifications; const MaxSizeVector<Notification*>* lhs_notifications; const bool need_to_pack; }; } // end namespace internal #endif // EIGEN_USE_SIMPLE_THREAD_POOL template<typename Indices, typename LeftArgType, typename RightArgType> struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> : public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > { typedef ThreadPoolDevice Device; typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self; typedef TensorContractionEvaluatorBase<Self> Base; typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef typename XprType::Index Index; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; enum { Layout = TensorEvaluator<LeftArgType, Device>::Layout, }; // Most of the code is assuming that both input tensors are ColMajor. If the // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: // If we want to compute A * B = C, where A is LHS and B is RHS, the code // will pretend B is LHS and A is RHS. typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; typedef typename internal::conditional< static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; static const int LDims = internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; static const int RDims = internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; static const int ContractDims = internal::array_size<Indices>::value; typedef array<Index, LDims> left_dim_mapper_t; typedef array<Index, RDims> right_dim_mapper_t; typedef array<Index, ContractDims> contract_t; typedef array<Index, LDims - ContractDims> left_nocontract_t; typedef array<Index, RDims - ContractDims> right_nocontract_t; static const int NumDims = LDims + RDims - 2 * ContractDims; typedef DSizes<Index, NumDims> Dimensions; // typedefs needed in evalTo typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits; typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} #ifndef EIGEN_USE_SIMPLE_THREAD_POOL template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> void evalProduct(Scalar* buffer) const { typedef internal::TensorContractionInputMapper< LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, internal::packet_traits<LhsScalar>::size, lhs_inner_dim_contiguous, false, Unaligned> LhsMapper; typedef internal::TensorContractionInputMapper< RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, contract_t, internal::packet_traits<RhsScalar>::size, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned> RhsMapper; typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr, Traits::LhsProgress, ColMajor> LhsPacker; typedef internal::gemm_pack_rhs< RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker; typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, Traits::mr, Traits::nr, false, false> GebpKernel; const Index m = this->m_i_size; const Index n = this->m_j_size; const Index k = this->m_k_size; if (m == 0 || n == 0 || k == 0) return; // Compute a set of algorithm parameters: // - kernel block sizes (bm, bn, bk) // - task grain sizes (number of kernels executed per task: gm, gn) // - number of threads // - sharding by row/column // - parallel packing or first lhs then rhs // and some derived parameters: // - number of tasks (nm, nn, nk) // - number of kernels (nm0, nn0) // Unfortunately, all these parameters are tightly interdependent. // So in some cases we first compute approximate values, then compute other // values based on these approximations and then refine the approximations. // There are lots of heuristics here. There is some reasoning behind them, // but ultimately they are just tuned on contraction benchmarks for // different input configurations, thread counts and instruction sets. // So feel free to question any of them. // Compute whether we want to shard by row or by column. // This is a first approximation, it will be refined later. Since we don't // know number of threads yet we use 2, because what's we are most // interested in at this point is whether it makes sense to use // parallelization at all or not. bool shard_by_col = shardByCol(m, n, 2); // First approximation of kernel blocking sizes. // Again, we don't know number of threads yet, so we use 2. Index bm, bn, bk; if (shard_by_col) { internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, 2); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } else { internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByRow> blocking(k, m, n, 2); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } // Compute optimal number of threads. // Note: we use bk instead of k here because we are interested in amount of // _parallelizable_ computations, and computations are not parallelizable // across k dimension. const TensorOpCost cost = contractionCost(m, n, bm, bn, bk, shard_by_col, false); int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads( static_cast<double>(n) * m, cost, this->m_device.numThreads()); // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost // model is not tuned. Remove this when the cost model is tuned. if (n == 1) num_threads = 1; if (num_threads == 1) { // The single-threaded algorithm should be faster in this case. if (n == 1) this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer); else this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer); return; } // Now that we know number of threads, recalculate sharding and blocking. shard_by_col = shardByCol(m, n, num_threads); if (shard_by_col) { internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } else { internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByRow> blocking(k, m, n, num_threads); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } // Number of kernels for each dimension. Index nm0 = divup(m, bm); Index nn0 = divup(n, bn); Index nk = divup(k, bk); // Calculate task grain size (number of kernels executed per task). // This task size coarsening serves two purposes: // 1. It reduces per-task overheads including synchronization overheads. // 2. It allows to use caches better (reuse the same packed rhs in several // consecutive kernels). Index gm = 1; Index gn = 1; // If we are sharding by column, then we prefer to reduce rows first. if (shard_by_col) { gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col); gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col); } else { gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col); gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col); } // Number of tasks in each dimension. Index nm = divup(nm0, gm); Index nn = divup(nn0, gn); // Last by not least, decide whether we want to issue both lhs and rhs // packing in parallel; or issue lhs packing first, and then issue rhs // packing when lhs packing completes (for !shard_by_col lhs and rhs are // swapped). Parallel packing allows more parallelism (for both packing and // kernels), while sequential packing provides better locality (once // a thread finishes rhs packing it proceed to kernels with that rhs). // First, we are interested in parallel packing if there are few tasks. bool parallel_pack = num_threads >= nm * nn; // Also do parallel packing if all data fits into L2$. if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <= l2CacheSize() * num_threads) parallel_pack = true; // But don't do it if we will use each rhs only once. Locality seems to be // more important in this case. if ((shard_by_col ? nm : nn) == 1) parallel_pack = false; LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, this->m_left_contracting_strides, this->m_k_strides); RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, this->m_right_contracting_strides, this->m_k_strides); Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper, OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0, shard_by_col, parallel_pack) .run(); } // Context coordinates a single parallel gemm operation. template <typename LhsPacker, typename RhsPacker, typename GebpKernel, typename LhsMapper, typename RhsMapper, typename OutputMapper> class Context { public: Context(const Device& device, int num_threads, LhsMapper& lhs, RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm, Index bn, Index bk, Index nm, Index nn, Index nk, Index gm, Index gn, Index nm0, Index nn0, bool shard_by_col, bool parallel_pack) : device_(device), lhs_(lhs), rhs_(rhs), buffer_(buffer), output_(buffer, tm), num_threads_(num_threads), shard_by_col_(shard_by_col), parallel_pack_(parallel_pack), m_(tm), n_(tn), k_(tk), bm_(bm), bn_(bn), bk_(bk), nm_(nm), nn_(nn), nk_(nk), gm_(gm), gn_(gn), nm0_(nm0), nn0_(nn0) { for (Index x = 0; x < P; x++) { // Normal number of notifications for k slice switch is // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only // nm_ + nn_ notifications, because they will not receive notifications // from preceeding kernels. state_switch_[x] = x == 0 ? 1 : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) + (x == P - 1 ? nm_ * nn_ : 0); state_packing_ready_[x] = parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_); state_kernel_[x] = new std::atomic<uint8_t>*[nm_]; for (Index m = 0; m < nm_; m++) { state_kernel_[x][m] = new std::atomic<uint8_t>[nn_]; // Kernels generally receive 3 notifications (previous kernel + 2 // packing), but the first slice won't get notifications from previous // kernels. for (Index n = 0; n < nn_; n++) state_kernel_[x][m][n].store( (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1), std::memory_order_relaxed); } } // Allocate memory for packed rhs/lhs matrices. size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1); size_t lhs_size = divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align; size_t rhs_size = divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align; packed_mem_ = static_cast<char*>(internal::aligned_malloc( (nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1))); char* mem = static_cast<char*>(packed_mem_); for (Index x = 0; x < numext::mini<Index>(nk_, P - 1); x++) { packed_lhs_[x].resize(nm0_); for (Index m = 0; m < nm0_; m++) { packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem); mem += lhs_size; } packed_rhs_[x].resize(nn0_); for (Index n = 0; n < nn0_; n++) { packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem); mem += rhs_size; } } } ~Context() { for (Index x = 0; x < P; x++) { for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m]; delete[] state_kernel_[x]; } internal::aligned_free(packed_mem_); } void run() { // Kick off packing of the first slice. signal_switch(0, 1); // Wait for overall completion. // TODO(dvyukov): this wait can lead to deadlock. // If nthreads contractions are concurrently submitted from worker // threads, this wait will block all worker threads and the system will // deadlock. done_.Wait(); } private: Notification done_; const Device& device_; LhsMapper& lhs_; RhsMapper& rhs_; Scalar* const buffer_; OutputMapper output_; const int num_threads_; const bool shard_by_col_; const bool parallel_pack_; // Matrix sizes. const Index m_; const Index n_; const Index k_; // Block sizes. const Index bm_; const Index bn_; const Index bk_; // Number of tasks. const Index nm_; const Index nn_; const Index nk_; // Task grain sizes (number of kernels executed per task). const Index gm_; const Index gn_; // Number of blocks (this is different from ni_/nn_ because of task size // coarsening). const Index nm0_; const Index nn0_; // Parallelization strategy. // // Blocks related to the same k block can run in parallel because they write // to different output blocks. So we parallelize within k slices, this // gives us parallelism level of m x n. Before we can start any kernels // related to k-th slice, we need to issue m lhs packing tasks and n rhs // packing tasks. // // However, there is a bottleneck when we are finishing kernels for k-th // slice (at the very end there is only 1 runnable kernel). To mitigate this // bottleneck we allow kernels from k-th and k+1-th slices to run in // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same // output block, so they must not run in parallel. // // This gives us the following dependency graph. // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs // packing tasks. // Kernel (m, n, k) can start when: // - kernel (m, n, k-1) has finished // - lhs packing (m, k) has finished // - rhs packing (n, k) has finished // Lhs/rhs packing can start when: // - all k-1 packing has finished (artificially imposed to limit amount of // parallel packing) // // On top of that we limit runnable tasks to two consecutive k slices. // This is done to limit amount of memory we need for packed lhs/rhs // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_). // // state_switch_ tracks when we are ready to switch to the next k slice. // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n). // These variable are rolling over 3 consecutive k slices: first two we are // actively executing + one to track completion of kernels in the second // slice. static const Index P = 3; void* packed_mem_; std::vector<LhsScalar*> packed_lhs_[P - 1]; std::vector<RhsScalar*> packed_rhs_[P - 1]; std::atomic<uint8_t>** state_kernel_[P]; // state_switch_ is frequently modified by worker threads, while other // fields are read-only after constructor. Let's move it to a separate cache // line to reduce cache-coherency traffic. char pad_[128]; std::atomic<Index> state_packing_ready_[P]; std::atomic<Index> state_switch_[P]; void pack_lhs(Index m, Index k) { const Index mend = m * gm_ + gm(m); for (Index m1 = m * gm_; m1 < mend; m1++) LhsPacker()(packed_lhs_[k % (P - 1)][m1], lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1)); if (!parallel_pack_ && shard_by_col_) { signal_packing(k); } else { signal_switch(k + 1); for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0); } } void pack_rhs(Index n, Index k) { const Index nend = n * gn_ + gn(n); for (Index n1 = n * gn_; n1 < nend; n1++) { if (k == 0) { // Zero the output memory in parallel. // On 10000x2x10000 mm zeroing can easily take half of time. // Zero (bn x m) row. Safe to do here because all kernels that will // write to this memory depend on completion of this task. // Note: don't call device_.memset() here. device_.memset() blocks on // thread pool worker thread, which can lead to underutilization and // deadlocks. memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar)); } RhsPacker()(packed_rhs_[k % (P - 1)][n1], rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1)); } if (parallel_pack_ || shard_by_col_) { signal_switch(k + 1); for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0); } else { signal_packing(k); } } void kernel(Index m, Index n, Index k) { // Note: order of iteration matters here. Iteration over m is innermost // because we want to reuse the same packed rhs in consequetive tasks // (rhs fits into L2$ while lhs only into L3$). const Index nend = n * gn_ + gn(n); const Index mend = m * gm_ + gm(m); if (shard_by_col_) { for (Index n1 = n * gn_; n1 < nend; n1++) { for (Index m1 = m * gm_; m1 < mend; m1++) GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_), packed_lhs_[k % (P - 1)][m1], packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1), Scalar(1), -1, -1, 0, 0); } } else { for (Index m1 = m * gm_; m1 < mend; m1++) for (Index n1 = n * gn_; n1 < nend; n1++) { GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_), packed_lhs_[k % (P - 1)][m1], packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1), Scalar(1), -1, -1, 0, 0); } } signal_kernel(m, n, k + 1, false); signal_switch(k + 2); } void signal_packing(Index k) { eigen_assert(!parallel_pack_); Index s = state_packing_ready_[k % P].fetch_sub(1); eigen_assert(s > 0); if (s != 1) return; state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_; enqueue_packing(k, shard_by_col_); } void signal_kernel(Index m, Index n, Index k, bool sync) { std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n]; Index s = state->load(); eigen_assert(s > 0); if (s != 1 && state->fetch_sub(1) != 1) return; state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed); if (sync) kernel(m, n, k); else device_.enqueueNoNotification([=]() { kernel(m, n, k); }); } void signal_switch(Index k, Index v = 1) { Index s = state_switch_[k % P].fetch_sub(v); eigen_assert(s >= v); if (s != v) return; // Ready to switch to the next k slice. // Reset counter for the next iteration. state_switch_[k % P] = (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) + nm_ * nn_; if (k < nk_) { // Issue lhs/rhs packing. Their completion will in turn kick off // kernels. if (parallel_pack_) { enqueue_packing(k, !shard_by_col_); enqueue_packing(k, shard_by_col_); } else if (shard_by_col_) { enqueue_packing(k, false); } else { enqueue_packing(k, true); } // Termination handling. // Because kernel completion signals k + 2 switch, we need to finish nk // + 2 slices without issuing any tasks on nk + 1 slice. So here we // pretend that all nk + 1 packing tasks just finish instantly; so that // nk + 2 switch only waits for completion of nk kernels. } else if (k == nk_) { signal_switch(k + 1, parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)); } else { done_.Notify(); } } // Enqueue all rhs/lhs packing for k-th slice. void enqueue_packing(Index k, bool rhs) { enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs); } void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) { if (end - start == 1) { if (rhs) pack_rhs(start, k); else pack_lhs(start, k); } else { Index mid = (start + end) / 2; device_.enqueueNoNotification( [=]() { enqueue_packing_helper(mid, end, k, rhs); }); device_.enqueueNoNotification( [=]() { enqueue_packing_helper(start, mid, k, rhs); }); } } // Block sizes with accounting for potentially incomplete last block. Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; } Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; } Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; } // Task grain sizes accounting for potentially incomplete last task. Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; } Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; } Context(const Context&) = delete; void operator=(const Context&) = delete; }; // Decide whether we want to shard m x n contraction by columns or by rows. static bool shardByCol(Index m, Index n, Index num_threads) { // Note: we are comparing both n and m against Traits::nr, it is not // a mistake. We are trying to figure out how both n and m will fit into // the main sharding dimension. // Sharding by column is the default // ... unless there is enough data for vectorization over rows if (m / num_threads >= Traits::nr && // and not enough data for vectorization over columns (n / num_threads < Traits::nr || // ... or barely enough data for vectorization over columns, // but it is not evenly dividable across threads (n / num_threads < 4 * Traits::nr && (n % (num_threads * Traits::nr)) != 0 && // ... and it is evenly dividable across threads for rows ((m % (num_threads * Traits::nr)) == 0 || // .. or it is not evenly dividable for both dimensions but // there is much more data over rows so that corner effects are // mitigated. (m / n >= 6))))) return false; // Wait, or if matrices are just substantially prolonged over the other // dimension. if (n / num_threads < 16 * Traits::nr && m > n * 32) return false; return true; } Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn, int num_threads, bool shard_by_col) const { Index gm = 1; Index gm1 = 1; Index nm0 = divup(m, bm); Index nm1 = nm0; for (;;) { // Find the next candidate for m grain size. It needs to result in // different number of blocks. E.g. if we have 10 kernels, we want to try // 5 and 10, but not 6, 7, 8 and 9. while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++; if (gm1 > nm0) break; // Check the candidate. int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads, shard_by_col); if (res < 0) break; nm1 = divup(nm0, gm1); if (res == 0) continue; // Commit new grain size. gm = gm1; } return gm; } Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm, int num_threads, bool shard_by_col) const { Index gn = 1; Index gn1 = 1; Index nn0 = divup(n, bn); Index nn1 = nn0; for (;;) { while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++; if (gn1 > nn0) break; int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads, shard_by_col); if (res < 0) break; nn1 = divup(nn0, gn1); if (res == 0) continue; gn = gn1; } return gn; } // checkGrain checks whether grain (gm, gn) is suitable and is better than // (oldgm, oldgn). int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm, Index gn, Index oldgm, Index oldgn, int num_threads, bool shard_by_col) const { const TensorOpCost cost = contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true); double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize( static_cast<double>(bm) * gm * bn * gn, cost); // If the task is too small, then we agree on it regardless of anything // else. Otherwise synchronization overheads will dominate. if (taskSize < 1) return 1; // If it is too large, then we reject it and all larger tasks. if (taskSize > 2) return -1; // Now we are in presumably good task size range. // The main deciding factor here is parallelism. Consider that we have 12 // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes. // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4 // of cores will be busy). While grain size 3 gives us 4 tasks, which gives // us parallelism of 1 (we can load all cores). Index nm0 = divup(m, bm); Index nn0 = divup(n, bn); Index new_tasks = divup(nm0, gm) * divup(nn0, gn); double new_parallelism = static_cast<double>(new_tasks) / (divup<int>(new_tasks, num_threads) * num_threads); Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn); double old_parallelism = static_cast<double>(old_tasks) / (divup<int>(old_tasks, num_threads) * num_threads); if (new_parallelism > old_parallelism || new_parallelism == 1) return 1; return 0; } #else // EIGEN_USE_SIMPLE_THREAD_POOL template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> void evalProduct(Scalar* buffer) const { if (this->m_j_size == 1) { this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer); return; } evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer); } template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> void evalGemm(Scalar* buffer) const { // columns in left side, rows in right side const Index k = this->m_k_size; // rows in left side const Index m = this->m_i_size; // columns in right side const Index n = this->m_j_size; // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar) this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); const int lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; const int rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, lhs_packet_size, lhs_inner_dim_contiguous, false, Unaligned> LhsMapper; typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, contract_t, rhs_packet_size, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned> RhsMapper; typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; // TODO: packing could be faster sometimes if we supported row major tensor mappers typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr, Traits::LhsProgress, ColMajor> LhsPacker; typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker; // TODO: replace false, false with conjugate values? typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, Traits::mr, Traits::nr, false, false> GebpKernel; typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg; typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg; // initialize data mappers LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, this->m_left_contracting_strides, this->m_k_strides); RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, this->m_right_contracting_strides, this->m_k_strides); OutputMapper output(buffer, m); // compute block sizes (which depend on number of threads) const Index num_threads = this->m_device.numThreads(); internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads); Index mc = blocking.mc(); Index nc = blocking.nc(); Index kc = blocking.kc(); eigen_assert(mc <= m); eigen_assert(nc <= n); eigen_assert(kc <= k); #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) const Index k_blocks = CEIL_DIV(k, kc); const Index n_blocks = CEIL_DIV(n, nc); const Index m_blocks = CEIL_DIV(m, mc); const Index sizeA = mc * kc; const Index sizeB = kc * nc; /* cout << "m: " << m << " n: " << n << " k: " << k << endl; cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl; cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl; cout << "num threads: " << num_threads << endl; */ // note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB // aren't 16 byte aligned segfaults will happen due to SIMD instructions // note: You can get away with allocating just a single blockA and offsets and meet the // the alignment requirements with the assumption that // (Traits::mr * sizeof(ResScalar)) % 16 == 0 const Index numBlockAs = numext::mini(num_threads, m_blocks); MaxSizeVector<LhsScalar *> blockAs(num_threads); for (int i = 0; i < num_threads; i++) { blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar)))); } // To circumvent alignment issues, I'm just going to separately allocate the memory for each thread // TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful. // Other options: (1) reuse memory when a thread finishes. con: tricky // (2) allocate block B memory in each thread. con: overhead MaxSizeVector<RhsScalar *> blockBs(n_blocks); for (int i = 0; i < n_blocks; i++) { blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar)))); } // lhs_notifications starts with all null Notifications MaxSizeVector<Notification*> lhs_notifications(num_threads, nullptr); // this should really be numBlockAs * n_blocks; const Index num_kernel_notifications = num_threads * n_blocks; MaxSizeVector<Notification*> kernel_notifications(num_kernel_notifications, nullptr); for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) { const Index k_start = k_block_idx * kc; // make sure we don't overshoot right edge of left matrix const Index actual_kc = numext::mini(k_start + kc, k) - k_start; for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) { const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs); for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) { const Index m_start = mt_block_idx * mc; const Index actual_mc = numext::mini(m_start + mc, m) - m_start; eigen_assert(actual_mc > 0); Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads; for (int i = 0; i < n_blocks; ++i) { Index notification_id = (blockAId * n_blocks + i); // Wait for any current kernels using this slot to complete // before using it. if (kernel_notifications[notification_id]) { wait_until_ready(kernel_notifications[notification_id]); delete kernel_notifications[notification_id]; } kernel_notifications[notification_id] = new Notification(); } const packLArg arg = { blockAs[blockAId], // blockA lhs, // lhs m_start, // m k_start, // k actual_mc, // mc actual_kc, // kc }; // Delete any existing notification since we may be // replacing it. The algorithm should ensure that there are // no existing waiters on this notification. delete lhs_notifications[blockAId]; lhs_notifications[blockAId] = this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg); } // now start kernels. const Index m_base_start = m_block_idx * mc; const bool need_to_pack = m_block_idx == 0; for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) { const Index n_start = n_block_idx * nc; const Index actual_nc = numext::mini(n_start + nc, n) - n_start; // first make sure the previous kernels are all done before overwriting rhs. Also wait if // we're going to start new k. In both cases need_to_pack is true. if (need_to_pack) { for (Index i = num_blocks; i < num_threads; ++i) { Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads; Index future_id = (blockAId * n_blocks + n_block_idx); wait_until_ready(kernel_notifications[future_id]); } } packRKArg arg = { &blockAs, // blockA blockBs[n_block_idx], // blockB rhs, // rhs output, // output m_base_start, // m k_start, // k n_start, // n mc, // mc actual_kc, // kc actual_nc, // nc num_threads, numBlockAs, m, k_block_idx, m_block_idx, n_block_idx, // n_block_idx m_blocks, // m_blocks n_blocks, // n_blocks &kernel_notifications, // kernel notifications &lhs_notifications, // lhs notifications need_to_pack, // need_to_pack }; // We asynchronously kick off this function, which ends up // notifying the appropriate kernel_notifications objects, // which this thread waits on before exiting. this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg); } } } // Make sure all the kernels are done. for (size_t i = 0; i < kernel_notifications.size(); ++i) { wait_until_ready(kernel_notifications[i]); delete kernel_notifications[i]; } // No need to wait for lhs notifications since they should have // already been waited on. Just clean them up. for (size_t i = 0; i < lhs_notifications.size(); ++i) { delete lhs_notifications[i]; } // deallocate all of the memory for both A and B's for (size_t i = 0; i < blockAs.size(); i++) { this->m_device.deallocate(blockAs[i]); } for (size_t i = 0; i < blockBs.size(); i++) { this->m_device.deallocate(blockBs[i]); } #undef CEIL_DIV } /* * Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing * the LHS block, check that all of the kernels that worked on the same * mt_block_idx in the previous m_block are done. */ template <typename packLArg, typename LhsPacker> static void packLhs(const packLArg arg) { // perform actual packing LhsPacker pack_lhs; pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc); } /* * Packs a RHS block of size (kc, nc) starting at (k, n) after checking that * all kernels in the previous block are done. * Then for each LHS future, we wait on the future and then call GEBP * on the area packed by the future (which starts at * blockA + future_idx * mt * kc) on the LHS and with the full packed * RHS block. * The output of this GEBP is written to output(m + i * mt, n). */ template <typename packRKArg, typename RhsPacker, typename GebpKernel> static void packRhsAndKernel(packRKArg arg) { if (arg.need_to_pack) { RhsPacker pack_rhs; pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc); } GebpKernel gebp; for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) { const Index m_base_start = arg.m + arg.mc*mt_block_idx; if (m_base_start < arg.max_m) { Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads; wait_until_ready((*arg.lhs_notifications)[blockAId]); const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start; gebp(arg.output.getSubMapper(m_base_start, arg.n), (*arg.blockAs)[blockAId], arg.blockB, actual_mc, arg.kc, arg.nc, Scalar(1), -1, -1, 0, 0); // Notify that the kernel is done. const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx; (*arg.kernel_notifications)[set_idx]->Notify(); } } } #endif // EIGEN_USE_SIMPLE_THREAD_POOL TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk, bool shard_by_col, bool prepacked) const { const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size, PacketType<RhsScalar, Device>::size); const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size; const double kd = static_cast<double>(bk); // Peak VFMA bandwidth is 0.5. However if we have not enough data for // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined // experimentally. double computeBandwidth = bk == 1 ? 4.0 : (shard_by_col ? bn : bm) < Traits::nr || (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5; #ifndef EIGEN_VECTORIZE_FMA // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors. // However for MULPS/ADDPS we have dependent sequence of 2 such instructions, // so overall bandwidth is 1.0. if (computeBandwidth == 0.5) computeBandwidth = 1.0; #endif // Computations. TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size); // Output stores. cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size); if (prepacked) { // Packing and kernels are executed in different tasks. When we calculate // task grain size we look only at kernel cost assuming that kernel // is more expensive than packing. return cost; } // Lhs/rhs loads + computations. TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n); TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m); // Lhs packing memory cost does not contribute considerably to overall // execution time because lhs is prefetched early and accessed sequentially. if (shard_by_col) lhsCost.dropMemoryCost(); else rhsCost.dropMemoryCost(); return cost + lhsCost + rhsCost; } }; } // end namespace Eigen #endif // EIGEN_USE_THREADS #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
.h
8,527
254
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H #define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H namespace Eigen { /** \internal * * \class TensorIntDiv * \ingroup CXX11_Tensor_Module * * \brief Fast integer division by a constant. * * See the paper from Granlund and Montgomery for explanation. * (at http://dx.doi.org/10.1145/773473.178249) * * \sa Tensor */ namespace internal { namespace { // Note: result is undefined if val == 0 template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename internal::enable_if<sizeof(T)==4,int>::type count_leading_zeros(const T val) { #ifdef __CUDA_ARCH__ return __clz(val); #elif EIGEN_COMP_MSVC unsigned long index; _BitScanReverse(&index, val); return 31 - index; #else EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE); return __builtin_clz(static_cast<uint32_t>(val)); #endif } template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename internal::enable_if<sizeof(T)==8,int>::type count_leading_zeros(const T val) { #ifdef __CUDA_ARCH__ return __clzll(val); #elif EIGEN_COMP_MSVC && EIGEN_ARCH_x86_64 unsigned long index; _BitScanReverse64(&index, val); return 63 - index; #elif EIGEN_COMP_MSVC // MSVC's _BitScanReverse64 is not available for 32bits builds. unsigned int lo = (unsigned int)(val&0xffffffff); unsigned int hi = (unsigned int)((val>>32)&0xffffffff); int n; if(hi==0) n = 32 + count_leading_zeros<unsigned int>(lo); else n = count_leading_zeros<unsigned int>(hi); return n; #else EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE); return __builtin_clzll(static_cast<uint64_t>(val)); #endif } template <typename T> struct UnsignedTraits { typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type; }; template <typename T> struct DividerTraits { typedef typename UnsignedTraits<T>::type type; static const int N = sizeof(T) * 8; }; template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) { #if defined(__CUDA_ARCH__) return __umulhi(a, b); #else return (static_cast<uint64_t>(a) * b) >> 32; #endif } template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) { #if defined(__CUDA_ARCH__) return __umul64hi(a, b); #elif defined(__SIZEOF_INT128__) __uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b); return static_cast<uint64_t>(v >> 64); #else return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper(); #endif } template <int N, typename T> struct DividerHelper { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) { EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE); return static_cast<uint32_t>((static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1); } }; template <typename T> struct DividerHelper<64, T> { static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) { #if defined(__SIZEOF_INT128__) && !defined(__CUDA_ARCH__) return static_cast<uint64_t>((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1); #else const uint64_t shift = 1ULL << log_div; TensorUInt128<uint64_t, uint64_t> result = TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + TensorUInt128<static_val<0>, static_val<1> >(1); return static_cast<uint64_t>(result); #endif } }; } template <typename T, bool div_gt_one = false> struct TensorIntDivisor { public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { multiplier = 0; shift1 = 0; shift2 = 0; } // Must have 0 < divider < 2^31. This is relaxed to // 0 < divider < 2^63 when using 64-bit indices on platforms that support // the __uint128_t type. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) { const int N = DividerTraits<T>::N; eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2); eigen_assert(divider > 0); // fast ln2 const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider)); int log_div = N - leading_zeros; // if divider is a power of two then log_div is 1 more than it should be. if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider)) log_div--; multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider); shift1 = log_div > 1 ? 1 : log_div; shift2 = log_div > 1 ? log_div-1 : 0; } // Must have 0 <= numerator. On platforms that dont support the __uint128_t // type numerator should also be less than 2^32-1. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const { eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2); //eigen_assert(numerator >= 0); // this is implicitly asserted by the line above UnsignedType t1 = muluh(multiplier, numerator); UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1; return (t1 + t) >> shift2; } private: typedef typename DividerTraits<T>::type UnsignedType; UnsignedType multiplier; int32_t shift1; int32_t shift2; }; // Optimized version for signed 32 bit integers. // Derived from Hacker's Delight. // Only works for divisors strictly greater than one template <> class TensorIntDivisor<int32_t, true> { public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { magic = 0; shift = 0; } // Must have 2 <= divider EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider) { eigen_assert(divider >= 2); calcMagic(divider); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const { #ifdef __CUDA_ARCH__ return (__umulhi(magic, n) >> shift); #else uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n); return (static_cast<uint32_t>(v >> 32) >> shift); #endif } private: // Compute the magic numbers. See Hacker's Delight section 10 for an in // depth explanation. EIGEN_DEVICE_FUNC void calcMagic(int32_t d) { const unsigned two31 = 0x80000000; // 2**31. unsigned ad = d; unsigned t = two31 + (ad >> 31); unsigned anc = t - 1 - t%ad; // Absolute value of nc. int p = 31; // Init. p. unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|. unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|). unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|. unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|). unsigned delta = 0; do { p = p + 1; q1 = 2*q1; // Update q1 = 2**p/|nc|. r1 = 2*r1; // Update r1 = rem(2**p, |nc|). if (r1 >= anc) { // (Must be an unsigned q1 = q1 + 1; // comparison here). r1 = r1 - anc;} q2 = 2*q2; // Update q2 = 2**p/|d|. r2 = 2*r2; // Update r2 = rem(2**p, |d|). if (r2 >= ad) { // (Must be an unsigned q2 = q2 + 1; // comparison here). r2 = r2 - ad;} delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); magic = (unsigned)(q2 + 1); shift = p - 32; } uint32_t magic; int32_t shift; }; template <typename T, bool div_gt_one> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T, div_gt_one>& divisor) { return divisor.divide(numerator); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h
.h
3,090
71
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Cummins Chris PhD student at The University of Edinburgh. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclRun.h * * \brief: * Schedule_kernel invoke an specialised version of kernel struct. The * specialisation is based on the data dimension in sycl buffer * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP namespace Eigen { namespace TensorSycl { /// The run function in tensor sycl convert the expression tree to a buffer /// based expression tree; /// creates the expression tree for the device with accessor to buffers; /// construct the kernel and submit it to the sycl queue. template <typename Expr, typename Dev> void run(Expr &expr, Dev &dev) { Eigen::TensorEvaluator<Expr, Dev> evaluator(expr, dev); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { typedef typename internal::createPlaceHolderExpression<Expr>::Type PlaceHolderExpr; auto functors = internal::extractFunctors(evaluator); size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2; dev.m_queue.submit([&](cl::sycl::handler &cgh) { // create a tuple of accessors from Evaluator auto tuple_of_accessors = internal::createTupleOfAccessors<decltype(evaluator)>(cgh, evaluator); const auto range = utility::tuple::get<0>(tuple_of_accessors).get_range()[0]; size_t GRange=range; if (tileSize>GRange) tileSize=GRange; else if(GRange>tileSize){ size_t xMode = GRange % tileSize; if (xMode != 0) GRange += (tileSize - xMode); } // run the kernel cgh.parallel_for<PlaceHolderExpr>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) { typedef typename internal::ConvertToDeviceExpression<Expr>::Type DevExpr; auto device_expr =internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors); auto device_evaluator = Eigen::TensorEvaluator<decltype(device_expr.expr), Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice()); if (itemID.get_global_linear_id() < range) { device_evaluator.evalScalar(static_cast<int>(itemID.get_global_linear_id())); } }); }); dev.m_queue.throw_asynchronous(); } evaluator.cleanup(); } } // namespace TensorSycl } // namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h
.h
9,454
273
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H #define EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H namespace Eigen { namespace internal { template<typename Scalar, int Options> class compute_tensor_flags { enum { is_dynamic_size_storage = 1, is_aligned = ( ((Options&DontAlign)==0) && ( #if EIGEN_MAX_STATIC_ALIGN_BYTES>0 (!is_dynamic_size_storage) #else 0 #endif | #if EIGEN_MAX_ALIGN_BYTES>0 is_dynamic_size_storage #else 0 #endif ) ), packet_access_bit = packet_traits<Scalar>::Vectorizable && is_aligned ? PacketAccessBit : 0 }; public: enum { ret = packet_access_bit }; }; template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_> struct traits<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > { typedef Scalar_ Scalar; typedef Dense StorageKind; typedef IndexType_ Index; static const int NumDimensions = NumIndices_; static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor; enum { Options = Options_, Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0 : LvalueBit) }; template <typename T> struct MakePointer { typedef T* Type; }; }; template<typename Scalar_, typename Dimensions, int Options_, typename IndexType_> struct traits<TensorFixedSize<Scalar_, Dimensions, Options_, IndexType_> > { typedef Scalar_ Scalar; typedef Dense StorageKind; typedef IndexType_ Index; static const int NumDimensions = array_size<Dimensions>::value; static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor; enum { Options = Options_, Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0: LvalueBit) }; template <typename T> struct MakePointer { typedef T* Type; }; }; template<typename PlainObjectType, int Options_, template <class> class MakePointer_> struct traits<TensorMap<PlainObjectType, Options_, MakePointer_> > : public traits<PlainObjectType> { typedef traits<PlainObjectType> BaseTraits; typedef typename BaseTraits::Scalar Scalar; typedef typename BaseTraits::StorageKind StorageKind; typedef typename BaseTraits::Index Index; static const int NumDimensions = BaseTraits::NumDimensions; static const int Layout = BaseTraits::Layout; enum { Options = Options_, Flags = BaseTraits::Flags }; template <class T> struct MakePointer { // Intermediate typedef to workaround MSVC issue. typedef MakePointer_<T> MakePointerT; typedef typename MakePointerT::Type Type; }; }; template<typename PlainObjectType> struct traits<TensorRef<PlainObjectType> > : public traits<PlainObjectType> { typedef traits<PlainObjectType> BaseTraits; typedef typename BaseTraits::Scalar Scalar; typedef typename BaseTraits::StorageKind StorageKind; typedef typename BaseTraits::Index Index; static const int NumDimensions = BaseTraits::NumDimensions; static const int Layout = BaseTraits::Layout; enum { Options = BaseTraits::Options, Flags = BaseTraits::Flags }; }; template<typename _Scalar, int NumIndices_, int Options, typename IndexType_> struct eval<Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense> { typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>& type; }; template<typename _Scalar, int NumIndices_, int Options, typename IndexType_> struct eval<const Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense> { typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>& type; }; template<typename Scalar_, typename Dimensions, int Options, typename IndexType_> struct eval<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense> { typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type; }; template<typename Scalar_, typename Dimensions, int Options, typename IndexType_> struct eval<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense> { typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type; }; template<typename PlainObjectType, int Options, template <class> class MakePointer> struct eval<TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense> { typedef const TensorMap<PlainObjectType, Options, MakePointer>& type; }; template<typename PlainObjectType, int Options, template <class> class MakePointer> struct eval<const TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense> { typedef const TensorMap<PlainObjectType, Options, MakePointer>& type; }; template<typename PlainObjectType> struct eval<TensorRef<PlainObjectType>, Eigen::Dense> { typedef const TensorRef<PlainObjectType>& type; }; template<typename PlainObjectType> struct eval<const TensorRef<PlainObjectType>, Eigen::Dense> { typedef const TensorRef<PlainObjectType>& type; }; // TODO nested<> does not exist anymore in Eigen/Core, and it thus has to be removed in favor of ref_selector. template<typename T, int n=1, typename PlainObject = void> struct nested { typedef typename ref_selector<T>::type type; }; template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_> struct nested<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > { typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>& type; }; template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_> struct nested<const Tensor<Scalar_, NumIndices_, Options_, IndexType_> > { typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>& type; }; template <typename Scalar_, typename Dimensions, int Options, typename IndexType_> struct nested<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> > { typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type; }; template <typename Scalar_, typename Dimensions, int Options, typename IndexType_> struct nested<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> > { typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type; }; template <typename PlainObjectType, int Options, template <class> class MakePointer> struct nested<TensorMap<PlainObjectType, Options, MakePointer> > { typedef const TensorMap<PlainObjectType, Options, MakePointer>& type; }; template <typename PlainObjectType, int Options, template <class> class MakePointer> struct nested<const TensorMap<PlainObjectType, Options, MakePointer> > { typedef const TensorMap<PlainObjectType, Options, MakePointer>& type; }; template <typename PlainObjectType> struct nested<TensorRef<PlainObjectType> > { typedef const TensorRef<PlainObjectType>& type; }; template <typename PlainObjectType> struct nested<const TensorRef<PlainObjectType> > { typedef const TensorRef<PlainObjectType>& type; }; } // end namespace internal // Convolutional layers take in an input tensor of shape (D, R, C, B), or (D, C, // R, B), and convolve it with a set of filters, which can also be presented as // a tensor (D, K, K, M), where M is the number of filters, K is the filter // size, and each 3-dimensional tensor of size (D, K, K) is a filter. For // simplicity we assume that we always use square filters (which is usually the // case in images), hence the two Ks in the tensor dimension. It also takes in // a few additional parameters: // Stride (S): The convolution stride is the offset between locations where we // apply the filters. A larger stride means that the output will be // spatially smaller. // Padding (P): The padding we apply to the input tensor along the R and C // dimensions. This is usually used to make sure that the spatial // dimensions of the output matches our intention. // // Two types of padding are often used: // SAME: The pad value is computed so that the output will have size // R/S and C/S. // VALID: no padding is carried out. // When we do padding, the padded values at the padded locations are usually // zero. // // The output dimensions for convolution, when given all the parameters above, // are as follows: // When Padding = SAME: the output size is (B, R', C', M), where // R' = ceil(float(R) / float(S)) // C' = ceil(float(C) / float(S)) // where ceil is the ceiling function. The input tensor is padded with 0 as // needed. The number of padded rows and columns are computed as: // Pr = ((R' - 1) * S + K - R) / 2 // Pc = ((C' - 1) * S + K - C) / 2 // when the stride is 1, we have the simplified case R'=R, C'=C, Pr=Pc=(K-1)/2. // This is where SAME comes from - the output has the same size as the input has. // When Padding = VALID: the output size is computed as // R' = ceil(float(R - K + 1) / float(S)) // C' = ceil(float(C - K + 1) / float(S)) // and the number of padded rows and columns are computed in the same way as in // the SAME case. // When the stride is 1, we have the simplified case R'=R-K+1, C'=C-K+1, Pr=0, // Pc=0. typedef enum { PADDING_VALID = 1, PADDING_SAME = 2 } PaddingType; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h
.h
5,100
147
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSORSTORAGE_H #define EIGEN_CXX11_TENSOR_TENSORSTORAGE_H #ifdef EIGEN_TENSOR_STORAGE_CTOR_PLUGIN #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN EIGEN_TENSOR_STORAGE_CTOR_PLUGIN; #else #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN #endif namespace Eigen { /** \internal * * \class TensorStorage * \ingroup CXX11_Tensor_Module * * \brief Stores the data of a tensor * * This class stores the data of fixed-size, dynamic-size or mixed tensors * in a way as compact as possible. * * \sa Tensor */ template<typename T, typename Dimensions, int Options> class TensorStorage; // Pure fixed-size storage template<typename T, typename FixedDimensions, int Options_> class TensorStorage { private: static const std::size_t Size = FixedDimensions::total_size; // Allocate an array of size at least one to prevent compiler warnings. static const std::size_t MinSize = max_n_1<Size>::size; EIGEN_ALIGN_MAX T m_data[MinSize]; FixedDimensions m_dimensions; public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStorage() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T *data() { return m_data; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T *data() const { return m_data; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const FixedDimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex size() const { return m_dimensions.TotalSize(); } }; // pure dynamic template<typename T, typename IndexType, int NumIndices_, int Options_> class TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> { public: typedef IndexType Index; typedef DSizes<IndexType, NumIndices_> Dimensions; typedef TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> Self; EIGEN_DEVICE_FUNC TensorStorage() : m_data(0), m_dimensions() { if (NumIndices_ == 0) { m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1); } } EIGEN_DEVICE_FUNC TensorStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_dimensions(internal::template repeat<NumIndices_, Index>(0)) {} EIGEN_DEVICE_FUNC TensorStorage(Index size, const array<Index, NumIndices_>& dimensions) : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_dimensions(dimensions) { EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN } #if EIGEN_HAS_VARIADIC_TEMPLATES template <typename... DenseIndex> EIGEN_DEVICE_FUNC TensorStorage(DenseIndex... indices) : m_dimensions(indices...) { m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(m_dimensions)); } #endif EIGEN_DEVICE_FUNC TensorStorage(const Self& other) : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(other.m_dimensions))) , m_dimensions(other.m_dimensions) { internal::smart_copy(other.m_data, other.m_data+internal::array_prod(other.m_dimensions), m_data); } EIGEN_DEVICE_FUNC Self& operator=(const Self& other) { if (this != &other) { Self tmp(other); this->swap(tmp); } return *this; } EIGEN_DEVICE_FUNC ~TensorStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, internal::array_prod(m_dimensions)); } EIGEN_DEVICE_FUNC void swap(Self& other) { numext::swap(m_data,other.m_data); numext::swap(m_dimensions,other.m_dimensions); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {return m_dimensions;} EIGEN_DEVICE_FUNC void resize(Index size, const array<Index, NumIndices_>& nbDimensions) { const Index currentSz = internal::array_prod(m_dimensions); if(size != currentSz) { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, currentSz); if (size) m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size); else if (NumIndices_ == 0) { m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1); } else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) } m_dimensions = nbDimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T *data() { return m_data; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T *data() const { return m_data; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); } private: T *m_data; Dimensions m_dimensions; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
.h
10,248
289
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H #define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H namespace Eigen { /** \class TensorExecutor * \ingroup CXX11_Tensor_Module * * \brief The tensor executor class. * * This class is responsible for launch the evaluation of the expression on * the specified computing device. */ namespace internal { // Default strategy: the expression is evaluated with a single cpu thread. template<typename Expression, typename Device, bool Vectorizable> class TensorExecutor { public: typedef typename Expression::Index Index; EIGEN_DEVICE_FUNC static inline void run(const Expression& expr, const Device& device = Device()) { TensorEvaluator<Expression, Device> evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const Index size = array_prod(evaluator.dimensions()); for (Index i = 0; i < size; ++i) { evaluator.evalScalar(i); } } evaluator.cleanup(); } }; template<typename Expression> class TensorExecutor<Expression, DefaultDevice, true> { public: typedef typename Expression::Index Index; EIGEN_DEVICE_FUNC static inline void run(const Expression& expr, const DefaultDevice& device = DefaultDevice()) { TensorEvaluator<Expression, DefaultDevice> evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const Index size = array_prod(evaluator.dimensions()); const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size; // Give the compiler a strong hint to unroll the loop. But don't insist // on unrolling, because if the function is expensive the compiler should not // unroll the loop at the expense of inlining. const Index UnrolledSize = (size / (4 * PacketSize)) * 4 * PacketSize; for (Index i = 0; i < UnrolledSize; i += 4*PacketSize) { for (Index j = 0; j < 4; j++) { evaluator.evalPacket(i + j * PacketSize); } } const Index VectorizedSize = (size / PacketSize) * PacketSize; for (Index i = UnrolledSize; i < VectorizedSize; i += PacketSize) { evaluator.evalPacket(i); } for (Index i = VectorizedSize; i < size; ++i) { evaluator.evalScalar(i); } } evaluator.cleanup(); } }; // Multicore strategy: the index space is partitioned and each partition is executed on a single core #ifdef EIGEN_USE_THREADS template <typename Evaluator, typename Index, bool Vectorizable> struct EvalRange { static void run(Evaluator* evaluator_in, const Index first, const Index last) { Evaluator evaluator = *evaluator_in; eigen_assert(last >= first); for (Index i = first; i < last; ++i) { evaluator.evalScalar(i); } } static Index alignBlockSize(Index size) { return size; } }; template <typename Evaluator, typename Index> struct EvalRange<Evaluator, Index, true> { static const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size; static void run(Evaluator* evaluator_in, const Index first, const Index last) { Evaluator evaluator = *evaluator_in; eigen_assert(last >= first); Index i = first; if (last - first >= PacketSize) { eigen_assert(first % PacketSize == 0); Index last_chunk_offset = last - 4 * PacketSize; // Give the compiler a strong hint to unroll the loop. But don't insist // on unrolling, because if the function is expensive the compiler should not // unroll the loop at the expense of inlining. for (; i <= last_chunk_offset; i += 4*PacketSize) { for (Index j = 0; j < 4; j++) { evaluator.evalPacket(i + j * PacketSize); } } last_chunk_offset = last - PacketSize; for (; i <= last_chunk_offset; i += PacketSize) { evaluator.evalPacket(i); } } for (; i < last; ++i) { evaluator.evalScalar(i); } } static Index alignBlockSize(Index size) { // Align block size to packet size and account for unrolling in run above. if (size >= 16 * PacketSize) { return (size + 4 * PacketSize - 1) & ~(4 * PacketSize - 1); } // Aligning to 4 * PacketSize would increase block size by more than 25%. return (size + PacketSize - 1) & ~(PacketSize - 1); } }; template <typename Expression, bool Vectorizable> class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> { public: typedef typename Expression::Index Index; static inline void run(const Expression& expr, const ThreadPoolDevice& device) { typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator; Evaluator evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const Index size = array_prod(evaluator.dimensions()); #if !defined(EIGEN_USE_SIMPLE_THREAD_POOL) device.parallelFor(size, evaluator.costPerCoeff(Vectorizable), EvalRange<Evaluator, Index, Vectorizable>::alignBlockSize, [&evaluator](Index first, Index last) { EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, first, last); }); #else size_t num_threads = device.numThreads(); if (num_threads > 1) { num_threads = TensorCostModel<ThreadPoolDevice>::numThreads( size, evaluator.costPerCoeff(Vectorizable), num_threads); } if (num_threads == 1) { EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size); } else { const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1; Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1; const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize))); const Index numblocks = size / blocksize; Barrier barrier(numblocks); for (int i = 0; i < numblocks; ++i) { device.enqueue_with_barrier( &barrier, &EvalRange<Evaluator, Index, Vectorizable>::run, &evaluator, i * blocksize, (i + 1) * blocksize); } if (numblocks * blocksize < size) { EvalRange<Evaluator, Index, Vectorizable>::run( &evaluator, numblocks * blocksize, size); } barrier.Wait(); } #endif // defined(!EIGEN_USE_SIMPLE_THREAD_POOL) } evaluator.cleanup(); } }; #endif // EIGEN_USE_THREADS // GPU: the evaluation of the expression is offloaded to a GPU. #if defined(EIGEN_USE_GPU) template <typename Expression, bool Vectorizable> class TensorExecutor<Expression, GpuDevice, Vectorizable> { public: typedef typename Expression::Index Index; static void run(const Expression& expr, const GpuDevice& device); }; #if defined(__CUDACC__) template <typename Evaluator, typename Index, bool Vectorizable> struct EigenMetaKernelEval { static __device__ EIGEN_ALWAYS_INLINE void run(Evaluator& eval, Index first, Index last, Index step_size) { for (Index i = first; i < last; i += step_size) { eval.evalScalar(i); } } }; template <typename Evaluator, typename Index> struct EigenMetaKernelEval<Evaluator, Index, true> { static __device__ EIGEN_ALWAYS_INLINE void run(Evaluator& eval, Index first, Index last, Index step_size) { const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size; const Index vectorized_size = (last / PacketSize) * PacketSize; const Index vectorized_step_size = step_size * PacketSize; // Use the vector path for (Index i = first * PacketSize; i < vectorized_size; i += vectorized_step_size) { eval.evalPacket(i); } for (Index i = vectorized_size + first; i < last; i += step_size) { eval.evalScalar(i); } } }; template <typename Evaluator, typename Index> __global__ void __launch_bounds__(1024) EigenMetaKernel(Evaluator eval, Index size) { const Index first_index = blockIdx.x * blockDim.x + threadIdx.x; const Index step_size = blockDim.x * gridDim.x; const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned; EigenMetaKernelEval<Evaluator, Index, vectorizable>::run(eval, first_index, size, step_size); } /*static*/ template <typename Expression, bool Vectorizable> inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run( const Expression& expr, const GpuDevice& device) { TensorEvaluator<Expression, GpuDevice> evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const int block_size = device.maxCudaThreadsPerBlock(); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const Index size = array_prod(evaluator.dimensions()); // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0. const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1); LAUNCH_CUDA_KERNEL( (EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size); } evaluator.cleanup(); } #endif // __CUDACC__ #endif // EIGEN_USE_GPU // SYCL Executor policy #ifdef EIGEN_USE_SYCL template <typename Expression, bool Vectorizable> class TensorExecutor<Expression, SyclDevice, Vectorizable> { public: static inline void run(const Expression &expr, const SyclDevice &device) { // call TensorSYCL module TensorSycl::run(expr, device); } }; #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h
.h
7,354
210
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H #define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H namespace Eigen { /** \class TensorLayoutSwap * \ingroup CXX11_Tensor_Module * * \brief Swap the layout from col-major to row-major, or row-major * to col-major, and invert the order of the dimensions. * * Beware: the dimensions are reversed by this operation. If you want to * preserve the ordering of the dimensions, you need to combine this * operation with a shuffle. * * \example: * Tensor<float, 2, ColMajor> input(2, 4); * Tensor<float, 2, RowMajor> output = input.swap_layout(); * eigen_assert(output.dimension(0) == 4); * eigen_assert(output.dimension(1) == 2); * * array<int, 2> shuffle(1, 0); * output = input.swap_layout().shuffle(shuffle); * eigen_assert(output.dimension(0) == 2); * eigen_assert(output.dimension(1) == 4); * */ namespace internal { template<typename XprType> struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = traits<XprType>::NumDimensions; static const int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor; }; template<typename XprType> struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense> { typedef const TensorLayoutSwapOp<XprType>& type; }; template<typename XprType> struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type> { typedef TensorLayoutSwapOp<XprType> type; }; } // end namespace internal template<typename XprType> class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> { public: typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested; typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr) : m_xpr(expr) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const TensorLayoutSwapOp& other) { typedef TensorAssignOp<TensorLayoutSwapOp, const TensorLayoutSwapOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorLayoutSwapOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; }; // Eval as rvalue template<typename ArgType, typename Device> struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> { typedef TensorLayoutSwapOp<ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; enum { IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor, CoordAccess = false, // to be implemented RawAccess = TensorEvaluator<ArgType, Device>::RawAccess }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { for(int i = 0; i < NumDims; ++i) { m_dimensions[i] = m_impl.dimensions()[NumDims-1-i]; } } typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { return m_impl.evalSubExprsIfNeeded(data); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(index); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_impl.template packet<LoadMode>(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return m_impl.costPerCoeff(vectorized); } EIGEN_DEVICE_FUNC Scalar* data() const { return m_impl.data(); } const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } protected: TensorEvaluator<ArgType, Device> m_impl; Dimensions m_dimensions; }; // Eval as lvalue template<typename ArgType, typename Device> struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device> : public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> { typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base; typedef TensorLayoutSwapOp<ArgType> XprType; enum { IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor, CoordAccess = false // to be implemented }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(index); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { this->m_impl.template writePacket<StoreMode>(index, x); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
.h
47,585
1,105
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H #define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H namespace Eigen { /** \class TensorConvolution * \ingroup CXX11_Tensor_Module * * \brief Tensor convolution class. * * */ namespace internal { template <typename Index, typename InputDims, int NumKernelDims, int Layout> class IndexMapper { public: IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims, const array<Index, NumKernelDims>& indices) { array<Index, NumDims> dimensions = input_dims; for (int i = 0; i < NumKernelDims; ++i) { const Index index = indices[i]; const Index input_dim = input_dims[index]; const Index kernel_dim = kernel_dims[i]; const Index result_dim = input_dim - kernel_dim + 1; dimensions[index] = result_dim; } array<Index, NumDims> inputStrides; array<Index, NumDims> outputStrides; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { inputStrides[0] = 1; outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { inputStrides[i] = inputStrides[i-1] * input_dims[i-1]; outputStrides[i] = outputStrides[i-1] * dimensions[i-1]; } } else { inputStrides[NumDims - 1] = 1; outputStrides[NumDims - 1] = 1; for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) { inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1]; outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1]; } } array<Index, NumDims> cudaInputDimensions; array<Index, NumDims> cudaOutputDimensions; array<Index, NumDims> tmp = dimensions; array<Index, NumDims> ordering; const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; for (int i = 0; i < NumKernelDims; ++i) { const Index index = i + offset; ordering[index] = indices[i]; tmp[indices[i]] = -1; cudaInputDimensions[index] = input_dims[indices[i]]; cudaOutputDimensions[index] = dimensions[indices[i]]; } int written = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? NumKernelDims : 0; for (int i = 0; i < NumDims; ++i) { if (tmp[i] >= 0) { ordering[written] = i; cudaInputDimensions[written] = input_dims[i]; cudaOutputDimensions[written] = dimensions[i]; ++written; } } for (int i = 0; i < NumDims; ++i) { m_inputStrides[i] = inputStrides[ordering[i]]; m_outputStrides[i] = outputStrides[ordering[i]]; } if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < NumDims; ++i) { if (i > NumKernelDims) { m_cudaInputStrides[i] = m_cudaInputStrides[i - 1] * cudaInputDimensions[i - 1]; m_cudaOutputStrides[i] = m_cudaOutputStrides[i - 1] * cudaOutputDimensions[i - 1]; } else { m_cudaInputStrides[i] = 1; m_cudaOutputStrides[i] = 1; } } } else { for (int i = NumDims - 1; i >= 0; --i) { if (i + 1 < offset) { m_cudaInputStrides[i] = m_cudaInputStrides[i + 1] * cudaInputDimensions[i + 1]; m_cudaOutputStrides[i] = m_cudaOutputStrides[i + 1] * cudaOutputDimensions[i + 1]; } else { m_cudaInputStrides[i] = 1; m_cudaOutputStrides[i] = 1; } } } } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputPlaneToTensorInputOffset(Index p) const { Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int d = NumDims - 1; d > NumKernelDims; --d) { const Index idx = p / m_cudaInputStrides[d]; inputIndex += idx * m_inputStrides[d]; p -= idx * m_cudaInputStrides[d]; } inputIndex += p * m_inputStrides[NumKernelDims]; } else { std::ptrdiff_t limit = 0; if (NumKernelDims < NumDims) { limit = NumDims - NumKernelDims - 1; } for (int d = 0; d < limit; ++d) { const Index idx = p / m_cudaInputStrides[d]; inputIndex += idx * m_inputStrides[d]; p -= idx * m_cudaInputStrides[d]; } inputIndex += p * m_inputStrides[limit]; } return inputIndex; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputPlaneToTensorOutputOffset(Index p) const { Index outputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int d = NumDims - 1; d > NumKernelDims; --d) { const Index idx = p / m_cudaOutputStrides[d]; outputIndex += idx * m_outputStrides[d]; p -= idx * m_cudaOutputStrides[d]; } outputIndex += p * m_outputStrides[NumKernelDims]; } else { std::ptrdiff_t limit = 0; if (NumKernelDims < NumDims) { limit = NumDims - NumKernelDims - 1; } for (int d = 0; d < limit; ++d) { const Index idx = p / m_cudaOutputStrides[d]; outputIndex += idx * m_outputStrides[d]; p -= idx * m_cudaOutputStrides[d]; } outputIndex += p * m_outputStrides[limit]; } return outputIndex; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i) const { const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; return i * m_inputStrides[offset]; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i) const { const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; return i * m_outputStrides[offset]; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j) const { const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1]; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j) const { const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1]; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j, Index k) const { const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] + k * m_inputStrides[offset + 2]; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const { const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - NumKernelDims; return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] + k * m_outputStrides[offset + 2]; } private: static const int NumDims = internal::array_size<InputDims>::value; array<Index, NumDims> m_inputStrides; array<Index, NumDims> m_outputStrides; array<Index, NumDims> m_cudaInputStrides; array<Index, NumDims> m_cudaOutputStrides; }; template<typename Dimensions, typename InputXprType, typename KernelXprType> struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef typename promote_storage_type<typename InputXprType::Scalar, typename KernelXprType::Scalar>::ret Scalar; typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind, typename traits<KernelXprType>::StorageKind>::ret StorageKind; typedef typename promote_index_type<typename traits<InputXprType>::Index, typename traits<KernelXprType>::Index>::type Index; typedef typename InputXprType::Nested LhsNested; typedef typename KernelXprType::Nested RhsNested; typedef typename remove_reference<LhsNested>::type _LhsNested; typedef typename remove_reference<RhsNested>::type _RhsNested; static const int NumDimensions = traits<InputXprType>::NumDimensions; static const int Layout = traits<InputXprType>::Layout; enum { Flags = 0 }; }; template<typename Dimensions, typename InputXprType, typename KernelXprType> struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense> { typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type; }; template<typename Dimensions, typename InputXprType, typename KernelXprType> struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type> { typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type; }; } // end namespace internal template<typename Indices, typename InputXprType, typename KernelXprType> class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType, typename KernelXprType::CoeffReturnType>::ret CoeffReturnType; typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested; typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims) : m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Indices& indices() const { return m_indices; } /** \returns the nested expressions */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::remove_all<typename InputXprType::Nested>::type& inputExpression() const { return m_input_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::remove_all<typename KernelXprType::Nested>::type& kernelExpression() const { return m_kernel_xpr; } protected: typename InputXprType::Nested m_input_xpr; typename KernelXprType::Nested m_kernel_xpr; const Indices m_indices; }; template<typename Indices, typename InputArgType, typename KernelArgType, typename Device> struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device> { typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType; static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value; static const int NumKernelDims = internal::array_size<Indices>::value; typedef typename XprType::Index Index; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = TensorEvaluator<InputArgType, Device>::IsAligned & TensorEvaluator<KernelArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<InputArgType, Device>::PacketAccess & TensorEvaluator<KernelArgType, Device>::PacketAccess, Layout = TensorEvaluator<InputArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions(); const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputStride[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1]; } } else { m_inputStride[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1]; } } m_dimensions = m_inputImpl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < NumKernelDims; ++i) { const Index index = op.indices()[i]; const Index input_dim = input_dims[index]; const Index kernel_dim = kernel_dims[i]; const Index result_dim = input_dim - kernel_dim + 1; m_dimensions[index] = result_dim; if (i > 0) { m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1]; } else { m_kernelStride[0] = 1; } m_indexStride[i] = m_inputStride[index]; } m_outputStride[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1]; } } else { for (int i = NumKernelDims - 1; i >= 0; --i) { const Index index = op.indices()[i]; const Index input_dim = input_dims[index]; const Index kernel_dim = kernel_dims[i]; const Index result_dim = input_dim - kernel_dim + 1; m_dimensions[index] = result_dim; if (i < NumKernelDims - 1) { m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1]; } else { m_kernelStride[NumKernelDims - 1] = 1; } m_indexStride[i] = m_inputStride[index]; } m_outputStride[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { m_inputImpl.evalSubExprsIfNeeded(NULL); preloadKernel(); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_inputImpl.cleanup(); if (m_local_kernel) { m_device.deallocate((void*)m_kernel); m_local_kernel = false; } m_kernel = NULL; } void evalTo(typename XprType::Scalar* buffer) { evalSubExprsIfNeeded(NULL); for (int i = 0; i < dimensions().TotalSize(); ++i) { buffer[i] += coeff(i); } cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { CoeffReturnType result = CoeffReturnType(0); convolve(firstInput(index), 0, NumKernelDims-1, result); return result; } template<int LoadMode> EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const { Index indices[2] = {index, index+PacketSize-1}; Index startInputs[2] = {0, 0}; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / m_outputStride[i]; const Index idx1 = indices[1] / m_outputStride[i]; startInputs[0] += idx0 * m_inputStride[i]; startInputs[1] += idx1 * m_inputStride[i]; indices[0] -= idx0 * m_outputStride[i]; indices[1] -= idx1 * m_outputStride[i]; } } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx0 = indices[0] / m_outputStride[i]; const Index idx1 = indices[1] / m_outputStride[i]; startInputs[0] += idx0 * m_inputStride[i]; startInputs[1] += idx1 * m_inputStride[i]; indices[0] -= idx0 * m_outputStride[i]; indices[1] -= idx1 * m_outputStride[i]; } } startInputs[0] += indices[0]; startInputs[1] += indices[1]; if (startInputs[1]-startInputs[0] == PacketSize-1) { PacketReturnType result = internal::pset1<PacketReturnType>(0); convolvePacket(startInputs[0], 0, NumKernelDims-1, result); return result; } else { EIGEN_ALIGN_MAX Scalar data[PacketSize]; data[0] = Scalar(0); convolve(startInputs[0], 0, NumKernelDims-1, data[0]); for (int i = 1; i < PacketSize-1; ++i) { data[i] = Scalar(0); convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]); } data[PacketSize-1] = Scalar(0); convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]); return internal::pload<PacketReturnType>(data); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double kernel_size = m_kernelImpl.dimensions().TotalSize(); // We ignore the use of fused multiply-add. const double convolve_compute_cost = TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>(); const double firstIndex_compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()); return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) + kernel_size * (m_inputImpl.costPerCoeff(vectorized) + m_kernelImpl.costPerCoeff(vectorized) + TensorOpCost(0, 0, convolve_compute_cost, vectorized, PacketSize)); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } private: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { Index startInput = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStride[i]; startInput += idx * m_inputStride[i]; index -= idx * m_outputStride[i]; } } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStride[i]; startInput += idx * m_inputStride[i]; index -= idx * m_outputStride[i]; } } startInput += index; return startInput; } EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const { for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) { const Index input = firstIndex + j * m_indexStride[DimIndex]; const Index kernel = firstKernel + j * m_kernelStride[DimIndex]; if (DimIndex > 0) { convolve(input, kernel, DimIndex-1, accum); } else { accum += m_inputImpl.coeff(input) * m_kernel[kernel]; } } } template <typename Packet> EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const { for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) { const Index input = firstIndex + j * m_indexStride[DimIndex]; const Index kernel = firstKernel + j * m_kernelStride[DimIndex]; if (DimIndex > 0) { convolvePacket(input, kernel, DimIndex-1, accum); } else { accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum); } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() { // Don't make a local copy of the kernel unless we have to (i.e. it's an // expression that needs to be evaluated) const Scalar* in_place = m_kernelImpl.data(); if (in_place) { m_kernel = in_place; m_local_kernel = false; } else { size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar); Scalar* local = (Scalar*)m_device.allocate(kernel_sz); typedef TensorEvalToOp<const KernelArgType> EvalTo; EvalTo evalToTmp(local, m_kernelArg); const bool PacketAccess = internal::IsVectorizable<Device, KernelArgType>::value; internal::TensorExecutor<const EvalTo, Device, PacketAccess>::run(evalToTmp, m_device); m_kernel = local; m_local_kernel = true; } } array<Index, NumDims> m_inputStride; array<Index, NumDims> m_outputStride; array<Index, NumKernelDims> m_indexStride; array<Index, NumKernelDims> m_kernelStride; TensorEvaluator<InputArgType, Device> m_inputImpl; TensorEvaluator<KernelArgType, Device> m_kernelImpl; Dimensions m_dimensions; KernelArgType m_kernelArg; const Scalar* m_kernel; bool m_local_kernel; const Device& m_device; }; // Use an optimized implementation of the evaluation code for GPUs whenever possible. #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) template <int StaticKernelSize> struct GetKernelSize { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const { return StaticKernelSize; } }; template <> struct GetKernelSize<Dynamic> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const { return kernelSize; } }; template <typename InputEvaluator, typename Index, typename InputDims, int StaticKernelSize> __global__ void EigenConvolutionKernel1D( InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout> indexMapper, const float* __restrict kernel, const int numPlanes, const int numX, const int maxX, const int kernelSize, float* buffer) { extern __shared__ float s[]; const int first_x = blockIdx.x * maxX; const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1; const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize); const int num_x_output = last_x - first_x + 1; const int first_plane = blockIdx.y * blockDim.y; const int plane_stride = blockDim.y * gridDim.y; for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) { // Load inputs to shared memory const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p); const int plane_kernel_offset = threadIdx.y * num_x_input; #pragma unroll for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) { const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x); s[i + plane_kernel_offset] = eval.coeff(tensor_index); } __syncthreads(); // Compute the convolution const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p); #pragma unroll for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) { const int kernel_offset = plane_kernel_offset + i; float result = 0.0f; #pragma unroll for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) { result += s[k + kernel_offset] * kernel[k]; } const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x); buffer[tensor_index] = result; } __syncthreads(); } }; template <typename InputEvaluator, typename Index, typename InputDims, int StaticKernelSizeX, int StaticKernelSizeY> __global__ void EigenConvolutionKernel2D( InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout> indexMapper, const float* __restrict kernel, const int numPlanes, const int numX, const int maxX, const int numY, const int maxY, const int kernelSizeX, const int kernelSizeY, float* buffer) { extern __shared__ float s[]; const int first_x = blockIdx.x * maxX; const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1; const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX); const int num_x_output = last_x - first_x + 1; const int first_y = blockIdx.y * maxY; const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1; const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY); const int num_y_output = last_y - first_y + 1; const int first_plane = blockIdx.z * blockDim.z; const int plane_stride = blockDim.z * gridDim.z; for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) { const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p); const int plane_kernel_offset = threadIdx.z * num_y_input; // Load inputs to shared memory #pragma unroll for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) { const int input_offset = num_x_input * (j + plane_kernel_offset); #pragma unroll for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) { const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y); s[i + input_offset] = eval.coeff(tensor_index); } } __syncthreads(); // Convolution const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p); #pragma unroll for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) { #pragma unroll for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) { float result = 0.0f; #pragma unroll for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) { const int kernel_offset = kernelSizeX * l; const int input_offset = i + num_x_input * (j + l + plane_kernel_offset); #pragma unroll for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) { result += s[k + input_offset] * kernel[k + kernel_offset]; } } const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y); buffer[tensor_index] = result; } } __syncthreads(); } }; template <typename InputEvaluator, typename Index, typename InputDims> __global__ void EigenConvolutionKernel3D( InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout> indexMapper, const float* __restrict kernel, const size_t numPlanes, const size_t numX, const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ, const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY, const size_t kernelSizeZ, float* buffer) { extern __shared__ float s[]; // Load inputs to shared memory const int first_x = blockIdx.x * maxX; const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1; const int num_x_input = last_x - first_x + kernelSizeX; const int first_y = blockIdx.y * maxY; const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1; const int num_y_input = last_y - first_y + kernelSizeY; const int first_z = blockIdx.z * maxZ; const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1; const int num_z_input = last_z - first_z + kernelSizeZ; for (int p = 0; p < numPlanes; ++p) { const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p); const int plane_kernel_offset = 0; for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) { for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) { for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) { const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z); s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index); } } } __syncthreads(); // Convolution const int num_z_output = last_z - first_z + 1; const int num_y_output = last_y - first_y + 1; const int num_x_output = last_x - first_x + 1; const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p); for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) { for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) { for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) { float result = 0.0f; for (int n = 0; n < kernelSizeZ; ++n) { for (int m = 0; m < kernelSizeY; ++m) { for (int l = 0; l < kernelSizeX; ++l) { result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)]; } } } const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z); buffer[tensor_index] = result; } } } __syncthreads(); } }; template<typename Indices, typename InputArgType, typename KernelArgType> struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice> { typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType; static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value; static const int NumKernelDims = internal::array_size<Indices>::value; typedef typename XprType::Index Index; typedef DSizes<Index, NumDims> Dimensions; typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions; enum { IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned, PacketAccess = false, Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device) : m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions(); const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions(); m_dimensions = m_inputImpl.dimensions(); for (int i = 0; i < NumKernelDims; ++i) { const Index index = op.indices()[i]; const Index input_dim = input_dims[index]; const Index kernel_dim = kernel_dims[i]; const Index result_dim = input_dim - kernel_dim + 1; m_dimensions[index] = result_dim; } } typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType; typedef typename InputArgType::Scalar Scalar; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; } EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { preloadKernel(); m_inputImpl.evalSubExprsIfNeeded(NULL); if (data) { executeEval(data); return false; } else { m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)); executeEval(m_buf); return true; } } EIGEN_STRONG_INLINE void cleanup() { m_inputImpl.cleanup(); if (m_buf) { m_device.deallocate(m_buf); m_buf = NULL; } if (m_local_kernel) { m_device.deallocate((void*)m_kernel); m_local_kernel = false; } m_kernel = NULL; } EIGEN_STRONG_INLINE void preloadKernel() { // Don't make a local copy of the kernel unless we have to (i.e. it's an // expression that needs to be evaluated) const Scalar* in_place = m_kernelImpl.data(); if (in_place) { m_kernel = in_place; m_local_kernel = false; } else { size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar); Scalar* local = (Scalar*)m_device.allocate(kernel_sz); typedef TensorEvalToOp<const KernelArgType> EvalTo; EvalTo evalToTmp(local, m_kernelArg); const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value; internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device); m_kernel = local; m_local_kernel = true; } } static unsigned int ceil(unsigned int num, unsigned int denom) { const unsigned int rounded_toward_zero = num / denom; if (num > rounded_toward_zero * denom) { return rounded_toward_zero + 1; } return rounded_toward_zero; } void executeEval(Scalar* data) const { typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims; const int maxSharedMem = m_device.sharedMemPerBlock(); const int maxThreadsPerBlock = m_device.maxCudaThreadsPerBlock(); const int maxBlocksPerProcessor = m_device.maxCudaThreadsPerMultiProcessor() / maxThreadsPerBlock; const int numMultiProcessors = m_device.getNumCudaMultiProcessors(); const int warpSize = 32; switch (NumKernelDims) { case 1: { const int kernel_size = m_kernelImpl.dimensions().TotalSize(); const int numX = dimensions()[m_indices[0]]; const int numP = dimensions().TotalSize() / numX; int maxX; dim3 block_size; const int single_stride_dim = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : m_inputImpl.dimensions().rank() - 1; if (m_indices[0] == single_stride_dim) { // Maximum the reuse const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32; maxX = numext::mini<int>(inner_dim, numX); const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP); block_size.x = numext::mini(maxThreadsPerBlock, maxX); block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP); } else { // Read as much as possible alongside the inner most dimension, that is the plane const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar)); const int maxP = numext::mini<int>(inner_dim, numP); maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX); block_size.x = numext::mini(warpSize, maxX); block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP); } const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar); assert(shared_mem <= maxSharedMem); const int num_x_blocks = ceil(numX, maxX); const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem); const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks); dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y))); //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl; const array<Index, 1> indices(m_indices[0]); const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]); internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper( m_inputImpl.dimensions(), kernel_dims, indices); switch(kernel_size) { case 4: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data); break; } case 7: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data); break; } default: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data); } } break; } case 2: { const int idxX = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1; const int idxY = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0; const int kernel_size_x = m_kernelImpl.dimensions()[idxX]; const int kernel_size_y = m_kernelImpl.dimensions()[idxY]; const int numX = dimensions()[m_indices[idxX]]; const int numY = dimensions()[m_indices[idxY]]; const int numP = dimensions().TotalSize() / (numX*numY); const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x)); // Snap maxX to warp size int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32; const int maxX = numext::mini<int>(inner_dim, numX); const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY); const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP); dim3 block_size; block_size.x = numext::mini(1024, maxX); block_size.y = numext::mini<int>(1024/block_size.x, maxY); block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP); const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar); assert(shared_mem <= maxSharedMem); const int num_x_blocks = ceil(numX, maxX); const int num_y_blocks = ceil(numY, maxY); const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem); const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks); dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z))); //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl; const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]); const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX], m_kernelImpl.dimensions()[idxY]); internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper( m_inputImpl.dimensions(), kernel_dims, indices); switch (kernel_size_x) { case 4: { switch (kernel_size_y) { case 7: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data); break; } default: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data); break; } } break; } case 7: { switch (kernel_size_y) { case 4: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data); break; } default: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data); break; } } break; } default: { LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data); break; } } break; } case 3: { const int idxX = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2; const int idxY = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1; const int idxZ = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0; const int kernel_size_x = m_kernelImpl.dimensions()[idxX]; const int kernel_size_y = m_kernelImpl.dimensions()[idxY]; const int kernel_size_z = m_kernelImpl.dimensions()[idxZ]; const int numX = dimensions()[m_indices[idxX]]; const int numY = dimensions()[m_indices[idxY]]; const int numZ = dimensions()[m_indices[idxZ]]; const int numP = dimensions().TotalSize() / (numX*numY*numZ); const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX)); const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY)); const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ)); dim3 block_size; block_size.x = numext::mini(32, maxX); block_size.y = numext::mini(32, maxY); block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ); dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ)); const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar); assert(shared_mem <= maxSharedMem); //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl; const array<Index, 3> indices(m_indices[idxX], m_indices[idxY], m_indices[idxZ]); const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX], m_kernelImpl.dimensions()[idxY], m_kernelImpl.dimensions()[idxZ]); internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper( m_inputImpl.dimensions(), kernel_dims, indices); LAUNCH_CUDA_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data); break; } default: { EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE); } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { eigen_assert(m_buf); eigen_assert(index < m_dimensions.TotalSize()); return m_buf[index]; } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const { eigen_assert(m_buf); eigen_assert(index < m_dimensions.TotalSize()); return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost // model. const double kernel_size = m_kernelImpl.dimensions().TotalSize(); // We ignore the use of fused multiply-add. const double convolve_compute_cost = TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>(); const double firstIndex_compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()); return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) + kernel_size * (m_inputImpl.costPerCoeff(vectorized) + m_kernelImpl.costPerCoeff(vectorized) + TensorOpCost(0, 0, convolve_compute_cost, vectorized, PacketSize)); } private: // No assignment (copies are needed by the kernels) TensorEvaluator& operator = (const TensorEvaluator&); TensorEvaluator<InputArgType, GpuDevice> m_inputImpl; TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl; KernelArgType m_kernelArg; Indices m_indices; Dimensions m_dimensions; Scalar* m_buf; const Scalar* m_kernel; bool m_local_kernel; const GpuDevice& m_device; }; #endif } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
.h
5,046
122
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclConvertToDeviceExpression.h * * \brief: * Conversion from host pointer to device pointer * inside leaf nodes of the expression. * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_CONVERT_TO_DEVICE_EXPRESSION_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_CONVERT_TO_DEVICE_EXPRESSION_HPP namespace Eigen { namespace TensorSycl { namespace internal { /// \struct ConvertToDeviceExpression /// \brief This struct is used to convert the MakePointer in the host expression /// to the MakeGlobalPointer for the device expression. For the leafNodes /// containing the pointer. This is due to the fact that the address space of /// the pointer T* is different on the host and the device. template <typename Expr> struct ConvertToDeviceExpression; template<template<class...> class NonOpCategory, bool IsConst, typename... Args> struct NonOpConversion{ typedef typename GetType<IsConst, NonOpCategory<typename ConvertToDeviceExpression<Args>::Type...> >::Type Type; }; template<template<class, template <class> class > class NonOpCategory, bool IsConst, typename Args> struct DeviceConvertor{ typedef typename GetType<IsConst, NonOpCategory<typename ConvertToDeviceExpression<Args>::Type, MakeGlobalPointer> >::Type Type; }; /// specialisation of the \ref ConvertToDeviceExpression struct when the node /// type is TensorMap #define TENSORMAPCONVERT(CVQual)\ template <typename Scalar_, int Options_, int Options2_, int NumIndices_, typename IndexType_, template <class> class MakePointer_>\ struct ConvertToDeviceExpression<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_> > {\ typedef CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer> Type;\ }; TENSORMAPCONVERT(const) TENSORMAPCONVERT() #undef TENSORMAPCONVERT /// specialisation of the \ref ConvertToDeviceExpression struct when the node /// type is TensorCwiseNullaryOp, TensorCwiseUnaryOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp, TensorBroadcastingOp #define CATEGORYCONVERT(CVQual)\ template <template<class, class...> class Category, typename OP, typename... subExprs>\ struct ConvertToDeviceExpression<CVQual Category<OP, subExprs...> > {\ typedef CVQual Category<OP, typename ConvertToDeviceExpression<subExprs>::Type... > Type;\ }; CATEGORYCONVERT(const) CATEGORYCONVERT() #undef CATEGORYCONVERT /// specialisation of the \ref ConvertToDeviceExpression struct when the node /// type is TensorCwiseSelectOp #define SELECTOPCONVERT(CVQual, Res)\ template <typename IfExpr, typename ThenExpr, typename ElseExpr>\ struct ConvertToDeviceExpression<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr> >\ : NonOpConversion<TensorSelectOp, Res, IfExpr, ThenExpr, ElseExpr> {}; SELECTOPCONVERT(const, true) SELECTOPCONVERT(, false) #undef SELECTOPCONVERT /// specialisation of the \ref ConvertToDeviceExpression struct when the node /// type is const AssingOP #define ASSIGNCONVERT(CVQual, Res)\ template <typename LHSExpr, typename RHSExpr>\ struct ConvertToDeviceExpression<CVQual TensorAssignOp<LHSExpr, RHSExpr> >\ : NonOpConversion<TensorAssignOp, Res, LHSExpr, RHSExpr>{}; ASSIGNCONVERT(const, true) ASSIGNCONVERT(, false) #undef ASSIGNCONVERT /// specialisation of the \ref ConvertToDeviceExpression struct when the node /// type is either TensorForcedEvalOp or TensorEvalToOp #define KERNELBROKERCONVERT(CVQual, Res, ExprNode)\ template <typename Expr>\ struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > \ : DeviceConvertor<ExprNode, Res, Expr>{}; KERNELBROKERCONVERT(const, true, TensorForcedEvalOp) KERNELBROKERCONVERT(, false, TensorForcedEvalOp) KERNELBROKERCONVERT(const, true, TensorEvalToOp) KERNELBROKERCONVERT(, false, TensorEvalToOp) #undef KERNELBROKERCONVERT /// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp #define KERNELBROKERCONVERTREDUCTION(CVQual)\ template <typename OP, typename Dim, typename subExpr, template <class> class MakePointer_>\ struct ConvertToDeviceExpression<CVQual TensorReductionOp<OP, Dim, subExpr, MakePointer_> > {\ typedef CVQual TensorReductionOp<OP, Dim, typename ConvertToDeviceExpression<subExpr>::Type, MakeGlobalPointer> Type;\ }; KERNELBROKERCONVERTREDUCTION(const) KERNELBROKERCONVERTREDUCTION() #undef KERNELBROKERCONVERTREDUCTION } // namespace internal } // namespace TensorSycl } // namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX1
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
.h
33,938
782
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H namespace Eigen { /** \class TensorReduction * \ingroup CXX11_Tensor_Module * * \brief Tensor reduction class. * */ namespace internal { template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ > struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> > : traits<XprType> { typedef traits<XprType> XprTraits; typedef typename XprTraits::Scalar Scalar; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; static const int Layout = XprTraits::Layout; template <class T> struct MakePointer { // Intermediate typedef to workaround MSVC issue. typedef MakePointer_<T> MakePointerT; typedef typename MakePointerT::Type Type; }; }; template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_> struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense> { typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type; }; template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_> struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type> { typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type; }; template <typename OutputDims> struct DimInitializer { template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC static void run(const InputDims& input_dims, const array<bool, internal::array_size<InputDims>::value>& reduced, OutputDims* output_dims, ReducedDims* reduced_dims) { const int NumInputDims = internal::array_size<InputDims>::value; int outputIndex = 0; int reduceIndex = 0; for (int i = 0; i < NumInputDims; ++i) { if (reduced[i]) { (*reduced_dims)[reduceIndex] = input_dims[i]; ++reduceIndex; } else { (*output_dims)[outputIndex] = input_dims[i]; ++outputIndex; } } } }; template <> struct DimInitializer<Sizes<> > { template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC static void run(const InputDims& input_dims, const array<bool, Rank>&, Sizes<>*, array<Index, Rank>* reduced_dims) { const int NumInputDims = internal::array_size<InputDims>::value; for (int i = 0; i < NumInputDims; ++i) { (*reduced_dims)[i] = input_dims[i]; } } }; template <typename ReducedDims, int NumTensorDims, int Layout> struct are_inner_most_dims { static const bool value = false; }; template <typename ReducedDims, int NumTensorDims, int Layout> struct preserve_inner_most_dims { static const bool value = false; }; #if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES template <typename ReducedDims, int NumTensorDims> struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0); static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1); static const bool value = tmp1 & tmp2 & tmp3; }; template <typename ReducedDims, int NumTensorDims> struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value); static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1); static const bool value = tmp1 & tmp2 & tmp3; }; template <typename ReducedDims, int NumTensorDims> struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0); static const bool value = tmp1 & tmp2; }; template <typename ReducedDims, int NumTensorDims> struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1); static const bool value = tmp1 & tmp2; }; #endif template <int DimIndex, typename Self, typename Op> struct GenericDimReducer { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) { EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex]; GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum); } } }; template <typename Self, typename Op> struct GenericDimReducer<0, Self, Op> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) { for (int j = 0; j < self.m_reducedDims[0]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0]; reducer.reduce(self.m_impl.coeff(input), accum); } } }; template <typename Self, typename Op> struct GenericDimReducer<-1, Self, Op> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) { reducer.reduce(self.m_impl.coeff(index), accum); } }; template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)> struct InnerMostDimReducer { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) { typename Self::CoeffReturnType accum = reducer.initialize(); for (typename Self::Index j = 0; j < numValuesToReduce; ++j) { reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); } return reducer.finalize(accum); } }; template <typename Self, typename Op> struct InnerMostDimReducer<Self, Op, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) { const int packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size; const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize; typename Self::PacketReturnType p = reducer.template initializePacket<typename Self::PacketReturnType>(); for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) { reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p); } typename Self::CoeffReturnType accum = reducer.initialize(); for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) { reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); } return reducer.finalizeBoth(accum, p); } }; template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)> struct InnerMostDimPreserver { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) { eigen_assert(false && "should never be called"); } }; template <int DimIndex, typename Self, typename Op> struct InnerMostDimPreserver<DimIndex, Self, Op, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) { EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex]; InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum); } } }; template <typename Self, typename Op> struct InnerMostDimPreserver<0, Self, Op, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) { for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0]; reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum); } } }; template <typename Self, typename Op> struct InnerMostDimPreserver<-1, Self, Op, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) { eigen_assert(false && "should never be called"); } }; // Default full reducer template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)> struct FullReducer { static const bool HasOptimizedImplementation = false; static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) { const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions()); *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer); } }; #ifdef EIGEN_USE_THREADS // Multithreaded full reducers template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)> struct FullReducerShard { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer, typename Self::CoeffReturnType* output) { *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce( self, firstIndex, numValuesToReduce, reducer); } }; // Multithreaded full reducer template <typename Self, typename Op, bool Vectorizable> struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> { static const bool HasOptimizedImplementation = !Op::IsStateful; static const int PacketSize = unpacket_traits<typename Self::PacketReturnType>::size; // launch one reducer per thread and accumulate the result. static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device, typename Self::CoeffReturnType* output) { typedef typename Self::Index Index; const Index num_coeffs = array_prod(self.m_impl.dimensions()); if (num_coeffs == 0) { *output = reducer.finalize(reducer.initialize()); return; } const TensorOpCost cost = self.m_impl.costPerCoeff(Vectorizable) + TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable, PacketSize); const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads( num_coeffs, cost, device.numThreads()); if (num_threads == 1) { *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer); return; } const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs) / num_threads); const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0; eigen_assert(num_coeffs >= numblocks * blocksize); Barrier barrier(internal::convert_index<unsigned int>(numblocks)); MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize()); for (Index i = 0; i < numblocks; ++i) { device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run, self, i * blocksize, blocksize, reducer, &shards[i]); } typename Self::CoeffReturnType finalShard; if (numblocks * blocksize < num_coeffs) { finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce( self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer); } else { finalShard = reducer.initialize(); } barrier.Wait(); for (Index i = 0; i < numblocks; ++i) { reducer.reduce(shards[i], &finalShard); } *output = reducer.finalize(finalShard); } }; #endif // Default inner reducer template <typename Self, typename Op, typename Device> struct InnerReducer { static const bool HasOptimizedImplementation = false; EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) { eigen_assert(false && "Not implemented"); return true; } }; // Default outer reducer template <typename Self, typename Op, typename Device> struct OuterReducer { static const bool HasOptimizedImplementation = false; EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) { eigen_assert(false && "Not implemented"); return true; } }; #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) template <int B, int N, typename S, typename R, typename I> __global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*); #ifdef EIGEN_HAS_CUDA_FP16 template <typename S, typename R, typename I> __global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*); template <int B, int N, typename S, typename R, typename I> __global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*); template <int NPT, typename S, typename R, typename I> __global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*); #endif template <int NPT, typename S, typename R, typename I> __global__ void InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*); template <int NPT, typename S, typename R, typename I> __global__ void OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*); #endif } // end namespace internal template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_> class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested; typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& expression() const { return m_expr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dims& dims() const { return m_dims; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& reducer() const { return m_reducer; } protected: typename XprType::Nested m_expr; const Dims m_dims; const Op m_reducer; }; // Eval as rvalue template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device> struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> { typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType; typedef typename XprType::Index Index; typedef ArgType ChildType; typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; static const int NumInputDims = internal::array_size<InputDimensions>::value; static const int NumReducedDims = internal::array_size<Dims>::value; static const int NumOutputDims = NumInputDims - NumReducedDims; typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions; typedef typename XprType::Scalar Scalar; typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self; static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = Self::InputPacketAccess && Op::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value; static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value; static const bool RunningFullReduction = (NumOutputDims==0); EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device), m_xpr_dims(op.dims()) { EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)), YOU_MADE_A_PROGRAMMING_MISTAKE); // Build the bitmap indicating if an input dimension is reduced or not. for (int i = 0; i < NumInputDims; ++i) { m_reduced[i] = false; } for (int i = 0; i < NumReducedDims; ++i) { eigen_assert(op.dims()[i] >= 0); eigen_assert(op.dims()[i] < NumInputDims); m_reduced[op.dims()[i]] = true; } const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims); // Precompute output strides. if (NumOutputDims > 0) { if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_outputStrides[0] = 1; for (int i = 1; i < NumOutputDims; ++i) { m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; } } else { m_outputStrides.back() = 1; for (int i = NumOutputDims - 2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; } } } // Precompute input strides. if (NumInputDims > 0) { array<Index, NumInputDims> input_strides; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { input_strides[0] = 1; for (int i = 1; i < NumInputDims; ++i) { input_strides[i] = input_strides[i-1] * input_dims[i-1]; } } else { input_strides.back() = 1; for (int i = NumInputDims - 2; i >= 0; --i) { input_strides[i] = input_strides[i + 1] * input_dims[i + 1]; } } int outputIndex = 0; int reduceIndex = 0; for (int i = 0; i < NumInputDims; ++i) { if (m_reduced[i]) { m_reducedStrides[reduceIndex] = input_strides[i]; ++reduceIndex; } else { m_preservedStrides[outputIndex] = input_strides[i]; ++outputIndex; } } } // Special case for full reductions if (NumOutputDims == 0) { m_preservedStrides[0] = internal::array_prod(input_dims); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(typename MakePointer_<CoeffReturnType>::Type data) { m_impl.evalSubExprsIfNeeded(NULL); // Use the FullReducer if possible. if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction && internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation && ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || !RunningOnGPU))) { bool need_assign = false; if (!data) { m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType))); data = m_result; need_assign = true; } Op reducer(m_reducer); internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data); return need_assign; } else if(RunningOnSycl){ const Index num_values_to_reduce = internal::array_prod(m_reducedDims); const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions); if (!data) { data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve)); m_result = data; } Op reducer(m_reducer); internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve); return (m_result != NULL); } // Attempt to use an optimized reduction. else if (RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) { bool reducing_inner_dims = true; for (int i = 0; i < NumReducedDims; ++i) { if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { reducing_inner_dims &= m_reduced[i]; } else { reducing_inner_dims &= m_reduced[NumInputDims - 1 - i]; } } if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation && (reducing_inner_dims || ReducingInnerMostDims)) { const Index num_values_to_reduce = internal::array_prod(m_reducedDims); const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions); if (!data) { if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) { data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve)); m_result = data; } else { return true; } } Op reducer(m_reducer); if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) { if (m_result) { m_device.deallocate(m_result); m_result = NULL; } return true; } else { return (m_result != NULL); } } bool preserving_inner_dims = true; for (int i = 0; i < NumReducedDims; ++i) { if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { preserving_inner_dims &= m_reduced[NumInputDims - 1 - i]; } else { preserving_inner_dims &= m_reduced[i]; } } if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation && preserving_inner_dims) { const Index num_values_to_reduce = internal::array_prod(m_reducedDims); const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions); if (!data) { if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) { data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve)); m_result = data; } else { return true; } } Op reducer(m_reducer); if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) { if (m_result) { m_device.deallocate(m_result); m_result = NULL; } return true; } else { return (m_result != NULL); } } } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); if (m_result) { m_device.deallocate(m_result); m_result = NULL; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { if ((RunningOnSycl || RunningFullReduction || RunningOnGPU) && m_result) { return *(m_result + index); } Op reducer(m_reducer); if (ReducingInnerMostDims || RunningFullReduction) { const Index num_values_to_reduce = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1]; return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index), num_values_to_reduce, reducer); } else { typename Self::CoeffReturnType accum = reducer.initialize(); internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum); return reducer.finalize(accum); } } // TODO(bsteiner): provide a more efficient implementation. template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions()))); if (RunningOnGPU && m_result) { return internal::pload<PacketReturnType>(m_result + index); } EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; if (ReducingInnerMostDims) { const Index num_values_to_reduce = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1]; const Index firstIndex = firstInput(index); for (Index i = 0; i < PacketSize; ++i) { Op reducer(m_reducer); values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce, num_values_to_reduce, reducer); } } else if (PreservingInnerMostDims) { const Index firstIndex = firstInput(index); const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1; // TBD: extend this the the n innermost dimensions that we preserve. if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) { Op reducer(m_reducer); typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>(); internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum); return reducer.finalizePacket(accum); } else { for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index + i); } } } else { for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index + i); } } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } // Must be called after evalSubExprsIfNeeded(). EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { if (RunningFullReduction && m_result) { return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); } else { const Index num_values_to_reduce = internal::array_prod(m_reducedDims); const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost; return m_impl.costPerCoeff(vectorized) * num_values_to_reduce + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } } EIGEN_DEVICE_FUNC typename MakePointer_<Scalar>::Type data() const { return m_result; } /// required by sycl in order to extract the accessor const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } /// added for sycl in order to construct the buffer from the sycl device const Device& device() const{return m_device;} /// added for sycl in order to re-construct the reduction eval on the device for the sub-kernel const Dims& xprDims() const {return m_xpr_dims;} private: template <int, typename, typename> friend struct internal::GenericDimReducer; template <typename, typename, bool> friend struct internal::InnerMostDimReducer; template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver; template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer; #ifdef EIGEN_USE_THREADS template <typename S, typename O, bool V> friend struct internal::FullReducerShard; #endif #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*); #ifdef EIGEN_HAS_CUDA_FP16 template <typename S, typename R, typename I> friend void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*); template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*); template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*); #endif template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*); template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*); #endif template <typename S, typename O, typename D> friend struct internal::InnerReducer; // Returns the Index in the input tensor of the first value that needs to be // used to compute the reduction at output index "index". EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { if (ReducingInnerMostDims) { if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { return index * m_preservedStrides[0]; } else { return index * m_preservedStrides[NumPreservedStrides - 1]; } } // TBD: optimize the case where we preserve the innermost dimensions. Index startInput = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumOutputDims - 1; i > 0; --i) { // This is index_i in the output tensor. const Index idx = index / m_outputStrides[i]; startInput += idx * m_preservedStrides[i]; index -= idx * m_outputStrides[i]; } if (PreservingInnerMostDims) { eigen_assert(m_preservedStrides[0] == 1); startInput += index; } else { startInput += index * m_preservedStrides[0]; } } else { for (int i = 0; i < NumOutputDims - 1; ++i) { // This is index_i in the output tensor. const Index idx = index / m_outputStrides[i]; startInput += idx * m_preservedStrides[i]; index -= idx * m_outputStrides[i]; } if (PreservingInnerMostDims) { eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1); startInput += index; } else { startInput += index * m_preservedStrides[NumPreservedStrides - 1]; } } return startInput; } // Bitmap indicating if an input dimension is reduced or not. array<bool, NumInputDims> m_reduced; // Dimensions of the output of the operation. Dimensions m_dimensions; // Precomputed strides for the output tensor. array<Index, NumOutputDims> m_outputStrides; // Subset of strides of the input tensor for the non-reduced dimensions. // Indexed by output dimensions. static const int NumPreservedStrides = max_n_1<NumOutputDims>::size; array<Index, NumPreservedStrides> m_preservedStrides; // Subset of strides of the input tensor for the reduced dimensions. // Indexed by reduced dimensions. array<Index, NumReducedDims> m_reducedStrides; // Size of the input dimensions that are reduced. // Indexed by reduced dimensions. array<Index, NumReducedDims> m_reducedDims; // Evaluator for the input expression. TensorEvaluator<ArgType, Device> m_impl; // Operation to apply for computing the reduction. Op m_reducer; // For full reductions #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value; static const bool RunningOnSycl = false; #elif defined(EIGEN_USE_SYCL) static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value; static const bool RunningOnGPU = false; #else static const bool RunningOnGPU = false; static const bool RunningOnSycl = false; #endif typename MakePointer_<CoeffReturnType>::Type m_result; const Device& m_device; const Dims& m_xpr_dims; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h
.h
11,445
314
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H #define EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H namespace Eigen { /** \class TensorCustomUnaryOp * \ingroup CXX11_Tensor_Module * * \brief Tensor custom class. * * */ namespace internal { template<typename CustomUnaryFunc, typename XprType> struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> > { typedef typename XprType::Scalar Scalar; typedef typename XprType::StorageKind StorageKind; typedef typename XprType::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = traits<XprType>::NumDimensions; static const int Layout = traits<XprType>::Layout; }; template<typename CustomUnaryFunc, typename XprType> struct eval<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Eigen::Dense> { typedef const TensorCustomUnaryOp<CustomUnaryFunc, XprType>& type; }; template<typename CustomUnaryFunc, typename XprType> struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> > { typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> type; }; } // end namespace internal template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors> { public: typedef typename internal::traits<TensorCustomUnaryOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename internal::nested<TensorCustomUnaryOp>::type Nested; typedef typename internal::traits<TensorCustomUnaryOp>::StorageKind StorageKind; typedef typename internal::traits<TensorCustomUnaryOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomUnaryOp(const XprType& expr, const CustomUnaryFunc& func) : m_expr(expr), m_func(func) {} EIGEN_DEVICE_FUNC const CustomUnaryFunc& func() const { return m_func; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_expr; } protected: typename XprType::Nested m_expr; const CustomUnaryFunc m_func; }; // Eval as rvalue template<typename CustomUnaryFunc, typename XprType, typename Device> struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Device> { typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> ArgType; typedef typename internal::traits<ArgType>::Index Index; static const int NumDims = internal::traits<ArgType>::NumDimensions; typedef DSizes<Index, NumDims> Dimensions; typedef typename internal::remove_const<typename ArgType::Scalar>::type Scalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = (internal::packet_traits<Scalar>::size > 1), BlockAccess = false, Layout = TensorEvaluator<XprType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const ArgType& op, const Device& device) : m_op(op), m_device(device), m_result(NULL) { m_dimensions = op.func().dimensions(op.expression()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { if (data) { evalTo(data); return false; } else { m_result = static_cast<CoeffReturnType*>( m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); evalTo(m_result); return true; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { if (m_result != NULL) { m_device.deallocate(m_result); m_result = NULL; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_result[index]; } template<int LoadMode> EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // TODO(rmlarsen): Extend CustomOp API to return its cost estimate. return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; } protected: EIGEN_DEVICE_FUNC void evalTo(Scalar* data) { TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result( data, m_dimensions); m_op.func().eval(m_op.expression(), result, m_device); } Dimensions m_dimensions; const ArgType m_op; const Device& m_device; CoeffReturnType* m_result; }; /** \class TensorCustomBinaryOp * \ingroup CXX11_Tensor_Module * * \brief Tensor custom class. * * */ namespace internal { template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> struct traits<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> > { typedef typename internal::promote_storage_type<typename LhsXprType::Scalar, typename RhsXprType::Scalar>::ret Scalar; typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType, typename RhsXprType::CoeffReturnType>::ret CoeffReturnType; typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, typename traits<RhsXprType>::StorageKind>::ret StorageKind; typedef typename promote_index_type<typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index; typedef typename LhsXprType::Nested LhsNested; typedef typename RhsXprType::Nested RhsNested; typedef typename remove_reference<LhsNested>::type _LhsNested; typedef typename remove_reference<RhsNested>::type _RhsNested; static const int NumDimensions = traits<LhsXprType>::NumDimensions; static const int Layout = traits<LhsXprType>::Layout; }; template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> struct eval<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Eigen::Dense> { typedef const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>& type; }; template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> struct nested<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> > { typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> type; }; } // end namespace internal template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp : public TensorBase<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, ReadOnlyAccessors> { public: typedef typename internal::traits<TensorCustomBinaryOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::traits<TensorCustomBinaryOp>::CoeffReturnType CoeffReturnType; typedef typename internal::nested<TensorCustomBinaryOp>::type Nested; typedef typename internal::traits<TensorCustomBinaryOp>::StorageKind StorageKind; typedef typename internal::traits<TensorCustomBinaryOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const CustomBinaryFunc& func) : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_func(func) {} EIGEN_DEVICE_FUNC const CustomBinaryFunc& func() const { return m_func; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename LhsXprType::Nested>::type& lhsExpression() const { return m_lhs_xpr; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename RhsXprType::Nested>::type& rhsExpression() const { return m_rhs_xpr; } protected: typename LhsXprType::Nested m_lhs_xpr; typename RhsXprType::Nested m_rhs_xpr; const CustomBinaryFunc m_func; }; // Eval as rvalue template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType, typename Device> struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Device> { typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> XprType; typedef typename internal::traits<XprType>::Index Index; static const int NumDims = internal::traits<XprType>::NumDimensions; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = (internal::packet_traits<Scalar>::size > 1), BlockAccess = false, Layout = TensorEvaluator<LhsXprType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_op(op), m_device(device), m_result(NULL) { m_dimensions = op.func().dimensions(op.lhsExpression(), op.rhsExpression()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { if (data) { evalTo(data); return false; } else { m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); evalTo(m_result); return true; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { if (m_result != NULL) { m_device.deallocate(m_result); m_result = NULL; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_result[index]; } template<int LoadMode> EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // TODO(rmlarsen): Extend CustomOp API to return its cost estimate. return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; } protected: EIGEN_DEVICE_FUNC void evalTo(Scalar* data) { TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions); m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device); } Dimensions m_dimensions; const XprType m_op; const Device& m_device; CoeffReturnType* m_result; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
.h
10,687
270
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_PATCH_H #define EIGEN_CXX11_TENSOR_TENSOR_PATCH_H namespace Eigen { /** \class TensorPatch * \ingroup CXX11_Tensor_Module * * \brief Tensor patch class. * * */ namespace internal { template<typename PatchDim, typename XprType> struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions + 1; static const int Layout = XprTraits::Layout; }; template<typename PatchDim, typename XprType> struct eval<TensorPatchOp<PatchDim, XprType>, Eigen::Dense> { typedef const TensorPatchOp<PatchDim, XprType>& type; }; template<typename PatchDim, typename XprType> struct nested<TensorPatchOp<PatchDim, XprType>, 1, typename eval<TensorPatchOp<PatchDim, XprType> >::type> { typedef TensorPatchOp<PatchDim, XprType> type; }; } // end namespace internal template<typename PatchDim, typename XprType> class TensorPatchOp : public TensorBase<TensorPatchOp<PatchDim, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorPatchOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorPatchOp>::type Nested; typedef typename Eigen::internal::traits<TensorPatchOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorPatchOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPatchOp(const XprType& expr, const PatchDim& patch_dims) : m_xpr(expr), m_patch_dims(patch_dims) {} EIGEN_DEVICE_FUNC const PatchDim& patch_dims() const { return m_patch_dims; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const PatchDim m_patch_dims; }; // Eval as rvalue template<typename PatchDim, typename ArgType, typename Device> struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device> { typedef TensorPatchOp<PatchDim, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value + 1; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { Index num_patches = 1; const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); const PatchDim& patch_dims = op.patch_dims(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < NumDims-1; ++i) { m_dimensions[i] = patch_dims[i]; num_patches *= (input_dims[i] - patch_dims[i] + 1); } m_dimensions[NumDims-1] = num_patches; m_inputStrides[0] = 1; m_patchStrides[0] = 1; for (int i = 1; i < NumDims-1; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_patchStrides[i] = m_patchStrides[i-1] * (input_dims[i-1] - patch_dims[i-1] + 1); } m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } } else { for (int i = 0; i < NumDims-1; ++i) { m_dimensions[i+1] = patch_dims[i]; num_patches *= (input_dims[i] - patch_dims[i] + 1); } m_dimensions[0] = num_patches; m_inputStrides[NumDims-2] = 1; m_patchStrides[NumDims-2] = 1; for (int i = NumDims-3; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_patchStrides[i] = m_patchStrides[i+1] * (input_dims[i+1] - patch_dims[i+1] + 1); } m_outputStrides[NumDims-1] = 1; for (int i = NumDims-2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0; // Find the location of the first element of the patch. Index patchIndex = index / m_outputStrides[output_stride_index]; // Find the offset of the element wrt the location of the first element. Index patchOffset = index - patchIndex * m_outputStrides[output_stride_index]; Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 2; i > 0; --i) { const Index patchIdx = patchIndex / m_patchStrides[i]; patchIndex -= patchIdx * m_patchStrides[i]; const Index offsetIdx = patchOffset / m_outputStrides[i]; patchOffset -= offsetIdx * m_outputStrides[i]; inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i]; } } else { for (int i = 0; i < NumDims - 2; ++i) { const Index patchIdx = patchIndex / m_patchStrides[i]; patchIndex -= patchIdx * m_patchStrides[i]; const Index offsetIdx = patchOffset / m_outputStrides[i+1]; patchOffset -= offsetIdx * m_outputStrides[i+1]; inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i]; } } inputIndex += (patchIndex + patchOffset); return m_impl.coeff(inputIndex); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0; Index indices[2] = {index, index + PacketSize - 1}; Index patchIndices[2] = {indices[0] / m_outputStrides[output_stride_index], indices[1] / m_outputStrides[output_stride_index]}; Index patchOffsets[2] = {indices[0] - patchIndices[0] * m_outputStrides[output_stride_index], indices[1] - patchIndices[1] * m_outputStrides[output_stride_index]}; Index inputIndices[2] = {0, 0}; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 2; i > 0; --i) { const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i], patchIndices[1] / m_patchStrides[i]}; patchIndices[0] -= patchIdx[0] * m_patchStrides[i]; patchIndices[1] -= patchIdx[1] * m_patchStrides[i]; const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i], patchOffsets[1] / m_outputStrides[i]}; patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i]; patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i]; inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i]; inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i]; } } else { for (int i = 0; i < NumDims - 2; ++i) { const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i], patchIndices[1] / m_patchStrides[i]}; patchIndices[0] -= patchIdx[0] * m_patchStrides[i]; patchIndices[1] -= patchIdx[1] * m_patchStrides[i]; const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i+1], patchOffsets[1] / m_outputStrides[i+1]}; patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i+1]; patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i+1]; inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i]; inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i]; } } inputIndices[0] += (patchIndices[0] + patchOffsets[0]); inputIndices[1] += (patchIndices[1] + patchOffsets[1]); if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); return rslt; } else { EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize]; values[0] = m_impl.coeff(inputIndices[0]); values[PacketSize-1] = m_impl.coeff(inputIndices[1]); for (int i = 1; i < PacketSize-1; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = NumDims * (TensorOpCost::DivCost<Index>() + TensorOpCost::MulCost<Index>() + 2 * TensorOpCost::AddCost<Index>()); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: Dimensions m_dimensions; array<Index, NumDims> m_outputStrides; array<Index, NumDims-1> m_inputStrides; array<Index, NumDims-1> m_patchStrides; TensorEvaluator<ArgType, Device> m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
.h
9,699
178
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclextractFunctors.h * * \brief: * Used to extract all the functors allocated to each node of the expression *tree. * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP namespace Eigen { namespace TensorSycl { namespace internal { /// struct FunctorExtractor: This struct is used to extract the functors /// constructed on /// the host-side, to pack them and reuse them in reconstruction of the /// expression on the device. /// We have to do that as in Eigen the functors are not stateless so we cannot /// re-instantiate them on the device. /// We have to pass instantiated functors to the device. // This struct is used for leafNode (TensorMap) and nodes behaving like leafNode (TensorForcedEval). template <typename Evaluator> struct FunctorExtractor{ typedef typename Evaluator::Dimensions Dimensions; const Dimensions m_dimensions; const Dimensions& dimensions() const { return m_dimensions; } FunctorExtractor(const Evaluator& expr) : m_dimensions(expr.dimensions()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorCwiseNullaryOp, const TensorCwiseUnaryOp, and const TensorBroadcastingOp template <template <class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > { FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr; OP func; FunctorExtractor(const TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev>& expr) : rhsExpr(expr.impl()), func(expr.functor()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// TensorCwiseNullaryOp, TensorCwiseUnaryOp, and TensorBroadcastingOp template <template <class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<UnaryCategory<OP, RHSExpr>, Dev> > : FunctorExtractor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> >{}; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorCwiseBinaryOp template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > { FunctorExtractor<TensorEvaluator<LHSExpr, Dev> > lhsExpr; FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr; OP func; FunctorExtractor(const TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev>& expr) : lhsExpr(expr.left_impl()),rhsExpr(expr.right_impl()),func(expr.functor()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorCwiseBinaryOp template <template <class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > : FunctorExtractor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >{}; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorCwiseTernaryOp template <template <class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr,typename Dev> struct FunctorExtractor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > { FunctorExtractor<TensorEvaluator<Arg1Expr, Dev> > arg1Expr; FunctorExtractor<TensorEvaluator<Arg2Expr, Dev> > arg2Expr; FunctorExtractor<TensorEvaluator<Arg3Expr, Dev> > arg3Expr; OP func; FunctorExtractor(const TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev>& expr) : arg1Expr(expr.arg1Impl()), arg2Expr(expr.arg2Impl()), arg3Expr(expr.arg3Impl()), func(expr.functor()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// TensorCwiseTernaryOp template <template <class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev> struct FunctorExtractor<TensorEvaluator< TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > :FunctorExtractor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >{}; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorCwiseSelectOp. This is an specialisation without OP so it has to be separated. template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev> struct FunctorExtractor< TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > { FunctorExtractor<TensorEvaluator<IfExpr, Dev> > ifExpr; FunctorExtractor<TensorEvaluator<ThenExpr, Dev> > thenExpr; FunctorExtractor<TensorEvaluator<ElseExpr, Dev> > elseExpr; FunctorExtractor(const TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev>& expr) : ifExpr(expr.cond_impl()), thenExpr(expr.then_impl()), elseExpr(expr.else_impl()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// TensorCwiseSelectOp. This is an specialisation without OP so it has to be separated template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > :FunctorExtractor< TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {}; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorAssignOp. This is an specialisation without OP so it has to be separated. template <typename LHSExpr, typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> > { FunctorExtractor<TensorEvaluator<LHSExpr, Dev> > lhsExpr; FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr; FunctorExtractor(const TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev>& expr) : lhsExpr(expr.left_impl()), rhsExpr(expr.right_impl()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// TensorAssignOp. This is an specialisation without OP so it has to be separated. template <typename LHSExpr, typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<TensorAssignOp<LHSExpr, RHSExpr>, Dev> > :FunctorExtractor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> >{}; /// specialisation of the \ref FunctorExtractor struct when the node type is /// const TensorEvalToOp, This is an specialisation without OP so it has to be separated. template <typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev> > { FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr; FunctorExtractor(const TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev>& expr) : rhsExpr(expr.impl()) {} }; /// specialisation of the \ref FunctorExtractor struct when the node type is /// TensorEvalToOp. This is a specialisation without OP so it has to be separated. template <typename RHSExpr, typename Dev> struct FunctorExtractor<TensorEvaluator<TensorEvalToOp<RHSExpr>, Dev> > : FunctorExtractor<TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev> > {}; template<typename Dim, size_t NumOutputDim> struct DimConstr { template<typename InDim> static inline Dim getDim(InDim dims ) {return dims;} }; template<typename Dim> struct DimConstr<Dim, 0> { template<typename InDim> static inline Dim getDim(InDim dims ) {return Dim(dims.TotalSize());} }; template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device> struct FunctorExtractor<TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{ typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Evaluator; typedef typename Eigen::internal::conditional<Evaluator::NumOutputDims==0, DSizes<typename Evaluator::Index, 1>, typename Evaluator::Dimensions >::type Dimensions; const Dimensions m_dimensions; const Dimensions& dimensions() const { return m_dimensions; } FunctorExtractor(const TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>& expr) : m_dimensions(DimConstr<Dimensions, Evaluator::NumOutputDims>::getDim(expr.dimensions())) {} }; template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device> struct FunctorExtractor<TensorEvaluator<TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>> : FunctorExtractor<TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{}; /// template deduction function for FunctorExtractor template <typename Evaluator> auto inline extractFunctors(const Evaluator& evaluator)-> FunctorExtractor<Evaluator> { return FunctorExtractor<Evaluator>(evaluator); } } // namespace internal } // namespace TensorSycl } // namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
.h
34,277
889
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H #define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H namespace Eigen { /** \class TensorReshaping * \ingroup CXX11_Tensor_Module * * \brief Tensor reshaping class. * * */ namespace internal { template<typename NewDimensions, typename XprType> struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = array_size<NewDimensions>::value; static const int Layout = XprTraits::Layout; }; template<typename NewDimensions, typename XprType> struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense> { typedef const TensorReshapingOp<NewDimensions, XprType>& type; }; template<typename NewDimensions, typename XprType> struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type> { typedef TensorReshapingOp<NewDimensions, XprType> type; }; } // end namespace internal template<typename NewDimensions, typename XprType> class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> { public: typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested; typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims) : m_xpr(expr), m_dims(dims) {} EIGEN_DEVICE_FUNC const NewDimensions& dimensions() const { return m_dims; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const TensorReshapingOp& other) { typedef TensorAssignOp<TensorReshapingOp, const TensorReshapingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorReshapingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const NewDimensions m_dims; }; // Eval as rvalue template<typename NewDimensions, typename ArgType, typename Device> struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> { typedef TensorReshapingOp<NewDimensions, ArgType> XprType; typedef NewDimensions Dimensions; enum { IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = TensorEvaluator<ArgType, Device>::RawAccess }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_dimensions(op.dimensions()) { // The total size of the reshaped tensor must be equal to the total size // of the input tensor. eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions())); } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { return m_impl.evalSubExprsIfNeeded(data); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(index); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_impl.template packet<LoadMode>(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return m_impl.costPerCoeff(vectorized); } EIGEN_DEVICE_FUNC Scalar* data() const { return const_cast<Scalar*>(m_impl.data()); } EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } protected: TensorEvaluator<ArgType, Device> m_impl; NewDimensions m_dimensions; }; // Eval as lvalue template<typename NewDimensions, typename ArgType, typename Device> struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device> : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> { typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base; typedef TensorReshapingOp<NewDimensions, ArgType> XprType; typedef NewDimensions Dimensions; enum { IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = TensorEvaluator<ArgType, Device>::RawAccess }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(index); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { this->m_impl.template writePacket<StoreMode>(index, x); } }; /** \class TensorSlicing * \ingroup CXX11_Tensor_Module * * \brief Tensor slicing class. * * */ namespace internal { template<typename StartIndices, typename Sizes, typename XprType> struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = array_size<StartIndices>::value; static const int Layout = XprTraits::Layout; }; template<typename StartIndices, typename Sizes, typename XprType> struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense> { typedef const TensorSlicingOp<StartIndices, Sizes, XprType>& type; }; template<typename StartIndices, typename Sizes, typename XprType> struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type> { typedef TensorSlicingOp<StartIndices, Sizes, XprType> type; }; } // end namespace internal template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> > { public: typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested; typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes) : m_xpr(expr), m_indices(indices), m_sizes(sizes) {} EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_indices; } EIGEN_DEVICE_FUNC const Sizes& sizes() const { return m_sizes; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorSlicingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const TensorSlicingOp& other) { typedef TensorAssignOp<TensorSlicingOp, const TensorSlicingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const StartIndices m_indices; const Sizes m_sizes; }; // Fixme: figure out the exact threshold namespace { template <typename Index, typename Device> struct MemcpyTriggerForSlicing { EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) { } EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > threshold_; } private: Index threshold_; }; // It is very expensive to start the memcpy kernel on GPU: we therefore only // use it for large copies. #ifdef EIGEN_USE_GPU template <typename Index> struct MemcpyTriggerForSlicing<Index, GpuDevice> { EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) { } EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > 4*1024*1024; } }; #endif } // Eval as rvalue template<typename StartIndices, typename Sizes, typename ArgType, typename Device> struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> { typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType; static const int NumDims = internal::array_size<Sizes>::value; enum { // Alignment can't be guaranteed at compile time since it depends on the // slice offsets and sizes. IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices()) { for (std::size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) { eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]); } const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); const Sizes& output_dims = op.sizes(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; } // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed. m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1]; m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]); } } else { m_inputStrides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; } // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed. m_outputStrides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1]; m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]); } } } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef Sizes Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { m_impl.evalSubExprsIfNeeded(NULL); if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data && m_impl.data()) { Index contiguous_values = 1; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < NumDims; ++i) { contiguous_values *= dimensions()[i]; if (dimensions()[i] != m_impl.dimensions()[i]) { break; } } } else { for (int i = NumDims-1; i >= 0; --i) { contiguous_values *= dimensions()[i]; if (dimensions()[i] != m_impl.dimensions()[i]) { break; } } } // Use memcpy if it's going to be faster than using the regular evaluation. const MemcpyTriggerForSlicing<Index, Device> trigger(m_device); if (trigger(contiguous_values)) { Scalar* src = (Scalar*)m_impl.data(); for (int i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) { Index offset = srcCoeff(i); m_device.memcpy((void*)(data+i), src+offset, contiguous_values * sizeof(Scalar)); } return false; } } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const int packetSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+packetSize-1 < internal::array_prod(dimensions())); Index inputIndices[] = {0, 0}; Index indices[] = {index, index + packetSize - 1}; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / m_fastOutputStrides[i]; const Index idx1 = indices[1] / m_fastOutputStrides[i]; inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; indices[0] -= idx0 * m_outputStrides[i]; indices[1] -= idx1 * m_outputStrides[i]; } inputIndices[0] += (indices[0] + m_offsets[0]); inputIndices[1] += (indices[1] + m_offsets[0]); } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx0 = indices[0] / m_fastOutputStrides[i]; const Index idx1 = indices[1] / m_fastOutputStrides[i]; inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; indices[0] -= idx0 * m_outputStrides[i]; indices[1] -= idx1 * m_outputStrides[i]; } inputIndices[0] += (indices[0] + m_offsets[NumDims-1]); inputIndices[1] += (indices[1] + m_offsets[NumDims-1]); } if (inputIndices[1] - inputIndices[0] == packetSize - 1) { PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); return rslt; } else { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize]; values[0] = m_impl.coeff(inputIndices[0]); values[packetSize-1] = m_impl.coeff(inputIndices[1]); for (int i = 1; i < packetSize-1; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { Scalar* result = m_impl.data(); if (result) { Index offset = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < NumDims; ++i) { if (m_dimensions[i] != m_impl.dimensions()[i]) { offset += m_offsets[i] * m_inputStrides[i]; for (int j = i+1; j < NumDims; ++j) { if (m_dimensions[j] > 1) { return NULL; } offset += m_offsets[j] * m_inputStrides[j]; } break; } } } else { for (int i = NumDims - 1; i >= 0; --i) { if (m_dimensions[i] != m_impl.dimensions()[i]) { offset += m_offsets[i] * m_inputStrides[i]; for (int j = i-1; j >= 0; --j) { if (m_dimensions[j] > 1) { return NULL; } offset += m_offsets[j] * m_inputStrides[j]; } break; } } } return result + offset; } return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } inputIndex += (index + m_offsets[0]); } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } inputIndex += (index + m_offsets[NumDims-1]); } return inputIndex; } array<Index, NumDims> m_outputStrides; array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; const Device& m_device; Dimensions m_dimensions; const StartIndices m_offsets; }; // Eval as lvalue template<typename StartIndices, typename Sizes, typename ArgType, typename Device> struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> { typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base; typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType; static const int NumDims = internal::array_size<Sizes>::value; enum { IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef Sizes Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { const int packetSize = internal::unpacket_traits<PacketReturnType>::size; Index inputIndices[] = {0, 0}; Index indices[] = {index, index + packetSize - 1}; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; indices[0] -= idx0 * this->m_outputStrides[i]; indices[1] -= idx1 * this->m_outputStrides[i]; } inputIndices[0] += (indices[0] + this->m_offsets[0]); inputIndices[1] += (indices[1] + this->m_offsets[0]); } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; indices[0] -= idx0 * this->m_outputStrides[i]; indices[1] -= idx1 * this->m_outputStrides[i]; } inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]); inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]); } if (inputIndices[1] - inputIndices[0] == packetSize - 1) { this->m_impl.template writePacket<StoreMode>(inputIndices[0], x); } else { EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); this->m_impl.coeffRef(inputIndices[0]) = values[0]; this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1]; for (int i = 1; i < packetSize-1; ++i) { this->coeffRef(index+i) = values[i]; } } } }; namespace internal { template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = array_size<StartIndices>::value; static const int Layout = XprTraits::Layout; }; template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense> { typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>& type; }; template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type> { typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type; }; } // end namespace internal template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > { public: typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename internal::nested<TensorStridingSlicingOp>::type Nested; typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind; typedef typename internal::traits<TensorStridingSlicingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp( const XprType& expr, const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices), m_strides(strides) {} EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_startIndices; } EIGEN_DEVICE_FUNC const StartIndices& stopIndices() const { return m_stopIndices; } EIGEN_DEVICE_FUNC const StartIndices& strides() const { return m_strides; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const TensorStridingSlicingOp& other) { typedef TensorAssignOp<TensorStridingSlicingOp, const TensorStridingSlicingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run( assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorStridingSlicingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run( assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const StartIndices m_startIndices; const StopIndices m_stopIndices; const Strides m_strides; }; // Eval as rvalue template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device> struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> { typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType; static const int NumDims = internal::array_size<Strides>::value; enum { // Alignment can't be guaranteed at compile time since it depends on the // slice offsets and sizes. IsAligned = false, PacketAccess = false, BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_device(device), m_strides(op.strides()) { // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped; for (size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) { eigen_assert(m_strides[i] != 0 && "0 stride is invalid"); if(m_strides[i]>0){ startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]); stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]); }else{ /* implies m_strides[i]<0 by assert */ startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1); stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1); } m_startIndices[i] = startIndicesClamped[i]; } const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); // check for degenerate intervals and compute output tensor shape bool degenerate = false;; for(int i = 0; i < NumDims; i++){ Index interval = stopIndicesClamped[i] - startIndicesClamped[i]; if(interval == 0 || ((interval<0) != (m_strides[i]<0))){ m_dimensions[i] = 0; degenerate = true; }else{ m_dimensions[i] = interval / m_strides[i] + (interval % m_strides[i] != 0 ? 1 : 0); eigen_assert(m_dimensions[i] >= 0); } } Strides output_dims = m_dimensions; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputStrides[0] = m_strides[0]; m_offsets[0] = startIndicesClamped[0]; Index previousDimProduct = 1; for (int i = 1; i < NumDims; ++i) { previousDimProduct *= input_dims[i-1]; m_inputStrides[i] = previousDimProduct * m_strides[i]; m_offsets[i] = startIndicesClamped[i] * previousDimProduct; } // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed. m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1]; // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]); } } else { m_inputStrides[NumDims-1] = m_strides[NumDims-1]; m_offsets[NumDims-1] = startIndicesClamped[NumDims-1]; Index previousDimProduct = 1; for (int i = NumDims - 2; i >= 0; --i) { previousDimProduct *= input_dims[i+1]; m_inputStrides[i] = previousDimProduct * m_strides[i]; m_offsets[i] = startIndicesClamped[i] * previousDimProduct; } m_outputStrides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1]; // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]); } } m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1), device.lastLevelCacheSize() / sizeof(Scalar)); } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename internal::remove_const<Scalar>::type ScalarNonConst; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef Strides Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i >= 0; --i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += idx * m_inputStrides[i] + m_offsets[i]; index -= idx * m_outputStrides[i]; } } else { for (int i = 0; i < NumDims; ++i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += idx * m_inputStrides[i] + m_offsets[i]; index -= idx * m_outputStrides[i]; } } return inputIndex; } static EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) { return numext::maxi(min, numext::mini(max,value)); } array<Index, NumDims> m_outputStrides; array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; const Device& m_device; DSizes<Index, NumDims> m_startIndices; // clamped startIndices DSizes<Index, NumDims> m_dimensions; DSizes<Index, NumDims> m_offsets; // offset in a flattened shape const Strides m_strides; std::size_t m_block_total_size_max; }; // Eval as lvalue template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device> struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> { typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base; typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType; static const int NumDims = internal::array_size<Strides>::value; enum { IsAligned = false, PacketAccess = false, BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename internal::remove_const<Scalar>::type ScalarNonConst; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef Strides Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h
.h
2,446
83
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: eigen@codeplay.com // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // General include header of SYCL target for Tensor Module #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H #ifdef EIGEN_USE_SYCL // global pointer to set different attribute state for a class template <class T> struct MakeGlobalPointer { typedef typename cl::sycl::global_ptr<T>::pointer_t Type; }; // global pointer to set different attribute state for a class template <class T> struct MakeLocalPointer { typedef typename cl::sycl::local_ptr<T>::pointer_t Type; }; namespace Eigen { namespace TensorSycl { namespace internal { /// This struct is used for special expression nodes with no operations (for example assign and selectOP). struct NoOP; template<bool IsConst, typename T> struct GetType{ typedef const T Type; }; template<typename T> struct GetType<false, T>{ typedef T Type; }; } } } // tuple construction #include "TensorSyclTuple.h" // counting number of leaf at compile time #include "TensorSyclLeafCount.h" // The index PlaceHolder takes the actual expression and replaces the actual // data on it with the place holder. It uses the same pre-order expression tree // traverse as the leaf count in order to give the right access number to each // node in the expression #include "TensorSyclPlaceHolderExpr.h" // creation of an accessor tuple from a tuple of SYCL buffers #include "TensorSyclExtractAccessor.h" // this is used to change the address space type in tensor map for GPU #include "TensorSyclConvertToDeviceExpression.h" // this is used to extract the functors #include "TensorSyclExtractFunctors.h" // this is used to create tensormap on the device // this is used to construct the expression on the device #include "TensorSyclExprConstructor.h" /// this is used for extracting tensor reduction #include "TensorReductionSycl.h" // kernel execution using fusion #include "TensorSyclRun.h" #endif // end of EIGEN_USE_SYCL #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h
.h
9,752
238
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensroSyclTuple.h * * \brief: * Minimal implementation of std::tuple that can be used inside a SYCL kernel. * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP namespace utility { namespace tuple { /// \struct StaticIf /// \brief The StaticIf struct is used to statically choose the type based on the /// condition. template <bool, typename T = void> struct StaticIf; /// \brief specialisation of the \ref StaticIf when the condition is true template <typename T> struct StaticIf<true, T> { typedef T type; }; /// \struct Tuple /// \brief is a fixed-size collection of heterogeneous values /// \tparam Ts... - the types of the elements that the tuple stores. /// Empty list is supported. template <class... Ts> struct Tuple {}; /// \brief specialisation of the \ref Tuple class when the tuple has at least /// one element. /// \tparam T : the type of the first element in the tuple. /// \tparam Ts... the rest of the elements in the tuple. Ts... can be empty. template <class T, class... Ts> struct Tuple<T, Ts...> { Tuple(T t, Ts... ts) : head(t), tail(ts...) {} T head; Tuple<Ts...> tail; }; ///\ struct ElemTypeHolder /// \brief ElemTypeHolder class is used to specify the types of the /// elements inside the tuple /// \tparam size_t the number of elements inside the tuple /// \tparam class the tuple class template <size_t, class> struct ElemTypeHolder; /// \brief specialisation of the \ref ElemTypeHolder class when the number of /// elements inside the tuple is 1 template <class T, class... Ts> struct ElemTypeHolder<0, Tuple<T, Ts...> > { typedef T type; }; /// \brief specialisation of the \ref ElemTypeHolder class when the number of /// elements inside the tuple is bigger than 1. It recursively calls itself to /// detect the type of each element in the tuple /// \tparam T : the type of the first element in the tuple. /// \tparam Ts... the rest of the elements in the tuple. Ts... can be empty. /// \tparam K is the Kth element in the tuple template <size_t k, class T, class... Ts> struct ElemTypeHolder<k, Tuple<T, Ts...> > { typedef typename ElemTypeHolder<k - 1, Tuple<Ts...> >::type type; }; /// get /// \brief Extracts the first element from the tuple. /// K=0 represents the first element of the tuple. The tuple cannot be empty. /// \tparam Ts... are the type of the elements in the tuple. /// \param t is the tuple whose contents to extract /// \return typename ElemTypeHolder<0, Tuple<Ts...> >::type &>::type #define TERMINATE_CONDS_TUPLE_GET(CVQual) \ template <size_t k, class... Ts> \ typename StaticIf<k == 0, CVQual typename ElemTypeHolder<0, Tuple<Ts...> >::type &>::type \ get(CVQual Tuple<Ts...> &t) { \ static_assert(sizeof...(Ts)!=0, "The requseted value is bigger than the size of the tuple"); \ return t.head; \ } TERMINATE_CONDS_TUPLE_GET(const) TERMINATE_CONDS_TUPLE_GET() #undef TERMINATE_CONDS_TUPLE_GET /// get /// \brief Extracts the Kth element from the tuple. ///\tparam K is an integer value in [0,sizeof...(Types)). /// \tparam T is the (sizeof...(Types) -(K+1)) element in the tuple /// \tparam Ts... are the type of the elements in the tuple. /// \param t is the tuple whose contents to extract /// \return typename ElemTypeHolder<K, Tuple<Ts...> >::type &>::type #define RECURSIVE_TUPLE_GET(CVQual) \ template <size_t k, class T, class... Ts> \ typename StaticIf<k != 0, CVQual typename ElemTypeHolder<k, Tuple<T, Ts...> >::type &>::type \ get(CVQual Tuple<T, Ts...> &t) { \ return utility::tuple::get<k - 1>(t.tail); \ } RECURSIVE_TUPLE_GET(const) RECURSIVE_TUPLE_GET() #undef RECURSIVE_TUPLE_GET /// make_tuple /// \brief Creates a tuple object, deducing the target type from the types of /// arguments. /// \tparam Args the type of the arguments to construct the tuple from /// \param args zero or more arguments to construct the tuple from /// \return Tuple<Args...> template <typename... Args> Tuple<Args...> make_tuple(Args... args) { return Tuple<Args...>(args...); } /// size /// \brief Provides access to the number of elements in a tuple as a /// compile-time constant expression. /// \tparam Args the type of the arguments to construct the tuple from /// \return size_t template <typename... Args> static constexpr size_t size(Tuple<Args...> &) { return sizeof...(Args); } /// \struct IndexList /// \brief Creates a list of index from the elements in the tuple /// \tparam Is... a list of index from [0 to sizeof...(tuple elements)) template <size_t... Is> struct IndexList {}; /// \struct RangeBuilder /// \brief Collects internal details for generating index ranges [MIN, MAX) /// Declare primary template for index range builder /// \tparam MIN is the starting index in the tuple /// \tparam N represents sizeof..(elemens)- sizeof...(Is) /// \tparam Is... are the list of generated index so far template <size_t MIN, size_t N, size_t... Is> struct RangeBuilder; // FIXME Doxygen has problems with recursive inheritance #ifndef EIGEN_PARSED_BY_DOXYGEN /// \brief base Step: Specialisation of the \ref RangeBuilder when the /// MIN==MAX. In this case the Is... is [0 to sizeof...(tuple elements)) /// \tparam MIN is the starting index of the tuple /// \tparam Is is [0 to sizeof...(tuple elements)) template <size_t MIN, size_t... Is> struct RangeBuilder<MIN, MIN, Is...> { typedef IndexList<Is...> type; }; /// Induction step: Specialisation of the RangeBuilder class when N!=MIN /// in this case we are recursively subtracting N by one and adding one /// index to Is... list until MIN==N /// \tparam MIN is the starting index in the tuple /// \tparam N represents sizeof..(elemens)- sizeof...(Is) /// \tparam Is... are the list of generated index so far template <size_t MIN, size_t N, size_t... Is> struct RangeBuilder : public RangeBuilder<MIN, N - 1, N - 1, Is...> {}; #endif // EIGEN_PARSED_BY_DOXYGEN /// \brief IndexRange that returns a [MIN, MAX) index range /// \tparam MIN is the starting index in the tuple /// \tparam MAX is the size of the tuple template <size_t MIN, size_t MAX> struct IndexRange: RangeBuilder<MIN, MAX>::type {}; /// append_base /// \brief unpacking the elements of the input tuple t and creating a new tuple /// by adding element a at the end of it. ///\tparam Args... the type of the elements inside the tuple t /// \tparam T the type of the new element going to be added at the end of tuple /// \tparam I... is the list of index from [0 to sizeof...(t)) /// \param t the tuple on which we want to append a. /// \param a the new elements going to be added to the tuple /// \return Tuple<Args..., T> template <typename... Args, typename T, size_t... I> Tuple<Args..., T> append_base(Tuple<Args...> t, T a,IndexList<I...>) { return utility::tuple::make_tuple(get<I>(t)..., a); } /// append /// \brief the deduction function for \ref append_base that automatically /// generate the \ref IndexRange ///\tparam Args... the type of the elements inside the tuple t /// \tparam T the type of the new element going to be added at the end of tuple /// \param t the tuple on which we want to append a. /// \param a the new elements going to be added to the tuple /// \return Tuple<Args..., T> template <typename... Args, typename T> Tuple<Args..., T> append(Tuple<Args...> t, T a) { return utility::tuple::append_base(t, a, IndexRange<0, sizeof...(Args)>()); } /// append_base /// \brief This is a specialisation of \ref append_base when we want to /// concatenate /// tuple t2 at the end of the tuple t1. Here we unpack both tuples, generate the /// IndexRange for each of them and create an output tuple T that contains both /// elements of t1 and t2. ///\tparam Args1... the type of the elements inside the tuple t1 ///\tparam Args2... the type of the elements inside the tuple t2 /// \tparam I1... is the list of index from [0 to sizeof...(t1)) /// \tparam I2... is the list of index from [0 to sizeof...(t2)) /// \param t1 is the tuple on which we want to append t2. /// \param t2 is the tuple that is going to be added on t1. /// \return Tuple<Args1..., Args2...> template <typename... Args1, typename... Args2, size_t... I1, size_t... I2> Tuple<Args1..., Args2...> append_base(Tuple<Args1...> t1, Tuple<Args2...> t2, IndexList<I1...>, IndexList<I2...>) { return utility::tuple::make_tuple(get<I1>(t1)...,get<I2>(t2)...); } /// append /// \brief deduction function for \ref append_base when we are appending tuple /// t1 by tuple t2. In this case the \ref IndexRange for both tuple are /// automatically generated. ///\tparam Args1... the type of the elements inside the tuple t1 ///\tparam Args2... the type of the elements inside the tuple t2 /// \param t1 is the tuple on which we want to append t2. /// \param t2 is the tuple that is going to be added on t1. /// \return Tuple<Args1..., Args2...> template <typename... Args1, typename... Args2> Tuple<Args1..., Args2...> append(Tuple<Args1...> t1,Tuple<Args2...> t2) { return utility::tuple::append_base(t1, t2, IndexRange<0, sizeof...(Args1)>(), IndexRange<0, sizeof...(Args2)>()); } } // tuple } // utility #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h
.h
13,633
430
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_REF_H #define EIGEN_CXX11_TENSOR_TENSOR_REF_H namespace Eigen { namespace internal { template <typename Dimensions, typename Scalar> class TensorLazyBaseEvaluator { public: TensorLazyBaseEvaluator() : m_refcount(0) { } virtual ~TensorLazyBaseEvaluator() { } EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const = 0; EIGEN_DEVICE_FUNC virtual const Scalar* data() const = 0; EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const = 0; EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) = 0; void incrRefCount() { ++m_refcount; } void decrRefCount() { --m_refcount; } int refCount() const { return m_refcount; } private: // No copy, no assigment; TensorLazyBaseEvaluator(const TensorLazyBaseEvaluator& other); TensorLazyBaseEvaluator& operator = (const TensorLazyBaseEvaluator& other); int m_refcount; }; template <typename Dimensions, typename Expr, typename Device> class TensorLazyEvaluatorReadOnly : public TensorLazyBaseEvaluator<Dimensions, typename TensorEvaluator<Expr, Device>::Scalar> { public: // typedef typename TensorEvaluator<Expr, Device>::Dimensions Dimensions; typedef typename TensorEvaluator<Expr, Device>::Scalar Scalar; TensorLazyEvaluatorReadOnly(const Expr& expr, const Device& device) : m_impl(expr, device), m_dummy(Scalar(0)) { m_dims = m_impl.dimensions(); m_impl.evalSubExprsIfNeeded(NULL); } virtual ~TensorLazyEvaluatorReadOnly() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const { return m_dims; } EIGEN_DEVICE_FUNC virtual const Scalar* data() const { return m_impl.data(); } EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const { return m_impl.coeff(index); } EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex /*index*/) { eigen_assert(false && "can't reference the coefficient of a rvalue"); return m_dummy; }; protected: TensorEvaluator<Expr, Device> m_impl; Dimensions m_dims; Scalar m_dummy; }; template <typename Dimensions, typename Expr, typename Device> class TensorLazyEvaluatorWritable : public TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> { public: typedef TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> Base; typedef typename Base::Scalar Scalar; TensorLazyEvaluatorWritable(const Expr& expr, const Device& device) : Base(expr, device) { } virtual ~TensorLazyEvaluatorWritable() { } EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) { return this->m_impl.coeffRef(index); } }; template <typename Dimensions, typename Expr, typename Device> class TensorLazyEvaluator : public internal::conditional<bool(internal::is_lvalue<Expr>::value), TensorLazyEvaluatorWritable<Dimensions, Expr, Device>, TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type { public: typedef typename internal::conditional<bool(internal::is_lvalue<Expr>::value), TensorLazyEvaluatorWritable<Dimensions, Expr, Device>, TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type Base; typedef typename Base::Scalar Scalar; TensorLazyEvaluator(const Expr& expr, const Device& device) : Base(expr, device) { } virtual ~TensorLazyEvaluator() { } }; } // namespace internal /** \class TensorRef * \ingroup CXX11_Tensor_Module * * \brief A reference to a tensor expression * The expression will be evaluated lazily (as much as possible). * */ template<typename PlainObjectType> class TensorRef : public TensorBase<TensorRef<PlainObjectType> > { public: typedef TensorRef<PlainObjectType> Self; typedef typename PlainObjectType::Base Base; typedef typename Eigen::internal::nested<Self>::type Nested; typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind; typedef typename internal::traits<PlainObjectType>::Index Index; typedef typename internal::traits<PlainObjectType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename Base::CoeffReturnType CoeffReturnType; typedef Scalar* PointerType; typedef PointerType PointerArgType; static const Index NumIndices = PlainObjectType::NumIndices; typedef typename PlainObjectType::Dimensions Dimensions; enum { IsAligned = false, PacketAccess = false, Layout = PlainObjectType::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_STRONG_INLINE TensorRef() : m_evaluator(NULL) { } template <typename Expression> EIGEN_STRONG_INLINE TensorRef(const Expression& expr) : m_evaluator(new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice())) { m_evaluator->incrRefCount(); } template <typename Expression> EIGEN_STRONG_INLINE TensorRef& operator = (const Expression& expr) { unrefEvaluator(); m_evaluator = new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice()); m_evaluator->incrRefCount(); return *this; } ~TensorRef() { unrefEvaluator(); } TensorRef(const TensorRef& other) : m_evaluator(other.m_evaluator) { eigen_assert(m_evaluator->refCount() > 0); m_evaluator->incrRefCount(); } TensorRef& operator = (const TensorRef& other) { if (this != &other) { unrefEvaluator(); m_evaluator = other.m_evaluator; eigen_assert(m_evaluator->refCount() > 0); m_evaluator->incrRefCount(); } return *this; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return m_evaluator->dimensions().size(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_evaluator->dimensions()[n]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_evaluator->dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_evaluator->dimensions().TotalSize(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar* data() const { return m_evaluator->data(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(Index index) const { return m_evaluator->coeff(index); } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(Index firstIndex, IndexTypes... otherIndices) const { const std::size_t num_indices = (sizeof...(otherIndices) + 1); const array<Index, num_indices> indices{{firstIndex, otherIndices...}}; return coeff(indices); } template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices) { const std::size_t num_indices = (sizeof...(otherIndices) + 1); const array<Index, num_indices> indices{{firstIndex, otherIndices...}}; return coeffRef(indices); } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1) const { array<Index, 2> indices; indices[0] = i0; indices[1] = i1; return coeff(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2) const { array<Index, 3> indices; indices[0] = i0; indices[1] = i1; indices[2] = i2; return coeff(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3) const { array<Index, 4> indices; indices[0] = i0; indices[1] = i1; indices[2] = i2; indices[3] = i3; return coeff(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const { array<Index, 5> indices; indices[0] = i0; indices[1] = i1; indices[2] = i2; indices[3] = i3; indices[4] = i4; return coeff(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1) { array<Index, 2> indices; indices[0] = i0; indices[1] = i1; return coeffRef(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2) { array<Index, 3> indices; indices[0] = i0; indices[1] = i1; indices[2] = i2; return coeffRef(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) { array<Index, 4> indices; indices[0] = i0; indices[1] = i1; indices[2] = i2; indices[3] = i3; return coeffRef(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2, Index i3, Index i4) { array<Index, 5> indices; indices[0] = i0; indices[1] = i1; indices[2] = i2; indices[3] = i3; indices[4] = i4; return coeffRef(indices); } #endif template <std::size_t NumIndices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(const array<Index, NumIndices>& indices) const { const Dimensions& dims = this->dimensions(); Index index = 0; if (PlainObjectType::Options & RowMajor) { index += indices[0]; for (size_t i = 1; i < NumIndices; ++i) { index = index * dims[i] + indices[i]; } } else { index += indices[NumIndices-1]; for (int i = NumIndices-2; i >= 0; --i) { index = index * dims[i] + indices[i]; } } return m_evaluator->coeff(index); } template <std::size_t NumIndices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) { const Dimensions& dims = this->dimensions(); Index index = 0; if (PlainObjectType::Options & RowMajor) { index += indices[0]; for (size_t i = 1; i < NumIndices; ++i) { index = index * dims[i] + indices[i]; } } else { index += indices[NumIndices-1]; for (int i = NumIndices-2; i >= 0; --i) { index = index * dims[i] + indices[i]; } } return m_evaluator->coeffRef(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index index) const { return m_evaluator->coeff(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return m_evaluator->coeffRef(index); } private: EIGEN_STRONG_INLINE void unrefEvaluator() { if (m_evaluator) { m_evaluator->decrRefCount(); if (m_evaluator->refCount() == 0) { delete m_evaluator; } } } internal::TensorLazyBaseEvaluator<Dimensions, Scalar>* m_evaluator; }; // evaluator for rvalues template<typename Derived, typename Device> struct TensorEvaluator<const TensorRef<Derived>, Device> { typedef typename Derived::Index Index; typedef typename Derived::Scalar Scalar; typedef typename Derived::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef typename Derived::Dimensions Dimensions; enum { IsAligned = false, PacketAccess = false, Layout = TensorRef<Derived>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const TensorRef<Derived>& m, const Device&) : m_ref(m) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_ref.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_ref.coeff(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return m_ref.coeffRef(index); } EIGEN_DEVICE_FUNC Scalar* data() const { return m_ref.data(); } protected: TensorRef<Derived> m_ref; }; // evaluator for lvalues template<typename Derived, typename Device> struct TensorEvaluator<TensorRef<Derived>, Device> : public TensorEvaluator<const TensorRef<Derived>, Device> { typedef typename Derived::Index Index; typedef typename Derived::Scalar Scalar; typedef typename Derived::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef typename Derived::Dimensions Dimensions; typedef TensorEvaluator<const TensorRef<Derived>, Device> Base; enum { IsAligned = false, PacketAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(TensorRef<Derived>& m, const Device& d) : Base(m, d) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return this->m_ref.coeffRef(index); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_REF_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
.h
30,324
751
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H namespace Eigen { namespace internal { #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) // Full reducers for GPU, don't vectorize for now // Reducer function that enables multiple cuda thread to safely accumulate at the same // output address. It basically reads the current value of the output variable, and // attempts to update it with the new value. If in the meantime another cuda thread // updated the content of the output address it will try again. template <typename T, typename R> __device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) { #if __CUDA_ARCH__ >= 300 if (sizeof(T) == 4) { unsigned int oldval = *reinterpret_cast<unsigned int*>(output); unsigned int newval = oldval; reducer.reduce(accum, reinterpret_cast<T*>(&newval)); if (newval == oldval) { return; } unsigned int readback; while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { oldval = readback; newval = oldval; reducer.reduce(accum, reinterpret_cast<T*>(&newval)); if (newval == oldval) { return; } } } else if (sizeof(T) == 8) { unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output); unsigned long long newval = oldval; reducer.reduce(accum, reinterpret_cast<T*>(&newval)); if (newval == oldval) { return; } unsigned long long readback; while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) { oldval = readback; newval = oldval; reducer.reduce(accum, reinterpret_cast<T*>(&newval)); if (newval == oldval) { return; } } } else { assert(0 && "Wordsize not supported"); } #else assert(0 && "Shouldn't be called on unsupported device"); #endif } // We extend atomicExch to support extra data types template <typename Type> __device__ inline Type atomicExchCustom(Type* address, Type val) { return atomicExch(address, val); } template <> __device__ inline double atomicExchCustom(double* address, double val) { unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address); return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val))); } #ifdef EIGEN_HAS_CUDA_FP16 template <template <typename T> class R> __device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) { unsigned int oldval = *reinterpret_cast<unsigned int*>(output); unsigned int newval = oldval; reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval)); if (newval == oldval) { return; } unsigned int readback; while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { oldval = readback; newval = oldval; reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval)); if (newval == oldval) { return; } } } #endif template <> __device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) { #if __CUDA_ARCH__ >= 300 atomicAdd(output, accum); #else assert(0 && "Shouldn't be called on unsupported device"); #endif } template <typename CoeffType, typename Index> __global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) { const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; const Index num_threads = blockDim.x * gridDim.x; for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { output[i] = val; } } template <int BlockSize, int NumPerThread, typename Self, typename Reducer, typename Index> __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs, typename Self::CoeffReturnType* output, unsigned int* semaphore) { #if __CUDA_ARCH__ >= 300 // Initialize the output value const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x; if (gridDim.x == 1) { if (first_index == 0) { *output = reducer.initialize(); } } else { if (threadIdx.x == 0) { unsigned int block = atomicCAS(semaphore, 0u, 1u); if (block == 0) { // We're the first block to run, initialize the output value atomicExchCustom(output, reducer.initialize()); __threadfence(); atomicExch(semaphore, 2u); } else { // Wait for the first block to initialize the output value. // Use atomicCAS here to ensure that the reads aren't cached unsigned int val; do { val = atomicCAS(semaphore, 2u, 2u); } while (val < 2u); } } } __syncthreads(); eigen_assert(gridDim.x == 1 || *semaphore >= 2u); typename Self::CoeffReturnType accum = reducer.initialize(); Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize); for (Index i = 0; i < max_iter; i+=BlockSize) { const Index index = first_index + i; eigen_assert(index < num_coeffs); typename Self::CoeffReturnType val = input.m_impl.coeff(index); reducer.reduce(val, &accum); } #pragma unroll for (int offset = warpSize/2; offset > 0; offset /= 2) { reducer.reduce(__shfl_down(accum, offset, warpSize), &accum); } if ((threadIdx.x & (warpSize - 1)) == 0) { atomicReduce(output, accum, reducer); } if (gridDim.x > 1 && threadIdx.x == 0) { // Let the last block reset the semaphore atomicInc(semaphore, gridDim.x + 1); } #else assert(0 && "Shouldn't be called on unsupported device"); #endif } #ifdef EIGEN_HAS_CUDA_FP16 template <typename Self, typename Reducer, typename Index> __global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) { eigen_assert(blockDim.x == 1); eigen_assert(gridDim.x == 1); if (num_coeffs % 2 != 0) { half last = input.m_impl.coeff(num_coeffs-1); *scratch = __halves2half2(last, reducer.initialize()); } else { *scratch = reducer.template initializePacket<half2>(); } } template <typename Self, typename Reducer, typename Index> __global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) { const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; const Index num_threads = blockDim.x * gridDim.x; const Index num_packets = num_coeffs / 2; for (Index i = thread_id; i < num_packets; i += num_threads) { ((half2*)output)[i] = reducer.template initializePacket<half2>(); } if (thread_id == 0 && num_coeffs % 2 != 0) { output[num_coeffs-1] = reducer.initialize(); } } template <int BlockSize, int NumPerThread, typename Self, typename Reducer, typename Index> __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output, half2* scratch) { eigen_assert(NumPerThread % 2 == 0); const Index first_index = blockIdx.x * BlockSize * NumPerThread + 2*threadIdx.x; // Initialize the output value if it wasn't initialized by the ReductionInitKernel if (gridDim.x == 1 && first_index == 0) { if (num_coeffs % 2 != 0) { half last = input.m_impl.coeff(num_coeffs-1); *scratch = __halves2half2(last, reducer.initialize()); } else { *scratch = reducer.template initializePacket<half2>(); } __syncthreads(); } half2 accum = reducer.template initializePacket<half2>(); const Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2); for (Index i = 0; i < max_iter; i += BlockSize) { const Index index = first_index + 2*i; eigen_assert(index + 1 < num_coeffs); half2 val = input.m_impl.template packet<Unaligned>(index); reducer.reducePacket(val, &accum); } #pragma unroll for (int offset = warpSize/2; offset > 0; offset /= 2) { reducer.reducePacket(__shfl_down(accum, offset, warpSize), &accum); } if ((threadIdx.x & (warpSize - 1)) == 0) { atomicReduce(scratch, accum, reducer); } __syncthreads(); if (gridDim.x == 1 && first_index == 0) { half tmp = __low2half(*scratch); reducer.reduce(__high2half(*scratch), &tmp); *output = tmp; } } template <typename Op> __global__ void ReductionCleanupKernelHalfFloat(Op& reducer, half* output, half2* scratch) { eigen_assert(threadIdx.x == 1); half tmp = __low2half(*scratch); reducer.reduce(__high2half(*scratch), &tmp); *output = tmp; } #endif template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void> struct FullReductionLauncher { static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) { assert(false && "Should only be called on doubles, floats and half floats"); } }; // Specialization for float and double template <typename Self, typename Op, typename OutputType, bool PacketAccess> struct FullReductionLauncher< Self, Op, OutputType, PacketAccess, typename internal::enable_if< internal::is_same<float, OutputType>::value || internal::is_same<double, OutputType>::value, void>::type> { static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) { typedef typename Self::Index Index; typedef typename Self::CoeffReturnType Scalar; const int block_size = 256; const int num_per_thread = 128; const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread); unsigned int* semaphore = NULL; if (num_blocks > 1) { semaphore = device.semaphore(); } LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>), num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore); } }; #ifdef EIGEN_HAS_CUDA_FP16 template <typename Self, typename Op> struct FullReductionLauncher<Self, Op, Eigen::half, false> { static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) { assert(false && "Should not be called since there is no packet accessor"); } }; template <typename Self, typename Op> struct FullReductionLauncher<Self, Op, Eigen::half, true> { static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) { typedef typename Self::Index Index; const int block_size = 256; const int num_per_thread = 128; const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread); half2* scratch = static_cast<half2*>(device.scratchpad()); if (num_blocks > 1) { // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there // won't be a race conditions between multiple thread blocks. LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>), 1, 1, 0, device, reducer, self, num_coeffs, scratch); } LAUNCH_CUDA_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>), num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch); if (num_blocks > 1) { LAUNCH_CUDA_KERNEL((ReductionCleanupKernelHalfFloat<Op>), 1, 1, 0, device, reducer, output, scratch); } } }; #endif template <typename Self, typename Op, bool Vectorizable> struct FullReducer<Self, Op, GpuDevice, Vectorizable> { // Unfortunately nvidia doesn't support well exotic types such as complex, // so reduce the scope of the optimized version of the code to the simple cases // of doubles, floats and half floats #ifdef EIGEN_HAS_CUDA_FP16 static const bool HasOptimizedImplementation = !Op::IsStateful && (internal::is_same<typename Self::CoeffReturnType, float>::value || internal::is_same<typename Self::CoeffReturnType, double>::value || (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess)); #else static const bool HasOptimizedImplementation = !Op::IsStateful && (internal::is_same<typename Self::CoeffReturnType, float>::value || internal::is_same<typename Self::CoeffReturnType, double>::value); #endif template <typename OutputType> static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) { assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats"); const Index num_coeffs = array_prod(self.m_impl.dimensions()); // Don't crash when we're called with an input tensor of size 0. if (num_coeffs == 0) { return; } FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs); } }; template <int NumPerThread, typename Self, typename Reducer, typename Index> __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, typename Self::CoeffReturnType* output) { #if __CUDA_ARCH__ >= 300 typedef typename Self::CoeffReturnType Type; eigen_assert(blockDim.y == 1); eigen_assert(blockDim.z == 1); eigen_assert(gridDim.y == 1); eigen_assert(gridDim.z == 1); const int unroll_times = 16; eigen_assert(NumPerThread % unroll_times == 0); const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread); const Index num_input_blocks = input_col_blocks * num_preserved_coeffs; const Index num_threads = blockDim.x * gridDim.x; const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; // Initialize the output values if they weren't initialized by the ReductionInitKernel if (gridDim.x == 1) { for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { output[i] = reducer.initialize(); } __syncthreads(); } for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { const Index row = i / input_col_blocks; if (row < num_preserved_coeffs) { const Index col_block = i % input_col_blocks; const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x; Type reduced_val = reducer.initialize(); for (Index j = 0; j < NumPerThread; j += unroll_times) { const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1); if (last_col >= num_coeffs_to_reduce) { for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) { const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col); reducer.reduce(val, &reduced_val); } break; } else { // Faster version of the loop with no branches after unrolling. #pragma unroll for (int k = 0; k < unroll_times; ++k) { const Index col = col_begin + blockDim.x * (j + k); reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val); } } } #pragma unroll for (int offset = warpSize/2; offset > 0; offset /= 2) { reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val); } if ((threadIdx.x & (warpSize - 1)) == 0) { atomicReduce(&(output[row]), reduced_val, reducer); } } } #else assert(0 && "Shouldn't be called on unsupported device"); #endif } #ifdef EIGEN_HAS_CUDA_FP16 template <int NumPerThread, typename Self, typename Reducer, typename Index> __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, half* output) { eigen_assert(blockDim.y == 1); eigen_assert(blockDim.z == 1); eigen_assert(gridDim.y == 1); eigen_assert(gridDim.z == 1); const int unroll_times = 16; eigen_assert(NumPerThread % unroll_times == 0); eigen_assert(unroll_times % 2 == 0); const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2); const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2); const Index num_threads = blockDim.x * gridDim.x; const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; // Initialize the output values if they weren't initialized by the ReductionInitKernel if (gridDim.x == 1) { Index i = 2*thread_id; for (; i + 1 < num_preserved_coeffs; i += 2*num_threads) { half* loc = output + i; *((half2*)loc) = reducer.template initializePacket<half2>(); } if (i < num_preserved_coeffs) { output[i] = reducer.initialize(); } __syncthreads(); } for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { const Index row = 2 * (i / input_col_blocks); if (row + 1 < num_preserved_coeffs) { const Index col_block = i % input_col_blocks; const Index col_begin = 2 * (col_block * blockDim.x * NumPerThread + threadIdx.x); half2 reduced_val1 = reducer.template initializePacket<half2>(); half2 reduced_val2 = reducer.template initializePacket<half2>(); for (Index j = 0; j < NumPerThread; j += unroll_times) { const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1) * 2; if (last_col >= num_coeffs_to_reduce) { Index col = col_begin + blockDim.x * j; for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) { const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col); reducer.reducePacket(val1, &reduced_val1); const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col); reducer.reducePacket(val2, &reduced_val2); } if (col < num_coeffs_to_reduce) { // Peel; const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col); const half2 val1 = __halves2half2(last1, reducer.initialize()); reducer.reducePacket(val1, &reduced_val1); const half last2 = input.m_impl.coeff((row+1) * num_coeffs_to_reduce + col); const half2 val2 = __halves2half2(last2, reducer.initialize()); reducer.reducePacket(val2, &reduced_val2); } break; } else { // Faster version of the loop with no branches after unrolling. #pragma unroll for (int k = 0; k < unroll_times; ++k) { const Index col = col_begin + blockDim.x * (j + k) * 2; reducer.reducePacket(input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col), &reduced_val1); reducer.reducePacket(input.m_impl.template packet<Unaligned>((row + 1)* num_coeffs_to_reduce + col), &reduced_val2); } } } #pragma unroll for (int offset = warpSize/2; offset > 0; offset /= 2) { reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1); reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2); } half val1 = __low2half(reduced_val1); reducer.reduce(__high2half(reduced_val1), &val1); half val2 = __low2half(reduced_val2); reducer.reduce(__high2half(reduced_val2), &val2); half2 val = __halves2half2(val1, val2); if ((threadIdx.x & (warpSize - 1)) == 0) { half* loc = output + row; atomicReduce((half2*)loc, val, reducer); } } } } #endif template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void> struct InnerReductionLauncher { static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) { assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device"); return true; } }; // Specialization for float and double template <typename Self, typename Op, typename OutputType, bool PacketAccess> struct InnerReductionLauncher< Self, Op, OutputType, PacketAccess, typename internal::enable_if< internal::is_same<float, OutputType>::value || internal::is_same<double, OutputType>::value, void>::type> { static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { typedef typename Self::Index Index; const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; const int block_size = 256; const int num_per_thread = 128; const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); if (num_blocks > 1) { // We initialize the outputs outside the reduction kernel when we can't be sure that there // won't be a race conditions between multiple thread blocks. const int dyn_blocks = divup<int>(num_preserved_vals, 1024); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / 1024; const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); LAUNCH_CUDA_KERNEL((ReductionInitKernel<OutputType, Index>), num_blocks, 1024, 0, device, reducer.initialize(), num_preserved_vals, output); } LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>), num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); return false; } }; #ifdef EIGEN_HAS_CUDA_FP16 template <typename Self, typename Op> struct InnerReductionLauncher<Self, Op, Eigen::half, false> { static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) { assert(false && "Should not be called since there is no packet accessor"); return true; } }; template <typename Self, typename Op> struct InnerReductionLauncher<Self, Op, Eigen::half, true> { static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { typedef typename Self::Index Index; if (num_preserved_vals % 2 != 0) { // Not supported yet, revert to the slower code path return true; } const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; const int block_size = /*256*/128; const int num_per_thread = /*128*/64; const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); if (num_blocks > 1) { // We initialize the outputs outside the reduction kernel when we can't be sure that there // won't be a race conditions between multiple thread blocks. const int dyn_blocks = divup<int>(num_preserved_vals, 1024); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / 1024; const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>), 1, 1, 0, device, reducer, self, num_preserved_vals, output); } LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>), num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); return false; } }; #endif template <typename Self, typename Op> struct InnerReducer<Self, Op, GpuDevice> { // Unfortunately nvidia doesn't support well exotic types such as complex, // so reduce the scope of the optimized version of the code to the simple case // of floats and half floats. #ifdef EIGEN_HAS_CUDA_FP16 static const bool HasOptimizedImplementation = !Op::IsStateful && (internal::is_same<typename Self::CoeffReturnType, float>::value || internal::is_same<typename Self::CoeffReturnType, double>::value || (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess)); #else static const bool HasOptimizedImplementation = !Op::IsStateful && (internal::is_same<typename Self::CoeffReturnType, float>::value || internal::is_same<typename Self::CoeffReturnType, double>::value); #endif template <typename OutputType> static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats"); const Index num_coeffs = array_prod(self.m_impl.dimensions()); // Don't crash when we're called with an input tensor of size 0. if (num_coeffs == 0) { return true; } // It's faster to use the usual code. if (num_coeffs_to_reduce <= 128) { return true; } return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals); } }; template <int NumPerThread, typename Self, typename Reducer, typename Index> __global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, typename Self::CoeffReturnType* output) { const Index num_threads = blockDim.x * gridDim.x; const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; // Initialize the output values if they weren't initialized by the ReductionInitKernel if (gridDim.x == 1) { for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { output[i] = reducer.initialize(); } __syncthreads(); } // Do the reduction. const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread); for (Index i = thread_id; i < max_iter; i += num_threads) { const Index input_col = i % num_preserved_coeffs; const Index input_row = (i / num_preserved_coeffs) * NumPerThread; typename Self::CoeffReturnType reduced_val = reducer.initialize(); const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce); for (Index j = input_row; j < max_row; j++) { typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col); reducer.reduce(val, &reduced_val); } atomicReduce(&(output[input_col]), reduced_val, reducer); } } template <typename Self, typename Op> struct OuterReducer<Self, Op, GpuDevice> { // Unfortunately nvidia doesn't support well exotic types such as complex, // so reduce the scope of the optimized version of the code to the simple case // of floats. static const bool HasOptimizedImplementation = !Op::IsStateful && (internal::is_same<typename Self::CoeffReturnType, float>::value || internal::is_same<typename Self::CoeffReturnType, double>::value); template <typename Device, typename OutputType> static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) { assert(false && "Should only be called to reduce doubles or floats on a gpu device"); return true; } static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { typedef typename Self::Index Index; // It's faster to use the usual code. if (num_coeffs_to_reduce <= 32) { return true; } const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; const int block_size = 256; const int num_per_thread = 16; const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); if (num_blocks > 1) { // We initialize the outputs in the reduction kernel itself when we don't have to worry // about race conditions between multiple thread blocks. const int dyn_blocks = divup<int>(num_preserved_vals, 1024); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / 1024; const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>), num_blocks, 1024, 0, device, reducer.initialize(), num_preserved_vals, output); } LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>), num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); return false; } }; #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
.h
20,561
528
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_H #define EIGEN_CXX11_TENSOR_TENSOR_H namespace Eigen { /** \class Tensor * \ingroup CXX11_Tensor_Module * * \brief The tensor class. * * The %Tensor class is the work-horse for all \em dense tensors within Eigen. * * The %Tensor class encompasses only dynamic-size objects so far. * * The first two template parameters are required: * \tparam Scalar_ Numeric type, e.g. float, double, int or `std::complex<float>`. * User defined scalar types are supported as well (see \ref user_defined_scalars "here"). * \tparam NumIndices_ Number of indices (i.e. rank of the tensor) * * The remaining template parameters are optional -- in most cases you don't have to worry about them. * \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either * \b #AutoAlign or \b #DontAlign. * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization. * Support for such operations (i.e. adding two tensors etc.) is planned. * * You can access elements of tensors using normal subscripting: * * \code * Eigen::Tensor<double, 4> t(10, 10, 10, 10); * t(0, 1, 2, 3) = 42.0; * \endcode * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN. * * <i><b>Some notes:</b></i> * * <dl> * <dt><b>Relation to other parts of Eigen:</b></dt> * <dd>The midterm development goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor * class does not provide any of these features and is only available as a stand-alone class that just allows for * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to * change dramatically.</dd> * </dl> * * \ref TopicStorageOrders */ template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_> class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > { public: typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self; typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base; typedef typename Eigen::internal::nested<Self>::type Nested; typedef typename internal::traits<Self>::StorageKind StorageKind; typedef typename internal::traits<Self>::Index Index; typedef Scalar_ Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename Base::CoeffReturnType CoeffReturnType; enum { IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign), Layout = Options_ & RowMajor ? RowMajor : ColMajor, CoordAccess = true, RawAccess = true }; static const int Options = Options_; static const int NumIndices = NumIndices_; typedef DSizes<Index, NumIndices_> Dimensions; protected: TensorStorage<Scalar, Dimensions, Options> m_storage; #ifdef EIGEN_HAS_SFINAE template<typename CustomIndices> struct isOfNormalIndex{ static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value; static const bool is_int = NumTraits<CustomIndices>::IsInteger; static const bool value = is_array | is_int; }; #endif public: // Metadata EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED // work, because that uses base().coeffRef() - and we don't yet // implement a similar class hierarchy inline Self& base() { return *this; } inline const Self& base() const { return *this; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); } #endif // normal indices EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const { eigen_internal_assert(checkIndexRange(indices)); return m_storage.data()[linearizedIndex(indices)]; } // custom indices #ifdef EIGEN_HAS_SFINAE template<typename CustomIndices, EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) > EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const { return coeff(internal::customIndices2Array<Index,NumIndices>(indices)); } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return m_storage.data()[0]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const { eigen_internal_assert(index >= 0 && index < size()); return m_storage.data()[index]; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); } #endif // normal indices EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) { eigen_internal_assert(checkIndexRange(indices)); return m_storage.data()[linearizedIndex(indices)]; } // custom indices #ifdef EIGEN_HAS_SFINAE template<typename CustomIndices, EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) > EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices) { return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices)); } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef() { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return m_storage.data()[0]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { eigen_internal_assert(index >= 0 && index < size()); return m_storage.data()[index]; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const { return coeff(array<Index, 2>(i0, i1)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const { return coeff(array<Index, 3>(i0, i1, i2)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const { return coeff(array<Index, 4>(i0, i1, i2, i3)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const { return coeff(array<Index, 5>(i0, i1, i2, i3, i4)); } #endif // custom indices #ifdef EIGEN_HAS_SFINAE template<typename CustomIndices, EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) > EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const { return coeff(internal::customIndices2Array<Index,NumIndices>(indices)); } #endif // normal indices EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const { return coeff(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const { eigen_internal_assert(index >= 0 && index < size()); return coeff(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return coeff(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const { // The bracket operator is only for vectors, use the parenthesis operator instead. EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE); return coeff(index); } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1) { return coeffRef(array<Index, 2>(i0, i1)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2) { return coeffRef(array<Index, 3>(i0, i1, i2)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) { return coeffRef(array<Index, 4>(i0, i1, i2, i3)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) { return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4)); } #endif // normal indices EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices) { return coeffRef(indices); } // custom indices #ifdef EIGEN_HAS_SFINAE template<typename CustomIndices, EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) > EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices) { return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices)); } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index) { eigen_assert(index >= 0 && index < size()); return coeffRef(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()() { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return coeffRef(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index) { // The bracket operator is only for vectors, use the parenthesis operator instead EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE) return coeffRef(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor() : m_storage() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(const Self& other) : m_storage(other.m_storage) { } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions) : m_storage(firstDimension, otherDimensions...) { // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1) : m_storage(dim1, array<Index, 1>(dim1)) { EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2) : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2)) { EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3) : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3)) { EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4) : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4)) { EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5)) { EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) } #endif /** Normal Dimension */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions) : m_storage(internal::array_prod(dimensions), dimensions) { EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other) { typedef TensorAssignOp<Tensor, const OtherDerived> Assign; Assign assign(*this, other.derived()); resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other) { typedef TensorAssignOp<Tensor, const OtherDerived> Assign; Assign assign(*this, other.derived()); resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other) { typedef TensorAssignOp<Tensor, const Tensor> Assign; Assign assign(*this, other); resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other) { typedef TensorAssignOp<Tensor, const OtherDerived> Assign; Assign assign(*this, other); resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC void resize(Index firstDimension, IndexTypes... otherDimensions) { // The number of dimensions used to resize a tensor must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}}); } #endif /** Normal Dimension */ EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions) { int i; Index size = Index(1); for (i = 0; i < NumIndices; i++) { internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]); size *= dimensions[i]; } #ifdef EIGEN_INITIALIZE_COEFFS bool size_changed = size != this->size(); m_storage.resize(size, dimensions); if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED #else m_storage.resize(size, dimensions); #endif } // Why this overload, DSizes is derived from array ??? // EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) { array<Index, NumIndices> dims; for (int i = 0; i < NumIndices; ++i) { dims[i] = dimensions[i]; } resize(dims); } EIGEN_DEVICE_FUNC void resize() { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); // Nothing to do: rank 0 tensors have fixed size } /** Custom Dimension */ #ifdef EIGEN_HAS_SFINAE template<typename CustomDimension, EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) ) > EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions) { resize(internal::customIndices2Array<Index,NumIndices>(dimensions)); } #endif #ifndef EIGEN_EMULATE_CXX11_META_H template <typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC void resize(const Sizes<Indices...>& dimensions) { array<Index, NumIndices> dims; for (int i = 0; i < NumIndices; ++i) { dims[i] = static_cast<Index>(dimensions[i]); } resize(dims); } #else template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> EIGEN_DEVICE_FUNC void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) { array<Index, NumIndices> dims; for (int i = 0; i < NumIndices; ++i) { dims[i] = static_cast<Index>(dimensions[i]); } resize(dims); } #endif protected: bool checkIndexRange(const array<Index, NumIndices>& indices) const { using internal::array_apply_and_reduce; using internal::array_zip_and_reduce; using internal::greater_equal_zero_op; using internal::logical_and_op; using internal::lesser_op; return // check whether the indices are all >= 0 array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) && // check whether the indices fit in the dimensions array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const { if (Options&RowMajor) { return m_storage.dimensions().IndexOfRowMajor(indices); } else { return m_storage.dimensions().IndexOfColMajor(indices); } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h
.h
1,316
34
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H #define EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H namespace Eigen { /** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given tensors. * * This function computes the regularized incomplete beta function (integral). * */ template <typename ADerived, typename BDerived, typename XDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseTernaryOp<internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived, const BDerived, const XDerived> betainc(const ADerived& a, const BDerived& b, const XDerived& x) { return TensorCwiseTernaryOp< internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived, const BDerived, const XDerived>( a, b, x, internal::scalar_betainc_op<typename XDerived::Scalar>()); } } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
.h
14,286
393
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H #define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H namespace Eigen { /** \class TensorBroadcasting * \ingroup CXX11_Tensor_Module * * \brief Tensor broadcasting class. * * */ namespace internal { template<typename Broadcast, typename XprType> struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename Broadcast, typename XprType> struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense> { typedef const TensorBroadcastingOp<Broadcast, XprType>& type; }; template<typename Broadcast, typename XprType> struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type> { typedef TensorBroadcastingOp<Broadcast, XprType> type; }; template <typename Dims> struct is_input_scalar { static const bool value = false; }; template <> struct is_input_scalar<Sizes<> > { static const bool value = true; }; #ifndef EIGEN_EMULATE_CXX11_META_H template <typename std::size_t... Indices> struct is_input_scalar<Sizes<Indices...> > { static const bool value = (Sizes<Indices...>::total_size == 1); }; #endif } // end namespace internal template<typename Broadcast, typename XprType> class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested; typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast) : m_xpr(expr), m_broadcast(broadcast) {} EIGEN_DEVICE_FUNC const Broadcast& broadcast() const { return m_broadcast; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const Broadcast m_broadcast; }; // Eval as rvalue template<typename Broadcast, typename ArgType, typename Device> struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device> { typedef TensorBroadcastingOp<Broadcast, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = true, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_broadcast(op.broadcast()),m_impl(op.expression(), device) { // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar // and store the result in a scalar. Instead one should reshape the scalar into a a N-D // tensor with N >= 1 of 1 element first and then broadcast. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); const InputDimensions& input_dims = m_impl.dimensions(); const Broadcast& broadcast = op.broadcast(); for (int i = 0; i < NumDims; ++i) { eigen_assert(input_dims[i] > 0); m_dimensions[i] = input_dims[i] * broadcast[i]; } if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } } else { m_inputStrides[NumDims-1] = 1; m_outputStrides[NumDims-1] = 1; for (int i = NumDims-2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const { if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) { return m_impl.coeff(0); } if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { return coeffColMajor(index); } else { return coeffRowMajor(index); } } // TODO: attempt to speed this up. The integer divisions and modulo are slow EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const { Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq<Broadcast>(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq<InputDimensions>(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } if (internal::index_statically_eq<Broadcast>(0, 1)) { eigen_assert(index < m_impl.dimensions()[0]); inputIndex += index; } else { if (internal::index_statically_eq<InputDimensions>(0, 1)) { eigen_assert(index % m_impl.dimensions()[0] == 0); } else { inputIndex += (index % m_impl.dimensions()[0]); } } return m_impl.coeff(inputIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const { Index inputIndex = 0; for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq<Broadcast>(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq<InputDimensions>(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) { eigen_assert(index < m_impl.dimensions()[NumDims-1]); inputIndex += index; } else { if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) { eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0); } else { inputIndex += (index % m_impl.dimensions()[NumDims-1]); } } return m_impl.coeff(inputIndex); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const { if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) { return internal::pset1<PacketReturnType>(m_impl.coeff(0)); } if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { return packetColMajor<LoadMode>(index); } else { return packetRowMajor<LoadMode>(index); } } // Ignore the LoadMode and always use unaligned loads since we can't guarantee // the alignment at compile time. template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index originalIndex = index; Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq<Broadcast>(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq<InputDimensions>(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } Index innermostLoc; if (internal::index_statically_eq<Broadcast>(0, 1)) { eigen_assert(index < m_impl.dimensions()[0]); innermostLoc = index; } else { if (internal::index_statically_eq<InputDimensions>(0, 1)) { eigen_assert(index % m_impl.dimensions()[0] == 0); innermostLoc = 0; } else { innermostLoc = index % m_impl.dimensions()[0]; } } inputIndex += innermostLoc; // Todo: this could be extended to the second dimension if we're not // broadcasting alongside the first dimension, and so on. if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) { return m_impl.template packet<Unaligned>(inputIndex); } else { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; values[0] = m_impl.coeff(inputIndex); for (int i = 1; i < PacketSize; ++i) { values[i] = coeffColMajor(originalIndex+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index originalIndex = index; Index inputIndex = 0; for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq<Broadcast>(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq<InputDimensions>(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } Index innermostLoc; if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) { eigen_assert(index < m_impl.dimensions()[NumDims-1]); innermostLoc = index; } else { if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) { eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0); innermostLoc = 0; } else { innermostLoc = index % m_impl.dimensions()[NumDims-1]; } } inputIndex += innermostLoc; // Todo: this could be extended to the second dimension if we're not // broadcasting alongside the first dimension, and so on. if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) { return m_impl.template packet<Unaligned>(inputIndex); } else { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; values[0] = m_impl.coeff(inputIndex); for (int i = 1; i < PacketSize; ++i) { values[i] = coeffRowMajor(originalIndex+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double compute_cost = TensorOpCost::AddCost<Index>(); if (NumDims > 0) { for (int i = NumDims - 1; i > 0; --i) { compute_cost += TensorOpCost::DivCost<Index>(); if (internal::index_statically_eq<Broadcast>(i, 1)) { compute_cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); } else { if (!internal::index_statically_eq<InputDimensions>(i, 1)) { compute_cost += TensorOpCost::MulCost<Index>() + TensorOpCost::ModCost<Index>() + TensorOpCost::AddCost<Index>(); } } compute_cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); } } return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } Broadcast functor() const { return m_broadcast; } protected: const Broadcast m_broadcast; Dimensions m_dimensions; array<Index, NumDims> m_outputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
.h
11,022
300
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> // Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H #define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H namespace Eigen { namespace internal { /** \class TensorIndexTuple * \ingroup CXX11_Tensor_Module * * \brief Tensor + Index Tuple class. * * */ template<typename XprType> struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType> { typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef Tuple<Index, typename XprTraits::Scalar> Scalar; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename XprType> struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense> { typedef const TensorIndexTupleOp<XprType>& type; }; template<typename XprType> struct nested<TensorIndexTupleOp<XprType>, 1, typename eval<TensorIndexTupleOp<XprType> >::type> { typedef TensorIndexTupleOp<XprType> type; }; } // end namespace internal template<typename XprType> class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested; typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index; typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr) : m_xpr(expr) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; }; // Eval as rvalue template<typename ArgType, typename Device> struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> { typedef TensorIndexTupleOp<ArgType> XprType; typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; static const int NumDims = internal::array_size<Dimensions>::value; enum { IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false, BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return CoeffReturnType(index, m_impl.coeff(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, 1); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: TensorEvaluator<ArgType, Device> m_impl; }; namespace internal { /** \class TensorTupleIndex * \ingroup CXX11_Tensor_Module * * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>. * */ template<typename ReduceOp, typename Dims, typename XprType> struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType> { typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef Index Scalar; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; static const int Layout = XprTraits::Layout; }; template<typename ReduceOp, typename Dims, typename XprType> struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense> { typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type; }; template<typename ReduceOp, typename Dims, typename XprType> struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1, typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type> { typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type; }; } // end namespace internal template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested; typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index; typedef Index CoeffReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr, const ReduceOp& reduce_op, const int return_dim, const Dims& reduce_dims) : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC const ReduceOp& reduce_op() const { return m_reduce_op; } EIGEN_DEVICE_FUNC const Dims& reduce_dims() const { return m_reduce_dims; } EIGEN_DEVICE_FUNC int return_dim() const { return m_return_dim; } protected: typename XprType::Nested m_xpr; const ReduceOp m_reduce_op; const int m_return_dim; const Dims m_reduce_dims; }; // Eval as rvalue template<typename ReduceOp, typename Dims, typename ArgType, typename Device> struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device> { typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType; typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType; typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions; typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions; static const int NumDims = internal::array_size<InputDimensions>::value; typedef array<Index, NumDims> StrideDims; enum { IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false, BlockAccess = false, Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_orig_impl(op.expression(), device), m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device), m_return_dim(op.return_dim()) { gen_strides(m_orig_impl.dimensions(), m_strides); if (Layout == static_cast<int>(ColMajor)) { const Index total_size = internal::array_prod(m_orig_impl.dimensions()); m_stride_mod = (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : total_size; } else { const Index total_size = internal::array_prod(m_orig_impl.dimensions()); m_stride_mod = (m_return_dim > 0) ? m_strides[m_return_dim - 1] : total_size; } m_stride_div = m_strides[m_return_dim]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { const TupleType v = m_impl.coeff(index); return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div; } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = 1.0 + (m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>())); return m_orig_impl.costPerCoeff(vectorized) + m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost); } private: EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions& dims, StrideDims& strides) { if (m_return_dim < 0) { return; // Won't be using the strides. } eigen_assert(m_return_dim < NumDims && "Asking to convert index to a dimension outside of the rank"); // Calculate m_stride_div and m_stride_mod, which are used to // calculate the value of an index w.r.t. the m_return_dim. if (Layout == static_cast<int>(ColMajor)) { strides[0] = 1; for (int i = 1; i < NumDims; ++i) { strides[i] = strides[i-1] * dims[i-1]; } } else { strides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { strides[i] = strides[i+1] * dims[i+1]; } } } protected: TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl; TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl; const int m_return_dim; StrideDims m_strides; Index m_stride_mod; Index m_stride_div; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
.h
6,341
186
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H #define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H namespace Eigen { /** \class TensorGeneratorOp * \ingroup CXX11_Tensor_Module * * \brief Tensor generator class. * * */ namespace internal { template<typename Generator, typename XprType> struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename Generator, typename XprType> struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense> { typedef const TensorGeneratorOp<Generator, XprType>& type; }; template<typename Generator, typename XprType> struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type> { typedef TensorGeneratorOp<Generator, XprType> type; }; } // end namespace internal template<typename Generator, typename XprType> class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested; typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator) : m_xpr(expr), m_generator(generator) {} EIGEN_DEVICE_FUNC const Generator& generator() const { return m_generator; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const Generator m_generator; }; // Eval as rvalue template<typename Generator, typename ArgType, typename Device> struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device> { typedef TensorGeneratorOp<Generator, ArgType> XprType; typedef typename XprType::Index Index; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; static const int NumDims = internal::array_size<Dimensions>::value; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; enum { IsAligned = false, PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1), BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_generator(op.generator()) { TensorEvaluator<ArgType, Device> impl(op.expression(), device); m_dimensions = impl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_strides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1]; } } else { m_strides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { array<Index, NumDims> coords; extract_coordinates(index, coords); return m_generator(coords); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const int packetSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+packetSize-1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize]; for (int i = 0; i < packetSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { // TODO(rmlarsen): This is just a placeholder. Define interface to make // generators return their cost. return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>()); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void extract_coordinates(Index index, array<Index, NumDims>& coords) const { if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_strides[i]; index -= idx * m_strides[i]; coords[i] = idx; } coords[0] = index; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_strides[i]; index -= idx * m_strides[i]; coords[i] = idx; } coords[NumDims-1] = index; } } Dimensions m_dimensions; array<Index, NumDims> m_strides; Generator m_generator; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
.h
5,309
219
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_META_H #define EIGEN_CXX11_TENSOR_TENSOR_META_H namespace Eigen { template<bool cond> struct Cond {}; template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T1& choose(Cond<true>, const T1& first, const T2&) { return first; } template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T2& choose(Cond<false>, const T1&, const T2& second) { return second; } template <typename T, typename X, typename Y> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T divup(const X x, const Y y) { return static_cast<T>((x + y - 1) / y); } template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T divup(const T x, const T y) { return static_cast<T>((x + y - 1) / y); } template <size_t n> struct max_n_1 { static const size_t size = n; }; template <> struct max_n_1<0> { static const size_t size = 1; }; // Default packet types template <typename Scalar, typename Device> struct PacketType : internal::packet_traits<Scalar> { typedef typename internal::packet_traits<Scalar>::type type; }; // For CUDA packet types when using a GpuDevice #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) && defined(EIGEN_HAS_CUDA_FP16) template <> struct PacketType<half, GpuDevice> { typedef half2 type; static const int size = 2; enum { HasAdd = 1, HasSub = 1, HasMul = 1, HasNegate = 1, HasAbs = 1, HasArg = 0, HasAbs2 = 0, HasMin = 1, HasMax = 1, HasConj = 0, HasSetLinear = 0, HasBlend = 0, HasDiv = 1, HasSqrt = 1, HasRsqrt = 1, HasExp = 1, HasLog = 1, HasLog1p = 0, HasLog10 = 0, HasPow = 1, }; }; #endif #if defined(EIGEN_USE_SYCL) template <typename T> struct PacketType<T, SyclDevice> { typedef T type; static const int size = 1; enum { HasAdd = 0, HasSub = 0, HasMul = 0, HasNegate = 0, HasAbs = 0, HasArg = 0, HasAbs2 = 0, HasMin = 0, HasMax = 0, HasConj = 0, HasSetLinear = 0, HasBlend = 0 }; }; #endif // Tuple mimics std::pair but works on e.g. nvcc. template <typename U, typename V> struct Tuple { public: U first; V second; typedef U first_type; typedef V second_type; EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tuple() : first(), second() {} EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tuple(const U& f, const V& s) : first(f), second(s) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tuple& operator= (const Tuple& rhs) { if (&rhs == this) return *this; first = rhs.first; second = rhs.second; return *this; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(Tuple& rhs) { using numext::swap; swap(first, rhs.first); swap(second, rhs.second); } }; template <typename U, typename V> EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) { return (x.first == y.first && x.second == y.second); } template <typename U, typename V> EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) { return !(x == y); } // Can't use std::pairs on cuda devices template <typename Idx> struct IndexPair { EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair() : first(0), second(0) {} EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair(Idx f, Idx s) : first(f), second(s) {} EIGEN_DEVICE_FUNC void set(IndexPair<Idx> val) { first = val.first; second = val.second; } Idx first; Idx second; }; #ifdef EIGEN_HAS_SFINAE namespace internal { template<typename IndexType, Index... Is> EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, sizeof...(Is)> customIndices2Array(IndexType& idx, numeric_list<Index, Is...>) { return { idx[Is]... }; } template<typename IndexType> EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, 0> customIndices2Array(IndexType&, numeric_list<Index>) { return array<Index, 0>(); } /** Make an array (for index/dimensions) out of a custom index */ template<typename Index, std::size_t NumIndices, typename IndexType> EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, NumIndices> customIndices2Array(IndexType& idx) { return customIndices2Array(idx, typename gen_numeric_list<Index, NumIndices>::type{}); } template <typename B, typename D> struct is_base_of { typedef char (&yes)[1]; typedef char (&no)[2]; template <typename BB, typename DD> struct Host { operator BB*() const; operator DD*(); }; template<typename T> static yes check(D*, T); static no check(B*, int); static const bool value = sizeof(check(Host<B,D>(), int())) == sizeof(yes); }; } #endif } // namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_META_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
.h
14,653
362
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H #define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H namespace Eigen { /** \class TensorConcatenationOp * \ingroup CXX11_Tensor_Module * * \brief Tensor concatenation class. * * */ namespace internal { template<typename Axis, typename LhsXprType, typename RhsXprType> struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef typename promote_storage_type<typename LhsXprType::Scalar, typename RhsXprType::Scalar>::ret Scalar; typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, typename traits<RhsXprType>::StorageKind>::ret StorageKind; typedef typename promote_index_type<typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index; typedef typename LhsXprType::Nested LhsNested; typedef typename RhsXprType::Nested RhsNested; typedef typename remove_reference<LhsNested>::type _LhsNested; typedef typename remove_reference<RhsNested>::type _RhsNested; static const int NumDimensions = traits<LhsXprType>::NumDimensions; static const int Layout = traits<LhsXprType>::Layout; enum { Flags = 0 }; }; template<typename Axis, typename LhsXprType, typename RhsXprType> struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense> { typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type; }; template<typename Axis, typename LhsXprType, typename RhsXprType> struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type> { typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type; }; } // end namespace internal template<typename Axis, typename LhsXprType, typename RhsXprType> class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> { public: typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar; typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind; typedef typename internal::traits<TensorConcatenationOp>::Index Index; typedef typename internal::nested<TensorConcatenationOp>::type Nested; typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType, typename RhsXprType::CoeffReturnType>::ret CoeffReturnType; typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis) : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename LhsXprType::Nested>::type& lhsExpression() const { return m_lhs_xpr; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename RhsXprType::Nested>::type& rhsExpression() const { return m_rhs_xpr; } EIGEN_DEVICE_FUNC const Axis& axis() const { return m_axis; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const TensorConcatenationOp& other) { typedef TensorAssignOp<TensorConcatenationOp, const TensorConcatenationOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorConcatenationOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename LhsXprType::Nested m_lhs_xpr; typename RhsXprType::Nested m_rhs_xpr; const Axis m_axis; }; // Eval as rvalue template<typename Axis, typename LeftArgType, typename RightArgType, typename Device> struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> { typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value; static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; enum { IsAligned = false, PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess, Layout = TensorEvaluator<LeftArgType, Device>::Layout, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis()) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(0 <= m_axis && m_axis < NumDims); const Dimensions& lhs_dims = m_leftImpl.dimensions(); const Dimensions& rhs_dims = m_rightImpl.dimensions(); { int i = 0; for (; i < m_axis; ++i) { eigen_assert(lhs_dims[i] > 0); eigen_assert(lhs_dims[i] == rhs_dims[i]); m_dimensions[i] = lhs_dims[i]; } eigen_assert(lhs_dims[i] > 0); // Now i == m_axis. eigen_assert(rhs_dims[i] > 0); m_dimensions[i] = lhs_dims[i] + rhs_dims[i]; for (++i; i < NumDims; ++i) { eigen_assert(lhs_dims[i] > 0); eigen_assert(lhs_dims[i] == rhs_dims[i]); m_dimensions[i] = lhs_dims[i]; } } if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_leftStrides[0] = 1; m_rightStrides[0] = 1; m_outputStrides[0] = 1; for (int j = 1; j < NumDims; ++j) { m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1]; m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1]; m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1]; } } else { m_leftStrides[NumDims - 1] = 1; m_rightStrides[NumDims - 1] = 1; m_outputStrides[NumDims - 1] = 1; for (int j = NumDims - 2; j >= 0; --j) { m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1]; m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1]; m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear? EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_leftImpl.evalSubExprsIfNeeded(NULL); m_rightImpl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_leftImpl.cleanup(); m_rightImpl.cleanup(); } // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow. // See CL/76180724 comments for more ideas. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { // Collect dimension-wise indices (subs). array<Index, NumDims> subs; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { subs[i] = index / m_outputStrides[i]; index -= subs[i] * m_outputStrides[i]; } subs[0] = index; } else { for (int i = 0; i < NumDims - 1; ++i) { subs[i] = index / m_outputStrides[i]; index -= subs[i] * m_outputStrides[i]; } subs[NumDims - 1] = index; } const Dimensions& left_dims = m_leftImpl.dimensions(); if (subs[m_axis] < left_dims[m_axis]) { Index left_index; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { left_index = subs[0]; for (int i = 1; i < NumDims; ++i) { left_index += (subs[i] % left_dims[i]) * m_leftStrides[i]; } } else { left_index = subs[NumDims - 1]; for (int i = NumDims - 2; i >= 0; --i) { left_index += (subs[i] % left_dims[i]) * m_leftStrides[i]; } } return m_leftImpl.coeff(left_index); } else { subs[m_axis] -= left_dims[m_axis]; const Dimensions& right_dims = m_rightImpl.dimensions(); Index right_index; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { right_index = subs[0]; for (int i = 1; i < NumDims; ++i) { right_index += (subs[i] % right_dims[i]) * m_rightStrides[i]; } } else { right_index = subs[NumDims - 1]; for (int i = NumDims - 2; i >= 0; --i) { right_index += (subs[i] % right_dims[i]) * m_rightStrides[i]; } } return m_rightImpl.coeff(right_index); } } // TODO(phli): Add a real vectorization. template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const int packetSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index + packetSize - 1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; for (int i = 0; i < packetSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + TensorOpCost::ModCost<Index>()); const double lhs_size = m_leftImpl.dimensions().TotalSize(); const double rhs_size = m_rightImpl.dimensions().TotalSize(); return (lhs_size / (lhs_size + rhs_size)) * m_leftImpl.costPerCoeff(vectorized) + (rhs_size / (lhs_size + rhs_size)) * m_rightImpl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: Dimensions m_dimensions; array<Index, NumDims> m_outputStrides; array<Index, NumDims> m_leftStrides; array<Index, NumDims> m_rightStrides; TensorEvaluator<LeftArgType, Device> m_leftImpl; TensorEvaluator<RightArgType, Device> m_rightImpl; const Axis m_axis; }; // Eval as lvalue template<typename Axis, typename LeftArgType, typename RightArgType, typename Device> struct TensorEvaluator<TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> : public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> { typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base; typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType; typedef typename Base::Dimensions Dimensions; enum { IsAligned = false, PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess, Layout = TensorEvaluator<LeftArgType, Device>::Layout, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(XprType& op, const Device& device) : Base(op, device) { EIGEN_STATIC_ASSERT((static_cast<int>(Layout) == static_cast<int>(ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE); } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { // Collect dimension-wise indices (subs). array<Index, Base::NumDims> subs; for (int i = Base::NumDims - 1; i > 0; --i) { subs[i] = index / this->m_outputStrides[i]; index -= subs[i] * this->m_outputStrides[i]; } subs[0] = index; const Dimensions& left_dims = this->m_leftImpl.dimensions(); if (subs[this->m_axis] < left_dims[this->m_axis]) { Index left_index = subs[0]; for (int i = 1; i < Base::NumDims; ++i) { left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i]; } return this->m_leftImpl.coeffRef(left_index); } else { subs[this->m_axis] -= left_dims[this->m_axis]; const Dimensions& right_dims = this->m_rightImpl.dimensions(); Index right_index = subs[0]; for (int i = 1; i < Base::NumDims; ++i) { right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i]; } return this->m_rightImpl.coeffRef(right_index); } } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { const int packetSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize()); EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); for (int i = 0; i < packetSize; ++i) { coeffRef(index+i) = values[i]; } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h
.h
25,305
634
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H #define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H namespace Eigen { /** \class TensorEvaluator * \ingroup CXX11_Tensor_Module * * \brief The tensor evaluator classes. * * These classes are responsible for the evaluation of the tensor expression. * * TODO: add support for more types of expressions, in particular expressions * leading to lvalues (slicing, reshaping, etc...) */ // Generic evaluator template<typename Derived, typename Device> struct TensorEvaluator { typedef typename Derived::Index Index; typedef typename Derived::Scalar Scalar; typedef typename Derived::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef typename Derived::Dimensions Dimensions; // NumDimensions is -1 for variable dim tensors static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ? internal::traits<Derived>::NumDimensions : 0; enum { IsAligned = Derived::IsAligned, PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1), Layout = Derived::Layout, CoordAccess = NumCoords > 0, RawAccess = true }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device) : m_data(const_cast<typename internal::traits<Derived>::template MakePointer<Scalar>::Type>(m.data())), m_dims(m.dimensions()), m_device(device), m_impl(m) { } // Used for accessor extraction in SYCL Managed TensorMap: const Derived& derived() const { return m_impl; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* dest) { if (dest) { m_device.memcpy((void*)dest, m_data, sizeof(Scalar) * m_dims.TotalSize()); return false; } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { eigen_assert(m_data); return m_data[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { eigen_assert(m_data); return m_data[index]; } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_data + index); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const { eigen_assert(m_data); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { return m_data[m_dims.IndexOfColMajor(coords)]; } else { return m_data[m_dims.IndexOfRowMajor(coords)]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<DenseIndex, NumCoords>& coords) { eigen_assert(m_data); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { return m_data[m_dims.IndexOfColMajor(coords)]; } else { return m_data[m_dims.IndexOfRowMajor(coords)]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, internal::unpacket_traits<PacketReturnType>::size); } EIGEN_DEVICE_FUNC typename internal::traits<Derived>::template MakePointer<Scalar>::Type data() const { return m_data; } /// required by sycl in order to construct sycl buffer from raw pointer const Device& device() const{return m_device;} protected: typename internal::traits<Derived>::template MakePointer<Scalar>::Type m_data; Dimensions m_dims; const Device& m_device; const Derived& m_impl; }; namespace { template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T loadConstant(const T* address) { return *address; } // Use the texture cache on CUDA devices whenever possible #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float loadConstant(const float* address) { return __ldg(address); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double loadConstant(const double* address) { return __ldg(address); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Eigen::half loadConstant(const Eigen::half* address) { return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x))); } #endif } // Default evaluator for rvalues template<typename Derived, typename Device> struct TensorEvaluator<const Derived, Device> { typedef typename Derived::Index Index; typedef typename Derived::Scalar Scalar; typedef typename Derived::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef typename Derived::Dimensions Dimensions; // NumDimensions is -1 for variable dim tensors static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ? internal::traits<Derived>::NumDimensions : 0; enum { IsAligned = Derived::IsAligned, PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1), Layout = Derived::Layout, CoordAccess = NumCoords > 0, RawAccess = true }; // Used for accessor extraction in SYCL Managed TensorMap: const Derived& derived() const { return m_impl; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device) : m_data(m.data()), m_dims(m.dimensions()), m_device(device), m_impl(m) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) { m_device.memcpy((void*)data, m_data, m_dims.TotalSize() * sizeof(Scalar)); return false; } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { eigen_assert(m_data); return loadConstant(m_data+index); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const { eigen_assert(m_data); const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords) : m_dims.IndexOfRowMajor(coords); return loadConstant(m_data+index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, internal::unpacket_traits<PacketReturnType>::size); } EIGEN_DEVICE_FUNC typename internal::traits<Derived>::template MakePointer<const Scalar>::Type data() const { return m_data; } /// added for sycl in order to construct the buffer from the sycl device const Device& device() const{return m_device;} protected: typename internal::traits<Derived>::template MakePointer<const Scalar>::Type m_data; Dimensions m_dims; const Device& m_device; const Derived& m_impl; }; // -------------------- CwiseNullaryOp -------------------- template<typename NullaryOp, typename ArgType, typename Device> struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device> { typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType; enum { IsAligned = true, PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper() { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename internal::traits<XprType>::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_wrapper(m_functor, index); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, internal::unpacket_traits<PacketReturnType>::size); } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; } /// required by sycl in order to extract the accessor const TensorEvaluator<ArgType, Device>& impl() const { return m_argImpl; } /// required by sycl in order to extract the accessor NullaryOp functor() const { return m_functor; } private: const NullaryOp m_functor; TensorEvaluator<ArgType, Device> m_argImpl; const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper; }; // -------------------- CwiseUnaryOp -------------------- template<typename UnaryOp, typename ArgType, typename Device> struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device> { typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType; enum { IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess & internal::functor_traits<UnaryOp>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename internal::traits<XprType>::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { m_argImpl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_argImpl.cleanup(); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_functor(m_argImpl.coeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double functor_cost = internal::functor_traits<UnaryOp>::Cost; return m_argImpl.costPerCoeff(vectorized) + TensorOpCost(0, 0, functor_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; } /// required by sycl in order to extract the accessor const TensorEvaluator<ArgType, Device> & impl() const { return m_argImpl; } /// added for sycl in order to construct the buffer from sycl device UnaryOp functor() const { return m_functor; } private: const UnaryOp m_functor; TensorEvaluator<ArgType, Device> m_argImpl; }; // -------------------- CwiseBinaryOp -------------------- template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device> struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device> { typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType; enum { IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess & internal::functor_traits<BinaryOp>::PacketAccess, Layout = TensorEvaluator<LeftArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_functor(op.functor()), m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions())); } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename internal::traits<XprType>::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { // TODO: use right impl instead if right impl dimensions are known at compile time. return m_leftImpl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { m_leftImpl.evalSubExprsIfNeeded(NULL); m_rightImpl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_leftImpl.cleanup(); m_rightImpl.cleanup(); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double functor_cost = internal::functor_traits<BinaryOp>::Cost; return m_leftImpl.costPerCoeff(vectorized) + m_rightImpl.costPerCoeff(vectorized) + TensorOpCost(0, 0, functor_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; } /// required by sycl in order to extract the accessor const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; } /// required by sycl in order to extract the accessor const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; } /// required by sycl in order to extract the accessor BinaryOp functor() const { return m_functor; } private: const BinaryOp m_functor; TensorEvaluator<LeftArgType, Device> m_leftImpl; TensorEvaluator<RightArgType, Device> m_rightImpl; }; // -------------------- CwiseTernaryOp -------------------- template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device> struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device> { typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType; enum { IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned, PacketAccess = TensorEvaluator<Arg1Type, Device>::PacketAccess & TensorEvaluator<Arg2Type, Device>::PacketAccess & TensorEvaluator<Arg3Type, Device>::PacketAccess & internal::functor_traits<TernaryOp>::PacketAccess, Layout = TensorEvaluator<Arg1Type, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_functor(op.functor()), m_arg1Impl(op.arg1Expression(), device), m_arg2Impl(op.arg2Expression(), device), m_arg3Impl(op.arg3Expression(), device) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind, typename internal::traits<Arg2Type>::StorageKind>::value), STORAGE_KIND_MUST_MATCH) EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind, typename internal::traits<Arg3Type>::StorageKind>::value), STORAGE_KIND_MUST_MATCH) EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index, typename internal::traits<Arg2Type>::Index>::value), STORAGE_INDEX_MUST_MATCH) EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index, typename internal::traits<Arg3Type>::Index>::value), STORAGE_INDEX_MUST_MATCH) eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions())); } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename internal::traits<XprType>::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { // TODO: use arg2 or arg3 dimensions if they are known at compile time. return m_arg1Impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { m_arg1Impl.evalSubExprsIfNeeded(NULL); m_arg2Impl.evalSubExprsIfNeeded(NULL); m_arg3Impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_arg1Impl.cleanup(); m_arg2Impl.cleanup(); m_arg3Impl.cleanup(); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index), m_arg2Impl.template packet<LoadMode>(index), m_arg3Impl.template packet<LoadMode>(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double functor_cost = internal::functor_traits<TernaryOp>::Cost; return m_arg1Impl.costPerCoeff(vectorized) + m_arg2Impl.costPerCoeff(vectorized) + m_arg3Impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, functor_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; } /// required by sycl in order to extract the accessor const TensorEvaluator<Arg1Type, Device> & arg1Impl() const { return m_arg1Impl; } /// required by sycl in order to extract the accessor const TensorEvaluator<Arg2Type, Device>& arg2Impl() const { return m_arg2Impl; } /// required by sycl in order to extract the accessor const TensorEvaluator<Arg3Type, Device>& arg3Impl() const { return m_arg3Impl; } private: const TernaryOp m_functor; TensorEvaluator<Arg1Type, Device> m_arg1Impl; TensorEvaluator<Arg2Type, Device> m_arg2Impl; TensorEvaluator<Arg3Type, Device> m_arg3Impl; }; // -------------------- SelectOp -------------------- template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device> struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device> { typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType; typedef typename XprType::Scalar Scalar; enum { IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned & TensorEvaluator<ElseArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess & TensorEvaluator<ElseArgType, Device>::PacketAccess & internal::packet_traits<Scalar>::HasBlend, Layout = TensorEvaluator<IfArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_condImpl(op.ifExpression(), device), m_thenImpl(op.thenExpression(), device), m_elseImpl(op.elseExpression(), device) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions())); eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions())); } typedef typename XprType::Index Index; typedef typename internal::traits<XprType>::Scalar CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { // TODO: use then or else impl instead if they happen to be known at compile time. return m_condImpl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { m_condImpl.evalSubExprsIfNeeded(NULL); m_thenImpl.evalSubExprsIfNeeded(NULL); m_elseImpl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_condImpl.cleanup(); m_thenImpl.cleanup(); m_elseImpl.cleanup(); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index); } template<int LoadMode> EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { internal::Selector<PacketSize> select; for (Index i = 0; i < PacketSize; ++i) { select.select[i] = m_condImpl.coeff(index+i); } return internal::pblend(select, m_thenImpl.template packet<LoadMode>(index), m_elseImpl.template packet<LoadMode>(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { return m_condImpl.costPerCoeff(vectorized) + m_thenImpl.costPerCoeff(vectorized) .cwiseMax(m_elseImpl.costPerCoeff(vectorized)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return NULL; } /// required by sycl in order to extract the accessor const TensorEvaluator<IfArgType, Device> & cond_impl() const { return m_condImpl; } /// required by sycl in order to extract the accessor const TensorEvaluator<ThenArgType, Device>& then_impl() const { return m_thenImpl; } /// required by sycl in order to extract the accessor const TensorEvaluator<ElseArgType, Device>& else_impl() const { return m_elseImpl; } private: TensorEvaluator<IfArgType, Device> m_condImpl; TensorEvaluator<ThenArgType, Device> m_thenImpl; TensorEvaluator<ElseArgType, Device> m_elseImpl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
.h
11,561
240
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclExprConstructor.h * * \brief: * This file re-create an expression on the SYCL device in order * to use the original tensor evaluator. * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP namespace Eigen { namespace TensorSycl { namespace internal { /// this class is used by EvalToOp in order to create an lhs expression which is /// a pointer from an accessor on device-only buffer template <typename PtrType, size_t N, typename... Params> struct EvalToLHSConstructor { PtrType expr; EvalToLHSConstructor(const utility::tuple::Tuple<Params...> &t): expr((&(*(utility::tuple::get<N>(t).get_pointer())))) {} }; /// struct ExprConstructor is used to reconstruct the expression on the device and /// recreate the expression with MakeGlobalPointer containing the device address /// space for the TensorMap pointers used in eval function. /// It receives the original expression type, the functor of the node, the tuple /// of accessors, and the device expression type to re-instantiate the /// expression tree for the device template <typename OrigExpr, typename IndexExpr, typename... Params> struct ExprConstructor; /// specialisation of the \ref ExprConstructor struct when the node type is /// TensorMap #define TENSORMAP(CVQual)\ template <typename Scalar_, int Options_, int Options2_, int Options3_, int NumIndices_, typename IndexType_,\ template <class> class MakePointer_, size_t N, typename... Params>\ struct ExprConstructor< CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer>,\ CVQual PlaceHolder<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options3_, MakePointer_>, N>, Params...>{\ typedef CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer> Type;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\ : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\ }; TENSORMAP(const) TENSORMAP() #undef TENSORMAP #define UNARYCATEGORY(CVQual)\ template <template<class, class> class UnaryCategory, typename OP, typename OrigRHSExpr, typename RHSExpr, typename... Params>\ struct ExprConstructor<CVQual UnaryCategory<OP, OrigRHSExpr>, CVQual UnaryCategory<OP, RHSExpr>, Params...> {\ typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_type;\ my_type rhsExpr;\ typedef CVQual UnaryCategory<OP, typename my_type::Type> Type;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\ : rhsExpr(funcD.rhsExpr, t), expr(rhsExpr.expr, funcD.func) {}\ }; UNARYCATEGORY(const) UNARYCATEGORY() #undef UNARYCATEGORY /// specialisation of the \ref ExprConstructor struct when the node type is /// TensorBinaryOp #define BINARYCATEGORY(CVQual)\ template <template<class, class, class> class BinaryCategory, typename OP, typename OrigLHSExpr, typename OrigRHSExpr, typename LHSExpr,\ typename RHSExpr, typename... Params>\ struct ExprConstructor<CVQual BinaryCategory<OP, OrigLHSExpr, OrigRHSExpr>, CVQual BinaryCategory<OP, LHSExpr, RHSExpr>, Params...> {\ typedef ExprConstructor<OrigLHSExpr, LHSExpr, Params...> my_left_type;\ typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_right_type;\ typedef CVQual BinaryCategory<OP, typename my_left_type::Type, typename my_right_type::Type> Type;\ my_left_type lhsExpr;\ my_right_type rhsExpr;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\ : lhsExpr(funcD.lhsExpr, t),rhsExpr(funcD.rhsExpr, t), expr(lhsExpr.expr, rhsExpr.expr, funcD.func) {}\ }; BINARYCATEGORY(const) BINARYCATEGORY() #undef BINARYCATEGORY /// specialisation of the \ref ExprConstructor struct when the node type is /// TensorCwiseTernaryOp #define TERNARYCATEGORY(CVQual)\ template <template <class, class, class, class> class TernaryCategory, typename OP, typename OrigArg1Expr, typename OrigArg2Expr,typename OrigArg3Expr,\ typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename... Params>\ struct ExprConstructor<CVQual TernaryCategory<OP, OrigArg1Expr, OrigArg2Expr, OrigArg3Expr>, CVQual TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Params...> {\ typedef ExprConstructor<OrigArg1Expr, Arg1Expr, Params...> my_arg1_type;\ typedef ExprConstructor<OrigArg2Expr, Arg2Expr, Params...> my_arg2_type;\ typedef ExprConstructor<OrigArg3Expr, Arg3Expr, Params...> my_arg3_type;\ typedef CVQual TernaryCategory<OP, typename my_arg1_type::Type, typename my_arg2_type::Type, typename my_arg3_type::Type> Type;\ my_arg1_type arg1Expr;\ my_arg2_type arg2Expr;\ my_arg3_type arg3Expr;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &funcD,const utility::tuple::Tuple<Params...> &t)\ : arg1Expr(funcD.arg1Expr, t), arg2Expr(funcD.arg2Expr, t), arg3Expr(funcD.arg3Expr, t), expr(arg1Expr.expr, arg2Expr.expr, arg3Expr.expr, funcD.func) {}\ }; TERNARYCATEGORY(const) TERNARYCATEGORY() #undef TERNARYCATEGORY /// specialisation of the \ref ExprConstructor struct when the node type is /// TensorCwiseSelectOp #define SELECTOP(CVQual)\ template <typename OrigIfExpr, typename OrigThenExpr, typename OrigElseExpr, typename IfExpr, typename ThenExpr, typename ElseExpr, typename... Params>\ struct ExprConstructor< CVQual TensorSelectOp<OrigIfExpr, OrigThenExpr, OrigElseExpr>, CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Params...> {\ typedef ExprConstructor<OrigIfExpr, IfExpr, Params...> my_if_type;\ typedef ExprConstructor<OrigThenExpr, ThenExpr, Params...> my_then_type;\ typedef ExprConstructor<OrigElseExpr, ElseExpr, Params...> my_else_type;\ typedef CVQual TensorSelectOp<typename my_if_type::Type, typename my_then_type::Type, typename my_else_type::Type> Type;\ my_if_type ifExpr;\ my_then_type thenExpr;\ my_else_type elseExpr;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\ : ifExpr(funcD.ifExpr, t), thenExpr(funcD.thenExpr, t), elseExpr(funcD.elseExpr, t), expr(ifExpr.expr, thenExpr.expr, elseExpr.expr) {}\ }; SELECTOP(const) SELECTOP() #undef SELECTOP /// specialisation of the \ref ExprConstructor struct when the node type is /// const TensorAssignOp #define ASSIGN(CVQual)\ template <typename OrigLHSExpr, typename OrigRHSExpr, typename LHSExpr, typename RHSExpr, typename... Params>\ struct ExprConstructor<CVQual TensorAssignOp<OrigLHSExpr, OrigRHSExpr>, CVQual TensorAssignOp<LHSExpr, RHSExpr>, Params...> {\ typedef ExprConstructor<OrigLHSExpr, LHSExpr, Params...> my_left_type;\ typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_right_type;\ typedef CVQual TensorAssignOp<typename my_left_type::Type, typename my_right_type::Type> Type;\ my_left_type lhsExpr;\ my_right_type rhsExpr;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\ : lhsExpr(funcD.lhsExpr, t), rhsExpr(funcD.rhsExpr, t), expr(lhsExpr.expr, rhsExpr.expr) {}\ }; ASSIGN(const) ASSIGN() #undef ASSIGN /// specialisation of the \ref ExprConstructor struct when the node type is /// TensorEvalToOp #define EVALTO(CVQual)\ template <typename OrigExpr, typename Expr, typename... Params>\ struct ExprConstructor<CVQual TensorEvalToOp<OrigExpr, MakeGlobalPointer>, CVQual TensorEvalToOp<Expr>, Params...> {\ typedef ExprConstructor<OrigExpr, Expr, Params...> my_expr_type;\ typedef typename TensorEvalToOp<OrigExpr, MakeGlobalPointer>::PointerType my_buffer_type;\ typedef CVQual TensorEvalToOp<typename my_expr_type::Type, MakeGlobalPointer> Type;\ my_expr_type nestedExpression;\ EvalToLHSConstructor<my_buffer_type, 0, Params...> buffer;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\ : nestedExpression(funcD.rhsExpr, t), buffer(t), expr(buffer.expr, nestedExpression.expr) {}\ }; EVALTO(const) EVALTO() #undef EVALTO /// specialisation of the \ref ExprConstructor struct when the node type is /// TensorForcedEvalOp #define FORCEDEVAL(CVQual)\ template <typename OrigExpr, typename DevExpr, size_t N, typename... Params>\ struct ExprConstructor<CVQual TensorForcedEvalOp<OrigExpr, MakeGlobalPointer>,\ CVQual PlaceHolder<CVQual TensorForcedEvalOp<DevExpr>, N>, Params...> {\ typedef CVQual TensorMap<Tensor<typename TensorForcedEvalOp<DevExpr, MakeGlobalPointer>::Scalar,\ TensorForcedEvalOp<DevExpr, MakeGlobalPointer>::NumDimensions, 0, typename TensorForcedEvalOp<DevExpr>::Index>, 0, MakeGlobalPointer> Type;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\ : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\ }; FORCEDEVAL(const) FORCEDEVAL() #undef FORCEDEVAL template <bool Conds, size_t X , size_t Y > struct ValueCondition { static const size_t Res =X; }; template<size_t X, size_t Y> struct ValueCondition<false, X , Y> { static const size_t Res =Y; }; /// specialisation of the \ref ExprConstructor struct when the node type is TensorReductionOp #define SYCLREDUCTIONEXPR(CVQual)\ template <typename OP, typename Dim, typename OrigExpr, typename DevExpr, size_t N, typename... Params>\ struct ExprConstructor<CVQual TensorReductionOp<OP, Dim, OrigExpr, MakeGlobalPointer>,\ CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dim, DevExpr>, N>, Params...> {\ static const size_t NumIndices= ValueCondition< TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::NumDimensions==0, 1, TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::NumDimensions >::Res;\ typedef CVQual TensorMap<Tensor<typename TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::Scalar,\ NumIndices, 0, typename TensorReductionOp<OP, Dim, DevExpr>::Index>, 0, MakeGlobalPointer> Type;\ Type expr;\ template <typename FuncDetector>\ ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\ : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\ }; SYCLREDUCTIONEXPR(const) SYCLREDUCTIONEXPR() #undef SYCLREDUCTIONEXPR /// template deduction for \ref ExprConstructor struct template <typename OrigExpr, typename IndexExpr, typename FuncD, typename... Params> auto createDeviceExpression(FuncD &funcD, const utility::tuple::Tuple<Params...> &t) -> decltype(ExprConstructor<OrigExpr, IndexExpr, Params...>(funcD, t)) { return ExprConstructor<OrigExpr, IndexExpr, Params...>(funcD, t); } } /// namespace TensorSycl } /// namespace internal } /// namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
.h
5,412
110
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H #define EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H namespace Eigen { // MakePointer class is used as a container of the adress space of the pointer // on the host and on the device. From the host side it generates the T* pointer // and when EIGEN_USE_SYCL is used it construct a buffer with a map_allocator to // T* m_data on the host. It is always called on the device. // Specialisation of MakePointer class for creating the sycl buffer with // map_allocator. template<typename T> struct MakePointer { typedef T* Type; }; template<typename PlainObjectType, int Options_ = Unaligned, template <class> class MakePointer_ = MakePointer> class TensorMap; template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor; template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize; template<typename PlainObjectType> class TensorRef; template<typename Derived, int AccessLevel> class TensorBase; template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryOp; template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp; template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp; template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp; template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp; template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_ = MakePointer > class TensorReductionOp; template<typename XprType> class TensorIndexTupleOp; template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp; template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp; template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp; template<typename TargetType, typename XprType> class TensorConversionOp; template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp; template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp; template<typename PatchDim, typename XprType> class TensorPatchOp; template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp; template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp; template<typename Broadcast, typename XprType> class TensorBroadcastingOp; template<DenseIndex DimId, typename XprType> class TensorChippingOp; template<typename NewDimensions, typename XprType> class TensorReshapingOp; template<typename XprType> class TensorLayoutSwapOp; template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp; template<typename ReverseDimensions, typename XprType> class TensorReverseOp; template<typename PaddingDimensions, typename XprType> class TensorPaddingOp; template<typename Shuffle, typename XprType> class TensorShufflingOp; template<typename Strides, typename XprType> class TensorStridingOp; template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp; template<typename Strides, typename XprType> class TensorInflationOp; template<typename Generator, typename XprType> class TensorGeneratorOp; template<typename LeftXprType, typename RightXprType> class TensorAssignOp; template<typename Op, typename XprType> class TensorScanOp; template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp; template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp; template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorEvalToOp; template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorForcedEvalOp; template<typename ExpressionType, typename DeviceType> class TensorDevice; template<typename Derived, typename Device> struct TensorEvaluator; struct DefaultDevice; struct ThreadPoolDevice; struct GpuDevice; struct SyclDevice; enum FFTResultType { RealPart = 0, ImagPart = 1, BothParts = 2 }; enum FFTDirection { FFT_FORWARD = 0, FFT_REVERSE = 1 }; namespace internal { template <typename Device, typename Expression> struct IsVectorizable { static const bool value = TensorEvaluator<Expression, Device>::PacketAccess; }; template <typename Expression> struct IsVectorizable<GpuDevice, Expression> { static const bool value = TensorEvaluator<Expression, GpuDevice>::PacketAccess && TensorEvaluator<Expression, GpuDevice>::IsAligned; }; template <typename Expression, typename Device, bool Vectorizable = IsVectorizable<Device, Expression>::value> class TensorExecutor; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h
.h
1,310
55
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H #define EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H /** use this macro in sfinae selection in templated functions * * template<typename T, * typename std::enable_if< isBanana<T>::value , int >::type = 0 * > * void foo(){} * * becomes => * * template<typename TopoType, * SFINAE_ENABLE_IF( isBanana<T>::value ) * > * void foo(){} */ // SFINAE requires variadic templates #ifndef __CUDACC__ #if EIGEN_HAS_VARIADIC_TEMPLATES // SFINAE doesn't work for gcc <= 4.7 #ifdef EIGEN_COMP_GNUC #if EIGEN_GNUC_AT_LEAST(4,8) #define EIGEN_HAS_SFINAE #endif #else #define EIGEN_HAS_SFINAE #endif #endif #endif #define EIGEN_SFINAE_ENABLE_IF( __condition__ ) \ typename internal::enable_if< ( __condition__ ) , int >::type = 0 #if EIGEN_HAS_CONSTEXPR #define EIGEN_CONSTEXPR constexpr #else #define EIGEN_CONSTEXPR #endif #endif
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
.h
9,489
265
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H #define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H namespace Eigen { /** \class TensorShuffling * \ingroup CXX11_Tensor_Module * * \brief Tensor shuffling class. * * */ namespace internal { template<typename Shuffle, typename XprType> struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename Shuffle, typename XprType> struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense> { typedef const TensorShufflingOp<Shuffle, XprType>& type; }; template<typename Shuffle, typename XprType> struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type> { typedef TensorShufflingOp<Shuffle, XprType> type; }; } // end namespace internal template<typename Shuffle, typename XprType> class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> > { public: typedef typename Eigen::internal::traits<TensorShufflingOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorShufflingOp>::type Nested; typedef typename Eigen::internal::traits<TensorShufflingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorShufflingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle) : m_xpr(expr), m_shuffle(shuffle) {} EIGEN_DEVICE_FUNC const Shuffle& shufflePermutation() const { return m_shuffle; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other) { typedef TensorAssignOp<TensorShufflingOp, const TensorShufflingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorShufflingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Shuffle m_shuffle; }; // Eval as rvalue template<typename Shuffle, typename ArgType, typename Device> struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> { typedef TensorShufflingOp<Shuffle, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = (internal::packet_traits<Scalar>::size > 1), Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); const Shuffle& shuffle = op.shufflePermutation(); for (int i = 0; i < NumDims; ++i) { m_dimensions[i] = input_dims[shuffle[i]]; } array<Index, NumDims> inputStrides; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1]; m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; } } else { inputStrides[NumDims - 1] = 1; m_outputStrides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1]; m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; } } for (int i = 0; i < NumDims; ++i) { m_inputStrides[i] = inputStrides[shuffle[i]]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } return inputIndex + index * m_inputStrides[0]; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } return inputIndex + index * m_inputStrides[NumDims - 1]; } } Dimensions m_dimensions; array<Index, NumDims> m_outputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; }; // Eval as lvalue template<typename Shuffle, typename ArgType, typename Device> struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device> : public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> { typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Base; typedef TensorShufflingOp<Shuffle, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = (internal::packet_traits<Scalar>::size > 1), RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template <int StoreMode> EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index+i) = values[i]; } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
.h
8,443
213
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H #define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H namespace Eigen { /** \class TensorEvaluator * \ingroup CXX11_Tensor_Module * * \brief A cost model used to limit the number of threads used for evaluating * tensor expression. * */ // Class storing the cost of evaluating a tensor expression in terms of the // estimated number of operand bytes loads, bytes stored, and compute cycles. class TensorOpCost { public: // TODO(rmlarsen): Fix the scalar op costs in Eigen proper. Even a simple // model based on minimal reciprocal throughput numbers from Intel or // Agner Fog's tables would be better than what is there now. template <typename ArgType> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int MulCost() { return internal::functor_traits< internal::scalar_product_op<ArgType, ArgType> >::Cost; } template <typename ArgType> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int AddCost() { return internal::functor_traits<internal::scalar_sum_op<ArgType> >::Cost; } template <typename ArgType> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int DivCost() { return internal::functor_traits< internal::scalar_quotient_op<ArgType, ArgType> >::Cost; } template <typename ArgType> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int ModCost() { return internal::functor_traits<internal::scalar_mod_op<ArgType> >::Cost; } template <typename SrcType, typename TargetType> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int CastCost() { return internal::functor_traits< internal::scalar_cast_op<SrcType, TargetType> >::Cost; } EIGEN_DEVICE_FUNC TensorOpCost() : bytes_loaded_(0), bytes_stored_(0), compute_cycles_(0) {} EIGEN_DEVICE_FUNC TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles) : bytes_loaded_(bytes_loaded), bytes_stored_(bytes_stored), compute_cycles_(compute_cycles) {} EIGEN_DEVICE_FUNC TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles, bool vectorized, double packet_size) : bytes_loaded_(bytes_loaded), bytes_stored_(bytes_stored), compute_cycles_(vectorized ? compute_cycles / packet_size : compute_cycles) { eigen_assert(bytes_loaded >= 0 && (numext::isfinite)(bytes_loaded)); eigen_assert(bytes_stored >= 0 && (numext::isfinite)(bytes_stored)); eigen_assert(compute_cycles >= 0 && (numext::isfinite)(compute_cycles)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_loaded() const { return bytes_loaded_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_stored() const { return bytes_stored_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double compute_cycles() const { return compute_cycles_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double total_cost( double load_cost, double store_cost, double compute_cost) const { return load_cost * bytes_loaded_ + store_cost * bytes_stored_ + compute_cost * compute_cycles_; } // Drop memory access component. Intended for cases when memory accesses are // sequential or are completely masked by computations. EIGEN_DEVICE_FUNC void dropMemoryCost() { bytes_loaded_ = 0; bytes_stored_ = 0; } // TODO(rmlarsen): Define min in terms of total cost, not elementwise. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMin( const TensorOpCost& rhs) const { double bytes_loaded = numext::mini(bytes_loaded_, rhs.bytes_loaded()); double bytes_stored = numext::mini(bytes_stored_, rhs.bytes_stored()); double compute_cycles = numext::mini(compute_cycles_, rhs.compute_cycles()); return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles); } // TODO(rmlarsen): Define max in terms of total cost, not elementwise. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMax( const TensorOpCost& rhs) const { double bytes_loaded = numext::maxi(bytes_loaded_, rhs.bytes_loaded()); double bytes_stored = numext::maxi(bytes_stored_, rhs.bytes_stored()); double compute_cycles = numext::maxi(compute_cycles_, rhs.compute_cycles()); return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator+=( const TensorOpCost& rhs) { bytes_loaded_ += rhs.bytes_loaded(); bytes_stored_ += rhs.bytes_stored(); compute_cycles_ += rhs.compute_cycles(); return *this; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator*=(double rhs) { bytes_loaded_ *= rhs; bytes_stored_ *= rhs; compute_cycles_ *= rhs; return *this; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator+( TensorOpCost lhs, const TensorOpCost& rhs) { lhs += rhs; return lhs; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*( TensorOpCost lhs, double rhs) { lhs *= rhs; return lhs; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*( double lhs, TensorOpCost rhs) { rhs *= lhs; return rhs; } friend std::ostream& operator<<(std::ostream& os, const TensorOpCost& tc) { return os << "[bytes_loaded = " << tc.bytes_loaded() << ", bytes_stored = " << tc.bytes_stored() << ", compute_cycles = " << tc.compute_cycles() << "]"; } private: double bytes_loaded_; double bytes_stored_; double compute_cycles_; }; // TODO(rmlarsen): Implement a policy that chooses an "optimal" number of theads // in [1:max_threads] instead of just switching multi-threading off for small // work units. template <typename Device> class TensorCostModel { public: // Scaling from Eigen compute cost to device cycles. static const int kDeviceCyclesPerComputeCycle = 1; // Costs in device cycles. static const int kStartupCycles = 100000; static const int kPerThreadCycles = 100000; static const int kTaskSize = 40000; // Returns the number of threads in [1:max_threads] to use for // evaluating an expression with the given output size and cost per // coefficient. static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int numThreads( double output_size, const TensorOpCost& cost_per_coeff, int max_threads) { double cost = totalCost(output_size, cost_per_coeff); int threads = (cost - kStartupCycles) / kPerThreadCycles + 0.9; return numext::mini(max_threads, numext::maxi(1, threads)); } // taskSize assesses parallel task size. // Value of 1.0 means ideal parallel task size. Values < 1.0 mean that task // granularity needs to be increased to mitigate parallelization overheads. static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double taskSize( double output_size, const TensorOpCost& cost_per_coeff) { return totalCost(output_size, cost_per_coeff) / kTaskSize; } private: static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double totalCost( double output_size, const TensorOpCost& cost_per_coeff) { // Cost of memory fetches from L2 cache. 64 is typical cache line size. // 11 is L2 cache latency on Haswell. // We don't know whether data is in L1, L2 or L3. But we are most interested // in single-threaded computational time around 100us-10ms (smaller time // is too small for parallelization, larger time is not intersting // either because we are probably using all available threads already). // And for the target time range, L2 seems to be what matters. Data set // fitting into L1 is too small to take noticeable time. Data set fitting // only into L3 presumably will take more than 10ms to load and process. const double kLoadCycles = 1.0 / 64 * 11; const double kStoreCycles = 1.0 / 64 * 11; // Scaling from Eigen compute cost to device cycles. return output_size * cost_per_coeff.total_cost(kLoadCycles, kStoreCycles, kDeviceCyclesPerComputeCycle); } }; } // namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h
.h
11,080
338
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H) #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H namespace Eigen { static const int kCudaScratchSize = 1024; // This defines an interface that GPUDevice can take to use // CUDA streams underneath. class StreamInterface { public: virtual ~StreamInterface() {} virtual const cudaStream_t& stream() const = 0; virtual const cudaDeviceProp& deviceProperties() const = 0; // Allocate memory on the actual device where the computation will run virtual void* allocate(size_t num_bytes) const = 0; virtual void deallocate(void* buffer) const = 0; // Return a scratchpad buffer of size 1k virtual void* scratchpad() const = 0; // Return a semaphore. The semaphore is initially initialized to 0, and // each kernel using it is responsible for resetting to 0 upon completion // to maintain the invariant that the semaphore is always equal to 0 upon // each kernel start. virtual unsigned int* semaphore() const = 0; }; static cudaDeviceProp* m_deviceProperties; static bool m_devicePropInitialized = false; static void initializeDeviceProp() { if (!m_devicePropInitialized) { // Attempts to ensure proper behavior in the case of multiple threads // calling this function simultaneously. This would be trivial to // implement if we could use std::mutex, but unfortunately mutex don't // compile with nvcc, so we resort to atomics and thread fences instead. // Note that if the caller uses a compiler that doesn't support c++11 we // can't ensure that the initialization is thread safe. #if __cplusplus >= 201103L static std::atomic<bool> first(true); if (first.exchange(false)) { #else static bool first = true; if (first) { first = false; #endif // We're the first thread to reach this point. int num_devices; cudaError_t status = cudaGetDeviceCount(&num_devices); if (status != cudaSuccess) { std::cerr << "Failed to get the number of CUDA devices: " << cudaGetErrorString(status) << std::endl; assert(status == cudaSuccess); } m_deviceProperties = new cudaDeviceProp[num_devices]; for (int i = 0; i < num_devices; ++i) { status = cudaGetDeviceProperties(&m_deviceProperties[i], i); if (status != cudaSuccess) { std::cerr << "Failed to initialize CUDA device #" << i << ": " << cudaGetErrorString(status) << std::endl; assert(status == cudaSuccess); } } #if __cplusplus >= 201103L std::atomic_thread_fence(std::memory_order_release); #endif m_devicePropInitialized = true; } else { // Wait for the other thread to inititialize the properties. while (!m_devicePropInitialized) { #if __cplusplus >= 201103L std::atomic_thread_fence(std::memory_order_acquire); #endif sleep(1); } } } } static const cudaStream_t default_stream = cudaStreamDefault; class CudaStreamDevice : public StreamInterface { public: // Use the default stream on the current device CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) { cudaGetDevice(&device_); initializeDeviceProp(); } // Use the default stream on the specified device CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) { initializeDeviceProp(); } // Use the specified stream. Note that it's the // caller responsibility to ensure that the stream can run on // the specified device. If no device is specified the code // assumes that the stream is associated to the current gpu device. CudaStreamDevice(const cudaStream_t* stream, int device = -1) : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) { if (device < 0) { cudaGetDevice(&device_); } else { int num_devices; cudaError_t err = cudaGetDeviceCount(&num_devices); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); assert(device < num_devices); device_ = device; } initializeDeviceProp(); } virtual ~CudaStreamDevice() { if (scratch_) { deallocate(scratch_); } } const cudaStream_t& stream() const { return *stream_; } const cudaDeviceProp& deviceProperties() const { return m_deviceProperties[device_]; } virtual void* allocate(size_t num_bytes) const { cudaError_t err = cudaSetDevice(device_); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); void* result; err = cudaMalloc(&result, num_bytes); assert(err == cudaSuccess); assert(result != NULL); return result; } virtual void deallocate(void* buffer) const { cudaError_t err = cudaSetDevice(device_); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); assert(buffer != NULL); err = cudaFree(buffer); assert(err == cudaSuccess); } virtual void* scratchpad() const { if (scratch_ == NULL) { scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int)); } return scratch_; } virtual unsigned int* semaphore() const { if (semaphore_ == NULL) { char* scratch = static_cast<char*>(scratchpad()) + kCudaScratchSize; semaphore_ = reinterpret_cast<unsigned int*>(scratch); cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); } return semaphore_; } private: const cudaStream_t* stream_; int device_; mutable void* scratch_; mutable unsigned int* semaphore_; }; struct GpuDevice { // The StreamInterface is not owned: the caller is // responsible for its initialization and eventual destruction. explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) { eigen_assert(stream); } explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) { eigen_assert(stream); } // TODO(bsteiner): This is an internal API, we should not expose it. EIGEN_STRONG_INLINE const cudaStream_t& stream() const { return stream_->stream(); } EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { return stream_->allocate(num_bytes); } EIGEN_STRONG_INLINE void deallocate(void* buffer) const { stream_->deallocate(buffer); } EIGEN_STRONG_INLINE void* scratchpad() const { return stream_->scratchpad(); } EIGEN_STRONG_INLINE unsigned int* semaphore() const { return stream_->semaphore(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { #ifndef __CUDA_ARCH__ cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); #else eigen_assert(false && "The default device should be used instead to generate kernel code"); #endif } EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); } EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { #ifndef __CUDA_ARCH__ cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); #else eigen_assert(false && "The default device should be used instead to generate kernel code"); #endif } EIGEN_STRONG_INLINE size_t numThreads() const { // FIXME return 32; } EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { // FIXME return 48*1024; } EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { // We won't try to take advantage of the l2 cache for the time being, and // there is no l3 cache on cuda devices. return firstLevelCacheSize(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const { #if defined(__CUDACC__) && !defined(__CUDA_ARCH__) cudaError_t err = cudaStreamSynchronize(stream_->stream()); if (err != cudaSuccess) { std::cerr << "Error detected in CUDA stream: " << cudaGetErrorString(err) << std::endl; assert(err == cudaSuccess); } #else assert(false && "The default device should be used instead to generate kernel code"); #endif } EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const { return stream_->deviceProperties().multiProcessorCount; } EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const { return stream_->deviceProperties().maxThreadsPerBlock; } EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const { return stream_->deviceProperties().maxThreadsPerMultiProcessor; } EIGEN_STRONG_INLINE int sharedMemPerBlock() const { return stream_->deviceProperties().sharedMemPerBlock; } EIGEN_STRONG_INLINE int majorDeviceVersion() const { return stream_->deviceProperties().major; } EIGEN_STRONG_INLINE int minorDeviceVersion() const { return stream_->deviceProperties().minor; } EIGEN_STRONG_INLINE int maxBlocks() const { return max_blocks_; } // This function checks if the CUDA runtime recorded an error for the // underlying stream device. inline bool ok() const { #ifdef __CUDACC__ cudaError_t error = cudaStreamQuery(stream_->stream()); return (error == cudaSuccess) || (error == cudaErrorNotReady); #else return false; #endif } private: const StreamInterface* stream_; int max_blocks_; }; #define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \ (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \ assert(cudaGetLastError() == cudaSuccess); // FIXME: Should be device and kernel specific. #ifdef __CUDACC__ static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) { #ifndef __CUDA_ARCH__ cudaError_t status = cudaDeviceSetSharedMemConfig(config); EIGEN_UNUSED_VARIABLE(status) assert(status == cudaSuccess); #else EIGEN_UNUSED_VARIABLE(config) #endif } #endif } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h
.h
13,196
339
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H #define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H namespace Eigen { /** \class TensorStriding * \ingroup CXX11_Tensor_Module * * \brief Tensor striding class. * * */ namespace internal { template<typename Strides, typename XprType> struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename Strides, typename XprType> struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense> { typedef const TensorStridingOp<Strides, XprType>& type; }; template<typename Strides, typename XprType> struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type> { typedef TensorStridingOp<Strides, XprType> type; }; } // end namespace internal template<typename Strides, typename XprType> class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> > { public: typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested; typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(const XprType& expr, const Strides& dims) : m_xpr(expr), m_dims(dims) {} EIGEN_DEVICE_FUNC const Strides& strides() const { return m_dims; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp& operator = (const TensorStridingOp& other) { typedef TensorAssignOp<TensorStridingOp, const TensorStridingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorStridingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Strides m_dims; }; // Eval as rvalue template<typename Strides, typename ArgType, typename Device> struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device> { typedef TensorStridingOp<Strides, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { m_dimensions = m_impl.dimensions(); for (int i = 0; i < NumDims; ++i) { m_dimensions[i] = ceilf(static_cast<float>(m_dimensions[i]) / op.strides()[i]); } const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_outputStrides[0] = 1; m_inputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_inputStrides[i-1] *= op.strides()[i-1]; } m_inputStrides[NumDims-1] *= op.strides()[NumDims-1]; } else { // RowMajor m_outputStrides[NumDims-1] = 1; m_inputStrides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_inputStrides[i+1] *= op.strides()[i+1]; } m_inputStrides[0] *= op.strides()[0]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); Index inputIndices[] = {0, 0}; Index indices[] = {index, index + PacketSize - 1}; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / m_outputStrides[i]; const Index idx1 = indices[1] / m_outputStrides[i]; inputIndices[0] += idx0 * m_inputStrides[i]; inputIndices[1] += idx1 * m_inputStrides[i]; indices[0] -= idx0 * m_outputStrides[i]; indices[1] -= idx1 * m_outputStrides[i]; } inputIndices[0] += indices[0] * m_inputStrides[0]; inputIndices[1] += indices[1] * m_inputStrides[0]; } else { // RowMajor for (int i = 0; i < NumDims - 1; ++i) { const Index idx0 = indices[0] / m_outputStrides[i]; const Index idx1 = indices[1] / m_outputStrides[i]; inputIndices[0] += idx0 * m_inputStrides[i]; inputIndices[1] += idx1 * m_inputStrides[i]; indices[0] -= idx0 * m_outputStrides[i]; indices[1] -= idx1 * m_outputStrides[i]; } inputIndices[0] += indices[0] * m_inputStrides[NumDims-1]; inputIndices[1] += indices[1] * m_inputStrides[NumDims-1]; } if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); return rslt; } else { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; values[0] = m_impl.coeff(inputIndices[0]); values[PacketSize-1] = m_impl.coeff(inputIndices[1]); for (int i = 1; i < PacketSize-1; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double compute_cost = (NumDims - 1) * (TensorOpCost::AddCost<Index>() + TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()) + TensorOpCost::MulCost<Index>(); if (vectorized) { compute_cost *= 2; // packet() computes two indices } const int innerDim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : (NumDims - 1); return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) + // Computation is not vectorized per se, but it is done once per packet. TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } inputIndex += index * m_inputStrides[0]; } else { // RowMajor for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } inputIndex += index * m_inputStrides[NumDims-1]; } return inputIndex; } Dimensions m_dimensions; array<Index, NumDims> m_outputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; }; // Eval as lvalue template<typename Strides, typename ArgType, typename Device> struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device> : public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device> { typedef TensorStridingOp<Strides, ArgType> XprType; typedef TensorEvaluator<const XprType, Device> Base; // typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; // typedef DSizes<Index, NumDims> Dimensions; enum { IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < this->dimensions().TotalSize()); Index inputIndices[] = {0, 0}; Index indices[] = {index, index + PacketSize - 1}; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / this->m_outputStrides[i]; const Index idx1 = indices[1] / this->m_outputStrides[i]; inputIndices[0] += idx0 * this->m_inputStrides[i]; inputIndices[1] += idx1 * this->m_inputStrides[i]; indices[0] -= idx0 * this->m_outputStrides[i]; indices[1] -= idx1 * this->m_outputStrides[i]; } inputIndices[0] += indices[0] * this->m_inputStrides[0]; inputIndices[1] += indices[1] * this->m_inputStrides[0]; } else { // RowMajor for (int i = 0; i < NumDims - 1; ++i) { const Index idx0 = indices[0] / this->m_outputStrides[i]; const Index idx1 = indices[1] / this->m_outputStrides[i]; inputIndices[0] += idx0 * this->m_inputStrides[i]; inputIndices[1] += idx1 * this->m_inputStrides[i]; indices[0] -= idx0 * this->m_outputStrides[i]; indices[1] -= idx1 * this->m_outputStrides[i]; } inputIndices[0] += indices[0] * this->m_inputStrides[NumDims-1]; inputIndices[1] += indices[1] * this->m_inputStrides[NumDims-1]; } if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { this->m_impl.template writePacket<Unaligned>(inputIndices[0], x); } else { EIGEN_ALIGN_MAX Scalar values[PacketSize]; internal::pstore<Scalar, PacketReturnType>(values, x); this->m_impl.coeffRef(inputIndices[0]) = values[0]; this->m_impl.coeffRef(inputIndices[1]) = values[PacketSize-1]; for (int i = 1; i < PacketSize-1; ++i) { this->coeffRef(index+i) = values[i]; } } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h
.h
2,570
69
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H namespace Eigen { /** \class TensorDevice * \ingroup CXX11_Tensor_Module * * \brief Pseudo expression providing an operator = that will evaluate its argument * on the specified computing 'device' (GPU, thread pool, ...) * * Example: * C.device(EIGEN_GPU) = A + B; * * Todo: operator *= and /=. */ template <typename ExpressionType, typename DeviceType> class TensorDevice { public: TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {} template<typename OtherDerived> EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) { typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; Assign assign(m_expression, other); internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); return *this; } template<typename OtherDerived> EIGEN_STRONG_INLINE TensorDevice& operator+=(const OtherDerived& other) { typedef typename OtherDerived::Scalar Scalar; typedef TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ExpressionType, const OtherDerived> Sum; Sum sum(m_expression, other); typedef TensorAssignOp<ExpressionType, const Sum> Assign; Assign assign(m_expression, sum); internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); return *this; } template<typename OtherDerived> EIGEN_STRONG_INLINE TensorDevice& operator-=(const OtherDerived& other) { typedef typename OtherDerived::Scalar Scalar; typedef TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const ExpressionType, const OtherDerived> Difference; Difference difference(m_expression, other); typedef TensorAssignOp<ExpressionType, const Difference> Assign; Assign assign(m_expression, difference); internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); return *this; } protected: const DeviceType& m_device; ExpressionType& m_expression; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h
.h
2,474
82
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H namespace Eigen { // Default device for the machine (typically a single cpu core) struct DefaultDevice { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { return internal::aligned_malloc(num_bytes); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const { internal::aligned_free(buffer); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { ::memcpy(dst, src, n); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { memcpy(dst, src, n); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { memcpy(dst, src, n); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { ::memset(buffer, c, n); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const { #ifndef __CUDA_ARCH__ // Running on the host CPU return 1; #else // Running on a CUDA device return 32; #endif } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { #ifndef __CUDA_ARCH__ // Running on the host CPU return l1CacheSize(); #else // Running on a CUDA device, return the amount of shared memory available. return 48*1024; #endif } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { #ifndef __CUDA_ARCH__ // Running single threaded on the host CPU return l3CacheSize(); #else // Running on a CUDA device return firstLevelCacheSize(); #endif } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const { #ifndef __CUDA_ARCH__ // Running single threaded on the host CPU // Should return an enum that encodes the ISA supported by the CPU return 1; #else // Running on a CUDA device return __CUDA_ARCH__ / 100; #endif } }; } // namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h
.h
2,716
83
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H #define EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H #if EIGEN_HAS_VARIADIC_TEMPLATES #include <initializer_list> namespace Eigen { /** \class TensorInitializer * \ingroup CXX11_Tensor_Module * * \brief Helper template to initialize Tensors from std::initializer_lists. */ namespace internal { template <typename Derived, int N> struct Initializer { typedef std::initializer_list< typename Initializer<Derived, N - 1>::InitList> InitList; static void run(TensorEvaluator<Derived, DefaultDevice>& tensor, Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices, const InitList& vals) { int i = 0; for (auto v : vals) { (*indices)[traits<Derived>::NumDimensions - N] = i++; Initializer<Derived, N - 1>::run(tensor, indices, v); } } }; template <typename Derived> struct Initializer<Derived, 1> { typedef std::initializer_list<typename traits<Derived>::Scalar> InitList; static void run(TensorEvaluator<Derived, DefaultDevice>& tensor, Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices, const InitList& vals) { int i = 0; // There is likely a faster way to do that than iterating. for (auto v : vals) { (*indices)[traits<Derived>::NumDimensions - 1] = i++; tensor.coeffRef(*indices) = v; } } }; template <typename Derived> struct Initializer<Derived, 0> { typedef typename traits<Derived>::Scalar InitList; static void run(TensorEvaluator<Derived, DefaultDevice>& tensor, Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>*, const InitList& v) { tensor.coeffRef(0) = v; } }; template <typename Derived, int N> void initialize_tensor(TensorEvaluator<Derived, DefaultDevice>& tensor, const typename Initializer<Derived, traits<Derived>::NumDimensions>::InitList& vals) { Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions> indices; Initializer<Derived, traits<Derived>::NumDimensions>::run(tensor, &indices, vals); } } // namespace internal } // namespace Eigen #endif // EIGEN_HAS_VARIADIC_TEMPLATES #endif // EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
.h
6,692
182
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclPlaceHolderExpr.h * * \brief: * This is the specialisation of the placeholder expression based on the * operation type * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP namespace Eigen { namespace TensorSycl { namespace internal { /// \struct PlaceHolder /// \brief PlaceHolder is used to replace the \ref TensorMap in the expression /// tree. /// PlaceHolder contains the order of the leaf node in the expression tree. template <typename Scalar, size_t N> struct PlaceHolder { static constexpr size_t I = N; typedef Scalar Type; }; /// \sttruct PlaceHolderExpression /// \brief it is used to create the PlaceHolder expression. The PlaceHolder /// expression is a copy of expression type in which the TensorMap of the has /// been replaced with PlaceHolder. template <typename Expr, size_t N> struct PlaceHolderExpression; template<size_t N, typename... Args> struct CalculateIndex; template<size_t N, typename Arg> struct CalculateIndex<N, Arg>{ typedef typename PlaceHolderExpression<Arg, N>::Type ArgType; typedef utility::tuple::Tuple<ArgType> ArgsTuple; }; template<size_t N, typename Arg1, typename Arg2> struct CalculateIndex<N, Arg1, Arg2>{ static const size_t Arg2LeafCount = LeafCount<Arg2>::Count; typedef typename PlaceHolderExpression<Arg1, N - Arg2LeafCount>::Type Arg1Type; typedef typename PlaceHolderExpression<Arg2, N>::Type Arg2Type; typedef utility::tuple::Tuple<Arg1Type, Arg2Type> ArgsTuple; }; template<size_t N, typename Arg1, typename Arg2, typename Arg3> struct CalculateIndex<N, Arg1, Arg2, Arg3> { static const size_t Arg3LeafCount = LeafCount<Arg3>::Count; static const size_t Arg2LeafCount = LeafCount<Arg2>::Count; typedef typename PlaceHolderExpression<Arg1, N - Arg3LeafCount - Arg2LeafCount>::Type Arg1Type; typedef typename PlaceHolderExpression<Arg2, N - Arg3LeafCount>::Type Arg2Type; typedef typename PlaceHolderExpression<Arg3, N>::Type Arg3Type; typedef utility::tuple::Tuple<Arg1Type, Arg2Type, Arg3Type> ArgsTuple; }; template<template<class...> class Category , class OP, class TPL> struct CategoryHelper; template<template<class...> class Category , class OP, class ...T > struct CategoryHelper<Category, OP, utility::tuple::Tuple<T...> > { typedef Category<OP, T... > Type; }; template<template<class...> class Category , class ...T > struct CategoryHelper<Category, NoOP, utility::tuple::Tuple<T...> > { typedef Category<T... > Type; }; /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorCwiseNullaryOp, TensorCwiseUnaryOp, TensorBroadcastingOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp #define OPEXPRCATEGORY(CVQual)\ template <template <class, class... > class Category, typename OP, typename... SubExpr, size_t N>\ struct PlaceHolderExpression<CVQual Category<OP, SubExpr...>, N>{\ typedef CVQual typename CategoryHelper<Category, OP, typename CalculateIndex<N, SubExpr...>::ArgsTuple>::Type Type;\ }; OPEXPRCATEGORY(const) OPEXPRCATEGORY() #undef OPEXPRCATEGORY /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorCwiseSelectOp #define SELECTEXPR(CVQual)\ template <typename IfExpr, typename ThenExpr, typename ElseExpr, size_t N>\ struct PlaceHolderExpression<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, N> {\ typedef CVQual typename CategoryHelper<TensorSelectOp, NoOP, typename CalculateIndex<N, IfExpr, ThenExpr, ElseExpr>::ArgsTuple>::Type Type;\ }; SELECTEXPR(const) SELECTEXPR() #undef SELECTEXPR /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorAssignOp #define ASSIGNEXPR(CVQual)\ template <typename LHSExpr, typename RHSExpr, size_t N>\ struct PlaceHolderExpression<CVQual TensorAssignOp<LHSExpr, RHSExpr>, N> {\ typedef CVQual typename CategoryHelper<TensorAssignOp, NoOP, typename CalculateIndex<N, LHSExpr, RHSExpr>::ArgsTuple>::Type Type;\ }; ASSIGNEXPR(const) ASSIGNEXPR() #undef ASSIGNEXPR /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorMap #define TENSORMAPEXPR(CVQual)\ template <typename Scalar_, int Options_, int Options2_, int NumIndices_, typename IndexType_, template <class> class MakePointer_, size_t N>\ struct PlaceHolderExpression< CVQual TensorMap< Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_>, N> {\ typedef CVQual PlaceHolder<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_>, N> Type;\ }; TENSORMAPEXPR(const) TENSORMAPEXPR() #undef TENSORMAPEXPR /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorForcedEvalOp #define FORCEDEVAL(CVQual)\ template <typename Expr, size_t N>\ struct PlaceHolderExpression<CVQual TensorForcedEvalOp<Expr>, N> {\ typedef CVQual PlaceHolder<CVQual TensorForcedEvalOp<Expr>, N> Type;\ }; FORCEDEVAL(const) FORCEDEVAL() #undef FORCEDEVAL /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorEvalToOp #define EVALTO(CVQual)\ template <typename Expr, size_t N>\ struct PlaceHolderExpression<CVQual TensorEvalToOp<Expr>, N> {\ typedef CVQual TensorEvalToOp<typename CalculateIndex <N, Expr>::ArgType> Type;\ }; EVALTO(const) EVALTO() #undef EVALTO /// specialisation of the \ref PlaceHolderExpression when the node is /// TensorReductionOp #define SYCLREDUCTION(CVQual)\ template <typename OP, typename Dims, typename Expr, size_t N>\ struct PlaceHolderExpression<CVQual TensorReductionOp<OP, Dims, Expr>, N>{\ typedef CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dims,Expr>, N> Type;\ }; SYCLREDUCTION(const) SYCLREDUCTION() #undef SYCLREDUCTION /// template deduction for \ref PlaceHolderExpression struct template <typename Expr> struct createPlaceHolderExpression { static const size_t TotalLeaves = LeafCount<Expr>::Count; typedef typename PlaceHolderExpression<Expr, TotalLeaves - 1>::Type Type; }; } // internal } // TensorSycl } // namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h
.h
15,746
398
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H #define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H namespace Eigen { /** \class TensorPadding * \ingroup CXX11_Tensor_Module * * \brief Tensor padding class. * At the moment only padding with a constant value is supported. * */ namespace internal { template<typename PaddingDimensions, typename XprType> struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename PaddingDimensions, typename XprType> struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense> { typedef const TensorPaddingOp<PaddingDimensions, XprType>& type; }; template<typename PaddingDimensions, typename XprType> struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type> { typedef TensorPaddingOp<PaddingDimensions, XprType> type; }; } // end namespace internal template<typename PaddingDimensions, typename XprType> class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested; typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value) : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC const PaddingDimensions& padding() const { return m_padding_dims; } EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const PaddingDimensions m_padding_dims; const Scalar m_padding_value; }; // Eval as rvalue template<typename PaddingDimensions, typename ArgType, typename Device> struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device> { typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<PaddingDimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = true, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = true, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()) { // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector // of 1 element first and then pad. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); // Compute dimensions m_dimensions = m_impl.dimensions(); for (int i = 0; i < NumDims; ++i) { m_dimensions[i] += m_padding[i].first + m_padding[i].second; } const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1]; } else { m_inputStrides[NumDims - 1] = 1; m_outputStrides[NumDims] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1]; } m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { eigen_assert(index < dimensions().TotalSize()); Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (isPaddingAtIndexForDim(idx, i)) { return m_paddingValue; } inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } if (isPaddingAtIndexForDim(index, 0)) { return m_paddingValue; } inputIndex += (index - m_padding[0].first); } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i+1]; if (isPaddingAtIndexForDim(idx, i)) { return m_paddingValue; } inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i+1]; } if (isPaddingAtIndexForDim(index, NumDims-1)) { return m_paddingValue; } inputIndex += (index - m_padding[NumDims-1].first); } return m_impl.coeff(inputIndex); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { return packetColMajor(index); } return packetRowMajor(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { TensorOpCost cost = m_impl.costPerCoeff(vectorized); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < NumDims; ++i) updateCostPerDimension(cost, i, i == 0); } else { for (int i = NumDims - 1; i >= 0; --i) updateCostPerDimension(cost, i, i == NumDims - 1); } return cost; } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } private: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim( Index index, int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) && index < m_padding[dim_index].first) || (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) && index >= m_dimensions[dim_index] - m_padding[dim_index].second); #else return (index < m_padding[dim_index].first) || (index >= m_dimensions[dim_index] - m_padding[dim_index].second); #endif } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero( int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0); #else EIGEN_UNUSED_VARIABLE(dim_index); return false; #endif } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero( int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0); #else EIGEN_UNUSED_VARIABLE(dim_index); return false; #endif } void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const { const double in = static_cast<double>(m_impl.dimensions()[i]); const double out = in + m_padding[i].first + m_padding[i].second; if (out == 0) return; const double reduction = in / out; cost *= reduction; if (first) { cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() + reduction * (1 * TensorOpCost::AddCost<Index>())); } else { cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + reduction * (2 * TensorOpCost::MulCost<Index>() + 1 * TensorOpCost::DivCost<Index>())); } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index initialIndex = index; Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index first = index; const Index last = index + PacketSize - 1; const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i]; const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i]; const Index lastPaddedRight = m_outputStrides[i+1]; if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. const Index idx = index / m_outputStrides[i]; inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } else { // Every other case return packetWithPossibleZero(initialIndex); } } const Index last = index + PacketSize - 1; const Index first = index; const Index lastPaddedLeft = m_padding[0].first; const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second); const Index lastPaddedRight = m_outputStrides[1]; if (!isLeftPaddingCompileTimeZero(0) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(0) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. inputIndex += (index - m_padding[0].first); return m_impl.template packet<Unaligned>(inputIndex); } // Every other case return packetWithPossibleZero(initialIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index initialIndex = index; Index inputIndex = 0; for (int i = 0; i < NumDims - 1; ++i) { const Index first = index; const Index last = index + PacketSize - 1; const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1]; const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1]; const Index lastPaddedRight = m_outputStrides[i]; if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. const Index idx = index / m_outputStrides[i+1]; inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i+1]; } else { // Every other case return packetWithPossibleZero(initialIndex); } } const Index last = index + PacketSize - 1; const Index first = index; const Index lastPaddedLeft = m_padding[NumDims-1].first; const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second); const Index lastPaddedRight = m_outputStrides[NumDims-1]; if (!isLeftPaddingCompileTimeZero(NumDims-1) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(NumDims-1) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1<PacketReturnType>(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. inputIndex += (index - m_padding[NumDims-1].first); return m_impl.template packet<Unaligned>(inputIndex); } // Every other case return packetWithPossibleZero(initialIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } Dimensions m_dimensions; array<Index, NumDims+1> m_outputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; PaddingDimensions m_padding; Scalar m_paddingValue; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h
.h
7,676
182
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H #define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H namespace Eigen { /** \class TensorAssign * \ingroup CXX11_Tensor_Module * * \brief The tensor assignment class. * * This class is represents the assignment of the values resulting from the evaluation of * the rhs expression to the memory locations denoted by the lhs expression. */ namespace internal { template<typename LhsXprType, typename RhsXprType> struct traits<TensorAssignOp<LhsXprType, RhsXprType> > { typedef typename LhsXprType::Scalar Scalar; typedef typename traits<LhsXprType>::StorageKind StorageKind; typedef typename promote_index_type<typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index; typedef typename LhsXprType::Nested LhsNested; typedef typename RhsXprType::Nested RhsNested; typedef typename remove_reference<LhsNested>::type _LhsNested; typedef typename remove_reference<RhsNested>::type _RhsNested; static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions; static const int Layout = internal::traits<LhsXprType>::Layout; enum { Flags = 0 }; }; template<typename LhsXprType, typename RhsXprType> struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense> { typedef const TensorAssignOp<LhsXprType, RhsXprType>& type; }; template<typename LhsXprType, typename RhsXprType> struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type> { typedef TensorAssignOp<LhsXprType, RhsXprType> type; }; } // end namespace internal template<typename LhsXprType, typename RhsXprType> class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> > { public: typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename LhsXprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested; typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs) : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {} /** \returns the nested expressions */ EIGEN_DEVICE_FUNC typename internal::remove_all<typename LhsXprType::Nested>::type& lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename RhsXprType::Nested>::type& rhsExpression() const { return m_rhs_xpr; } protected: typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr; const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr; }; template<typename LeftArgType, typename RightArgType, typename Device> struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device> { typedef TensorAssignOp<LeftArgType, RightArgType> XprType; typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess, Layout = TensorEvaluator<LeftArgType, Device>::Layout, RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device) { EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); } EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { // The dimensions of the lhs and the rhs tensors should be equal to prevent // overflows and ensure the result is fully initialized. // TODO: use left impl instead if right impl dimensions are known at compile time. return m_rightImpl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions())); m_leftImpl.evalSubExprsIfNeeded(NULL); // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non // null value), attempt to evaluate the rhs expression in place. Returns true iff in place // evaluation isn't supported and the caller still needs to manually assign the values generated // by the rhs to the lhs. return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_leftImpl.cleanup(); m_rightImpl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) { m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) { const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned; const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned; m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i)); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_leftImpl.coeff(index); } template<int LoadMode> EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { return m_leftImpl.template packet<LoadMode>(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // We assume that evalPacket or evalScalar is called to perform the // assignment and account for the cost of the write here, but reduce left // cost by one load because we are using m_leftImpl.coeffRef. TensorOpCost left = m_leftImpl.costPerCoeff(vectorized); return m_rightImpl.costPerCoeff(vectorized) + TensorOpCost( numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)), left.bytes_stored(), left.compute_cycles()) + TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); } /// required by sycl in order to extract the accessor const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; } /// required by sycl in order to extract the accessor const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); } private: TensorEvaluator<LeftArgType, Device> m_leftImpl; TensorEvaluator<RightArgType, Device> m_rightImpl; }; } #endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
.h
12,530
205
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclExtractAccessor.h * * \brief: * ExtractAccessor takes Expression placeHolder expression and the tuple of sycl * buffers as an input. Using pre-order tree traversal, ExtractAccessor * recursively calls itself for its children in the expression tree. The * leaf node in the PlaceHolder expression is nothing but a container preserving * the order of the actual data in the tuple of sycl buffer. By invoking the * extract accessor for the PlaceHolder<N>, an accessor is created for the Nth * buffer in the tuple of buffers. This accessor is then added as an Nth * element in the tuple of accessors. In this case we preserve the order of data * in the expression tree. * * This is the specialisation of extract accessor method for different operation * type in the PlaceHolder expression. * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP namespace Eigen { namespace TensorSycl { namespace internal { /// struct ExtractAccessor: Extract Accessor Class is used to extract the /// accessor from a buffer. /// Depending on the type of the leaf node we can get a read accessor or a /// read_write accessor template <typename Evaluator> struct ExtractAccessor; struct AccessorConstructor{ template<typename Arg> static inline auto getTuple(cl::sycl::handler& cgh, Arg eval) -> decltype(ExtractAccessor<Arg>::getTuple(cgh, eval)) { return ExtractAccessor<Arg>::getTuple(cgh, eval); } template<typename Arg1, typename Arg2> static inline auto getTuple(cl::sycl::handler& cgh, Arg1 eval1, Arg2 eval2) -> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2))) { return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2)); } template<typename Arg1, typename Arg2, typename Arg3> static inline auto getTuple(cl::sycl::handler& cgh, Arg1 eval1 , Arg2 eval2 , Arg3 eval3) -> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)))) { return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3))); } template< cl::sycl::access::mode AcM, typename Arg> static inline auto getAccessor(cl::sycl::handler& cgh, Arg eval) -> decltype(utility::tuple::make_tuple( eval.device().template get_sycl_accessor<AcM, typename Eigen::internal::remove_all<typename Arg::CoeffReturnType>::type>(eval.dimensions().TotalSize(), cgh,eval.data()))){ return utility::tuple::make_tuple(eval.device().template get_sycl_accessor<AcM, typename Eigen::internal::remove_all<typename Arg::CoeffReturnType>::type>(eval.dimensions().TotalSize(), cgh,eval.data())); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is /// const TensorCwiseNullaryOp, const TensorCwiseUnaryOp and const TensorBroadcastingOp template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> eval) -> decltype(AccessorConstructor::getTuple(cgh, eval.impl())){ return AccessorConstructor::getTuple(cgh, eval.impl()); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseNullaryOp, TensorCwiseUnaryOp and TensorBroadcastingOp template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<UnaryCategory<OP, RHSExpr>, Dev> > : ExtractAccessor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {}; /// specialisation of the \ref ExtractAccessor struct when the node type is const TensorCwiseBinaryOp template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> eval) -> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){ return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl()); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseBinaryOp template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > : ExtractAccessor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >{}; /// specialisation of the \ref ExtractAccessor struct when the node type is /// const TensorCwiseTernaryOp template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> eval) -> decltype(AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl())){ return AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl()); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseTernaryOp template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > : ExtractAccessor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >{}; /// specialisation of the \ref ExtractAccessor struct when the node type is /// const TensorCwiseSelectOp. This is a special case where there is no OP template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> eval) -> decltype(AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl())){ return AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl()); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is /// TensorCwiseSelectOp. This is a special case where there is no OP template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > : ExtractAccessor<TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >{}; /// specialisation of the \ref ExtractAccessor struct when the node type is const TensorAssignOp template <typename LHSExpr, typename RHSExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> eval) -> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){ return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl()); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorAssignOp template <typename LHSExpr, typename RHSExpr, typename Dev> struct ExtractAccessor<TensorEvaluator<TensorAssignOp<LHSExpr, RHSExpr>, Dev> > : ExtractAccessor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> >{}; /// specialisation of the \ref ExtractAccessor struct when the node type is const TensorMap #define TENSORMAPEXPR(CVQual, ACCType)\ template <typename PlainObjectType, int Options_, typename Dev>\ struct ExtractAccessor<TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> > {\ static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> eval)\ -> decltype(AccessorConstructor::template getAccessor<ACCType>(cgh, eval)){\ return AccessorConstructor::template getAccessor<ACCType>(cgh, eval);\ }\ }; TENSORMAPEXPR(const, cl::sycl::access::mode::read) TENSORMAPEXPR(, cl::sycl::access::mode::read_write) #undef TENSORMAPEXPR /// specialisation of the \ref ExtractAccessor struct when the node type is const TensorForcedEvalOp template <typename Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> eval) -> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){ return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorForcedEvalOp template <typename Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<TensorForcedEvalOp<Expr>, Dev> > : ExtractAccessor<TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> >{}; /// specialisation of the \ref ExtractAccessor struct when the node type is const TensorEvalToOp template <typename Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<const TensorEvalToOp<Expr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<const TensorEvalToOp<Expr>, Dev> eval) -> decltype(utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()))){ return utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl())); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorEvalToOp template <typename Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<TensorEvalToOp<Expr>, Dev> > : ExtractAccessor<TensorEvaluator<const TensorEvalToOp<Expr>, Dev> >{}; /// specialisation of the \ref ExtractAccessor struct when the node type is const TensorReductionOp template <typename OP, typename Dim, typename Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> > { static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> eval) -> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){ return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval); } }; /// specialisation of the \ref ExtractAccessor struct when the node type is TensorReductionOp template <typename OP, typename Dim, typename Expr, typename Dev> struct ExtractAccessor<TensorEvaluator<TensorReductionOp<OP, Dim, Expr>, Dev> > : ExtractAccessor<TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> >{}; /// template deduction for \ref ExtractAccessor template <typename Evaluator> auto createTupleOfAccessors(cl::sycl::handler& cgh, const Evaluator& expr) -> decltype(ExtractAccessor<Evaluator>::getTuple(cgh, expr)) { return ExtractAccessor<Evaluator>::getTuple(cgh, expr); } } /// namespace TensorSycl } /// namespace internal } /// namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h
.h
2,560
80
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_IO_H #define EIGEN_CXX11_TENSOR_TENSOR_IO_H namespace Eigen { namespace internal { // Print the tensor as a 2d matrix template <typename Tensor, int Rank> struct TensorPrinter { static void run (std::ostream& os, const Tensor& tensor) { typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar; typedef typename Tensor::Index Index; const Index total_size = internal::array_prod(tensor.dimensions()); if (total_size > 0) { const Index first_dim = Eigen::internal::array_get<0>(tensor.dimensions()); static const int layout = Tensor::Layout; Map<const Array<Scalar, Dynamic, Dynamic, layout> > matrix(const_cast<Scalar*>(tensor.data()), first_dim, total_size/first_dim); os << matrix; } } }; // Print the tensor as a vector template <typename Tensor> struct TensorPrinter<Tensor, 1> { static void run (std::ostream& os, const Tensor& tensor) { typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar; typedef typename Tensor::Index Index; const Index total_size = internal::array_prod(tensor.dimensions()); if (total_size > 0) { Map<const Array<Scalar, Dynamic, 1> > array(const_cast<Scalar*>(tensor.data()), total_size); os << array; } } }; // Print the tensor as a scalar template <typename Tensor> struct TensorPrinter<Tensor, 0> { static void run (std::ostream& os, const Tensor& tensor) { os << tensor.coeff(0); } }; } template <typename T> std::ostream& operator << (std::ostream& os, const TensorBase<T, ReadOnlyAccessors>& expr) { typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator; typedef typename Evaluator::Dimensions Dimensions; // Evaluate the expression if needed TensorForcedEvalOp<const T> eval = expr.eval(); Evaluator tensor(eval, DefaultDevice()); tensor.evalSubExprsIfNeeded(NULL); // Print the result static const int rank = internal::array_size<Dimensions>::value; internal::TensorPrinter<Evaluator, rank>::run(os, tensor); // Cleanup. tensor.cleanup(); return os; } } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_IO_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h
.h
14,694
372
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_EXPR_H #define EIGEN_CXX11_TENSOR_TENSOR_EXPR_H namespace Eigen { /** \class TensorExpr * \ingroup CXX11_Tensor_Module * * \brief Tensor expression classes. * * The TensorCwiseNullaryOp class applies a nullary operators to an expression. * This is typically used to generate constants. * * The TensorCwiseUnaryOp class represents an expression where a unary operator * (e.g. cwiseSqrt) is applied to an expression. * * The TensorCwiseBinaryOp class represents an expression where a binary * operator (e.g. addition) is applied to a lhs and a rhs expression. * */ namespace internal { template<typename NullaryOp, typename XprType> struct traits<TensorCwiseNullaryOp<NullaryOp, XprType> > : traits<XprType> { typedef traits<XprType> XprTraits; typedef typename XprType::Scalar Scalar; typedef typename XprType::Nested XprTypeNested; typedef typename remove_reference<XprTypeNested>::type _XprTypeNested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; enum { Flags = 0 }; }; } // end namespace internal template<typename NullaryOp, typename XprType> class TensorCwiseNullaryOp : public TensorBase<TensorCwiseNullaryOp<NullaryOp, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef TensorCwiseNullaryOp<NullaryOp, XprType> Nested; typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseNullaryOp(const XprType& xpr, const NullaryOp& func = NullaryOp()) : m_xpr(xpr), m_functor(func) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const { return m_xpr; } EIGEN_DEVICE_FUNC const NullaryOp& functor() const { return m_functor; } protected: typename XprType::Nested m_xpr; const NullaryOp m_functor; }; namespace internal { template<typename UnaryOp, typename XprType> struct traits<TensorCwiseUnaryOp<UnaryOp, XprType> > : traits<XprType> { // TODO(phli): Add InputScalar, InputPacket. Check references to // current Scalar/Packet to see if the intent is Input or Output. typedef typename result_of<UnaryOp(typename XprType::Scalar)>::type Scalar; typedef traits<XprType> XprTraits; typedef typename XprType::Nested XprTypeNested; typedef typename remove_reference<XprTypeNested>::type _XprTypeNested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename UnaryOp, typename XprType> struct eval<TensorCwiseUnaryOp<UnaryOp, XprType>, Eigen::Dense> { typedef const TensorCwiseUnaryOp<UnaryOp, XprType>& type; }; template<typename UnaryOp, typename XprType> struct nested<TensorCwiseUnaryOp<UnaryOp, XprType>, 1, typename eval<TensorCwiseUnaryOp<UnaryOp, XprType> >::type> { typedef TensorCwiseUnaryOp<UnaryOp, XprType> type; }; } // end namespace internal template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp : public TensorBase<TensorCwiseUnaryOp<UnaryOp, XprType>, ReadOnlyAccessors> { public: // TODO(phli): Add InputScalar, InputPacket. Check references to // current Scalar/Packet to see if the intent is Input or Output. typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef Scalar CoeffReturnType; typedef typename Eigen::internal::nested<TensorCwiseUnaryOp>::type Nested; typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) : m_xpr(xpr), m_functor(func) {} EIGEN_DEVICE_FUNC const UnaryOp& functor() const { return m_functor; } /** \returns the nested expression */ EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const UnaryOp m_functor; }; namespace internal { template<typename BinaryOp, typename LhsXprType, typename RhsXprType> struct traits<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> > { // Type promotion to handle the case where the types of the lhs and the rhs // are different. // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to // current Scalar/Packet to see if the intent is Inputs or Output. typedef typename result_of< BinaryOp(typename LhsXprType::Scalar, typename RhsXprType::Scalar)>::type Scalar; typedef traits<LhsXprType> XprTraits; typedef typename promote_storage_type< typename traits<LhsXprType>::StorageKind, typename traits<RhsXprType>::StorageKind>::ret StorageKind; typedef typename promote_index_type< typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index; typedef typename LhsXprType::Nested LhsNested; typedef typename RhsXprType::Nested RhsNested; typedef typename remove_reference<LhsNested>::type _LhsNested; typedef typename remove_reference<RhsNested>::type _RhsNested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; enum { Flags = 0 }; }; template<typename BinaryOp, typename LhsXprType, typename RhsXprType> struct eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, Eigen::Dense> { typedef const TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>& type; }; template<typename BinaryOp, typename LhsXprType, typename RhsXprType> struct nested<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, 1, typename eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> >::type> { typedef TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> type; }; } // end namespace internal template<typename BinaryOp, typename LhsXprType, typename RhsXprType> class TensorCwiseBinaryOp : public TensorBase<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, ReadOnlyAccessors> { public: // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to // current Scalar/Packet to see if the intent is Inputs or Output. typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef Scalar CoeffReturnType; typedef typename Eigen::internal::nested<TensorCwiseBinaryOp>::type Nested; typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const BinaryOp& func = BinaryOp()) : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_functor(func) {} EIGEN_DEVICE_FUNC const BinaryOp& functor() const { return m_functor; } /** \returns the nested expressions */ EIGEN_DEVICE_FUNC const typename internal::remove_all<typename LhsXprType::Nested>::type& lhsExpression() const { return m_lhs_xpr; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename RhsXprType::Nested>::type& rhsExpression() const { return m_rhs_xpr; } protected: typename LhsXprType::Nested m_lhs_xpr; typename RhsXprType::Nested m_rhs_xpr; const BinaryOp m_functor; }; namespace internal { template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> struct traits<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> > { // Type promotion to handle the case where the types of the args are different. typedef typename result_of< TernaryOp(typename Arg1XprType::Scalar, typename Arg2XprType::Scalar, typename Arg3XprType::Scalar)>::type Scalar; typedef traits<Arg1XprType> XprTraits; typedef typename traits<Arg1XprType>::StorageKind StorageKind; typedef typename traits<Arg1XprType>::Index Index; typedef typename Arg1XprType::Nested Arg1Nested; typedef typename Arg2XprType::Nested Arg2Nested; typedef typename Arg3XprType::Nested Arg3Nested; typedef typename remove_reference<Arg1Nested>::type _Arg1Nested; typedef typename remove_reference<Arg2Nested>::type _Arg2Nested; typedef typename remove_reference<Arg3Nested>::type _Arg3Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; enum { Flags = 0 }; }; template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> struct eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, Eigen::Dense> { typedef const TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>& type; }; template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> struct nested<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, 1, typename eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> >::type> { typedef TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> type; }; } // end namespace internal template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp : public TensorBase<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef Scalar CoeffReturnType; typedef typename Eigen::internal::nested<TensorCwiseTernaryOp>::type Nested; typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseTernaryOp(const Arg1XprType& arg1, const Arg2XprType& arg2, const Arg3XprType& arg3, const TernaryOp& func = TernaryOp()) : m_arg1_xpr(arg1), m_arg2_xpr(arg2), m_arg3_xpr(arg3), m_functor(func) {} EIGEN_DEVICE_FUNC const TernaryOp& functor() const { return m_functor; } /** \returns the nested expressions */ EIGEN_DEVICE_FUNC const typename internal::remove_all<typename Arg1XprType::Nested>::type& arg1Expression() const { return m_arg1_xpr; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename Arg2XprType::Nested>::type& arg2Expression() const { return m_arg2_xpr; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename Arg3XprType::Nested>::type& arg3Expression() const { return m_arg3_xpr; } protected: typename Arg1XprType::Nested m_arg1_xpr; typename Arg2XprType::Nested m_arg2_xpr; typename Arg3XprType::Nested m_arg3_xpr; const TernaryOp m_functor; }; namespace internal { template<typename IfXprType, typename ThenXprType, typename ElseXprType> struct traits<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> > : traits<ThenXprType> { typedef typename traits<ThenXprType>::Scalar Scalar; typedef traits<ThenXprType> XprTraits; typedef typename promote_storage_type<typename traits<ThenXprType>::StorageKind, typename traits<ElseXprType>::StorageKind>::ret StorageKind; typedef typename promote_index_type<typename traits<ElseXprType>::Index, typename traits<ThenXprType>::Index>::type Index; typedef typename IfXprType::Nested IfNested; typedef typename ThenXprType::Nested ThenNested; typedef typename ElseXprType::Nested ElseNested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename IfXprType, typename ThenXprType, typename ElseXprType> struct eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, Eigen::Dense> { typedef const TensorSelectOp<IfXprType, ThenXprType, ElseXprType>& type; }; template<typename IfXprType, typename ThenXprType, typename ElseXprType> struct nested<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, 1, typename eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> >::type> { typedef TensorSelectOp<IfXprType, ThenXprType, ElseXprType> type; }; } // end namespace internal template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp : public TensorBase<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorSelectOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::promote_storage_type<typename ThenXprType::CoeffReturnType, typename ElseXprType::CoeffReturnType>::ret CoeffReturnType; typedef typename Eigen::internal::nested<TensorSelectOp>::type Nested; typedef typename Eigen::internal::traits<TensorSelectOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorSelectOp>::Index Index; EIGEN_DEVICE_FUNC TensorSelectOp(const IfXprType& a_condition, const ThenXprType& a_then, const ElseXprType& a_else) : m_condition(a_condition), m_then(a_then), m_else(a_else) { } EIGEN_DEVICE_FUNC const IfXprType& ifExpression() const { return m_condition; } EIGEN_DEVICE_FUNC const ThenXprType& thenExpression() const { return m_then; } EIGEN_DEVICE_FUNC const ElseXprType& elseExpression() const { return m_else; } protected: typename IfXprType::Nested m_condition; typename ThenXprType::Nested m_then; typename ElseXprType::Nested m_else; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
.h
6,560
182
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H #define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H namespace Eigen { /** \class TensorForcedEval * \ingroup CXX11_Tensor_Module * * \brief Tensor reshaping class. * * */ namespace internal { template<typename XprType, template <class> class MakePointer_> struct traits<TensorEvalToOp<XprType, MakePointer_> > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; enum { Flags = 0 }; template <class T> struct MakePointer { // Intermediate typedef to workaround MSVC issue. typedef MakePointer_<T> MakePointerT; typedef typename MakePointerT::Type Type; }; }; template<typename XprType, template <class> class MakePointer_> struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense> { typedef const TensorEvalToOp<XprType, MakePointer_>& type; }; template<typename XprType, template <class> class MakePointer_> struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type> { typedef TensorEvalToOp<XprType, MakePointer_> type; }; } // end namespace internal template<typename XprType, template <class> class MakePointer_> class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename MakePointer_<CoeffReturnType>::Type PointerType; typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested; typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr) : m_xpr(expr), m_buffer(buffer) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; } protected: typename XprType::Nested m_xpr; PointerType m_buffer; }; template<typename ArgType, typename Device, template <class> class MakePointer_> struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device> { typedef TensorEvalToOp<ArgType, MakePointer_> XprType; typedef typename ArgType::Scalar Scalar; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; typedef typename XprType::Index Index; typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = true }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_device(device), m_buffer(op.buffer()), m_op(op), m_expression(op.expression()) { } // Used for accessor extraction in SYCL Managed TensorMap: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& op() const { return m_op; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~TensorEvaluator() { } typedef typename internal::traits<const TensorEvalToOp<ArgType, MakePointer_> >::template MakePointer<CoeffReturnType>::Type DevicePointer; EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(DevicePointer scalar) { EIGEN_UNUSED_VARIABLE(scalar); eigen_assert(scalar == NULL); return m_impl.evalSubExprsIfNeeded(m_buffer); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) { m_buffer[i] = m_impl.coeff(i); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) { internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_buffer[index]; } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // We assume that evalPacket or evalScalar is called to perform the // assignment and account for the cost of the write here. return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); } EIGEN_DEVICE_FUNC DevicePointer data() const { return m_buffer; } ArgType expression() const { return m_expression; } /// required by sycl in order to extract the accessor const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } /// added for sycl in order to construct the buffer from the sycl device const Device& device() const{return m_device;} private: TensorEvaluator<ArgType, Device> m_impl; const Device& m_device; DevicePointer m_buffer; const XprType& m_op; const ArgType m_expression; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h
.h
18,786
470
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H namespace Eigen { namespace internal { enum { Rhs = 0, Lhs = 1 }; /* * Implementation of the Eigen blas_data_mapper class for tensors. */ template <typename Tensor, bool HasRawAccess> struct CoeffLoader { enum { DirectOffsets = false }; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_tensor(tensor) { } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index) { eigen_assert(false && "unsupported"); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Tensor::PacketReturnType packet(typename Tensor::Index index) const { return m_tensor.template packet<LoadMode>(index); } private: const Tensor m_tensor; }; template <typename Tensor> struct CoeffLoader<Tensor, true> { enum { DirectOffsets = true }; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_data(tensor.data()) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) { m_data += offset; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Tensor::PacketReturnType packet(typename Tensor::Index index) const { return internal::ploadt_ro<typename Tensor::PacketReturnType, LoadMode>(m_data + index); } private: typedef typename Tensor::Scalar Scalar; const Scalar* m_data; }; template<typename Scalar, typename Index, int side, typename Tensor, typename nocontract_t, typename contract_t, int packet_size, bool inner_dim_contiguous, int Alignment> class SimpleTensorContractionMapper { public: EIGEN_DEVICE_FUNC SimpleTensorContractionMapper(const Tensor& tensor, const nocontract_t& nocontract_strides, const nocontract_t& ij_strides, const contract_t& contract_strides, const contract_t& k_strides) : m_tensor(tensor), m_nocontract_strides(nocontract_strides), m_ij_strides(ij_strides), m_contract_strides(contract_strides), m_k_strides(k_strides) { } enum { DirectOffsets = CoeffLoader<Tensor, Tensor::RawAccess>::DirectOffsets }; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) { m_tensor.offsetBuffer(offset); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void prefetch(Index /*i*/) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(Index row) const { // column major assumption return operator()(row, 0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const { return m_tensor.coeff(computeIndex(row, col)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const { const bool left = (side == Lhs); EIGEN_UNUSED_VARIABLE(left); // annoying bug in g++8.1: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85963 Index nocontract_val = left ? row : col; Index linidx = 0; for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) { const Index idx = nocontract_val / m_ij_strides[i]; linidx += idx * m_nocontract_strides[i]; nocontract_val -= idx * m_ij_strides[i]; } if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) { if (side == Lhs && inner_dim_contiguous) { eigen_assert(m_nocontract_strides[0] == 1); linidx += nocontract_val; } else { linidx += nocontract_val * m_nocontract_strides[0]; } } Index contract_val = left ? col : row; if(array_size<contract_t>::value > 0) { for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) { const Index idx = contract_val / m_k_strides[i]; linidx += idx * m_contract_strides[i]; contract_val -= idx * m_k_strides[i]; } if (side == Rhs && inner_dim_contiguous) { eigen_assert(m_contract_strides[0] == 1); linidx += contract_val; } else { linidx += contract_val * m_contract_strides[0]; } } return linidx; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const { const bool left = (side == Lhs); EIGEN_UNUSED_VARIABLE(left); // annoying bug in g++8.1: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85963 Index nocontract_val[2] = {left ? row : col, left ? row + distance : col}; Index linidx[2] = {0, 0}; if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) { for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) { const Index idx0 = nocontract_val[0] / m_ij_strides[i]; const Index idx1 = nocontract_val[1] / m_ij_strides[i]; linidx[0] += idx0 * m_nocontract_strides[i]; linidx[1] += idx1 * m_nocontract_strides[i]; nocontract_val[0] -= idx0 * m_ij_strides[i]; nocontract_val[1] -= idx1 * m_ij_strides[i]; } if (side == Lhs && inner_dim_contiguous) { eigen_assert(m_nocontract_strides[0] == 1); linidx[0] += nocontract_val[0]; linidx[1] += nocontract_val[1]; } else { linidx[0] += nocontract_val[0] * m_nocontract_strides[0]; linidx[1] += nocontract_val[1] * m_nocontract_strides[0]; } } Index contract_val[2] = {left ? col : row, left ? col : row + distance}; if (array_size<contract_t>::value> 0) { for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) { const Index idx0 = contract_val[0] / m_k_strides[i]; const Index idx1 = contract_val[1] / m_k_strides[i]; linidx[0] += idx0 * m_contract_strides[i]; linidx[1] += idx1 * m_contract_strides[i]; contract_val[0] -= idx0 * m_k_strides[i]; contract_val[1] -= idx1 * m_k_strides[i]; } if (side == Rhs && inner_dim_contiguous) { eigen_assert(m_contract_strides[0] == 1); linidx[0] += contract_val[0]; linidx[1] += contract_val[1]; } else { linidx[0] += contract_val[0] * m_contract_strides[0]; linidx[1] += contract_val[1] * m_contract_strides[0]; } } return IndexPair<Index>(linidx[0], linidx[1]); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index firstAligned(Index size) const { // Only claim alignment when we can compute the actual stride (ie when we're // dealing with the lhs with inner_dim_contiguous. This is because the // matrix-vector product relies on the stride when dealing with aligned inputs. return (Alignment == Aligned) && (side == Lhs) && inner_dim_contiguous ? 0 : size; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index stride() const { return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1; } protected: CoeffLoader<Tensor, Tensor::RawAccess> m_tensor; const nocontract_t m_nocontract_strides; const nocontract_t m_ij_strides; const contract_t m_contract_strides; const contract_t m_k_strides; }; template<typename Scalar, typename Index, int side, typename Tensor, typename nocontract_t, typename contract_t, int packet_size, bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment> class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment> { public: typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment> ParentMapper; EIGEN_DEVICE_FUNC BaseTensorContractionMapper(const Tensor& tensor, const nocontract_t& nocontract_strides, const nocontract_t& ij_strides, const contract_t& contract_strides, const contract_t& k_strides) : ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { } typedef typename Tensor::PacketReturnType Packet; typedef typename unpacket_traits<Packet>::half HalfPacket; template <int AlignmentType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const { // whole method makes column major assumption // don't need to add offsets for now (because operator handles that) // current code assumes packet size must be a multiple of 2 EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) { const Index index = this->computeIndex(i, j); eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1); return this->m_tensor.template packet<AlignmentType>(index); } const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1); const Index first = indexPair.first; const Index last = indexPair.second; // We can always do optimized packet reads from left hand side right now, because // the vertical matrix dimension on the left hand side is never contracting. // On the right hand side we need to check if the contracting dimensions may have // been shuffled first. if (Tensor::PacketAccess && (side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) && (last - first) == (packet_size - 1)) { return this->m_tensor.template packet<AlignmentType>(first); } EIGEN_ALIGN_MAX Scalar data[packet_size]; data[0] = this->m_tensor.coeff(first); for (Index k = 1; k < packet_size - 1; k += 2) { const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1); data[k] = this->m_tensor.coeff(internal_pair.first); data[k + 1] = this->m_tensor.coeff(internal_pair.second); } data[packet_size - 1] = this->m_tensor.coeff(last); return pload<Packet>(data); } template <int AlignmentType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE HalfPacket loadHalfPacket(Index i, Index j) const { // whole method makes column major assumption // don't need to add offsets for now (because operator handles that) const Index half_packet_size = unpacket_traits<HalfPacket>::size; if (half_packet_size == packet_size) { return loadPacket<AlignmentType>(i, j); } EIGEN_ALIGN_MAX Scalar data[half_packet_size]; for (Index k = 0; k < half_packet_size; k++) { data[k] = operator()(i + k, j); } return pload<HalfPacket>(data); } }; template<typename Scalar, typename Index, int side, typename Tensor, typename nocontract_t, typename contract_t, bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment> class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment> { public: typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment> ParentMapper; EIGEN_DEVICE_FUNC BaseTensorContractionMapper(const Tensor& tensor, const nocontract_t& nocontract_strides, const nocontract_t& ij_strides, const contract_t& contract_strides, const contract_t& k_strides) : ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { } typedef typename Tensor::PacketReturnType Packet; template <int> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const { EIGEN_ALIGN_MAX Scalar data[1]; data[0] = this->m_tensor.coeff(this->computeIndex(i, j)); return pload<typename Tensor::PacketReturnType>(data); } template <int> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet loadHalfPacket(Index i, Index j) const { return loadPacket(i, j); } }; template<typename Scalar, typename Index, int side, typename Tensor, typename nocontract_t, typename contract_t, int packet_size, bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment> class TensorContractionSubMapper { public: typedef typename Tensor::PacketReturnType Packet; typedef typename unpacket_traits<Packet>::half HalfPacket; typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper; typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self; typedef Self LinearMapper; enum { // We can use direct offsets iff the parent mapper supports then and we can compute the strides. // TODO: we should also enable direct offsets for the Rhs case. UseDirectOffsets = ParentMapper::DirectOffsets && (side == Lhs) && inner_dim_contiguous && (array_size<contract_t>::value > 0) }; EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset) : m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) { // Bake the offsets into the buffer used by the base mapper whenever possible. This avoids the need to recompute // this offset every time we attempt to access a coefficient. if (UseDirectOffsets) { Index stride = m_base_mapper.stride(); m_base_mapper.offsetBuffer(vert_offset + horiz_offset * stride); } } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { if (UseDirectOffsets) { return m_base_mapper(i, 0); } return m_base_mapper(i + m_vert_offset, m_horiz_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const { if (UseDirectOffsets) { return m_base_mapper(i, j); } return m_base_mapper(i + m_vert_offset, j + m_horiz_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const { if (UseDirectOffsets) { return m_base_mapper.template loadPacket<Alignment>(i, 0); } return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, m_horiz_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const { if (UseDirectOffsets) { return m_base_mapper.template loadPacket<Alignment>(i, j); } return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, j + m_horiz_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const { if (UseDirectOffsets) { return m_base_mapper.template loadHalfPacket<Alignment>(i, 0); } return m_base_mapper.template loadHalfPacket<Alignment>(i + m_vert_offset, m_horiz_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Packet p) const { if (UseDirectOffsets) { m_base_mapper.storePacket(i, 0, p); } m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { if (UseDirectOffsets) { return LinearMapper(m_base_mapper, i, j); } return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset); } template <typename PacketT, int AlignmentType> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const { EIGEN_STATIC_ASSERT((internal::is_same<PacketT, Packet>::value), YOU_MADE_A_PROGRAMMING_MISTAKE); const int ActualAlignment = (AlignmentType == Aligned) && (Alignment == Aligned) ? Aligned : Unaligned; if (UseDirectOffsets) { return m_base_mapper.template loadPacket<ActualAlignment>(i, 0); } return m_base_mapper.template loadPacket<ActualAlignment>(i + m_vert_offset, m_horiz_offset); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool aligned(Index) const { return false; } private: ParentMapper m_base_mapper; const Index m_vert_offset; const Index m_horiz_offset; }; template<typename Scalar_, typename Index, int side, typename Tensor, typename nocontract_t, typename contract_t, int packet_size, bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment> class TensorContractionInputMapper : public BaseTensorContractionMapper<Scalar_, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> { public: typedef Scalar_ Scalar; typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Base; typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper; typedef SubMapper VectorMapper; EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor, const nocontract_t& nocontract_strides, const nocontract_t& ij_strides, const contract_t& contract_strides, const contract_t& k_strides) : Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const { return SubMapper(*this, i, j); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { return VectorMapper(*this, i, j); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
.h
28,192
609
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. #ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H #define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H namespace Eigen { /** \class TensorVolumePatch * \ingroup CXX11_Tensor_Module * * \brief Patch extraction specialized for processing of volumetric data. * This assumes that the input has a least 4 dimensions ordered as follows: * - channels * - planes * - rows * - columns * - (optional) additional dimensions such as time or batch size. * Calling the volume patch code with patch_planes, patch_rows, and patch_cols * is equivalent to calling the regular patch extraction code with parameters * d, patch_planes, patch_rows, patch_cols, and 1 for all the additional * dimensions. */ namespace internal { template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType> { typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions + 1; static const int Layout = XprTraits::Layout; }; template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense> { typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type; }; template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type> { typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type; }; } // end namespace internal template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested; typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value) : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides), m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0), m_padding_type(padding_type), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top_z, DenseIndex padding_bottom_z, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value) : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides), m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom), m_padding_left(padding_left), m_padding_right(padding_right), m_padding_type(PADDING_VALID), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC DenseIndex patch_planes() const { return m_patch_planes; } EIGEN_DEVICE_FUNC DenseIndex patch_rows() const { return m_patch_rows; } EIGEN_DEVICE_FUNC DenseIndex patch_cols() const { return m_patch_cols; } EIGEN_DEVICE_FUNC DenseIndex plane_strides() const { return m_plane_strides; } EIGEN_DEVICE_FUNC DenseIndex row_strides() const { return m_row_strides; } EIGEN_DEVICE_FUNC DenseIndex col_strides() const { return m_col_strides; } EIGEN_DEVICE_FUNC DenseIndex in_plane_strides() const { return m_in_plane_strides; } EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const { return m_in_row_strides; } EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const { return m_in_col_strides; } EIGEN_DEVICE_FUNC DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; } EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const { return m_row_inflate_strides; } EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const { return m_col_inflate_strides; } EIGEN_DEVICE_FUNC bool padding_explicit() const { return m_padding_explicit; } EIGEN_DEVICE_FUNC DenseIndex padding_top_z() const { return m_padding_top_z; } EIGEN_DEVICE_FUNC DenseIndex padding_bottom_z() const { return m_padding_bottom_z; } EIGEN_DEVICE_FUNC DenseIndex padding_top() const { return m_padding_top; } EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const { return m_padding_bottom; } EIGEN_DEVICE_FUNC DenseIndex padding_left() const { return m_padding_left; } EIGEN_DEVICE_FUNC DenseIndex padding_right() const { return m_padding_right; } EIGEN_DEVICE_FUNC PaddingType padding_type() const { return m_padding_type; } EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const DenseIndex m_patch_planes; const DenseIndex m_patch_rows; const DenseIndex m_patch_cols; const DenseIndex m_plane_strides; const DenseIndex m_row_strides; const DenseIndex m_col_strides; const DenseIndex m_in_plane_strides; const DenseIndex m_in_row_strides; const DenseIndex m_in_col_strides; const DenseIndex m_plane_inflate_strides; const DenseIndex m_row_inflate_strides; const DenseIndex m_col_inflate_strides; const bool m_padding_explicit; const DenseIndex m_padding_top_z; const DenseIndex m_padding_bottom_z; const DenseIndex m_padding_top; const DenseIndex m_padding_bottom; const DenseIndex m_padding_left; const DenseIndex m_padding_right; const PaddingType m_padding_type; const Scalar m_padding_value; }; // Eval as rvalue template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device> struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device> { typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType; typedef typename XprType::Index Index; static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; static const int NumDims = NumInputDims + 1; typedef DSizes<Index, NumDims> Dimensions; typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE); m_paddingValue = op.padding_value(); const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); // Cache a few variables. if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_inputDepth = input_dims[0]; m_inputPlanes = input_dims[1]; m_inputRows = input_dims[2]; m_inputCols = input_dims[3]; } else { m_inputDepth = input_dims[NumInputDims-1]; m_inputPlanes = input_dims[NumInputDims-2]; m_inputRows = input_dims[NumInputDims-3]; m_inputCols = input_dims[NumInputDims-4]; } m_plane_strides = op.plane_strides(); m_row_strides = op.row_strides(); m_col_strides = op.col_strides(); // Input strides and effective input/patch size m_in_plane_strides = op.in_plane_strides(); m_in_row_strides = op.in_row_strides(); m_in_col_strides = op.in_col_strides(); m_plane_inflate_strides = op.plane_inflate_strides(); m_row_inflate_strides = op.row_inflate_strides(); m_col_inflate_strides = op.col_inflate_strides(); // The "effective" spatial size after inflating data with zeros. m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1; m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1; m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1; m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1); m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1); m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1); if (op.padding_explicit()) { m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides)); m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); m_planePaddingTop = op.padding_top_z(); m_rowPaddingTop = op.padding_top(); m_colPaddingLeft = op.padding_left(); } else { // Computing padding from the type switch (op.padding_type()) { case PADDING_VALID: m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides)); m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); m_planePaddingTop = 0; m_rowPaddingTop = 0; m_colPaddingLeft = 0; break; case PADDING_SAME: { m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides)); m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides)); m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides)); const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff; const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff; const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff; m_planePaddingTop = dz - dz / 2; m_rowPaddingTop = dy - dy / 2; m_colPaddingLeft = dx - dx / 2; break; } default: eigen_assert(false && "unexpected padding"); } } eigen_assert(m_outputRows > 0); eigen_assert(m_outputCols > 0); eigen_assert(m_outputPlanes > 0); // Dimensions for result of extraction. if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { // ColMajor // 0: depth // 1: patch_planes // 2: patch_rows // 3: patch_cols // 4: number of patches // 5 and beyond: anything else (such as batch). m_dimensions[0] = input_dims[0]; m_dimensions[1] = op.patch_planes(); m_dimensions[2] = op.patch_rows(); m_dimensions[3] = op.patch_cols(); m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols; for (int i = 5; i < NumDims; ++i) { m_dimensions[i] = input_dims[i-1]; } } else { // RowMajor // NumDims-1: depth // NumDims-2: patch_planes // NumDims-3: patch_rows // NumDims-4: patch_cols // NumDims-5: number of patches // NumDims-6 and beyond: anything else (such as batch). m_dimensions[NumDims-1] = input_dims[NumInputDims-1]; m_dimensions[NumDims-2] = op.patch_planes(); m_dimensions[NumDims-3] = op.patch_rows(); m_dimensions[NumDims-4] = op.patch_cols(); m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols; for (int i = NumDims-6; i >= 0; --i) { m_dimensions[i] = input_dims[i]; } } // Strides for the output tensor. if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_rowStride = m_dimensions[1]; m_colStride = m_dimensions[2] * m_rowStride; m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0]; m_otherStride = m_patchStride * m_dimensions[4]; } else { m_rowStride = m_dimensions[NumDims-2]; m_colStride = m_dimensions[NumDims-3] * m_rowStride; m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1]; m_otherStride = m_patchStride * m_dimensions[NumDims-5]; } // Strides for navigating through the input tensor. m_planeInputStride = m_inputDepth; m_rowInputStride = m_inputDepth * m_inputPlanes; m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes; m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes; m_outputPlanesRows = m_outputPlanes * m_outputRows; // Fast representations of different variables. m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride); m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride); m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride); m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride); m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides); m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides); m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides); m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff); m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes); m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]); } else { m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { // Patch index corresponding to the passed in index. const Index patchIndex = index / m_fastPatchStride; // Spatial offset within the patch. This has to be translated into 3D // coordinates within the patch. const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth; // Batch, etc. const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride; const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride; // Calculate column index in the input original tensor. const Index colIndex = patch3DIndex / m_fastOutputPlanesRows; const Index colOffset = patchOffset / m_fastColStride; const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft; const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0); if (inputCol < 0 || inputCol >= m_input_cols_eff || ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) { return Scalar(m_paddingValue); } // Calculate row index in the original input tensor. const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes; const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride; const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop; const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0); if (inputRow < 0 || inputRow >= m_input_rows_eff || ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) { return Scalar(m_paddingValue); } // Calculate plane index in the original input tensor. const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex)); const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride; const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop; const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0); if (inputPlane < 0 || inputPlane >= m_input_planes_eff || ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) { return Scalar(m_paddingValue); } const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + origInputPlane * m_planeInputStride + otherIndex * m_otherInputStride; return m_impl.coeff(inputIndex); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 || m_in_plane_strides != 1 || m_plane_inflate_strides != 1) { return packetWithPossibleZero(index); } const Index indices[2] = {index, index + PacketSize - 1}; const Index patchIndex = indices[0] / m_fastPatchStride; if (patchIndex != indices[1] / m_fastPatchStride) { return packetWithPossibleZero(index); } const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride; eigen_assert(otherIndex == indices[1] / m_fastOtherStride); // Find the offset of the element wrt the location of the first element. const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth, (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth}; const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride; eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride); const Index colIndex = patch3DIndex / m_fastOutputPlanesRows; const Index colOffsets[2] = { patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride}; // Calculate col indices in the original input tensor. const Index inputCols[2] = { colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft}; if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) { return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); } if (inputCols[0] != inputCols[1]) { return packetWithPossibleZero(index); } const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes; const Index rowOffsets[2] = { (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride, (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride}; eigen_assert(rowOffsets[0] <= rowOffsets[1]); // Calculate col indices in the original input tensor. const Index inputRows[2] = { rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop}; if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) { return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); } if (inputRows[0] != inputRows[1]) { return packetWithPossibleZero(index); } const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex)); const Index planeOffsets[2] = { patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride, patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride}; eigen_assert(planeOffsets[0] <= planeOffsets[1]); const Index inputPlanes[2] = { planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop, planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop}; if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) { return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); } if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) { // no padding const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + m_planeInputStride * inputPlanes[0] + otherIndex * m_otherInputStride; return m_impl.template packet<Unaligned>(inputIndex); } return packetWithPossibleZero(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = 10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() + 8 * TensorOpCost::AddCost<Index>(); return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } Index planePaddingTop() const { return m_planePaddingTop; } Index rowPaddingTop() const { return m_rowPaddingTop; } Index colPaddingLeft() const { return m_colPaddingLeft; } Index outputPlanes() const { return m_outputPlanes; } Index outputRows() const { return m_outputRows; } Index outputCols() const { return m_outputCols; } Index userPlaneStride() const { return m_plane_strides; } Index userRowStride() const { return m_row_strides; } Index userColStride() const { return m_col_strides; } Index userInPlaneStride() const { return m_in_plane_strides; } Index userInRowStride() const { return m_in_row_strides; } Index userInColStride() const { return m_in_col_strides; } Index planeInflateStride() const { return m_plane_inflate_strides; } Index rowInflateStride() const { return m_row_inflate_strides; } Index colInflateStride() const { return m_col_inflate_strides; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } Dimensions m_dimensions; // Parameters passed to the costructor. Index m_plane_strides; Index m_row_strides; Index m_col_strides; Index m_outputPlanes; Index m_outputRows; Index m_outputCols; Index m_planePaddingTop; Index m_rowPaddingTop; Index m_colPaddingLeft; Index m_in_plane_strides; Index m_in_row_strides; Index m_in_col_strides; Index m_plane_inflate_strides; Index m_row_inflate_strides; Index m_col_inflate_strides; // Cached input size. Index m_inputDepth; Index m_inputPlanes; Index m_inputRows; Index m_inputCols; // Other cached variables. Index m_outputPlanesRows; // Effective input/patch post-inflation size. Index m_input_planes_eff; Index m_input_rows_eff; Index m_input_cols_eff; Index m_patch_planes_eff; Index m_patch_rows_eff; Index m_patch_cols_eff; // Strides for the output tensor. Index m_otherStride; Index m_patchStride; Index m_rowStride; Index m_colStride; // Strides for the input tensor. Index m_planeInputStride; Index m_rowInputStride; Index m_colInputStride; Index m_otherInputStride; internal::TensorIntDivisor<Index> m_fastOtherStride; internal::TensorIntDivisor<Index> m_fastPatchStride; internal::TensorIntDivisor<Index> m_fastColStride; internal::TensorIntDivisor<Index> m_fastRowStride; internal::TensorIntDivisor<Index> m_fastInputPlaneStride; internal::TensorIntDivisor<Index> m_fastInputRowStride; internal::TensorIntDivisor<Index> m_fastInputColStride; internal::TensorIntDivisor<Index> m_fastInputColsEff; internal::TensorIntDivisor<Index> m_fastOutputPlanesRows; internal::TensorIntDivisor<Index> m_fastOutputPlanes; internal::TensorIntDivisor<Index> m_fastOutputDepth; Scalar m_paddingValue; TensorEvaluator<ArgType, Device> m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
.h
14,625
490
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H #define EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H namespace Eigen { namespace internal { /** \internal * \brief Template functor to compute the modulo between an array and a scalar. */ template <typename Scalar> struct scalar_mod_op { EIGEN_DEVICE_FUNC scalar_mod_op(const Scalar& divisor) : m_divisor(divisor) {} EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a % m_divisor; } const Scalar m_divisor; }; template <typename Scalar> struct functor_traits<scalar_mod_op<Scalar> > { enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the modulo between 2 arrays. */ template <typename Scalar> struct scalar_mod2_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_mod2_op); EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a, const Scalar& b) const { return a % b; } }; template <typename Scalar> struct functor_traits<scalar_mod2_op<Scalar> > { enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; }; template <typename Scalar> struct scalar_fmod_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_fmod_op); EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { return numext::fmod(a, b); } }; template <typename Scalar> struct functor_traits<scalar_fmod_op<Scalar> > { enum { Cost = 13, // Reciprocal throughput of FPREM on Haswell. PacketAccess = false }; }; /** \internal * \brief Template functor to compute the sigmoid of a scalar * \sa class CwiseUnaryOp, ArrayBase::sigmoid() */ template <typename T> struct scalar_sigmoid_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const { const T one = T(1); return one / (one + numext::exp(-x)); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { const Packet one = pset1<Packet>(T(1)); return pdiv(one, padd(one, pexp(pnegate(x)))); } }; template <typename T> struct functor_traits<scalar_sigmoid_op<T> > { enum { Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6, PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv && packet_traits<T>::HasNegate && packet_traits<T>::HasExp }; }; template<typename Reducer, typename Device> struct reducer_traits { enum { Cost = 1, PacketAccess = false }; }; // Standard reduction functors template <typename T> struct SumReducer { static const bool PacketAccess = packet_traits<T>::HasAdd; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { internal::scalar_sum_op<T> sum_op; *accum = sum_op(*accum, t); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { (*accum) = padd<Packet>(*accum, p); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { internal::scalar_cast_op<int, T> conv; return conv(0); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(initialize()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { return accum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return vaccum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { internal::scalar_sum_op<T> sum_op; return sum_op(saccum, predux(vaccum)); } }; template <typename T, typename Device> struct reducer_traits<SumReducer<T>, Device> { enum { Cost = NumTraits<T>::AddCost, PacketAccess = PacketType<T, Device>::HasAdd }; }; template <typename T> struct MeanReducer { static const bool PacketAccess = packet_traits<T>::HasAdd && !NumTraits<T>::IsInteger; static const bool IsStateful = true; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MeanReducer() : scalarCount_(0), packetCount_(0) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) { internal::scalar_sum_op<T> sum_op; *accum = sum_op(*accum, t); scalarCount_++; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) { (*accum) = padd<Packet>(*accum, p); packetCount_++; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { internal::scalar_cast_op<int, T> conv; return conv(0); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(initialize()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { return accum / scalarCount_; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return pdiv(vaccum, pset1<Packet>(packetCount_)); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { internal::scalar_sum_op<T> sum_op; return sum_op(saccum, predux(vaccum)) / (scalarCount_ + packetCount_ * unpacket_traits<Packet>::size); } protected: DenseIndex scalarCount_; DenseIndex packetCount_; }; template <typename T, typename Device> struct reducer_traits<MeanReducer<T>, Device> { enum { Cost = NumTraits<T>::AddCost, PacketAccess = PacketType<T, Device>::HasAdd }; }; template <typename T, bool IsMax = true, bool IsInteger = true> struct MinMaxBottomValue { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { return Eigen::NumTraits<T>::lowest(); } }; template <typename T> struct MinMaxBottomValue<T, true, false> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { return -Eigen::NumTraits<T>::infinity(); } }; template <typename T> struct MinMaxBottomValue<T, false, true> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { return Eigen::NumTraits<T>::highest(); } }; template <typename T> struct MinMaxBottomValue<T, false, false> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { return Eigen::NumTraits<T>::infinity(); } }; template <typename T> struct MaxReducer { static const bool PacketAccess = packet_traits<T>::HasMax; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { if (t > *accum) { *accum = t; } } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { (*accum) = pmax<Packet>(*accum, p); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { return MinMaxBottomValue<T, true, Eigen::NumTraits<T>::IsInteger>::bottom_value(); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(initialize()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { return accum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return vaccum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { return numext::maxi(saccum, predux_max(vaccum)); } }; template <typename T, typename Device> struct reducer_traits<MaxReducer<T>, Device> { enum { Cost = NumTraits<T>::AddCost, PacketAccess = PacketType<T, Device>::HasMax }; }; template <typename T> struct MinReducer { static const bool PacketAccess = packet_traits<T>::HasMin; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { if (t < *accum) { *accum = t; } } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { (*accum) = pmin<Packet>(*accum, p); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { return MinMaxBottomValue<T, false, Eigen::NumTraits<T>::IsInteger>::bottom_value(); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(initialize()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { return accum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return vaccum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { return numext::mini(saccum, predux_min(vaccum)); } }; template <typename T, typename Device> struct reducer_traits<MinReducer<T>, Device> { enum { Cost = NumTraits<T>::AddCost, PacketAccess = PacketType<T, Device>::HasMin }; }; template <typename T> struct ProdReducer { static const bool PacketAccess = packet_traits<T>::HasMul; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { internal::scalar_product_op<T> prod_op; (*accum) = prod_op(*accum, t); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { (*accum) = pmul<Packet>(*accum, p); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { internal::scalar_cast_op<int, T> conv; return conv(1); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(initialize()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { return accum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return vaccum; } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { internal::scalar_product_op<T> prod_op; return prod_op(saccum, predux_mul(vaccum)); } }; template <typename T, typename Device> struct reducer_traits<ProdReducer<T>, Device> { enum { Cost = NumTraits<T>::MulCost, PacketAccess = PacketType<T, Device>::HasMul }; }; struct AndReducer { static const bool PacketAccess = false; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const { *accum = *accum && t; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const { return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const { return accum; } }; template <typename Device> struct reducer_traits<AndReducer, Device> { enum { Cost = 1, PacketAccess = false }; }; struct OrReducer { static const bool PacketAccess = false; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const { *accum = *accum || t; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const { return false; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const { return accum; } }; template <typename Device> struct reducer_traits<OrReducer, Device> { enum { Cost = 1, PacketAccess = false }; }; // Argmin/Argmax reducers template <typename T> struct ArgMaxTupleReducer { static const bool PacketAccess = false; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { if (t.second > accum->second) { *accum = t; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { return T(0, NumTraits<typename T::second_type>::lowest()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const { return accum; } }; template <typename T, typename Device> struct reducer_traits<ArgMaxTupleReducer<T>, Device> { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; template <typename T> struct ArgMinTupleReducer { static const bool PacketAccess = false; static const bool IsStateful = false; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const { if (t.second < accum->second) { *accum = t; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { return T(0, NumTraits<typename T::second_type>::highest()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const { return accum; } }; template <typename T, typename Device> struct reducer_traits<ArgMinTupleReducer<T>, Device> { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; template <typename T, typename Index, size_t NumDims> class GaussianGenerator { public: static const bool PacketAccess = false; EIGEN_DEVICE_FUNC GaussianGenerator(const array<T, NumDims>& means, const array<T, NumDims>& std_devs) : m_means(means) { for (size_t i = 0; i < NumDims; ++i) { m_two_sigmas[i] = std_devs[i] * std_devs[i] * 2; } } EIGEN_DEVICE_FUNC T operator()(const array<Index, NumDims>& coordinates) const { T tmp = T(0); for (size_t i = 0; i < NumDims; ++i) { T offset = coordinates[i] - m_means[i]; tmp += offset * offset / m_two_sigmas[i]; } return numext::exp(-tmp); } private: array<T, NumDims> m_means; array<T, NumDims> m_two_sigmas; }; template <typename T, typename Index, size_t NumDims> struct functor_traits<GaussianGenerator<T, Index, NumDims> > { enum { Cost = NumDims * (2 * NumTraits<T>::AddCost + NumTraits<T>::MulCost + functor_traits<scalar_quotient_op<T, T> >::Cost) + functor_traits<scalar_exp_op<T> >::Cost, PacketAccess = GaussianGenerator<T, Index, NumDims>::PacketAccess }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
.h
49,692
1,013
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_BASE_H #define EIGEN_CXX11_TENSOR_TENSOR_BASE_H // clang-format off namespace Eigen { /** \class TensorBase * \ingroup CXX11_Tensor_Module * * \brief The tensor base class. * * This class is the common parent of the Tensor and TensorMap class, thus * making it possible to use either class interchangably in expressions. */ #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME Doxygen does not like the inheritance with different template parameters // Since there is no doxygen documentation inside, we disable it for now template<typename Derived> class TensorBase<Derived, ReadOnlyAccessors> { public: typedef internal::traits<Derived> DerivedTraits; typedef typename DerivedTraits::Scalar Scalar; typedef typename DerivedTraits::Index Index; typedef typename internal::remove_const<Scalar>::type CoeffReturnType; static const int NumDimensions = DerivedTraits::NumDimensions; // Generic nullary operation support. template <typename CustomNullaryOp> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<CustomNullaryOp, const Derived> nullaryExpr(const CustomNullaryOp& func) const { return TensorCwiseNullaryOp<CustomNullaryOp, const Derived>(derived(), func); } // Coefficient-wise nullary operators EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> constant(const Scalar& value) const { return nullaryExpr(internal::scalar_constant_op<Scalar>(value)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived> random() const { return nullaryExpr(internal::UniformRandomGenerator<Scalar>()); } template <typename RandomGenerator> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived> random(const RandomGenerator& gen = RandomGenerator()) const { return nullaryExpr(gen); } // Tensor generation template <typename Generator> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorGeneratorOp<Generator, const Derived> generate(const Generator& generator) const { return TensorGeneratorOp<Generator, const Derived>(derived(), generator); } // Generic unary operation support. template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived> unaryExpr(const CustomUnaryOp& func) const { return TensorCwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func); } // Coefficient-wise unary operators EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived> operator-() const { return unaryExpr(internal::scalar_opposite_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> sqrt() const { return unaryExpr(internal::scalar_sqrt_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived> sign() const { return unaryExpr(internal::scalar_sign_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_rsqrt_op<Scalar>, const Derived> rsqrt() const { return unaryExpr(internal::scalar_rsqrt_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived> square() const { return unaryExpr(internal::scalar_square_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_cube_op<Scalar>, const Derived> cube() const { return unaryExpr(internal::scalar_cube_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> inverse() const { return unaryExpr(internal::scalar_inverse_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_tanh_op<Scalar>, const Derived> tanh() const { return unaryExpr(internal::scalar_tanh_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived> lgamma() const { return unaryExpr(internal::scalar_lgamma_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived> digamma() const { return unaryExpr(internal::scalar_digamma_op<Scalar>()); } // igamma(a = this, x = other) template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived> igamma(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>()); } // igammac(a = this, x = other) template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived> igammac(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>()); } // zeta(x = this, q = other) template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const OtherDerived> zeta(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_zeta_op<Scalar>()); } // polygamma(n = this, x = other) template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const Derived, const OtherDerived> polygamma(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_polygamma_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived> erf() const { return unaryExpr(internal::scalar_erf_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived> erfc() const { return unaryExpr(internal::scalar_erfc_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sigmoid_op<Scalar>, const Derived> sigmoid() const { return unaryExpr(internal::scalar_sigmoid_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived> exp() const { return unaryExpr(internal::scalar_exp_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived> log() const { return unaryExpr(internal::scalar_log_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log1p_op<Scalar>, const Derived> log1p() const { return unaryExpr(internal::scalar_log1p_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> abs() const { return unaryExpr(internal::scalar_abs_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived> conjugate() const { return unaryExpr(internal::scalar_conjugate_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >, const Derived> pow(Scalar exponent) const { return unaryExpr(internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >(exponent)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived> real() const { return unaryExpr(internal::scalar_real_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> imag() const { return unaryExpr(internal::scalar_imag_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >, const Derived> operator+ (Scalar rhs) const { return unaryExpr(internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >(rhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_sum_op<Scalar> >, const Derived> operator+ (Scalar lhs, const Derived& rhs) { return rhs.unaryExpr(internal::bind1st_op<internal::scalar_sum_op<Scalar> >(lhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >, const Derived> operator- (Scalar rhs) const { EIGEN_STATIC_ASSERT((NumTraits<Scalar>::IsSigned || internal::is_same<Scalar, const std::complex<float> >::value), YOU_MADE_A_PROGRAMMING_MISTAKE); return unaryExpr(internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >(rhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_difference_op<Scalar> >, const Derived> operator- (Scalar lhs, const Derived& rhs) { return rhs.unaryExpr(internal::bind1st_op<internal::scalar_difference_op<Scalar> >(lhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >, const Derived> operator* (Scalar rhs) const { return unaryExpr(internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >(rhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_product_op<Scalar> >, const Derived> operator* (Scalar lhs, const Derived& rhs) { return rhs.unaryExpr(internal::bind1st_op<internal::scalar_product_op<Scalar> >(lhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >, const Derived> operator/ (Scalar rhs) const { return unaryExpr(internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >(rhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_quotient_op<Scalar> >, const Derived> operator/ (Scalar lhs, const Derived& rhs) { return rhs.unaryExpr(internal::bind1st_op<internal::scalar_quotient_op<Scalar> >(lhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_mod_op<Scalar>, const Derived> operator% (Scalar rhs) const { EIGEN_STATIC_ASSERT(NumTraits<Scalar>::IsInteger, YOU_MADE_A_PROGRAMMING_MISTAKE_TRY_MOD); return unaryExpr(internal::scalar_mod_op<Scalar>(rhs)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > cwiseMax(Scalar threshold) const { return cwiseMax(constant(threshold)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > cwiseMin(Scalar threshold) const { return cwiseMin(constant(threshold)); } template <typename NewType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorConversionOp<NewType, const Derived> cast() const { return TensorConversionOp<NewType, const Derived>(derived()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_round_op<Scalar>, const Derived> round() const { return unaryExpr(internal::scalar_round_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_ceil_op<Scalar>, const Derived> ceil() const { return unaryExpr(internal::scalar_ceil_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_floor_op<Scalar>, const Derived> floor() const { return unaryExpr(internal::scalar_floor_op<Scalar>()); } // Generic binary operation support. template <typename CustomBinaryOp, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> binaryExpr(const OtherDerived& other, const CustomBinaryOp& func) const { return TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>(derived(), other, func); } // Coefficient-wise binary operators. template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived> operator+(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_sum_op<Scalar>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived> operator-(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_difference_op<Scalar>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived> operator*(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_product_op<Scalar>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> operator/(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_quotient_op<Scalar>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> cwiseMax(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_max_op<Scalar>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> cwiseMin(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_min_op<Scalar>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived> operator&&(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_boolean_and_op()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived> operator||(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_boolean_or_op()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_boolean_xor_op, const Derived, const OtherDerived> operator^(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_boolean_xor_op()); } // Comparisons and tests. template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const OtherDerived> operator<(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const OtherDerived> operator<=(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const OtherDerived> operator>(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const OtherDerived> operator>=(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const OtherDerived> operator==(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived> operator!=(const OtherDerived& other) const { return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>()); } // comparisons and tests for Scalars EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > operator<(Scalar threshold) const { return operator<(constant(threshold)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > operator<=(Scalar threshold) const { return operator<=(constant(threshold)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > operator>(Scalar threshold) const { return operator>(constant(threshold)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > operator>=(Scalar threshold) const { return operator>=(constant(threshold)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > operator==(Scalar threshold) const { return operator==(constant(threshold)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > operator!=(Scalar threshold) const { return operator!=(constant(threshold)); } // Checks EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isnan_op<Scalar>, const Derived> (isnan)() const { return unaryExpr(internal::scalar_isnan_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isinf_op<Scalar>, const Derived> (isinf)() const { return unaryExpr(internal::scalar_isinf_op<Scalar>()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isfinite_op<Scalar>, const Derived> (isfinite)() const { return unaryExpr(internal::scalar_isfinite_op<Scalar>()); } // Coefficient-wise ternary operators. template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived> select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) const { return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived()); } // Contractions. typedef Eigen::IndexPair<Index> DimensionPair; template<typename OtherDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorContractionOp<const Dimensions, const Derived, const OtherDerived> contract(const OtherDerived& other, const Dimensions& dims) const { return TensorContractionOp<const Dimensions, const Derived, const OtherDerived>(derived(), other.derived(), dims); } // Convolutions. template<typename KernelDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived> convolve(const KernelDerived& kernel, const Dimensions& dims) const { return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims); } // Fourier transforms template <int FFTDataType, int FFTDirection, typename FFT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection> fft(const FFT& fft) const { return TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection>(derived(), fft); } // Scan. typedef TensorScanOp<internal::SumReducer<CoeffReturnType>, const Derived> TensorScanSumOp; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorScanSumOp cumsum(const Index& axis, bool exclusive = false) const { return TensorScanSumOp(derived(), axis, exclusive); } typedef TensorScanOp<internal::ProdReducer<CoeffReturnType>, const Derived> TensorScanProdOp; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorScanProdOp cumprod(const Index& axis, bool exclusive = false) const { return TensorScanProdOp(derived(), axis, exclusive); } template <typename Reducer> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorScanOp<Reducer, const Derived> scan(const Index& axis, const Reducer& reducer, bool exclusive = false) const { return TensorScanOp<Reducer, const Derived>(derived(), axis, exclusive, reducer); } // Reductions. template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived> sum(const Dims& dims) const { return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::SumReducer<CoeffReturnType>()); } const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> sum() const { DimensionList<Index, NumDimensions> in_dims; return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::SumReducer<CoeffReturnType>()); } template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived> mean(const Dims& dims) const { return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MeanReducer<CoeffReturnType>()); } const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> mean() const { DimensionList<Index, NumDimensions> in_dims; return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MeanReducer<CoeffReturnType>()); } template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived> prod(const Dims& dims) const { return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::ProdReducer<CoeffReturnType>()); } const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> prod() const { DimensionList<Index, NumDimensions> in_dims; return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::ProdReducer<CoeffReturnType>()); } template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived> maximum(const Dims& dims) const { return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MaxReducer<CoeffReturnType>()); } const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> maximum() const { DimensionList<Index, NumDimensions> in_dims; return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MaxReducer<CoeffReturnType>()); } template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived> minimum(const Dims& dims) const { return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MinReducer<CoeffReturnType>()); } const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> minimum() const { DimensionList<Index, NumDimensions> in_dims; return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>()); } template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::AndReducer, const Dims, const TensorConversionOp<bool, const Derived> > all(const Dims& dims) const { return cast<bool>().reduce(dims, internal::AndReducer()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::AndReducer, const DimensionList<Index, NumDimensions>, const TensorConversionOp<bool, const Derived> > all() const { DimensionList<Index, NumDimensions> in_dims; return cast<bool>().reduce(in_dims, internal::AndReducer()); } template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::OrReducer, const Dims, const TensorConversionOp<bool, const Derived> > any(const Dims& dims) const { return cast<bool>().reduce(dims, internal::OrReducer()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<internal::OrReducer, const DimensionList<Index, NumDimensions>, const TensorConversionOp<bool, const Derived> > any() const { DimensionList<Index, NumDimensions> in_dims; return cast<bool>().reduce(in_dims, internal::OrReducer()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorTupleReducerOp< internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, NumDimensions>, const Derived> argmax() const { array<Index, NumDimensions> in_dims; for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d; return TensorTupleReducerOp< internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, NumDimensions>, const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorTupleReducerOp< internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, NumDimensions>, const Derived> argmin() const { array<Index, NumDimensions> in_dims; for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d; return TensorTupleReducerOp< internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, NumDimensions>, const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorTupleReducerOp< internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, 1>, const Derived> argmax(const int return_dim) const { array<Index, 1> in_dims; in_dims[0] = return_dim; return TensorTupleReducerOp< internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, 1>, const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorTupleReducerOp< internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, 1>, const Derived> argmin(const int return_dim) const { array<Index, 1> in_dims; in_dims[0] = return_dim; return TensorTupleReducerOp< internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, const array<Index, 1>, const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims); } template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReductionOp<Reducer, const Dims, const Derived> reduce(const Dims& dims, const Reducer& reducer) const { return TensorReductionOp<Reducer, const Dims, const Derived>(derived(), dims, reducer); } template <typename Broadcast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorBroadcastingOp<const Broadcast, const Derived> broadcast(const Broadcast& broadcast) const { return TensorBroadcastingOp<const Broadcast, const Derived>(derived(), broadcast); } template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorConcatenationOp<Axis, const Derived, const OtherDerived> concatenate(const OtherDerived& other, Axis axis) const { return TensorConcatenationOp<Axis, const Derived, const OtherDerived>(derived(), other.derived(), axis); } template <typename PatchDims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorPatchOp<const PatchDims, const Derived> extract_patches(const PatchDims& patch_dims) const { return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorImagePatchOp<Dynamic, Dynamic, const Derived> extract_image_patches(const Index patch_rows = 1, const Index patch_cols = 1, const Index row_stride = 1, const Index col_stride = 1, const Index in_row_stride = 1, const Index in_col_stride = 1, const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const { return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride, in_row_stride, in_col_stride, 1, 1, padding_type, padding_value); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorImagePatchOp<Dynamic, Dynamic, const Derived> extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const Index in_row_stride, const Index in_col_stride, const Index row_inflate_stride, const Index col_inflate_stride, const Index padding_top, const Index padding_bottom, const Index padding_left,const Index padding_right, const Scalar padding_value) const { return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride, in_row_stride, in_col_stride, row_inflate_stride, col_inflate_stride, padding_top, padding_bottom, padding_left, padding_right, padding_value); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived> extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols, const Index plane_stride = 1, const Index row_stride = 1, const Index col_stride = 1, const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const { return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, 1, 1, 1, padding_type, padding_value); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived> extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols, const Index plane_stride, const Index row_stride, const Index col_stride, const Index plane_inflate_stride, const Index row_inflate_stride, const Index col_inflate_stride, const Index padding_top_z, const Index padding_bottom_z, const Index padding_top, const Index padding_bottom, const Index padding_left, const Index padding_right, const Scalar padding_value = Scalar(0)) const { return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, plane_inflate_stride, row_inflate_stride, col_inflate_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right, padding_value); } // Morphing operators. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorLayoutSwapOp<const Derived> swap_layout() const { return TensorLayoutSwapOp<const Derived>(derived()); } template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReshapingOp<const NewDimensions, const Derived> reshape(const NewDimensions& newDimensions) const { return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions); } template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorSlicingOp<const StartIndices, const Sizes, const Derived> slice(const StartIndices& startIndices, const Sizes& sizes) const { return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes); } template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived> stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const { return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>(derived(), startIndices, stopIndices, strides); } template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorChippingOp<DimId, const Derived> chip(const Index offset) const { return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorChippingOp<Dynamic, const Derived> chip(const Index offset, const Index dim) const { return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim); } template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReverseOp<const ReverseDimensions, const Derived> reverse(const ReverseDimensions& rev) const { return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev); } template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorPaddingOp<const PaddingDimensions, const Derived> pad(const PaddingDimensions& padding) const { return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, internal::scalar_cast_op<int, Scalar>()(0)); } template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorPaddingOp<const PaddingDimensions, const Derived> pad(const PaddingDimensions& padding, const Scalar padding_value) const { return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, padding_value); } template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorShufflingOp<const Shuffle, const Derived> shuffle(const Shuffle& shuffle) const { return TensorShufflingOp<const Shuffle, const Derived>(derived(), shuffle); } template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorStridingOp<const Strides, const Derived> stride(const Strides& strides) const { return TensorStridingOp<const Strides, const Derived>(derived(), strides); } template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorInflationOp<const Strides, const Derived> inflate(const Strides& strides) const { return TensorInflationOp<const Strides, const Derived>(derived(), strides); } // Returns a tensor containing index/value tuples EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorIndexTupleOp<const Derived> index_tuples() const { return TensorIndexTupleOp<const Derived>(derived()); } // Support for custom unary and binary operations template <typename CustomUnaryFunc> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCustomUnaryOp<const CustomUnaryFunc, const Derived> customOp(const CustomUnaryFunc& op) const { return TensorCustomUnaryOp<const CustomUnaryFunc, const Derived>(derived(), op); } template <typename OtherDerived, typename CustomBinaryFunc> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived> customOp(const OtherDerived& other, const CustomBinaryFunc& op) const { return TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived>(derived(), other, op); } // Force the evaluation of the expression. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorForcedEvalOp<const Derived> eval() const { return TensorForcedEvalOp<const Derived>(derived()); } protected: template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor; template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize; template <typename OtherDerived, int AccessLevel> friend class TensorBase; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); } }; template<typename Derived, int AccessLevel = internal::accessors_level<Derived>::value> class TensorBase : public TensorBase<Derived, ReadOnlyAccessors> { public: typedef internal::traits<Derived> DerivedTraits; typedef typename DerivedTraits::Scalar Scalar; typedef typename DerivedTraits::Index Index; typedef Scalar CoeffReturnType; static const int NumDimensions = DerivedTraits::NumDimensions; template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor; template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize; template <typename OtherDerived, int OtherAccessLevel> friend class TensorBase; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& setZero() { return setConstant(Scalar(0)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& setConstant(const Scalar& val) { return derived() = this->constant(val); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& setRandom() { return derived() = this->random(); } template <typename RandomGenerator> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& setRandom() { return derived() = this->template random<RandomGenerator>(); } #if EIGEN_HAS_VARIADIC_TEMPLATES EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& setValues( const typename internal::Initializer<Derived, NumDimensions>::InitList& vals) { TensorEvaluator<Derived, DefaultDevice> eval(derived(), DefaultDevice()); internal::initialize_tensor<Derived, NumDimensions>(eval, vals); return derived(); } #endif // EIGEN_HAS_VARIADIC_TEMPLATES template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const OtherDerived& other) { return derived() = derived() + other.derived(); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const OtherDerived& other) { return derived() = derived() - other.derived(); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*=(const OtherDerived& other) { return derived() = derived() * other.derived(); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator/=(const OtherDerived& other) { return derived() = derived() / other.derived(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorLayoutSwapOp<const Derived> swap_layout() const { return TensorLayoutSwapOp<const Derived>(derived()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp<Derived> swap_layout() { return TensorLayoutSwapOp<Derived>(derived()); } template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorConcatenationOp<const Axis, const Derived, const OtherDerived> concatenate(const OtherDerived& other, const Axis& axis) const { return TensorConcatenationOp<const Axis, const Derived, const OtherDerived>(derived(), other, axis); } template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp<const Axis, Derived, OtherDerived> concatenate(const OtherDerived& other, const Axis& axis) { return TensorConcatenationOp<const Axis, Derived, OtherDerived>(derived(), other, axis); } template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReshapingOp<const NewDimensions, const Derived> reshape(const NewDimensions& newDimensions) const { return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions); } template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp<const NewDimensions, Derived> reshape(const NewDimensions& newDimensions) { return TensorReshapingOp<const NewDimensions, Derived>(derived(), newDimensions); } template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorSlicingOp<const StartIndices, const Sizes, const Derived> slice(const StartIndices& startIndices, const Sizes& sizes) const { return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes); } template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp<const StartIndices, const Sizes, Derived> slice(const StartIndices& startIndices, const Sizes& sizes) { return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes); } template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived> stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const { return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>(derived(), startIndices, stopIndices, strides); } template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived> stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) { return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived>(derived(), startIndices, stopIndices, strides); } template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorChippingOp<DimId, const Derived> chip(const Index offset) const { return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId); } template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp<DimId, Derived> chip(const Index offset) { return TensorChippingOp<DimId, Derived>(derived(), offset, DimId); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorChippingOp<Dynamic, const Derived> chip(const Index offset, const Index dim) const { return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp<Dynamic, Derived> chip(const Index offset, const Index dim) { return TensorChippingOp<Dynamic, Derived>(derived(), offset, dim); } template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReverseOp<const ReverseDimensions, const Derived> reverse(const ReverseDimensions& rev) const { return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev); } template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp<const ReverseDimensions, Derived> reverse(const ReverseDimensions& rev) { return TensorReverseOp<const ReverseDimensions, Derived>(derived(), rev); } template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorShufflingOp<const Shuffle, const Derived> shuffle(const Shuffle& shuffle) const { return TensorShufflingOp<const Shuffle, const Derived>(derived(), shuffle); } template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp<const Shuffle, Derived> shuffle(const Shuffle& shuffle) { return TensorShufflingOp<const Shuffle, Derived>(derived(), shuffle); } template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorStridingOp<const Strides, const Derived> stride(const Strides& strides) const { return TensorStridingOp<const Strides, const Derived>(derived(), strides); } template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp<const Strides, Derived> stride(const Strides& strides) { return TensorStridingOp<const Strides, Derived>(derived(), strides); } // Select the device on which to evaluate the expression. template <typename DeviceType> TensorDevice<Derived, DeviceType> device(const DeviceType& device) { return TensorDevice<Derived, DeviceType>(device, derived()); } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& derived() { return *static_cast<Derived*>(this); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); } }; #endif // EIGEN_PARSED_BY_DOXYGEN } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_BASE_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
.h
14,755
385
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H #define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H namespace Eigen { /** \class TensorKChippingReshaping * \ingroup CXX11_Tensor_Module * * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor. * * */ namespace internal { template<DenseIndex DimId, typename XprType> struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions - 1; static const int Layout = XprTraits::Layout; }; template<DenseIndex DimId, typename XprType> struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense> { typedef const TensorChippingOp<DimId, XprType>& type; }; template<DenseIndex DimId, typename XprType> struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type> { typedef TensorChippingOp<DimId, XprType> type; }; template <DenseIndex DimId> struct DimensionId { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) { eigen_assert(dim == DimId); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return DimId; } }; template <> struct DimensionId<Dynamic> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { eigen_assert(dim >= 0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return actual_dim; } private: const DenseIndex actual_dim; }; } // end namespace internal template<DenseIndex DimId, typename XprType> class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> > { public: typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested; typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim) : m_xpr(expr), m_offset(offset), m_dim(dim) { } EIGEN_DEVICE_FUNC const Index offset() const { return m_offset; } EIGEN_DEVICE_FUNC const Index dim() const { return m_dim.actualDim(); } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other) { typedef TensorAssignOp<TensorChippingOp, const TensorChippingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Index m_offset; const internal::DimensionId<DimId> m_dim; }; // Eval as rvalue template<DenseIndex DimId, typename ArgType, typename Device> struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> { typedef TensorChippingOp<DimId, ArgType> XprType; static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; static const int NumDims = NumInputDims-1; typedef typename XprType::Index Index; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { // Alignment can't be guaranteed at compile time since it depends on the // slice offsets. IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) { EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(NumInputDims > m_dim.actualDim()); const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); eigen_assert(op.offset() < input_dims[m_dim.actualDim()]); int j = 0; for (int i = 0; i < NumInputDims; ++i) { if (i != m_dim.actualDim()) { m_dimensions[j] = input_dims[i]; ++j; } } m_stride = 1; m_inputStride = 1; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < m_dim.actualDim(); ++i) { m_stride *= input_dims[i]; m_inputStride *= input_dims[i]; } } else { for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) { m_stride *= input_dims[i]; m_inputStride *= input_dims[i]; } } m_inputStride *= input_dims[m_dim.actualDim()]; m_inputOffset = m_stride * op.offset(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(m_stride == 1); Index inputIndex = index * m_inputStride + m_inputOffset; EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = m_impl.coeff(inputIndex); inputIndex += m_inputStride; } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) { // m_stride is aways greater than index, so let's avoid the integer division. eigen_assert(m_stride > index); return m_impl.template packet<LoadMode>(index + m_inputOffset); } else { const Index idx = index / m_stride; const Index rem = index - idx * m_stride; if (rem + PacketSize <= m_stride) { Index inputIndex = idx * m_inputStride + m_inputOffset + rem; return m_impl.template packet<LoadMode>(inputIndex); } else { // Cross the stride boundary. Fallback to slow path. EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index); ++index; } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double cost = 0; if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims - 1)) { cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) { cost += TensorOpCost::AddCost<Index>(); } else { cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::AddCost<Index>(); } return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data()); if (((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumDims) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) && result) { return result + m_inputOffset; } else { return NULL; } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex; if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(m_stride == 1); inputIndex = index * m_inputStride + m_inputOffset; } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims-1) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) { // m_stride is aways greater than index, so let's avoid the integer division. eigen_assert(m_stride > index); inputIndex = index + m_inputOffset; } else { const Index idx = index / m_stride; inputIndex = idx * m_inputStride + m_inputOffset; index -= idx * m_stride; inputIndex += index; } return inputIndex; } Dimensions m_dimensions; Index m_stride; Index m_inputOffset; Index m_inputStride; TensorEvaluator<ArgType, Device> m_impl; const internal::DimensionId<DimId> m_dim; const Device& m_device; }; // Eval as lvalue template<DenseIndex DimId, typename ArgType, typename Device> struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device> : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> { typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base; typedef TensorChippingOp<DimId, ArgType> XprType; static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; static const int NumDims = NumInputDims-1; typedef typename XprType::Index Index; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) || (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(this->m_stride == 1); EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); Index inputIndex = index * this->m_inputStride + this->m_inputOffset; for (int i = 0; i < PacketSize; ++i) { this->m_impl.coeffRef(inputIndex) = values[i]; inputIndex += this->m_inputStride; } } else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == NumInputDims-1) || (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) { // m_stride is aways greater than index, so let's avoid the integer division. eigen_assert(this->m_stride > index); this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x); } else { const Index idx = index / this->m_stride; const Index rem = index - idx * this->m_stride; if (rem + PacketSize <= this->m_stride) { const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem; this->m_impl.template writePacket<StoreMode>(inputIndex, x); } else { // Cross stride boundary. Fallback to slow path. EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index) = values[i]; ++index; } } } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h
.h
13,527
324
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H #define EIGEN_CXX11_TENSOR_TENSOR_MAP_H namespace Eigen { // FIXME use proper doxygen documentation (e.g. \tparam MakePointer_) /** \class TensorMap * \ingroup CXX11_Tensor_Module * * \brief A tensor expression mapping an existing array of data. * */ /// `template <class> class MakePointer_` is added to convert the host pointer to the device pointer. /// It is added due to the fact that for our device compiler `T*` is not allowed. /// If we wanted to use the same Evaluator functions we have to convert that type to our pointer `T`. /// This is done through our `MakePointer_` class. By default the Type in the `MakePointer_<T>` is `T*` . /// Therefore, by adding the default value, we managed to convert the type and it does not break any /// existing code as its default value is `T*`. template<typename PlainObjectType, int Options_, template <class> class MakePointer_> class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> > { public: typedef TensorMap<PlainObjectType, Options_, MakePointer_> Self; typedef typename PlainObjectType::Base Base; typedef typename Eigen::internal::nested<Self>::type Nested; typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind; typedef typename internal::traits<PlainObjectType>::Index Index; typedef typename internal::traits<PlainObjectType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename Base::CoeffReturnType CoeffReturnType; /* typedef typename internal::conditional< bool(internal::is_lvalue<PlainObjectType>::value), Scalar *, const Scalar *>::type PointerType;*/ typedef typename MakePointer_<Scalar>::Type PointerType; typedef PointerType PointerArgType; static const int Options = Options_; static const Index NumIndices = PlainObjectType::NumIndices; typedef typename PlainObjectType::Dimensions Dimensions; enum { IsAligned = ((int(Options_)&Aligned)==Aligned), Layout = PlainObjectType::Layout, CoordAccess = true, RawAccess = true }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr) : m_data(dataPtr), m_dimensions() { // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT((0 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(firstDimension, otherDimensions...) { // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT((sizeof...(otherDimensions) + 1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(firstDimension) { // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT((1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2) : m_data(dataPtr), m_dimensions(dim1, dim2) { EIGEN_STATIC_ASSERT(2 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3) { EIGEN_STATIC_ASSERT(3 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4) { EIGEN_STATIC_ASSERT(4 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4, dim5) { EIGEN_STATIC_ASSERT(5 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const array<Index, NumIndices>& dimensions) : m_data(dataPtr), m_dimensions(dimensions) { } template <typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const Dimensions& dimensions) : m_data(dataPtr), m_dimensions(dimensions) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PlainObjectType& tensor) : m_data(tensor.data()), m_dimensions(tensor.dimensions()) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return m_dimensions.rank(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PointerType data() { return m_data; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PointerType data() const { return m_data; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const { // eigen_assert(checkIndexRange(indices)); if (PlainObjectType::Options&RowMajor) { const Index index = m_dimensions.IndexOfRowMajor(indices); return m_data[index]; } else { const Index index = m_dimensions.IndexOfColMajor(indices); return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE) return m_data[0]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const { eigen_internal_assert(index >= 0 && index < size()); return m_data[index]; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const { EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) if (PlainObjectType::Options&RowMajor) { const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); return m_data[index]; } else { const Index index = m_dimensions.IndexOfColMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); return m_data[index]; } } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const { if (PlainObjectType::Options&RowMajor) { const Index index = i1 + i0 * m_dimensions[1]; return m_data[index]; } else { const Index index = i0 + i1 * m_dimensions[0]; return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const { if (PlainObjectType::Options&RowMajor) { const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0); return m_data[index]; } else { const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2); return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const { if (PlainObjectType::Options&RowMajor) { const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)); return m_data[index]; } else { const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3)); return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const { if (PlainObjectType::Options&RowMajor) { const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0))); return m_data[index]; } else { const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4))); return m_data[index]; } } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices) { // eigen_assert(checkIndexRange(indices)); if (PlainObjectType::Options&RowMajor) { const Index index = m_dimensions.IndexOfRowMajor(indices); return m_data[index]; } else { const Index index = m_dimensions.IndexOfColMajor(indices); return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()() { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE) return m_data[0]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index) { eigen_internal_assert(index >= 0 && index < size()); return m_data[index]; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) { static_assert(sizeof...(otherIndices) + 2 == NumIndices || NumIndices == Dynamic, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); const std::size_t NumDims = sizeof...(otherIndices) + 2; if (PlainObjectType::Options&RowMajor) { const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}}); return m_data[index]; } else { const Index index = m_dimensions.IndexOfColMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}}); return m_data[index]; } } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1) { if (PlainObjectType::Options&RowMajor) { const Index index = i1 + i0 * m_dimensions[1]; return m_data[index]; } else { const Index index = i0 + i1 * m_dimensions[0]; return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2) { if (PlainObjectType::Options&RowMajor) { const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0); return m_data[index]; } else { const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2); return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) { if (PlainObjectType::Options&RowMajor) { const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)); return m_data[index]; } else { const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3)); return m_data[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) { if (PlainObjectType::Options&RowMajor) { const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0))); return m_data[index]; } else { const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4))); return m_data[index]; } } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Self& operator=(const Self& other) { typedef TensorAssignOp<Self, const Self> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Self& operator=(const OtherDerived& other) { typedef TensorAssignOp<Self, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } private: typename MakePointer_<Scalar>::Type m_data; Dimensions m_dimensions; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h
.h
14,052
243
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************** * TensorSyclPlaceHolderExpr.h * * \brief: * This is the specialisation of the placeholder expression based on the * operation type * *****************************************************************/ #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP namespace Eigen { namespace internal { template<typename CoeffReturnType, typename KernelName> struct syclGenericBufferReducer{ template<typename BufferTOut, typename BufferTIn> static void run(BufferTOut* bufOut, BufferTIn& bufI, const Eigen::SyclDevice& dev, size_t length, size_t local){ do { auto f = [length, local, bufOut, &bufI](cl::sycl::handler& h) mutable { cl::sycl::nd_range<1> r{cl::sycl::range<1>{std::max(length, local)}, cl::sycl::range<1>{std::min(length, local)}}; /* Two accessors are used: one to the buffer that is being reduced, * and a second to local memory, used to store intermediate data. */ auto aI = bufI.template get_access<cl::sycl::access::mode::read_write>(h); auto aOut = bufOut->template get_access<cl::sycl::access::mode::discard_write>(h); cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> scratch(cl::sycl::range<1>(local), h); /* The parallel_for invocation chosen is the variant with an nd_item * parameter, since the code requires barriers for correctness. */ h.parallel_for<KernelName>( r, [aOut, aI, scratch, local, length](cl::sycl::nd_item<1> id) { size_t globalid = id.get_global(0); size_t localid = id.get_local(0); /* All threads collectively read from global memory into local. * The barrier ensures all threads' IO is resolved before * execution continues (strictly speaking, all threads within * a single work-group - there is no co-ordination between * work-groups, only work-items). */ if (globalid < length) { scratch[localid] = aI[globalid]; } id.barrier(cl::sycl::access::fence_space::local_space); /* Apply the reduction operation between the current local * id and the one on the other half of the vector. */ if (globalid < length) { int min = (length < local) ? length : local; for (size_t offset = min / 2; offset > 0; offset /= 2) { if (localid < offset) { scratch[localid] += scratch[localid + offset]; } id.barrier(cl::sycl::access::fence_space::local_space); } /* The final result will be stored in local id 0. */ if (localid == 0) { aI[id.get_group(0)] = scratch[localid]; if((length<=local) && globalid ==0){ aOut[globalid]=scratch[localid]; } } } }); }; dev.m_queue.submit(f); dev.m_queue.throw_asynchronous(); /* At this point, you could queue::wait_and_throw() to ensure that * errors are caught quickly. However, this would likely impact * performance negatively. */ length = length / local; } while (length > 1); } }; /// For now let's start with a full reducer /// Self is useless here because in expression construction we are going to treat reduction as a leafnode. /// we want to take reduction child and then build a construction and apply the full reducer function on it. Fullreducre applies the /// reduction operation on the child of the reduction. once it is done the reduction is an empty shell and can be thrown away and treated as // a leafNode. template <typename Self, typename Op, bool Vectorizable> struct FullReducer<Self, Op, const Eigen::SyclDevice, Vectorizable> { typedef typename Self::CoeffReturnType CoeffReturnType; static const bool HasOptimizedImplementation = false; static void run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output) { typedef const typename Self::ChildType HostExpr; /// this is the child of reduction typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr; auto functors = TensorSycl::internal::extractFunctors(self.impl()); int red_factor =256; /// initial reduction. If the size is less than red_factor we only creates one thread. size_t inputSize =self.impl().dimensions().TotalSize(); size_t rng = inputSize/red_factor; // the total number of thread initially is half the size of the input size_t remaining = inputSize% red_factor; if(rng ==0) { red_factor=1; }; size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2; size_t GRange=std::max((size_t )1, rng); // convert global range to power of 2 for redecution GRange--; GRange |= GRange >> 1; GRange |= GRange >> 2; GRange |= GRange >> 4; GRange |= GRange >> 8; GRange |= GRange >> 16; #if __x86_64__ || __ppc64__ || _WIN64 GRange |= GRange >> 32; #endif GRange++; size_t outTileSize = tileSize; /// if the shared memory is less than the GRange, we set shared_mem size to the TotalSize and in this case one kernel would be created for recursion to reduce all to one. if (GRange < outTileSize) outTileSize=GRange; // getting final out buffer at the moment the created buffer is true because there is no need for assign auto out_buffer =dev.template get_sycl_buffer<typename Eigen::internal::remove_all<CoeffReturnType>::type>(self.dimensions().TotalSize(), output); /// creating the shared memory for calculating reduction. /// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can /// recursively apply reduction on it in order to reduce the whole. auto temp_global_buffer =cl::sycl::buffer<CoeffReturnType, 1>(cl::sycl::range<1>(GRange)); typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims; Dims dims= self.xprDims(); Op functor = reducer; dev.m_queue.submit([&](cl::sycl::handler &cgh) { // create a tuple of accessors from Evaluator auto tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl()); auto tmp_global_accessor = temp_global_buffer. template get_access<cl::sycl::access::mode::read_write, cl::sycl::access::target::global_buffer>(cgh); cgh.parallel_for<PlaceHolderExpr>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(outTileSize)), [=](cl::sycl::nd_item<1> itemID) { typedef typename TensorSycl::internal::ConvertToDeviceExpression<const HostExpr>::Type DevExpr; auto device_expr = TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors); /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here. const auto device_self_expr= TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor); /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is /// the device_evaluator is detectable and recognisable on the device. auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice()); /// const cast added as a naive solution to solve the qualifier drop error auto globalid=itemID.get_global_linear_id(); if(globalid<rng) tmp_global_accessor.get_pointer()[globalid]=InnerMostDimReducer<decltype(device_self_evaluator), Op, false>::reduce(device_self_evaluator, red_factor*globalid, red_factor, const_cast<Op&>(functor)); else tmp_global_accessor.get_pointer()[globalid]=static_cast<CoeffReturnType>(0); if(remaining!=0 && globalid==0 ) // this will add the rest of input buffer when the input size is not devidable to red_factor. tmp_global_accessor.get_pointer()[globalid]+=InnerMostDimReducer<decltype(device_self_evaluator), Op, false>::reduce(device_self_evaluator, red_factor*(rng), remaining, const_cast<Op&>(functor)); }); }); dev.m_queue.throw_asynchronous(); /// This is used to recursively reduce the tmp value to an element of 1; syclGenericBufferReducer<CoeffReturnType,HostExpr>::run(out_buffer, temp_global_buffer,dev, GRange, outTileSize); } }; template <typename Self, typename Op> struct InnerReducer<Self, Op, const Eigen::SyclDevice> { typedef typename Self::CoeffReturnType CoeffReturnType; static const bool HasOptimizedImplementation = false; static bool run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output, typename Self::Index , typename Self::Index num_coeffs_to_preserve) { typedef const typename Self::ChildType HostExpr; /// this is the child of reduction typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr; auto functors = TensorSycl::internal::extractFunctors(self.impl()); size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2; size_t GRange=num_coeffs_to_preserve; if (tileSize>GRange) tileSize=GRange; else if(GRange>tileSize){ size_t xMode = GRange % tileSize; if (xMode != 0) GRange += (tileSize - xMode); } // getting final out buffer at the moment the created buffer is true because there is no need for assign /// creating the shared memory for calculating reduction. /// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can /// recursively apply reduction on it in order to reduce the whole. typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims; Dims dims= self.xprDims(); Op functor = reducer; dev.m_queue.submit([&](cl::sycl::handler &cgh) { // create a tuple of accessors from Evaluator auto tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl()); auto output_accessor = dev.template get_sycl_accessor<cl::sycl::access::mode::discard_write>(num_coeffs_to_preserve,cgh, output); cgh.parallel_for<Self>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) { typedef typename TensorSycl::internal::ConvertToDeviceExpression<const HostExpr>::Type DevExpr; auto device_expr = TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors); /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here. const auto device_self_expr= TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor); /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is /// the device_evaluator is detectable and recognisable on the device. typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice> DeiceSelf; auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice()); /// const cast added as a naive solution to solve the qualifier drop error auto globalid=itemID.get_global_linear_id(); if (globalid< static_cast<size_t>(num_coeffs_to_preserve)) { typename DeiceSelf::CoeffReturnType accum = functor.initialize(); GenericDimReducer<DeiceSelf::NumReducedDims-1, DeiceSelf, Op>::reduce(device_self_evaluator, device_self_evaluator.firstInput(globalid),const_cast<Op&>(functor), &accum); functor.finalize(accum); output_accessor.get_pointer()[globalid]= accum; } }); }); dev.m_queue.throw_asynchronous(); return false; } }; } // end namespace internal } // namespace Eigen #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h
.h
1,594
57
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H namespace Eigen { namespace internal { enum { ShardByRow = 0, ShardByCol = 1 }; // Default Blocking Strategy template <typename LhsMapper, typename RhsMapper, typename Index, int ShardingType=ShardByCol> class TensorContractionBlocking { public: typedef typename LhsMapper::Scalar LhsScalar; typedef typename RhsMapper::Scalar RhsScalar; EIGEN_DEVICE_FUNC TensorContractionBlocking(Index k, Index m, Index n, Index num_threads = 1) : kc_(k), mc_(m), nc_(n) { if (ShardingType == ShardByCol) { computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, mc_, nc_, num_threads); } else { computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, nc_, mc_, num_threads); } } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index kc() const { return kc_; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index mc() const { return mc_; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index nc() const { return nc_; } private: Index kc_; Index mc_; Index nc_; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h
.h
14,916
390
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H #define EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H namespace Eigen { /** \class TensorFixedSize * \ingroup CXX11_Tensor_Module * * \brief The fixed sized version of the tensor class. * * The fixed sized equivalent of * Eigen::Tensor<float, 3> t(3, 5, 7); * is * Eigen::TensorFixedSize<float, Size<3,5,7>> t; */ template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType> class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > { public: typedef TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> Self; typedef TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > Base; typedef typename Eigen::internal::nested<Self>::type Nested; typedef typename internal::traits<Self>::StorageKind StorageKind; typedef typename internal::traits<Self>::Index Index; typedef Scalar_ Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename Base::CoeffReturnType CoeffReturnType; static const int Options = Options_; enum { IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0), Layout = Options_ & RowMajor ? RowMajor : ColMajor, CoordAccess = true, RawAccess = true }; typedef Dimensions_ Dimensions; static const std::size_t NumIndices = Dimensions::count; protected: TensorStorage<Scalar, Dimensions, Options> m_storage; public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED // work, because that uses base().coeffRef() - and we don't yet // implement a similar class hierarchy inline Self& base() { return *this; } inline const Self& base() const { return *this; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index firstIndex, IndexTypes... otherIndices) const { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return coeff(array<Index, NumIndices>{{firstIndex, otherIndices...}}); } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const { eigen_internal_assert(checkIndexRange(indices)); return m_storage.data()[linearizedIndex(indices)]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const { eigen_internal_assert(index >= 0 && index < size()); return m_storage.data()[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return m_storage.data()[0]; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices) { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return coeffRef(array<Index, NumIndices>{{firstIndex, otherIndices...}}); } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) { eigen_internal_assert(checkIndexRange(indices)); return m_storage.data()[linearizedIndex(indices)]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { eigen_internal_assert(index >= 0 && index < size()); return m_storage.data()[index]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef() { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return m_storage.data()[0]; } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) const { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return this->operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}}); } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const { if (Options&RowMajor) { const Index index = i1 + i0 * m_storage.dimensions()[1]; return m_storage.data()[index]; } else { const Index index = i0 + i1 * m_storage.dimensions()[0]; return m_storage.data()[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const { if (Options&RowMajor) { const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0); return m_storage.data()[index]; } else { const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2); return m_storage.data()[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const { if (Options&RowMajor) { const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)); return m_storage.data()[index]; } else { const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3)); return m_storage.data()[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const { if (Options&RowMajor) { const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0))); return m_storage.data()[index]; } else { const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4))); return m_storage.data()[index]; } } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const { eigen_assert(checkIndexRange(indices)); return coeff(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const { eigen_internal_assert(index >= 0 && index < size()); return coeff(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return coeff(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const { // The bracket operator is only for vectors, use the parenthesis operator instead. EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE); return coeff(index); } #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... IndexTypes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) { // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) return operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}}); } #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1) { if (Options&RowMajor) { const Index index = i1 + i0 * m_storage.dimensions()[1]; return m_storage.data()[index]; } else { const Index index = i0 + i1 * m_storage.dimensions()[0]; return m_storage.data()[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2) { if (Options&RowMajor) { const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0); return m_storage.data()[index]; } else { const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2); return m_storage.data()[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) { if (Options&RowMajor) { const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)); return m_storage.data()[index]; } else { const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3)); return m_storage.data()[index]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) { if (Options&RowMajor) { const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0))); return m_storage.data()[index]; } else { const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4))); return m_storage.data()[index]; } } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices) { eigen_assert(checkIndexRange(indices)); return coeffRef(indices); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index) { eigen_assert(index >= 0 && index < size()); return coeffRef(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()() { EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); return coeffRef(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index) { // The bracket operator is only for vectors, use the parenthesis operator instead EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE) return coeffRef(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize() : m_storage() { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(const Self& other) : m_storage(other.m_storage) { } #if EIGEN_HAS_RVALUE_REFERENCES EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(Self&& other) : m_storage(other.m_storage) { } #endif template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, ReadOnlyAccessors>& other) { typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign; Assign assign(*this, other.derived()); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, WriteAccessors>& other) { typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign; Assign assign(*this, other.derived()); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize& operator=(const TensorFixedSize& other) { // FIXME: check that the dimensions of other match the dimensions of *this. // Unfortunately this isn't possible yet when the rhs is an expression. typedef TensorAssignOp<Self, const TensorFixedSize> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize& operator=(const OtherDerived& other) { // FIXME: check that the dimensions of other match the dimensions of *this. // Unfortunately this isn't possible yet when the rhs is an expression. typedef TensorAssignOp<Self, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool checkIndexRange(const array<Index, NumIndices>& /*indices*/) const { using internal::array_apply_and_reduce; using internal::array_zip_and_reduce; using internal::greater_equal_zero_op; using internal::logical_and_op; using internal::lesser_op; return true; // check whether the indices are all >= 0 /* array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) && // check whether the indices fit in the dimensions array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());*/ } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const { if (Options&RowMajor) { return m_storage.dimensions().IndexOfRowMajor(indices); } else { return m_storage.dimensions().IndexOfColMajor(indices); } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
.h
7,522
249
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_UINT128_H #define EIGEN_CXX11_TENSOR_TENSOR_UINT128_H namespace Eigen { namespace internal { template <uint64_t n> struct static_val { static const uint64_t value = n; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator uint64_t() const { return n; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val() { } template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val(const T& v) { eigen_assert(v == n); } }; template <typename HIGH = uint64_t, typename LOW = uint64_t> struct TensorUInt128 { HIGH high; LOW low; template<typename OTHER_HIGH, typename OTHER_LOW> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE TensorUInt128(const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) : high(other.high), low(other.low) { EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE); } template<typename OTHER_HIGH, typename OTHER_LOW> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE TensorUInt128& operator = (const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) { EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE); high = other.high; low = other.low; return *this; } template<typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE explicit TensorUInt128(const T& x) : high(0), low(x) { eigen_assert((static_cast<typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type>(x) <= NumTraits<uint64_t>::highest())); eigen_assert(x >= 0); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE TensorUInt128(HIGH y, LOW x) : high(y), low(x) { } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator LOW() const { return low; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LOW lower() const { return low; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HIGH upper() const { return high; } }; template <typename HL, typename LL, typename HR, typename LR> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool operator == (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { return (lhs.high == rhs.high) & (lhs.low == rhs.low); } template <typename HL, typename LL, typename HR, typename LR> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool operator != (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { return (lhs.high != rhs.high) | (lhs.low != rhs.low); } template <typename HL, typename LL, typename HR, typename LR> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool operator >= (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { if (lhs.high != rhs.high) { return lhs.high > rhs.high; } return lhs.low >= rhs.low; } template <typename HL, typename LL, typename HR, typename LR> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool operator < (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { if (lhs.high != rhs.high) { return lhs.high < rhs.high; } return lhs.low < rhs.low; } template <typename HL, typename LL, typename HR, typename LR> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE TensorUInt128<uint64_t, uint64_t> operator + (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { TensorUInt128<uint64_t, uint64_t> result(lhs.high + rhs.high, lhs.low + rhs.low); if (result.low < rhs.low) { result.high += 1; } return result; } template <typename HL, typename LL, typename HR, typename LR> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE TensorUInt128<uint64_t, uint64_t> operator - (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { TensorUInt128<uint64_t, uint64_t> result(lhs.high - rhs.high, lhs.low - rhs.low); if (result.low > lhs.low) { result.high -= 1; } return result; } template <typename HL, typename LL, typename HR, typename LR> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorUInt128<uint64_t, uint64_t> operator * (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { // Split each 128-bit integer into 4 32-bit integers, and then do the // multiplications by hand as follow: // lhs a b c d // rhs e f g h // ----------- // ah bh ch dh // bg cg dg // cf df // de // The result is stored in 2 64bit integers, high and low. const uint64_t LOW = 0x00000000FFFFFFFFLL; const uint64_t HIGH = 0xFFFFFFFF00000000LL; uint64_t d = lhs.low & LOW; uint64_t c = (lhs.low & HIGH) >> 32LL; uint64_t b = lhs.high & LOW; uint64_t a = (lhs.high & HIGH) >> 32LL; uint64_t h = rhs.low & LOW; uint64_t g = (rhs.low & HIGH) >> 32LL; uint64_t f = rhs.high & LOW; uint64_t e = (rhs.high & HIGH) >> 32LL; // Compute the low 32 bits of low uint64_t acc = d * h; uint64_t low = acc & LOW; // Compute the high 32 bits of low. Add a carry every time we wrap around acc >>= 32LL; uint64_t carry = 0; uint64_t acc2 = acc + c * h; if (acc2 < acc) { carry++; } acc = acc2 + d * g; if (acc < acc2) { carry++; } low |= (acc << 32LL); // Carry forward the high bits of acc to initiate the computation of the // low 32 bits of high acc2 = (acc >> 32LL) | (carry << 32LL); carry = 0; acc = acc2 + b * h; if (acc < acc2) { carry++; } acc2 = acc + c * g; if (acc2 < acc) { carry++; } acc = acc2 + d * f; if (acc < acc2) { carry++; } uint64_t high = acc & LOW; // Start to compute the high 32 bits of high. acc2 = (acc >> 32LL) | (carry << 32LL); acc = acc2 + a * h; acc2 = acc + b * g; acc = acc2 + c * f; acc2 = acc + d * e; high |= (acc2 << 32LL); return TensorUInt128<uint64_t, uint64_t>(high, low); } template <typename HL, typename LL, typename HR, typename LR> static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorUInt128<uint64_t, uint64_t> operator / (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) { if (rhs == TensorUInt128<static_val<0>, static_val<1> >(1)) { return TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low); } else if (lhs < rhs) { return TensorUInt128<uint64_t, uint64_t>(0); } else { // calculate the biggest power of 2 times rhs that's less than or equal to lhs TensorUInt128<uint64_t, uint64_t> power2(1); TensorUInt128<uint64_t, uint64_t> d(rhs); TensorUInt128<uint64_t, uint64_t> tmp(lhs - d); while (lhs >= d) { tmp = tmp - d; d = d + d; power2 = power2 + power2; } tmp = TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low); TensorUInt128<uint64_t, uint64_t> result(0); while (power2 != TensorUInt128<static_val<0>, static_val<0> >(0)) { if (tmp >= d) { tmp = tmp - d; result = result + power2; } // Shift right power2 = TensorUInt128<uint64_t, uint64_t>(power2.high >> 1, (power2.low >> 1) | (power2.high << 63)); d = TensorUInt128<uint64_t, uint64_t>(d.high >> 1, (d.low >> 1) | (d.high << 63)); } return result; } } } // namespace internal } // namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h
.h
11,006
280
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H #define EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H namespace Eigen { /** \class TensorConversionOp * \ingroup CXX11_Tensor_Module * * \brief Tensor conversion class. This class makes it possible to vectorize * type casting operations when the number of scalars per packet in the source * and the destination type differ */ namespace internal { template<typename TargetType, typename XprType> struct traits<TensorConversionOp<TargetType, XprType> > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef TargetType Scalar; typedef typename traits<XprType>::StorageKind StorageKind; typedef typename traits<XprType>::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = traits<XprType>::NumDimensions; static const int Layout = traits<XprType>::Layout; enum { Flags = 0 }; }; template<typename TargetType, typename XprType> struct eval<TensorConversionOp<TargetType, XprType>, Eigen::Dense> { typedef const TensorConversionOp<TargetType, XprType>& type; }; template<typename TargetType, typename XprType> struct nested<TensorConversionOp<TargetType, XprType>, 1, typename eval<TensorConversionOp<TargetType, XprType> >::type> { typedef TensorConversionOp<TargetType, XprType> type; }; } // end namespace internal template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> struct PacketConverter { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template<int LoadMode, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<LoadMode>(index)); } private: const TensorEvaluator& m_impl; }; template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 2, 1> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template<int LoadMode, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; SrcPacket src1 = m_impl.template packet<LoadMode>(index); SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2); return result; } private: const TensorEvaluator& m_impl; }; template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 4, 1> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template<int LoadMode, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; SrcPacket src1 = m_impl.template packet<LoadMode>(index); SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize); SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize); TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4); return result; } private: const TensorEvaluator& m_impl; }; template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, 2> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl), m_maxIndex(impl.dimensions().TotalSize()) {} template<int LoadMode, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; // Only call m_impl.packet() when we have direct access to the underlying data. This // ensures that we don't compute the subexpression twice. We may however load some // coefficients twice, but in practice this doesn't negatively impact performance. if (m_impl.data() && (index + SrcPacketSize < m_maxIndex)) { // Force unaligned memory loads since we can't ensure alignment anymore return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<Unaligned>(index)); } else { const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; typedef typename internal::unpacket_traits<TgtPacket>::type TgtType; internal::scalar_cast_op<SrcType, TgtType> converter; EIGEN_ALIGN_MAX typename internal::unpacket_traits<TgtPacket>::type values[TgtPacketSize]; for (int i = 0; i < TgtPacketSize; ++i) { values[i] = converter(m_impl.coeff(index+i)); } TgtPacket rslt = internal::pload<TgtPacket>(values); return rslt; } } private: const TensorEvaluator& m_impl; const typename TensorEvaluator::Index m_maxIndex; }; template<typename TargetType, typename XprType> class TensorConversionOp : public TensorBase<TensorConversionOp<TargetType, XprType>, ReadOnlyAccessors> { public: typedef typename internal::traits<TensorConversionOp>::Scalar Scalar; typedef typename internal::traits<TensorConversionOp>::StorageKind StorageKind; typedef typename internal::traits<TensorConversionOp>::Index Index; typedef typename internal::nested<TensorConversionOp>::type Nested; typedef Scalar CoeffReturnType; typedef typename NumTraits<Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConversionOp(const XprType& xpr) : m_xpr(xpr) {} EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; }; template <bool SameType, typename Eval, typename Scalar> struct ConversionSubExprEval { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Eval& impl, Scalar*) { impl.evalSubExprsIfNeeded(NULL); return true; } }; template <typename Eval, typename Scalar> struct ConversionSubExprEval<true, Eval, Scalar> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Eval& impl, Scalar* data) { return impl.evalSubExprsIfNeeded(data); } }; // Eval as rvalue template<typename TargetType, typename ArgType, typename Device> struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device> { typedef TensorConversionOp<TargetType, ArgType> XprType; typedef typename XprType::Index Index; typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; typedef TargetType Scalar; typedef TargetType CoeffReturnType; typedef typename internal::remove_all<typename internal::traits<ArgType>::Scalar>::type SrcType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; typedef typename PacketType<SrcType, Device>::type PacketSourceType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = true, Layout = TensorEvaluator<ArgType, Device>::Layout, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { return ConversionSubExprEval<internal::is_same<TargetType, SrcType>::value, TensorEvaluator<ArgType, Device>, Scalar>::run(m_impl, data); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { internal::scalar_cast_op<SrcType, TargetType> converter; return converter(m_impl.coeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const bool Vectorizable = TensorEvaluator<ArgType, Device>::PacketAccess & internal::type_casting_traits<SrcType, TargetType>::VectorizedCast; return PacketConv<LoadMode, Vectorizable>::run(m_impl, index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double cast_cost = TensorOpCost::CastCost<SrcType, TargetType>(); if (vectorized) { const double SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio; const double TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio; return m_impl.costPerCoeff(vectorized) * (SrcCoeffRatio / PacketSize) + TensorOpCost(0, 0, TgtCoeffRatio * (cast_cost / PacketSize)); } else { return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cast_cost); } } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: template <int LoadMode, bool ActuallyVectorize> struct PacketConv { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType run(const TensorEvaluator<ArgType, Device>& impl, Index index) { internal::scalar_cast_op<SrcType, TargetType> converter; EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = converter(impl.coeff(index+i)); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } }; template <int LoadMode> struct PacketConv<LoadMode, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType run(const TensorEvaluator<ArgType, Device>& impl, Index index) { const int SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio; const int TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio; PacketConverter<TensorEvaluator<ArgType, Device>, PacketSourceType, PacketReturnType, SrcCoeffRatio, TgtCoeffRatio> converter(impl); return converter.template packet<LoadMode>(index); } }; TensorEvaluator<ArgType, Device> m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
.h
8,430
230
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Ke Yang <yangke@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H #define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H namespace Eigen { /** \class TensorInflation * \ingroup CXX11_Tensor_Module * * \brief Tensor inflation class. * * */ namespace internal { template<typename Strides, typename XprType> struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename Strides, typename XprType> struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense> { typedef const TensorInflationOp<Strides, XprType>& type; }; template<typename Strides, typename XprType> struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type> { typedef TensorInflationOp<Strides, XprType> type; }; } // end namespace internal template<typename Strides, typename XprType> class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested; typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides) : m_xpr(expr), m_strides(strides) {} EIGEN_DEVICE_FUNC const Strides& strides() const { return m_strides; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const Strides m_strides; }; // Eval as rvalue template<typename Strides, typename ArgType, typename Device> struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device> { typedef TensorInflationOp<Strides, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, BlockAccess = false, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_strides(op.strides()) { m_dimensions = m_impl.dimensions(); // Expand each dimension to the inflated dimension. for (int i = 0; i < NumDims; ++i) { m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1; } // Remember the strides for fast division. for (int i = 0; i < NumDims; ++i) { m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]); } const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_outputStrides[0] = 1; m_inputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; } } else { // RowMajor m_outputStrides[NumDims-1] = 1; m_inputStrides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } // Computes the input index given the output index. Returns true if the output // index doesn't fall into a hole. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const { eigen_assert(index < dimensions().TotalSize()); *inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (idx != idx / m_fastStrides[i] * m_strides[i]) { return false; } *inputIndex += idx / m_strides[i] * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } if (index != index / m_fastStrides[0] * m_strides[0]) { return false; } *inputIndex += index / m_strides[0]; return true; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; if (idx != idx / m_fastStrides[i] * m_strides[i]) { return false; } *inputIndex += idx / m_strides[i] * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) { return false; } *inputIndex += index / m_strides[NumDims - 1]; } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { Index inputIndex = 0; if (getInputIndex(index, &inputIndex)) { return m_impl.coeff(inputIndex); } else { return Scalar(0); } } // TODO(yangke): optimize this function so that we can detect and produce // all-zero packets template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::MulCost<Index>() + 2 * TensorOpCost::AddCost<Index>()); const double input_size = m_impl.dimensions().TotalSize(); const double output_size = m_dimensions.TotalSize(); if (output_size == 0) return TensorOpCost(); return m_impl.costPerCoeff(vectorized) + TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: Dimensions m_dimensions; array<Index, NumDims> m_outputStrides; array<Index, NumDims> m_inputStrides; TensorEvaluator<ArgType, Device> m_impl; const Strides m_strides; array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
.h
10,527
289
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com> // Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H #define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H namespace Eigen { /** \class TensorReverse * \ingroup CXX11_Tensor_Module * * \brief Tensor reverse elements class. * */ namespace internal { template<typename ReverseDimensions, typename XprType> struct traits<TensorReverseOp<ReverseDimensions, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template<typename ReverseDimensions, typename XprType> struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense> { typedef const TensorReverseOp<ReverseDimensions, XprType>& type; }; template<typename ReverseDimensions, typename XprType> struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1, typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type> { typedef TensorReverseOp<ReverseDimensions, XprType> type; }; } // end namespace internal template<typename ReverseDimensions, typename XprType> class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions, XprType>, WriteAccessors> { public: typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested; typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp( const XprType& expr, const ReverseDimensions& reverse_dims) : m_xpr(expr), m_reverse_dims(reverse_dims) { } EIGEN_DEVICE_FUNC const ReverseDimensions& reverse() const { return m_reverse_dims; } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp& operator = (const TensorReverseOp& other) { typedef TensorAssignOp<TensorReverseOp, const TensorReverseOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorReverseOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const ReverseDimensions m_reverse_dims; }; // Eval as rvalue template<typename ReverseDimensions, typename ArgType, typename Device> struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device> { typedef TensorReverseOp<ReverseDimensions, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<ReverseDimensions>::value; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_reverse(op.reverse()) { // Reversing a scalar isn't supported yet. It would be a no-op anyway. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); // Compute strides m_dimensions = m_impl.dimensions(); if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { m_strides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_strides[i] = m_strides[i-1] * m_dimensions[i-1]; } } else { m_strides[NumDims-1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_strides[i] = m_strides[i+1] * m_dimensions[i+1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex( Index index) const { eigen_assert(index < dimensions().TotalSize()); Index inputIndex = 0; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { Index idx = index / m_strides[i]; index -= idx * m_strides[i]; if (m_reverse[i]) { idx = m_dimensions[i] - idx - 1; } inputIndex += idx * m_strides[i] ; } if (m_reverse[0]) { inputIndex += (m_dimensions[0] - index - 1); } else { inputIndex += index; } } else { for (int i = 0; i < NumDims - 1; ++i) { Index idx = index / m_strides[i]; index -= idx * m_strides[i]; if (m_reverse[i]) { idx = m_dimensions[i] - idx - 1; } inputIndex += idx * m_strides[i] ; } if (m_reverse[NumDims-1]) { inputIndex += (m_dimensions[NumDims-1] - index - 1); } else { inputIndex += index; } } return inputIndex; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff( Index index) const { return m_impl.coeff(reverseIndex(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); // TODO(ndjaitly): write a better packing routine that uses // local structure. EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()); for (int i = 0; i < NumDims; ++i) { if (m_reverse[i]) { compute_cost += 2 * TensorOpCost::AddCost<Index>(); } } return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: Dimensions m_dimensions; array<Index, NumDims> m_strides; TensorEvaluator<ArgType, Device> m_impl; ReverseDimensions m_reverse; }; // Eval as lvalue template <typename ReverseDimensions, typename ArgType, typename Device> struct TensorEvaluator<TensorReverseOp<ReverseDimensions, ArgType>, Device> : public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device> { typedef TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device> Base; typedef TensorReverseOp<ReverseDimensions, ArgType> XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size<ReverseDimensions>::value; typedef DSizes<Index, NumDims> Dimensions; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return this->m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return this->m_impl.coeffRef(this->reverseIndex(index)); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); // This code is pilfered from TensorMorphing.h EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index+i) = values[i]; } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
.h
5,196
123
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H) #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H namespace Eigen { struct SyclDevice { /// class members /// sycl queue mutable cl::sycl::queue m_queue; /// std::map is the container used to make sure that we create only one buffer /// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice. /// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it. mutable std::map<const void *, std::shared_ptr<void>> buffer_map; /// creating device by using selector template<typename dev_Selector> SyclDevice(dev_Selector s) : #ifdef EIGEN_EXCEPTIONS m_queue(cl::sycl::queue(s, [=](cl::sycl::exception_list l) { for (const auto& e : l) { try { std::rethrow_exception(e); } catch (cl::sycl::exception e) { std::cout << e.what() << std::endl; } } })) #else m_queue(cl::sycl::queue(s)) #endif {} // destructor ~SyclDevice() { deallocate_all(); } template <typename T> void deallocate(T *p) const { auto it = buffer_map.find(p); if (it != buffer_map.end()) { buffer_map.erase(it); internal::aligned_free(p); } } void deallocate_all() const { std::map<const void *, std::shared_ptr<void>>::iterator it=buffer_map.begin(); while (it!=buffer_map.end()) { auto p=it->first; buffer_map.erase(it); internal::aligned_free(const_cast<void*>(p)); it=buffer_map.begin(); } buffer_map.clear(); } /// creation of sycl accessor for a buffer. This function first tries to find /// the buffer in the buffer_map. If found it gets the accessor from it, if not, ///the function then adds an entry by creating a sycl buffer for that particular pointer. template <cl::sycl::access::mode AcMd, typename T> inline cl::sycl::accessor<T, 1, AcMd, cl::sycl::access::target::global_buffer> get_sycl_accessor(size_t num_bytes, cl::sycl::handler &cgh, const T * ptr) const { return (get_sycl_buffer<T>(num_bytes, ptr)->template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh)); } template<typename T> inline std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> add_sycl_buffer(const T *ptr, size_t num_bytes) const { using Type = cl::sycl::buffer<T, 1>; std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> ret = buffer_map.insert(std::pair<const void *, std::shared_ptr<void>>(ptr, std::shared_ptr<void>(new Type(cl::sycl::range<1>(num_bytes)), [](void *dataMem) { delete static_cast<Type*>(dataMem); }))); (static_cast<Type*>(buffer_map.at(ptr).get()))->set_final_data(nullptr); return ret; } template <typename T> inline cl::sycl::buffer<T, 1>* get_sycl_buffer(size_t num_bytes,const T * ptr) const { return static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(ptr, num_bytes).first->second.get()); } /// allocating memory on the cpu EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void *allocate(size_t) const { return internal::aligned_malloc(8); } // some runtime conditions that can be applied here bool isDeviceSuitable() const { return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void *dst, const void *src, size_t n) const { ::memcpy(dst, src, n); } template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(T *dst, const T *src, size_t n) const { auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(dst, n).first->second.get()))-> template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>(); memcpy(host_acc.get_pointer(), src, n); } /// whith the current implementation of sycl, the data is copied twice from device to host. This will be fixed soon. template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(T *dst, const T *src, size_t n) const { auto it = buffer_map.find(src); if (it != buffer_map.end()) { auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(it->second.get()))-> template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::host_buffer>(); memcpy(dst,host_acc.get_pointer(), n); } else{ eigen_assert("no device memory found. The memory might be destroyed before creation"); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void *buffer, int c, size_t n) const { ::memset(buffer, c, n); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
.h
9,937
283
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H) #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H namespace Eigen { // Use the SimpleThreadPool by default. We'll switch to the new non blocking // thread pool later. #ifndef EIGEN_USE_SIMPLE_THREAD_POOL template <typename Env> using ThreadPoolTempl = NonBlockingThreadPoolTempl<Env>; typedef NonBlockingThreadPool ThreadPool; #else template <typename Env> using ThreadPoolTempl = SimpleThreadPoolTempl<Env>; typedef SimpleThreadPool ThreadPool; #endif // Barrier is an object that allows one or more threads to wait until // Notify has been called a specified number of times. class Barrier { public: Barrier(unsigned int count) : state_(count << 1), notified_(false) { eigen_assert(((count << 1) >> 1) == count); } ~Barrier() { eigen_plain_assert((state_>>1) == 0); } void Notify() { unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2; if (v != 1) { eigen_assert(((v + 2) & ~1) != 0); return; // either count has not dropped to 0, or waiter is not waiting } std::unique_lock<std::mutex> l(mu_); eigen_assert(!notified_); notified_ = true; cv_.notify_all(); } void Wait() { unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel); if ((v >> 1) == 0) return; std::unique_lock<std::mutex> l(mu_); while (!notified_) { cv_.wait(l); } } private: std::mutex mu_; std::condition_variable cv_; std::atomic<unsigned int> state_; // low bit is waiter flag bool notified_; }; // Notification is an object that allows a user to to wait for another // thread to signal a notification that an event has occurred. // // Multiple threads can wait on the same Notification object, // but only one caller must call Notify() on the object. struct Notification : Barrier { Notification() : Barrier(1) {}; }; // Runs an arbitrary function and then calls Notify() on the passed in // Notification. template <typename Function, typename... Args> struct FunctionWrapperWithNotification { static void run(Notification* n, Function f, Args... args) { f(args...); if (n) { n->Notify(); } } }; template <typename Function, typename... Args> struct FunctionWrapperWithBarrier { static void run(Barrier* b, Function f, Args... args) { f(args...); if (b) { b->Notify(); } } }; template <typename SyncType> static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) { if (n) { n->Wait(); } } // Build a thread pool device on top the an existing pool of threads. struct ThreadPoolDevice { // The ownership of the thread pool remains with the caller. ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores) : pool_(pool), num_threads_(num_cores) { } EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { return internal::aligned_malloc(num_bytes); } EIGEN_STRONG_INLINE void deallocate(void* buffer) const { internal::aligned_free(buffer); } EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { ::memcpy(dst, src, n); } EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { memcpy(dst, src, n); } EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { memcpy(dst, src, n); } EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { ::memset(buffer, c, n); } EIGEN_STRONG_INLINE int numThreads() const { return num_threads_; } EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { return l1CacheSize(); } EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { // The l3 cache size is shared between all the cores. return l3CacheSize() / num_threads_; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const { // Should return an enum that encodes the ISA supported by the CPU return 1; } template <class Function, class... Args> EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const { Notification* n = new Notification(); pool_->Schedule(std::bind(&FunctionWrapperWithNotification<Function, Args...>::run, n, f, args...)); return n; } template <class Function, class... Args> EIGEN_STRONG_INLINE void enqueue_with_barrier(Barrier* b, Function&& f, Args&&... args) const { pool_->Schedule(std::bind( &FunctionWrapperWithBarrier<Function, Args...>::run, b, f, args...)); } template <class Function, class... Args> EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const { pool_->Schedule(std::bind(f, args...)); } // Returns a logical thread index between 0 and pool_->NumThreads() - 1 if // called from one of the threads in pool_. Returns -1 otherwise. EIGEN_STRONG_INLINE int currentThreadId() const { return pool_->CurrentThreadId(); } // parallelFor executes f with [0, n) arguments in parallel and waits for // completion. F accepts a half-open interval [first, last). // Block size is choosen based on the iteration cost and resulting parallel // efficiency. If block_align is not nullptr, it is called to round up the // block size. void parallelFor(Index n, const TensorOpCost& cost, std::function<Index(Index)> block_align, std::function<void(Index, Index)> f) const { typedef TensorCostModel<ThreadPoolDevice> CostModel; if (n <= 1 || numThreads() == 1 || CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) { f(0, n); return; } // Calculate block size based on (1) the iteration cost and (2) parallel // efficiency. We want blocks to be not too small to mitigate // parallelization overheads; not too large to mitigate tail // effect and potential load imbalance and we also want number // of blocks to be evenly dividable across threads. double block_size_f = 1.0 / CostModel::taskSize(1, cost); const Index max_oversharding_factor = 4; Index block_size = numext::mini( n, numext::maxi<Index>(divup<Index>(n, max_oversharding_factor * numThreads()), block_size_f)); const Index max_block_size = numext::mini(n, 2 * block_size); if (block_align) { Index new_block_size = block_align(block_size); eigen_assert(new_block_size >= block_size); block_size = numext::mini(n, new_block_size); } Index block_count = divup(n, block_size); // Calculate parallel efficiency as fraction of total CPU time used for // computations: double max_efficiency = static_cast<double>(block_count) / (divup<int>(block_count, numThreads()) * numThreads()); // Now try to increase block size up to max_block_size as long as it // doesn't decrease parallel efficiency. for (Index prev_block_count = block_count; max_efficiency < 1.0 && prev_block_count > 1;) { // This is the next block size that divides size into a smaller number // of blocks than the current block_size. Index coarser_block_size = divup(n, prev_block_count - 1); if (block_align) { Index new_block_size = block_align(coarser_block_size); eigen_assert(new_block_size >= coarser_block_size); coarser_block_size = numext::mini(n, new_block_size); } if (coarser_block_size > max_block_size) { break; // Reached max block size. Stop. } // Recalculate parallel efficiency. const Index coarser_block_count = divup(n, coarser_block_size); eigen_assert(coarser_block_count < prev_block_count); prev_block_count = coarser_block_count; const double coarser_efficiency = static_cast<double>(coarser_block_count) / (divup<int>(coarser_block_count, numThreads()) * numThreads()); if (coarser_efficiency + 0.01 >= max_efficiency) { // Taking it. block_size = coarser_block_size; block_count = coarser_block_count; if (max_efficiency < coarser_efficiency) { max_efficiency = coarser_efficiency; } } } // Recursively divide size into halves until we reach block_size. // Division code rounds mid to block_size, so we are guaranteed to get // block_count leaves that do actual computations. Barrier barrier(static_cast<unsigned int>(block_count)); std::function<void(Index, Index)> handleRange; handleRange = [=, &handleRange, &barrier, &f](Index first, Index last) { if (last - first <= block_size) { // Single block or less, execute directly. f(first, last); barrier.Notify(); return; } // Split into halves and submit to the pool. Index mid = first + divup((last - first) / 2, block_size) * block_size; pool_->Schedule([=, &handleRange]() { handleRange(mid, last); }); pool_->Schedule([=, &handleRange]() { handleRange(first, mid); }); }; handleRange(0, n); barrier.Wait(); } // Convenience wrapper for parallelFor that does not align blocks. void parallelFor(Index n, const TensorOpCost& cost, std::function<void(Index, Index)> f) const { parallelFor(n, cost, nullptr, std::move(f)); } private: ThreadPoolInterface* pool_; int num_threads_; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H
Unknown
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/matrix_function.cpp
.cpp
7,523
228
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <unsupported/Eigen/MatrixFunctions> // Variant of VERIFY_IS_APPROX which uses absolute error instead of // relative error. #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) template<typename Type1, typename Type2> inline bool test_isApprox_abs(const Type1& a, const Type2& b) { return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); } // Returns a matrix with eigenvalues clustered around 0, 1 and 2. template<typename MatrixType> MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; MatrixType diag = MatrixType::Zero(size, size); for (Index i = 0; i < size; ++i) { diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) + internal::random<Scalar>() * Scalar(RealScalar(0.01)); } MatrixType A = MatrixType::Random(size, size); HouseholderQR<MatrixType> QRofA(A); return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); } template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> struct randomMatrixWithImagEivals { // Returns a matrix with eigenvalues clustered around 0 and +/- i. static MatrixType run(const typename MatrixType::Index size); }; // Partial specialization for real matrices template<typename MatrixType> struct randomMatrixWithImagEivals<MatrixType, 0> { static MatrixType run(const typename MatrixType::Index size) { typedef typename MatrixType::Scalar Scalar; MatrixType diag = MatrixType::Zero(size, size); Index i = 0; while (i < size) { Index randomInt = internal::random<Index>(-1, 1); if (randomInt == 0 || i == size-1) { diag(i, i) = internal::random<Scalar>() * Scalar(0.01); ++i; } else { Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); diag(i, i+1) = alpha; diag(i+1, i) = -alpha; i += 2; } } MatrixType A = MatrixType::Random(size, size); HouseholderQR<MatrixType> QRofA(A); return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); } }; // Partial specialization for complex matrices template<typename MatrixType> struct randomMatrixWithImagEivals<MatrixType, 1> { static MatrixType run(const typename MatrixType::Index size) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; const Scalar imagUnit(0, 1); MatrixType diag = MatrixType::Zero(size, size); for (Index i = 0; i < size; ++i) { diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit + internal::random<Scalar>() * Scalar(RealScalar(0.01)); } MatrixType A = MatrixType::Random(size, size); HouseholderQR<MatrixType> QRofA(A); return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); } }; template<typename MatrixType> void testMatrixExponential(const MatrixType& A) { typedef typename internal::traits<MatrixType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef std::complex<RealScalar> ComplexScalar; VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); } template<typename MatrixType> void testMatrixLogarithm(const MatrixType& A) { typedef typename internal::traits<MatrixType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; MatrixType scaledA; RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI)) scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum; else scaledA = A; // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X MatrixType expA = scaledA.exp(); MatrixType logExpA = expA.log(); VERIFY_IS_APPROX(logExpA, scaledA); } template<typename MatrixType> void testHyperbolicFunctions(const MatrixType& A) { // Need to use absolute error because of possible cancellation when // adding/subtracting expA and expmA. VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); } template<typename MatrixType> void testGonioFunctions(const MatrixType& A) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef std::complex<RealScalar> ComplexScalar; typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; ComplexScalar imagUnit(0,1); ComplexScalar two(2,0); ComplexMatrix Ac = A.template cast<ComplexScalar>(); ComplexMatrix exp_iA = (imagUnit * Ac).exp(); ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); } template<typename MatrixType> void testMatrix(const MatrixType& A) { testMatrixExponential(A); testMatrixLogarithm(A); testHyperbolicFunctions(A); testGonioFunctions(A); } template<typename MatrixType> void testMatrixType(const MatrixType& m) { // Matrices with clustered eigenvalue lead to different code paths // in MatrixFunction.h and are thus useful for testing. const Index size = m.rows(); for (int i = 0; i < g_repeat; i++) { testMatrix(MatrixType::Random(size, size).eval()); testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); } } template<typename MatrixType> void testMapRef(const MatrixType& A) { // Test if passing Ref and Map objects is possible // (Regression test for Bug #1796) Index size = A.rows(); MatrixType X; X.setRandom(size, size); MatrixType Y(size,size); Ref< MatrixType> R(Y); Ref<const MatrixType> Rc(X); Map< MatrixType> M(Y.data(), size, size); Map<const MatrixType> Mc(X.data(), size, size); X = X*X; // make sure sqrt is possible Y = X.sqrt(); R = Rc.sqrt(); M = Mc.sqrt(); Y = X.exp(); R = Rc.exp(); M = Mc.exp(); X = Y; // make sure log is possible Y = X.log(); R = Rc.log(); M = Mc.log(); Y = X.cos() + Rc.cos() + Mc.cos(); Y = X.sin() + Rc.sin() + Mc.sin(); Y = X.cosh() + Rc.cosh() + Mc.cosh(); Y = X.sinh() + Rc.sinh() + Mc.sinh(); } void test_matrix_function() { CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); CALL_SUBTEST_2(testMatrixType(Matrix3cf())); CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); CALL_SUBTEST_4(testMatrixType(Matrix2d())); CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); CALL_SUBTEST_6(testMatrixType(Matrix4cd())); CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); CALL_SUBTEST_1(testMapRef(Matrix<float,1,1>())); CALL_SUBTEST_2(testMapRef(Matrix3cf())); CALL_SUBTEST_3(testMapRef(MatrixXf(8,8))); CALL_SUBTEST_7(testMapRef(MatrixXd(13,13))); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_math.cpp
.cpp
985
47
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::RowMajor; static void test_tanh() { Tensor<float, 1> vec1(6); vec1.setRandom(); Tensor<float, 1> vec2 = vec1.tanh(); for (int i = 0; i < 6; ++i) { VERIFY_IS_APPROX(vec2(i), tanhf(vec1(i))); } } static void test_sigmoid() { Tensor<float, 1> vec1(6); vec1.setRandom(); Tensor<float, 1> vec2 = vec1.sigmoid(); for (int i = 0; i < 6; ++i) { VERIFY_IS_APPROX(vec2(i), 1.0f / (1.0f + std::exp(-vec1(i)))); } } void test_cxx11_tensor_math() { CALL_SUBTEST(test_tanh()); CALL_SUBTEST(test_sigmoid()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/dgmres.cpp
.cpp
1,272
32
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2012 desire Nuentsa <desire.nuentsa_wakam@inria.fr // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "../../test/sparse_solver.h" #include <Eigen/src/IterativeSolvers/DGMRES.h> template<typename T> void test_dgmres_T() { DGMRES<SparseMatrix<T>, DiagonalPreconditioner<T> > dgmres_colmajor_diag; DGMRES<SparseMatrix<T>, IdentityPreconditioner > dgmres_colmajor_I; DGMRES<SparseMatrix<T>, IncompleteLUT<T> > dgmres_colmajor_ilut; //GMRES<SparseMatrix<T>, SSORPreconditioner<T> > dgmres_colmajor_ssor; CALL_SUBTEST( check_sparse_square_solving(dgmres_colmajor_diag) ); // CALL_SUBTEST( check_sparse_square_solving(dgmres_colmajor_I) ); CALL_SUBTEST( check_sparse_square_solving(dgmres_colmajor_ilut) ); //CALL_SUBTEST( check_sparse_square_solving(dgmres_colmajor_ssor) ); } void test_dgmres() { CALL_SUBTEST_1(test_dgmres_T<double>()); CALL_SUBTEST_2(test_dgmres_T<std::complex<double> >()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_chipping.cpp
.cpp
13,040
426
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; template<int DataLayout> static void test_simple_chip() { Tensor<float, 5, DataLayout> tensor(2,3,5,7,11); tensor.setRandom(); Tensor<float, 4, DataLayout> chip1; chip1 = tensor.template chip<0>(1); VERIFY_IS_EQUAL(chip1.dimension(0), 3); VERIFY_IS_EQUAL(chip1.dimension(1), 5); VERIFY_IS_EQUAL(chip1.dimension(2), 7); VERIFY_IS_EQUAL(chip1.dimension(3), 11); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1,i,j,k,l)); } } } } Tensor<float, 4, DataLayout> chip2 = tensor.template chip<1>(1); VERIFY_IS_EQUAL(chip2.dimension(0), 2); VERIFY_IS_EQUAL(chip2.dimension(1), 5); VERIFY_IS_EQUAL(chip2.dimension(2), 7); VERIFY_IS_EQUAL(chip2.dimension(3), 11); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1,j,k,l)); } } } } Tensor<float, 4, DataLayout> chip3 = tensor.template chip<2>(2); VERIFY_IS_EQUAL(chip3.dimension(0), 2); VERIFY_IS_EQUAL(chip3.dimension(1), 3); VERIFY_IS_EQUAL(chip3.dimension(2), 7); VERIFY_IS_EQUAL(chip3.dimension(3), 11); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2,k,l)); } } } } Tensor<float, 4, DataLayout> chip4(tensor.template chip<3>(5)); VERIFY_IS_EQUAL(chip4.dimension(0), 2); VERIFY_IS_EQUAL(chip4.dimension(1), 3); VERIFY_IS_EQUAL(chip4.dimension(2), 5); VERIFY_IS_EQUAL(chip4.dimension(3), 11); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5,l)); } } } } Tensor<float, 4, DataLayout> chip5(tensor.template chip<4>(7)); VERIFY_IS_EQUAL(chip5.dimension(0), 2); VERIFY_IS_EQUAL(chip5.dimension(1), 3); VERIFY_IS_EQUAL(chip5.dimension(2), 5); VERIFY_IS_EQUAL(chip5.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7)); } } } } } template<int DataLayout> static void test_dynamic_chip() { Tensor<float, 5, DataLayout> tensor(2,3,5,7,11); tensor.setRandom(); Tensor<float, 4, DataLayout> chip1; chip1 = tensor.chip(1, 0); VERIFY_IS_EQUAL(chip1.dimension(0), 3); VERIFY_IS_EQUAL(chip1.dimension(1), 5); VERIFY_IS_EQUAL(chip1.dimension(2), 7); VERIFY_IS_EQUAL(chip1.dimension(3), 11); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1,i,j,k,l)); } } } } Tensor<float, 4, DataLayout> chip2 = tensor.chip(1, 1); VERIFY_IS_EQUAL(chip2.dimension(0), 2); VERIFY_IS_EQUAL(chip2.dimension(1), 5); VERIFY_IS_EQUAL(chip2.dimension(2), 7); VERIFY_IS_EQUAL(chip2.dimension(3), 11); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1,j,k,l)); } } } } Tensor<float, 4, DataLayout> chip3 = tensor.chip(2, 2); VERIFY_IS_EQUAL(chip3.dimension(0), 2); VERIFY_IS_EQUAL(chip3.dimension(1), 3); VERIFY_IS_EQUAL(chip3.dimension(2), 7); VERIFY_IS_EQUAL(chip3.dimension(3), 11); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2,k,l)); } } } } Tensor<float, 4, DataLayout> chip4(tensor.chip(5, 3)); VERIFY_IS_EQUAL(chip4.dimension(0), 2); VERIFY_IS_EQUAL(chip4.dimension(1), 3); VERIFY_IS_EQUAL(chip4.dimension(2), 5); VERIFY_IS_EQUAL(chip4.dimension(3), 11); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5,l)); } } } } Tensor<float, 4, DataLayout> chip5(tensor.chip(7, 4)); VERIFY_IS_EQUAL(chip5.dimension(0), 2); VERIFY_IS_EQUAL(chip5.dimension(1), 3); VERIFY_IS_EQUAL(chip5.dimension(2), 5); VERIFY_IS_EQUAL(chip5.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7)); } } } } } template<int DataLayout> static void test_chip_in_expr() { Tensor<float, 5, DataLayout> input1(2,3,5,7,11); input1.setRandom(); Tensor<float, 4, DataLayout> input2(3,5,7,11); input2.setRandom(); Tensor<float, 4, DataLayout> result = input1.template chip<0>(0) + input2; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { for (int k = 0; k < 7; ++k) { for (int l = 0; l < 11; ++l) { float expected = input1(0,i,j,k,l) + input2(i,j,k,l); VERIFY_IS_EQUAL(result(i,j,k,l), expected); } } } } Tensor<float, 3, DataLayout> input3(3,7,11); input3.setRandom(); Tensor<float, 3, DataLayout> result2 = input1.template chip<0>(0).template chip<1>(2) + input3; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 7; ++j) { for (int k = 0; k < 11; ++k) { float expected = input1(0,i,2,j,k) + input3(i,j,k); VERIFY_IS_EQUAL(result2(i,j,k), expected); } } } } template<int DataLayout> static void test_chip_as_lvalue() { Tensor<float, 5, DataLayout> input1(2,3,5,7,11); input1.setRandom(); Tensor<float, 4, DataLayout> input2(3,5,7,11); input2.setRandom(); Tensor<float, 5, DataLayout> tensor = input1; tensor.template chip<0>(1) = input2; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { for (int m = 0; m < 11; ++m) { if (i != 1) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input2(j,k,l,m)); } } } } } } Tensor<float, 4, DataLayout> input3(2,5,7,11); input3.setRandom(); tensor = input1; tensor.template chip<1>(1) = input3; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { for (int m = 0; m < 11; ++m) { if (j != 1) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input3(i,k,l,m)); } } } } } } Tensor<float, 4, DataLayout> input4(2,3,7,11); input4.setRandom(); tensor = input1; tensor.template chip<2>(3) = input4; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { for (int m = 0; m < 11; ++m) { if (k != 3) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input4(i,j,l,m)); } } } } } } Tensor<float, 4, DataLayout> input5(2,3,5,11); input5.setRandom(); tensor = input1; tensor.template chip<3>(4) = input5; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { for (int m = 0; m < 11; ++m) { if (l != 4) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input5(i,j,k,m)); } } } } } } Tensor<float, 4, DataLayout> input6(2,3,5,7); input6.setRandom(); tensor = input1; tensor.template chip<4>(5) = input6; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { for (int m = 0; m < 11; ++m) { if (m != 5) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input6(i,j,k,l)); } } } } } } Tensor<float, 5, DataLayout> input7(2,3,5,7,11); input7.setRandom(); tensor = input1; tensor.chip(0, 0) = input7.chip(0, 0); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { for (int m = 0; m < 11; ++m) { if (i != 0) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input7(i,j,k,l,m)); } } } } } } } static void test_chip_raw_data_col_major() { Tensor<float, 5, ColMajor> tensor(2,3,5,7,11); tensor.setRandom(); typedef TensorEvaluator<decltype(tensor.chip<4>(3)), DefaultDevice> Evaluator4; auto chip = Evaluator4(tensor.chip<4>(3), DefaultDevice()); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { int chip_index = i + 2 * (j + 3 * (k + 5 * l)); VERIFY_IS_EQUAL(chip.data()[chip_index], tensor(i,j,k,l,3)); } } } } typedef TensorEvaluator<decltype(tensor.chip<0>(0)), DefaultDevice> Evaluator0; auto chip0 = Evaluator0(tensor.chip<0>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip0.data(), static_cast<float*>(0)); typedef TensorEvaluator<decltype(tensor.chip<1>(0)), DefaultDevice> Evaluator1; auto chip1 = Evaluator1(tensor.chip<1>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip1.data(), static_cast<float*>(0)); typedef TensorEvaluator<decltype(tensor.chip<2>(0)), DefaultDevice> Evaluator2; auto chip2 = Evaluator2(tensor.chip<2>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip2.data(), static_cast<float*>(0)); typedef TensorEvaluator<decltype(tensor.chip<3>(0)), DefaultDevice> Evaluator3; auto chip3 = Evaluator3(tensor.chip<3>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip3.data(), static_cast<float*>(0)); } static void test_chip_raw_data_row_major() { Tensor<float, 5, RowMajor> tensor(11,7,5,3,2); tensor.setRandom(); typedef TensorEvaluator<decltype(tensor.chip<0>(3)), DefaultDevice> Evaluator0; auto chip = Evaluator0(tensor.chip<0>(3), DefaultDevice()); for (int i = 0; i < 7; ++i) { for (int j = 0; j < 5; ++j) { for (int k = 0; k < 3; ++k) { for (int l = 0; l < 2; ++l) { int chip_index = l + 2 * (k + 3 * (j + 5 * i)); VERIFY_IS_EQUAL(chip.data()[chip_index], tensor(3,i,j,k,l)); } } } } typedef TensorEvaluator<decltype(tensor.chip<1>(0)), DefaultDevice> Evaluator1; auto chip1 = Evaluator1(tensor.chip<1>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip1.data(), static_cast<float*>(0)); typedef TensorEvaluator<decltype(tensor.chip<2>(0)), DefaultDevice> Evaluator2; auto chip2 = Evaluator2(tensor.chip<2>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip2.data(), static_cast<float*>(0)); typedef TensorEvaluator<decltype(tensor.chip<3>(0)), DefaultDevice> Evaluator3; auto chip3 = Evaluator3(tensor.chip<3>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip3.data(), static_cast<float*>(0)); typedef TensorEvaluator<decltype(tensor.chip<4>(0)), DefaultDevice> Evaluator4; auto chip4 = Evaluator4(tensor.chip<4>(0), DefaultDevice()); VERIFY_IS_EQUAL(chip4.data(), static_cast<float*>(0)); } void test_cxx11_tensor_chipping() { CALL_SUBTEST(test_simple_chip<ColMajor>()); CALL_SUBTEST(test_simple_chip<RowMajor>()); CALL_SUBTEST(test_dynamic_chip<ColMajor>()); CALL_SUBTEST(test_dynamic_chip<RowMajor>()); CALL_SUBTEST(test_chip_in_expr<ColMajor>()); CALL_SUBTEST(test_chip_in_expr<RowMajor>()); CALL_SUBTEST(test_chip_as_lvalue<ColMajor>()); CALL_SUBTEST(test_chip_as_lvalue<RowMajor>()); CALL_SUBTEST(test_chip_raw_data_col_major()); CALL_SUBTEST(test_chip_raw_data_row_major()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_random.cpp
.cpp
2,146
79
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> static void test_default() { Tensor<float, 1> vec(6); vec.setRandom(); // Fixme: we should check that the generated numbers follow a uniform // distribution instead. for (int i = 1; i < 6; ++i) { VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1)); } } static void test_normal() { Tensor<float, 1> vec(6); vec.setRandom<Eigen::internal::NormalRandomGenerator<float>>(); // Fixme: we should check that the generated numbers follow a gaussian // distribution instead. for (int i = 1; i < 6; ++i) { VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1)); } } struct MyGenerator { MyGenerator() { } MyGenerator(const MyGenerator&) { } // Return a random value to be used. "element_location" is the // location of the entry to set in the tensor, it can typically // be ignored. int operator()(Eigen::DenseIndex element_location, Eigen::DenseIndex /*unused*/ = 0) const { return static_cast<int>(3 * element_location); } // Same as above but generates several numbers at a time. internal::packet_traits<int>::type packetOp( Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const { const int packetSize = internal::packet_traits<int>::size; EIGEN_ALIGN_MAX int values[packetSize]; for (int i = 0; i < packetSize; ++i) { values[i] = static_cast<int>(3 * (packet_location + i)); } return internal::pload<typename internal::packet_traits<int>::type>(values); } }; static void test_custom() { Tensor<int, 1> vec(6); vec.setRandom<MyGenerator>(); for (int i = 0; i < 6; ++i) { VERIFY_IS_EQUAL(vec(i), 3*i); } } void test_cxx11_tensor_random() { CALL_SUBTEST(test_default()); CALL_SUBTEST(test_normal()); CALL_SUBTEST(test_custom()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_uint128.cpp
.cpp
5,718
161
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> #if EIGEN_COMP_MSVC #define EIGEN_NO_INT128 #else typedef __uint128_t uint128_t; #endif // Only run the test on compilers that support 128bit integers natively #ifndef EIGEN_NO_INT128 using Eigen::internal::TensorUInt128; using Eigen::internal::static_val; void VERIFY_EQUAL(TensorUInt128<uint64_t, uint64_t> actual, uint128_t expected) { bool matchl = actual.lower() == static_cast<uint64_t>(expected); bool matchh = actual.upper() == static_cast<uint64_t>(expected >> 64); if (!matchl || !matchh) { const char* testname = g_test_stack.back().c_str(); std::cerr << "Test " << testname << " failed in " << __FILE__ << " (" << __LINE__ << ")" << std::endl; abort(); } } void test_add() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i + j; uint128_t expected = a + b; VERIFY_EQUAL(actual, expected); } } } } } void test_sub() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i - j; uint128_t expected = a - b; VERIFY_EQUAL(actual, expected); } } } } } void test_mul() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i * j; uint128_t expected = a * b; VERIFY_EQUAL(actual, expected); } } } } } void test_div() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i / j; uint128_t expected = a / b; VERIFY_EQUAL(actual, expected); } } } } } void test_misc1() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<static_val<0>, uint64_t> i(0, i2); uint128_t a = static_cast<uint128_t>(i2); for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<static_val<0>, uint64_t> j(0, j2); uint128_t b = static_cast<uint128_t>(j2); uint64_t actual = (i * j).upper(); uint64_t expected = (a * b) >> 64; VERIFY_IS_EQUAL(actual, expected); } } } void test_misc2() { int64_t incr = internal::random<int64_t>(1, 100); for (int64_t log_div = 0; log_div < 63; ++log_div) { for (int64_t divider = 1; divider <= 1000000 * incr; divider += incr) { uint64_t expected = (static_cast<uint128_t>(1) << (64+log_div)) / static_cast<uint128_t>(divider) - (static_cast<uint128_t>(1) << 64) + 1; uint64_t shift = 1ULL << log_div; TensorUInt128<uint64_t, uint64_t> result = (TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + TensorUInt128<static_val<0>, static_val<1> >(1)); uint64_t actual = static_cast<uint64_t>(result); VERIFY_IS_EQUAL(actual, expected); } } } #endif void test_cxx11_tensor_uint128() { #ifdef EIGEN_NO_INT128 // Skip the test on compilers that don't support 128bit integers natively return; #else CALL_SUBTEST_1(test_add()); CALL_SUBTEST_2(test_sub()); CALL_SUBTEST_3(test_mul()); CALL_SUBTEST_4(test_div()); CALL_SUBTEST_5(test_misc1()); CALL_SUBTEST_6(test_misc2()); #endif }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/openglsupport.cpp
.cpp
10,588
334
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include <main.h> #include <iostream> #include <GL/glew.h> #include <Eigen/OpenGLSupport> #include <GL/glut.h> using namespace Eigen; #define VERIFY_MATRIX(CODE,REF) { \ glLoadIdentity(); \ CODE; \ Matrix<float,4,4,ColMajor> m; m.setZero(); \ glGet(GL_MODELVIEW_MATRIX, m); \ if(!(REF).cast<float>().isApprox(m)) { \ std::cerr << "Expected:\n" << ((REF).cast<float>()) << "\n" << "got\n" << m << "\n\n"; \ } \ VERIFY_IS_APPROX((REF).cast<float>(), m); \ } #define VERIFY_UNIFORM(SUFFIX,NAME,TYPE) { \ TYPE value; value.setRandom(); \ TYPE data; \ int loc = glGetUniformLocation(prg_id, #NAME); \ VERIFY((loc!=-1) && "uniform not found"); \ glUniform(loc,value); \ EIGEN_CAT(glGetUniform,SUFFIX)(prg_id,loc,data.data()); \ if(!value.isApprox(data)) { \ std::cerr << "Expected:\n" << value << "\n" << "got\n" << data << "\n\n"; \ } \ VERIFY_IS_APPROX(value, data); \ } #define VERIFY_UNIFORMi(NAME,TYPE) { \ TYPE value = TYPE::Random().eval().cast<float>().cast<TYPE::Scalar>(); \ TYPE data; \ int loc = glGetUniformLocation(prg_id, #NAME); \ VERIFY((loc!=-1) && "uniform not found"); \ glUniform(loc,value); \ glGetUniformiv(prg_id,loc,(GLint*)data.data()); \ if(!value.isApprox(data)) { \ std::cerr << "Expected:\n" << value << "\n" << "got\n" << data << "\n\n"; \ } \ VERIFY_IS_APPROX(value, data); \ } void printInfoLog(GLuint objectID) { int infologLength, charsWritten; GLchar *infoLog; glGetProgramiv(objectID,GL_INFO_LOG_LENGTH, &infologLength); if(infologLength > 0) { infoLog = new GLchar[infologLength]; glGetProgramInfoLog(objectID, infologLength, &charsWritten, infoLog); if (charsWritten>0) std::cerr << "Shader info : \n" << infoLog << std::endl; delete[] infoLog; } } GLint createShader(const char* vtx, const char* frg) { GLint prg_id = glCreateProgram(); GLint vtx_id = glCreateShader(GL_VERTEX_SHADER); GLint frg_id = glCreateShader(GL_FRAGMENT_SHADER); GLint ok; glShaderSource(vtx_id, 1, &vtx, 0); glCompileShader(vtx_id); glGetShaderiv(vtx_id,GL_COMPILE_STATUS,&ok); if(!ok) { std::cerr << "vtx compilation failed\n"; } glShaderSource(frg_id, 1, &frg, 0); glCompileShader(frg_id); glGetShaderiv(frg_id,GL_COMPILE_STATUS,&ok); if(!ok) { std::cerr << "frg compilation failed\n"; } glAttachShader(prg_id, vtx_id); glAttachShader(prg_id, frg_id); glLinkProgram(prg_id); glGetProgramiv(prg_id,GL_LINK_STATUS,&ok); if(!ok) { std::cerr << "linking failed\n"; } printInfoLog(prg_id); glUseProgram(prg_id); return prg_id; } void test_openglsupport() { int argc = 0; glutInit(&argc, 0); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowPosition (0,0); glutInitWindowSize(10, 10); if(glutCreateWindow("Eigen") <= 0) { std::cerr << "Error: Unable to create GLUT Window.\n"; exit(1); } glewExperimental = GL_TRUE; if(glewInit() != GLEW_OK) { std::cerr << "Warning: Failed to initialize GLEW\n"; } Vector3f v3f; Matrix3f rot; glBegin(GL_POINTS); glVertex(v3f); glVertex(2*v3f+v3f); glVertex(rot*v3f); glEnd(); // 4x4 matrices Matrix4f mf44; mf44.setRandom(); VERIFY_MATRIX(glLoadMatrix(mf44), mf44); VERIFY_MATRIX(glMultMatrix(mf44), mf44); Matrix4d md44; md44.setRandom(); VERIFY_MATRIX(glLoadMatrix(md44), md44); VERIFY_MATRIX(glMultMatrix(md44), md44); // Quaternion Quaterniond qd(AngleAxisd(internal::random<double>(), Vector3d::Random())); VERIFY_MATRIX(glRotate(qd), Projective3d(qd).matrix()); Quaternionf qf(AngleAxisf(internal::random<double>(), Vector3f::Random())); VERIFY_MATRIX(glRotate(qf), Projective3f(qf).matrix()); // 3D Transform Transform<float,3,AffineCompact> acf3; acf3.matrix().setRandom(); VERIFY_MATRIX(glLoadMatrix(acf3), Projective3f(acf3).matrix()); VERIFY_MATRIX(glMultMatrix(acf3), Projective3f(acf3).matrix()); Transform<float,3,Affine> af3(acf3); VERIFY_MATRIX(glLoadMatrix(af3), Projective3f(af3).matrix()); VERIFY_MATRIX(glMultMatrix(af3), Projective3f(af3).matrix()); Transform<float,3,Projective> pf3; pf3.matrix().setRandom(); VERIFY_MATRIX(glLoadMatrix(pf3), Projective3f(pf3).matrix()); VERIFY_MATRIX(glMultMatrix(pf3), Projective3f(pf3).matrix()); Transform<double,3,AffineCompact> acd3; acd3.matrix().setRandom(); VERIFY_MATRIX(glLoadMatrix(acd3), Projective3d(acd3).matrix()); VERIFY_MATRIX(glMultMatrix(acd3), Projective3d(acd3).matrix()); Transform<double,3,Affine> ad3(acd3); VERIFY_MATRIX(glLoadMatrix(ad3), Projective3d(ad3).matrix()); VERIFY_MATRIX(glMultMatrix(ad3), Projective3d(ad3).matrix()); Transform<double,3,Projective> pd3; pd3.matrix().setRandom(); VERIFY_MATRIX(glLoadMatrix(pd3), Projective3d(pd3).matrix()); VERIFY_MATRIX(glMultMatrix(pd3), Projective3d(pd3).matrix()); // translations (2D and 3D) { Vector2f vf2; vf2.setRandom(); Vector3f vf23; vf23 << vf2, 0; VERIFY_MATRIX(glTranslate(vf2), Projective3f(Translation3f(vf23)).matrix()); Vector2d vd2; vd2.setRandom(); Vector3d vd23; vd23 << vd2, 0; VERIFY_MATRIX(glTranslate(vd2), Projective3d(Translation3d(vd23)).matrix()); Vector3f vf3; vf3.setRandom(); VERIFY_MATRIX(glTranslate(vf3), Projective3f(Translation3f(vf3)).matrix()); Vector3d vd3; vd3.setRandom(); VERIFY_MATRIX(glTranslate(vd3), Projective3d(Translation3d(vd3)).matrix()); Translation<float,3> tf3; tf3.vector().setRandom(); VERIFY_MATRIX(glTranslate(tf3), Projective3f(tf3).matrix()); Translation<double,3> td3; td3.vector().setRandom(); VERIFY_MATRIX(glTranslate(td3), Projective3d(td3).matrix()); } // scaling (2D and 3D) { Vector2f vf2; vf2.setRandom(); Vector3f vf23; vf23 << vf2, 1; VERIFY_MATRIX(glScale(vf2), Projective3f(Scaling(vf23)).matrix()); Vector2d vd2; vd2.setRandom(); Vector3d vd23; vd23 << vd2, 1; VERIFY_MATRIX(glScale(vd2), Projective3d(Scaling(vd23)).matrix()); Vector3f vf3; vf3.setRandom(); VERIFY_MATRIX(glScale(vf3), Projective3f(Scaling(vf3)).matrix()); Vector3d vd3; vd3.setRandom(); VERIFY_MATRIX(glScale(vd3), Projective3d(Scaling(vd3)).matrix()); UniformScaling<float> usf(internal::random<float>()); VERIFY_MATRIX(glScale(usf), Projective3f(usf).matrix()); UniformScaling<double> usd(internal::random<double>()); VERIFY_MATRIX(glScale(usd), Projective3d(usd).matrix()); } // uniform { const char* vtx = "void main(void) { gl_Position = gl_Vertex; }\n"; if(GLEW_VERSION_2_0) { #ifdef GL_VERSION_2_0 const char* frg = "" "uniform vec2 v2f;\n" "uniform vec3 v3f;\n" "uniform vec4 v4f;\n" "uniform ivec2 v2i;\n" "uniform ivec3 v3i;\n" "uniform ivec4 v4i;\n" "uniform mat2 m2f;\n" "uniform mat3 m3f;\n" "uniform mat4 m4f;\n" "void main(void) { gl_FragColor = vec4(v2f[0]+v3f[0]+v4f[0])+vec4(v2i[0]+v3i[0]+v4i[0])+vec4(m2f[0][0]+m3f[0][0]+m4f[0][0]); }\n"; GLint prg_id = createShader(vtx,frg); VERIFY_UNIFORM(fv,v2f, Vector2f); VERIFY_UNIFORM(fv,v3f, Vector3f); VERIFY_UNIFORM(fv,v4f, Vector4f); VERIFY_UNIFORMi(v2i, Vector2i); VERIFY_UNIFORMi(v3i, Vector3i); VERIFY_UNIFORMi(v4i, Vector4i); VERIFY_UNIFORM(fv,m2f, Matrix2f); VERIFY_UNIFORM(fv,m3f, Matrix3f); VERIFY_UNIFORM(fv,m4f, Matrix4f); #endif } else std::cerr << "Warning: opengl 2.0 was not tested\n"; if(GLEW_VERSION_2_1) { #ifdef GL_VERSION_2_1 const char* frg = "#version 120\n" "uniform mat2x3 m23f;\n" "uniform mat3x2 m32f;\n" "uniform mat2x4 m24f;\n" "uniform mat4x2 m42f;\n" "uniform mat3x4 m34f;\n" "uniform mat4x3 m43f;\n" "void main(void) { gl_FragColor = vec4(m23f[0][0]+m32f[0][0]+m24f[0][0]+m42f[0][0]+m34f[0][0]+m43f[0][0]); }\n"; GLint prg_id = createShader(vtx,frg); typedef Matrix<float,2,3> Matrix23f; typedef Matrix<float,3,2> Matrix32f; typedef Matrix<float,2,4> Matrix24f; typedef Matrix<float,4,2> Matrix42f; typedef Matrix<float,3,4> Matrix34f; typedef Matrix<float,4,3> Matrix43f; VERIFY_UNIFORM(fv,m23f, Matrix23f); VERIFY_UNIFORM(fv,m32f, Matrix32f); VERIFY_UNIFORM(fv,m24f, Matrix24f); VERIFY_UNIFORM(fv,m42f, Matrix42f); VERIFY_UNIFORM(fv,m34f, Matrix34f); VERIFY_UNIFORM(fv,m43f, Matrix43f); #endif } else std::cerr << "Warning: opengl 2.1 was not tested\n"; if(GLEW_VERSION_3_0) { #ifdef GL_VERSION_3_0 const char* frg = "#version 150\n" "uniform uvec2 v2ui;\n" "uniform uvec3 v3ui;\n" "uniform uvec4 v4ui;\n" "out vec4 data;\n" "void main(void) { data = vec4(v2ui[0]+v3ui[0]+v4ui[0]); }\n"; GLint prg_id = createShader(vtx,frg); typedef Matrix<unsigned int,2,1> Vector2ui; typedef Matrix<unsigned int,3,1> Vector3ui; typedef Matrix<unsigned int,4,1> Vector4ui; VERIFY_UNIFORMi(v2ui, Vector2ui); VERIFY_UNIFORMi(v3ui, Vector3ui); VERIFY_UNIFORMi(v4ui, Vector4ui); #endif } else std::cerr << "Warning: opengl 3.0 was not tested\n"; #ifdef GLEW_ARB_gpu_shader_fp64 if(GLEW_ARB_gpu_shader_fp64) { #ifdef GL_ARB_gpu_shader_fp64 const char* frg = "#version 150\n" "uniform dvec2 v2d;\n" "uniform dvec3 v3d;\n" "uniform dvec4 v4d;\n" "out vec4 data;\n" "void main(void) { data = vec4(v2d[0]+v3d[0]+v4d[0]); }\n"; GLint prg_id = createShader(vtx,frg); VERIFY_UNIFORM(dv,v2d, Vector2d); VERIFY_UNIFORM(dv,v3d, Vector3d); VERIFY_UNIFORM(dv,v4d, Vector4d); #endif } else std::cerr << "Warning: GLEW_ARB_gpu_shader_fp64 was not tested\n"; #else std::cerr << "Warning: GLEW_ARB_gpu_shader_fp64 was not tested\n"; #endif } }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_of_const_values.cpp
.cpp
2,422
106
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::RowMajor; static void test_assign() { float data1[6]; TensorMap<Tensor<const float, 2>> mat1(data1, 2, 3); float data2[6]; const TensorMap<Tensor<float, 2>> mat2(data2, 2, 3); for (int i = 0; i < 6; ++i) { data1[i] = i; data2[i] = -i; } Tensor<float, 2> rslt1; rslt1 = mat1; Tensor<float, 2> rslt2; rslt2 = mat2; Tensor<float, 2> rslt3 = mat1; Tensor<float, 2> rslt4 = mat2; Tensor<float, 2> rslt5(mat1); Tensor<float, 2> rslt6(mat2); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { VERIFY_IS_APPROX(rslt1(i,j), static_cast<float>(i + 2*j)); VERIFY_IS_APPROX(rslt2(i,j), static_cast<float>(-i - 2*j)); VERIFY_IS_APPROX(rslt3(i,j), static_cast<float>(i + 2*j)); VERIFY_IS_APPROX(rslt4(i,j), static_cast<float>(-i - 2*j)); VERIFY_IS_APPROX(rslt5(i,j), static_cast<float>(i + 2*j)); VERIFY_IS_APPROX(rslt6(i,j), static_cast<float>(-i - 2*j)); } } } static void test_plus() { float data1[6]; TensorMap<Tensor<const float, 2>> mat1(data1, 2, 3); float data2[6]; TensorMap<Tensor<float, 2>> mat2(data2, 2, 3); for (int i = 0; i < 6; ++i) { data1[i] = i; data2[i] = -i; } Tensor<float, 2> sum1; sum1 = mat1 + mat2; Tensor<float, 2> sum2; sum2 = mat2 + mat1; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { VERIFY_IS_APPROX(sum1(i,j), 0.0f); VERIFY_IS_APPROX(sum2(i,j), 0.0f); } } } static void test_plus_equal() { float data1[6]; TensorMap<Tensor<const float, 2>> mat1(data1, 2, 3); float data2[6]; TensorMap<Tensor<float, 2>> mat2(data2, 2, 3); for (int i = 0; i < 6; ++i) { data1[i] = i; data2[i] = -i; } mat2 += mat1; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { VERIFY_IS_APPROX(mat2(i,j), 0.0f); } } } void test_cxx11_tensor_of_const_values() { CALL_SUBTEST(test_assign()); CALL_SUBTEST(test_plus()); CALL_SUBTEST(test_plus_equal()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_runqueue.cpp
.cpp
7,016
236
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_USE_THREADS #include <cstdlib> #include "main.h" #include <Eigen/CXX11/ThreadPool> // Visual studio doesn't implement a rand_r() function since its // implementation of rand() is already thread safe int rand_reentrant(unsigned int* s) { #ifdef EIGEN_COMP_MSVC_STRICT EIGEN_UNUSED_VARIABLE(s); return rand(); #else return rand_r(s); #endif } void test_basic_runqueue() { RunQueue<int, 4> q; // Check empty state. VERIFY(q.Empty()); VERIFY_IS_EQUAL(0u, q.Size()); VERIFY_IS_EQUAL(0, q.PopFront()); std::vector<int> stolen; VERIFY_IS_EQUAL(0u, q.PopBackHalf(&stolen)); VERIFY_IS_EQUAL(0u, stolen.size()); // Push one front, pop one front. VERIFY_IS_EQUAL(0, q.PushFront(1)); VERIFY_IS_EQUAL(1u, q.Size()); VERIFY_IS_EQUAL(1, q.PopFront()); VERIFY_IS_EQUAL(0u, q.Size()); // Push front to overflow. VERIFY_IS_EQUAL(0, q.PushFront(2)); VERIFY_IS_EQUAL(1u, q.Size()); VERIFY_IS_EQUAL(0, q.PushFront(3)); VERIFY_IS_EQUAL(2u, q.Size()); VERIFY_IS_EQUAL(0, q.PushFront(4)); VERIFY_IS_EQUAL(3u, q.Size()); VERIFY_IS_EQUAL(0, q.PushFront(5)); VERIFY_IS_EQUAL(4u, q.Size()); VERIFY_IS_EQUAL(6, q.PushFront(6)); VERIFY_IS_EQUAL(4u, q.Size()); VERIFY_IS_EQUAL(5, q.PopFront()); VERIFY_IS_EQUAL(3u, q.Size()); VERIFY_IS_EQUAL(4, q.PopFront()); VERIFY_IS_EQUAL(2u, q.Size()); VERIFY_IS_EQUAL(3, q.PopFront()); VERIFY_IS_EQUAL(1u, q.Size()); VERIFY_IS_EQUAL(2, q.PopFront()); VERIFY_IS_EQUAL(0u, q.Size()); VERIFY_IS_EQUAL(0, q.PopFront()); // Push one back, pop one back. VERIFY_IS_EQUAL(0, q.PushBack(7)); VERIFY_IS_EQUAL(1u, q.Size()); VERIFY_IS_EQUAL(1u, q.PopBackHalf(&stolen)); VERIFY_IS_EQUAL(1u, stolen.size()); VERIFY_IS_EQUAL(7, stolen[0]); VERIFY_IS_EQUAL(0u, q.Size()); stolen.clear(); // Push back to overflow. VERIFY_IS_EQUAL(0, q.PushBack(8)); VERIFY_IS_EQUAL(1u, q.Size()); VERIFY_IS_EQUAL(0, q.PushBack(9)); VERIFY_IS_EQUAL(2u, q.Size()); VERIFY_IS_EQUAL(0, q.PushBack(10)); VERIFY_IS_EQUAL(3u, q.Size()); VERIFY_IS_EQUAL(0, q.PushBack(11)); VERIFY_IS_EQUAL(4u, q.Size()); VERIFY_IS_EQUAL(12, q.PushBack(12)); VERIFY_IS_EQUAL(4u, q.Size()); // Pop back in halves. VERIFY_IS_EQUAL(2u, q.PopBackHalf(&stolen)); VERIFY_IS_EQUAL(2u, stolen.size()); VERIFY_IS_EQUAL(10, stolen[0]); VERIFY_IS_EQUAL(11, stolen[1]); VERIFY_IS_EQUAL(2u, q.Size()); stolen.clear(); VERIFY_IS_EQUAL(1u, q.PopBackHalf(&stolen)); VERIFY_IS_EQUAL(1u, stolen.size()); VERIFY_IS_EQUAL(9, stolen[0]); VERIFY_IS_EQUAL(1u, q.Size()); stolen.clear(); VERIFY_IS_EQUAL(1u, q.PopBackHalf(&stolen)); VERIFY_IS_EQUAL(1u, stolen.size()); VERIFY_IS_EQUAL(8, stolen[0]); stolen.clear(); VERIFY_IS_EQUAL(0u, q.PopBackHalf(&stolen)); VERIFY_IS_EQUAL(0u, stolen.size()); // Empty again. VERIFY(q.Empty()); VERIFY_IS_EQUAL(0u, q.Size()); VERIFY_IS_EQUAL(0, q.PushFront(1)); VERIFY_IS_EQUAL(0, q.PushFront(2)); VERIFY_IS_EQUAL(0, q.PushFront(3)); VERIFY_IS_EQUAL(1, q.PopBack()); VERIFY_IS_EQUAL(2, q.PopBack()); VERIFY_IS_EQUAL(3, q.PopBack()); VERIFY(q.Empty()); VERIFY_IS_EQUAL(0u, q.Size()); } // Empty tests that the queue is not claimed to be empty when is is in fact not. // Emptiness property is crucial part of thread pool blocking scheme, // so we go to great effort to ensure this property. We create a queue with // 1 element and then push 1 element (either front or back at random) and pop // 1 element (either front or back at random). So queue always contains at least // 1 element, but otherwise changes chaotically. Another thread constantly tests // that the queue is not claimed to be empty. void test_empty_runqueue() { RunQueue<int, 4> q; q.PushFront(1); std::atomic<bool> done(false); std::thread mutator([&q, &done]() { unsigned rnd = 0; std::vector<int> stolen; for (int i = 0; i < 1 << 18; i++) { if (rand_reentrant(&rnd) % 2) VERIFY_IS_EQUAL(0, q.PushFront(1)); else VERIFY_IS_EQUAL(0, q.PushBack(1)); if (rand_reentrant(&rnd) % 2) VERIFY_IS_EQUAL(1, q.PopFront()); else { for (;;) { if (q.PopBackHalf(&stolen) == 1) { stolen.clear(); break; } VERIFY_IS_EQUAL(0u, stolen.size()); } } } done = true; }); while (!done) { VERIFY(!q.Empty()); int size = q.Size(); VERIFY_GE(size, 1); VERIFY_LE(size, 2); } VERIFY_IS_EQUAL(1, q.PopFront()); mutator.join(); } // Stress is a chaotic random test. // One thread (owner) calls PushFront/PopFront, other threads call PushBack/ // PopBack. Ensure that we don't crash, deadlock, and all sanity checks pass. void test_stress_runqueue() { static const int kEvents = 1 << 18; RunQueue<int, 8> q; std::atomic<int> total(0); std::vector<std::unique_ptr<std::thread>> threads; threads.emplace_back(new std::thread([&q, &total]() { int sum = 0; int pushed = 1; int popped = 1; while (pushed < kEvents || popped < kEvents) { if (pushed < kEvents) { if (q.PushFront(pushed) == 0) { sum += pushed; pushed++; } } if (popped < kEvents) { int v = q.PopFront(); if (v != 0) { sum -= v; popped++; } } } total += sum; })); for (int i = 0; i < 2; i++) { threads.emplace_back(new std::thread([&q, &total]() { int sum = 0; for (int j = 1; j < kEvents; j++) { if (q.PushBack(j) == 0) { sum += j; continue; } EIGEN_THREAD_YIELD(); j--; } total += sum; })); threads.emplace_back(new std::thread([&q, &total]() { int sum = 0; std::vector<int> stolen; for (int j = 1; j < kEvents;) { if (q.PopBackHalf(&stolen) == 0) { EIGEN_THREAD_YIELD(); continue; } while (stolen.size() && j < kEvents) { int v = stolen.back(); stolen.pop_back(); VERIFY_IS_NOT_EQUAL(v, 0); sum += v; j++; } } while (stolen.size()) { int v = stolen.back(); stolen.pop_back(); VERIFY_IS_NOT_EQUAL(v, 0); while ((v = q.PushBack(v)) != 0) EIGEN_THREAD_YIELD(); } total -= sum; })); } for (size_t i = 0; i < threads.size(); i++) threads[i]->join(); VERIFY(q.Empty()); VERIFY(total.load() == 0); } void test_cxx11_runqueue() { CALL_SUBTEST_1(test_basic_runqueue()); CALL_SUBTEST_2(test_empty_runqueue()); CALL_SUBTEST_3(test_stress_runqueue()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_device_sycl.cpp
.cpp
1,125
32
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_device_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> void test_device_sycl(const Eigen::SyclDevice &sycl_device) { std::cout <<"Helo from ComputeCpp: the requested device exists and the device name is : " << sycl_device.m_queue.get_device(). template get_info<cl::sycl::info::device::name>() <<std::endl;; } void test_cxx11_tensor_device_sycl() { cl::sycl::gpu_selector s; Eigen::SyclDevice sycl_device(s); CALL_SUBTEST(test_device_sycl(sycl_device)); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_generator.cpp
.cpp
2,250
92
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> struct Generator1D { Generator1D() { } float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const { return coordinates[0]; } }; template <int DataLayout> static void test_1D() { Tensor<float, 1> vec(6); Tensor<float, 1> result = vec.generate(Generator1D()); for (int i = 0; i < 6; ++i) { VERIFY_IS_EQUAL(result(i), i); } } struct Generator2D { Generator2D() { } float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const { return 3 * coordinates[0] + 11 * coordinates[1]; } }; template <int DataLayout> static void test_2D() { Tensor<float, 2> matrix(5, 7); Tensor<float, 2> result = matrix.generate(Generator2D()); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { VERIFY_IS_EQUAL(result(i, j), 3*i + 11*j); } } } template <int DataLayout> static void test_gaussian() { int rows = 32; int cols = 48; array<float, 2> means; means[0] = rows / 2.0f; means[1] = cols / 2.0f; array<float, 2> std_devs; std_devs[0] = 3.14f; std_devs[1] = 2.7f; internal::GaussianGenerator<float, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs); Tensor<float, 2> matrix(rows, cols); Tensor<float, 2> result = matrix.generate(gaussian_gen); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { float g_rows = powf(rows/2.0f - i, 2) / (3.14f * 3.14f) * 0.5f; float g_cols = powf(cols/2.0f - j, 2) / (2.7f * 2.7f) * 0.5f; float gaussian = expf(-g_rows - g_cols); VERIFY_IS_EQUAL(result(i, j), gaussian); } } } void test_cxx11_tensor_generator() { CALL_SUBTEST(test_1D<ColMajor>()); CALL_SUBTEST(test_1D<RowMajor>()); CALL_SUBTEST(test_2D<ColMajor>()); CALL_SUBTEST(test_2D<RowMajor>()); CALL_SUBTEST(test_gaussian<ColMajor>()); CALL_SUBTEST(test_gaussian<RowMajor>()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/mpreal_support.cpp
.cpp
2,375
66
#include "main.h" #include <Eigen/MPRealSupport> #include <Eigen/LU> #include <Eigen/Eigenvalues> #include <sstream> using namespace mpfr; using namespace Eigen; void test_mpreal_support() { // set precision to 256 bits (double has only 53 bits) mpreal::set_default_prec(256); typedef Matrix<mpreal,Eigen::Dynamic,Eigen::Dynamic> MatrixXmp; typedef Matrix<std::complex<mpreal>,Eigen::Dynamic,Eigen::Dynamic> MatrixXcmp; std::cerr << "epsilon = " << NumTraits<mpreal>::epsilon() << "\n"; std::cerr << "dummy_precision = " << NumTraits<mpreal>::dummy_precision() << "\n"; std::cerr << "highest = " << NumTraits<mpreal>::highest() << "\n"; std::cerr << "lowest = " << NumTraits<mpreal>::lowest() << "\n"; std::cerr << "digits10 = " << NumTraits<mpreal>::digits10() << "\n"; for(int i = 0; i < g_repeat; i++) { int s = Eigen::internal::random<int>(1,100); MatrixXmp A = MatrixXmp::Random(s,s); MatrixXmp B = MatrixXmp::Random(s,s); MatrixXmp S = A.adjoint() * A; MatrixXmp X; MatrixXcmp Ac = MatrixXcmp::Random(s,s); MatrixXcmp Bc = MatrixXcmp::Random(s,s); MatrixXcmp Sc = Ac.adjoint() * Ac; MatrixXcmp Xc; // Basic stuffs VERIFY_IS_APPROX(A.real(), A); VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm())); VERIFY_IS_APPROX(A.array().exp(), exp(A.array())); VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs()); VERIFY_IS_APPROX(A.array().sin(), sin(A.array())); VERIFY_IS_APPROX(A.array().cos(), cos(A.array())); // Cholesky X = S.selfadjointView<Lower>().llt().solve(B); VERIFY_IS_APPROX((S.selfadjointView<Lower>()*X).eval(),B); Xc = Sc.selfadjointView<Lower>().llt().solve(Bc); VERIFY_IS_APPROX((Sc.selfadjointView<Lower>()*Xc).eval(),Bc); // partial LU X = A.lu().solve(B); VERIFY_IS_APPROX((A*X).eval(),B); // symmetric eigenvalues SelfAdjointEigenSolver<MatrixXmp> eig(S); VERIFY_IS_EQUAL(eig.info(), Success); VERIFY( (S.selfadjointView<Lower>() * eig.eigenvectors()).isApprox(eig.eigenvectors() * eig.eigenvalues().asDiagonal(), NumTraits<mpreal>::dummy_precision()*1e3) ); } { MatrixXmp A(8,3); A.setRandom(); // test output (interesting things happen in this code) std::stringstream stream; stream << A; } }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/matrix_square_root.cpp
.cpp
1,042
32
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "matrix_functions.h" template<typename MatrixType> void testMatrixSqrt(const MatrixType& m) { MatrixType A; generateTestMatrix<MatrixType>::run(A, m.rows()); MatrixType sqrtA = A.sqrt(); VERIFY_IS_APPROX(sqrtA * sqrtA, A); } void test_matrix_square_root() { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf())); CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12))); CALL_SUBTEST_3(testMatrixSqrt(Matrix4f())); CALL_SUBTEST_4(testMatrixSqrt(Matrix<double,Dynamic,Dynamic,RowMajor>(9, 9))); CALL_SUBTEST_5(testMatrixSqrt(Matrix<float,1,1>())); CALL_SUBTEST_5(testMatrixSqrt(Matrix<std::complex<float>,1,1>())); } }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/forward_adolc.cpp
.cpp
3,810
142
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/Dense> #define NUMBER_DIRECTIONS 16 #include <unsupported/Eigen/AdolcForward> template<typename Vector> EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) { typedef typename Vector::Scalar Scalar; return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array().sqrt().abs() * p.array().sin()).sum() + p.dot(p); } template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> struct TestFunc1 { typedef _Scalar Scalar; enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; int m_inputs, m_values; TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {} int inputs() const { return m_inputs; } int values() const { return m_values; } template<typename T> void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const { Matrix<T,ValuesAtCompileTime,1>& v = *_v; v[0] = 2 * x[0] * x[0] + x[0] * x[1]; v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; if(inputs()>2) { v[0] += 0.5 * x[2]; v[1] += x[2]; } if(values()>2) { v[2] = 3 * x[1] * x[0] * x[0]; } if (inputs()>2 && values()>2) v[2] *= x[2]; } void operator() (const InputType& x, ValueType* v, JacobianType* _j) const { (*this)(x, v); if(_j) { JacobianType& j = *_j; j(0,0) = 4 * x[0] + x[1]; j(1,0) = 3 * x[1]; j(0,1) = x[0]; j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; if (inputs()>2) { j(0,2) = 0.5; j(1,2) = 1; } if(values()>2) { j(2,0) = 3 * x[1] * 2 * x[0]; j(2,1) = 3 * x[0] * x[0]; } if (inputs()>2 && values()>2) { j(2,0) *= x[2]; j(2,1) *= x[2]; j(2,2) = 3 * x[1] * x[0] * x[0]; j(2,2) = 3 * x[1] * x[0] * x[0]; } } } }; template<typename Func> void adolc_forward_jacobian(const Func& f) { typename Func::InputType x = Func::InputType::Random(f.inputs()); typename Func::ValueType y(f.values()), yref(f.values()); typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); jref.setZero(); yref.setZero(); f(x,&yref,&jref); // std::cerr << y.transpose() << "\n\n";; // std::cerr << j << "\n\n";; j.setZero(); y.setZero(); AdolcForwardJacobian<Func> autoj(f); autoj(x, &y, &j); // std::cerr << y.transpose() << "\n\n";; // std::cerr << j << "\n\n";; VERIFY_IS_APPROX(y, yref); VERIFY_IS_APPROX(j, jref); } void test_forward_adolc() { adtl::setNumDir(NUMBER_DIRECTIONS); for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,2,2>()) )); CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,2,3>()) )); CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,3,2>()) )); CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,3,3>()) )); CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double>(3,3)) )); } { // simple instanciation tests Matrix<adtl::adouble,2,1> x; foo(x); Matrix<adtl::adouble,Dynamic,Dynamic> A(4,4);; A.selfadjointView<Lower>().eigenvalues(); } }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_sycl.cpp
.cpp
5,799
160
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) { int sizeDim1 = 100; int sizeDim2 = 100; int sizeDim3 = 100; array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; Tensor<float, 3> in1(tensorRange); Tensor<float, 3> in2(tensorRange); Tensor<float, 3> in3(tensorRange); Tensor<float, 3> out(tensorRange); in2 = in2.random(); in3 = in3.random(); float * gpu_in1_data = static_cast<float*>(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(float))); float * gpu_in2_data = static_cast<float*>(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(float))); float * gpu_in3_data = static_cast<float*>(sycl_device.allocate(in3.dimensions().TotalSize()*sizeof(float))); float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float))); TensorMap<Tensor<float, 3>> gpu_in1(gpu_in1_data, tensorRange); TensorMap<Tensor<float, 3>> gpu_in2(gpu_in2_data, tensorRange); TensorMap<Tensor<float, 3>> gpu_in3(gpu_in3_data, tensorRange); TensorMap<Tensor<float, 3>> gpu_out(gpu_out_data, tensorRange); /// a=1.2f gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f); sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(in1(i,j,k), 1.2f); } } } printf("a=1.2f Test passed\n"); /// a=b*1.2f gpu_out.device(sycl_device) = gpu_in1 * 1.2f; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * 1.2f); } } } printf("a=b*1.2f Test Passed\n"); /// c=a*b sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(float)); gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * in2(i,j,k)); } } } printf("c=a*b Test Passed\n"); /// c=a+b gpu_out.device(sycl_device) = gpu_in1 + gpu_in2; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k)); } } } printf("c=a+b Test Passed\n"); /// c=a*a gpu_out.device(sycl_device) = gpu_in1 * gpu_in1; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * in1(i,j,k)); } } } printf("c= a*a Test Passed\n"); //a*3.14f + b*2.7f gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f); sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * 3.14f + in2(i,j,k) * 2.7f); } } } printf("a*3.14f + b*2.7f Test Passed\n"); ///d= (a>0.5? b:c) sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.dimensions().TotalSize())*sizeof(float)); gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f) ? in2(i, j, k) : in3(i, j, k)); } } } printf("d= (a>0.5? b:c) Test Passed\n"); sycl_device.deallocate(gpu_in1_data); sycl_device.deallocate(gpu_in2_data); sycl_device.deallocate(gpu_in3_data); sycl_device.deallocate(gpu_out_data); } void test_cxx11_tensor_sycl() { cl::sycl::gpu_selector s; Eigen::SyclDevice sycl_device(s); CALL_SUBTEST(test_sycl_cpu(sycl_device)); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_roundings.cpp
.cpp
1,478
63
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> static void test_float_rounding() { Tensor<float, 2> ftensor(20,30); ftensor = ftensor.random() * 100.f; Tensor<float, 2> result = ftensor.round(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_EQUAL(result(i,j), numext::round(ftensor(i,j))); } } } static void test_float_flooring() { Tensor<float, 2> ftensor(20,30); ftensor = ftensor.random() * 100.f; Tensor<float, 2> result = ftensor.floor(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_EQUAL(result(i,j), numext::floor(ftensor(i,j))); } } } static void test_float_ceiling() { Tensor<float, 2> ftensor(20,30); ftensor = ftensor.random() * 100.f; Tensor<float, 2> result = ftensor.ceil(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_EQUAL(result(i,j), numext::ceil(ftensor(i,j))); } } } void test_cxx11_tensor_roundings() { CALL_SUBTEST(test_float_rounding()); CALL_SUBTEST(test_float_ceiling()); CALL_SUBTEST(test_float_flooring()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_convolution.cpp
.cpp
5,362
150
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::DefaultDevice; template <int DataLayout> static void test_evals() { Tensor<float, 2, DataLayout> input(3, 3); Tensor<float, 1, DataLayout> kernel(2); input.setRandom(); kernel.setRandom(); Tensor<float, 2, DataLayout> result(2,3); result.setZero(); Eigen::array<Tensor<float, 2>::Index, 1> dims3{{0}}; typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator; Evaluator eval(input.convolve(kernel, dims3), DefaultDevice()); eval.evalTo(result.data()); EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); VERIFY_IS_EQUAL(eval.dimensions()[0], 2); VERIFY_IS_EQUAL(eval.dimensions()[1], 3); VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0 VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2 VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4 VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1 VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3 VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5 } template <int DataLayout> static void test_expr() { Tensor<float, 2, DataLayout> input(3, 3); Tensor<float, 2, DataLayout> kernel(2, 2); input.setRandom(); kernel.setRandom(); Tensor<float, 2, DataLayout> result(2,2); Eigen::array<ptrdiff_t, 2> dims; dims[0] = 0; dims[1] = 1; result = input.convolve(kernel, dims); VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) + input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1)); VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) + input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1)); VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) + input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1)); VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) + input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1)); } template <int DataLayout> static void test_modes() { Tensor<float, 1, DataLayout> input(3); Tensor<float, 1, DataLayout> kernel(3); input(0) = 1.0f; input(1) = 2.0f; input(2) = 3.0f; kernel(0) = 0.5f; kernel(1) = 1.0f; kernel(2) = 0.0f; Eigen::array<ptrdiff_t, 1> dims; dims[0] = 0; Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding; // Emulate VALID mode (as defined in // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). padding[0] = std::make_pair(0, 0); Tensor<float, 1, DataLayout> valid(1); valid = input.pad(padding).convolve(kernel, dims); VERIFY_IS_EQUAL(valid.dimension(0), 1); VERIFY_IS_APPROX(valid(0), 2.5f); // Emulate SAME mode (as defined in // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). padding[0] = std::make_pair(1, 1); Tensor<float, 1, DataLayout> same(3); same = input.pad(padding).convolve(kernel, dims); VERIFY_IS_EQUAL(same.dimension(0), 3); VERIFY_IS_APPROX(same(0), 1.0f); VERIFY_IS_APPROX(same(1), 2.5f); VERIFY_IS_APPROX(same(2), 4.0f); // Emulate FULL mode (as defined in // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). padding[0] = std::make_pair(2, 2); Tensor<float, 1, DataLayout> full(5); full = input.pad(padding).convolve(kernel, dims); VERIFY_IS_EQUAL(full.dimension(0), 5); VERIFY_IS_APPROX(full(0), 0.0f); VERIFY_IS_APPROX(full(1), 1.0f); VERIFY_IS_APPROX(full(2), 2.5f); VERIFY_IS_APPROX(full(3), 4.0f); VERIFY_IS_APPROX(full(4), 1.5f); } template <int DataLayout> static void test_strides() { Tensor<float, 1, DataLayout> input(13); Tensor<float, 1, DataLayout> kernel(3); input.setRandom(); kernel.setRandom(); Eigen::array<ptrdiff_t, 1> dims; dims[0] = 0; Eigen::array<ptrdiff_t, 1> stride_of_3; stride_of_3[0] = 3; Eigen::array<ptrdiff_t, 1> stride_of_2; stride_of_2[0] = 2; Tensor<float, 1, DataLayout> result; result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2); VERIFY_IS_EQUAL(result.dimension(0), 2); VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) + input(6)*kernel(2))); VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) + input(12)*kernel(2))); } void test_cxx11_tensor_convolution() { CALL_SUBTEST(test_evals<ColMajor>()); CALL_SUBTEST(test_evals<RowMajor>()); CALL_SUBTEST(test_expr<ColMajor>()); CALL_SUBTEST(test_expr<RowMajor>()); CALL_SUBTEST(test_modes<ColMajor>()); CALL_SUBTEST(test_modes<RowMajor>()); CALL_SUBTEST(test_strides<ColMajor>()); CALL_SUBTEST(test_strides<RowMajor>()); }
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/unsupported/test/cxx11_tensor_casts.cpp
.cpp
2,991
116
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::array; static void test_simple_cast() { Tensor<float, 2> ftensor(20,30); ftensor = ftensor.random() * 100.f; Tensor<char, 2> chartensor(20,30); chartensor.setRandom(); Tensor<std::complex<float>, 2> cplextensor(20,30); cplextensor.setRandom(); chartensor = ftensor.cast<char>(); cplextensor = ftensor.cast<std::complex<float> >(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_EQUAL(chartensor(i,j), static_cast<char>(ftensor(i,j))); VERIFY_IS_EQUAL(cplextensor(i,j), static_cast<std::complex<float> >(ftensor(i,j))); } } } static void test_vectorized_cast() { Tensor<int, 2> itensor(20,30); itensor = itensor.random() / 1000; Tensor<float, 2> ftensor(20,30); ftensor.setRandom(); Tensor<double, 2> dtensor(20,30); dtensor.setRandom(); ftensor = itensor.cast<float>(); dtensor = itensor.cast<double>(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_EQUAL(itensor(i,j), static_cast<int>(ftensor(i,j))); VERIFY_IS_EQUAL(dtensor(i,j), static_cast<double>(ftensor(i,j))); } } } static void test_float_to_int_cast() { Tensor<float, 2> ftensor(20,30); ftensor = ftensor.random() * 1000.0f; Tensor<double, 2> dtensor(20,30); dtensor = dtensor.random() * 1000.0; Tensor<int, 2> i1tensor = ftensor.cast<int>(); Tensor<int, 2> i2tensor = dtensor.cast<int>(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_EQUAL(i1tensor(i,j), static_cast<int>(ftensor(i,j))); VERIFY_IS_EQUAL(i2tensor(i,j), static_cast<int>(dtensor(i,j))); } } } static void test_big_to_small_type_cast() { Tensor<double, 2> dtensor(20, 30); dtensor.setRandom(); Tensor<float, 2> ftensor(20, 30); ftensor = dtensor.cast<float>(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_APPROX(dtensor(i,j), static_cast<double>(ftensor(i,j))); } } } static void test_small_to_big_type_cast() { Tensor<float, 2> ftensor(20, 30); ftensor.setRandom(); Tensor<double, 2> dtensor(20, 30); dtensor = ftensor.cast<double>(); for (int i = 0; i < 20; ++i) { for (int j = 0; j < 30; ++j) { VERIFY_IS_APPROX(dtensor(i,j), static_cast<double>(ftensor(i,j))); } } } void test_cxx11_tensor_casts() { CALL_SUBTEST(test_simple_cast()); CALL_SUBTEST(test_vectorized_cast()); CALL_SUBTEST(test_float_to_int_cast()); CALL_SUBTEST(test_big_to_small_type_cast()); CALL_SUBTEST(test_small_to_big_type_cast()); }
C++