keyword
stringclasses 7
values | repo_name
stringlengths 8
98
| file_path
stringlengths 4
244
| file_extension
stringclasses 29
values | file_size
int64 0
84.1M
| line_count
int64 0
1.6M
| content
stringlengths 1
84.1M
⌀ | language
stringclasses 14
values |
|---|---|---|---|---|---|---|---|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/double.cpp
|
.cpp
| 1,501
| 33
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define SCALAR double
#define SCALAR_SUFFIX d
#define SCALAR_SUFFIX_UP "D"
#define ISCOMPLEX 0
#include "level1_impl.h"
#include "level1_real_impl.h"
#include "level2_impl.h"
#include "level2_real_impl.h"
#include "level3_impl.h"
double BLASFUNC(dsdot)(int* n, float* x, int* incx, float* y, int* incy)
{
if(*n<=0) return 0;
if(*incx==1 && *incy==1) return (make_vector(x,*n).cast<double>().cwiseProduct(make_vector(y,*n).cast<double>())).sum();
else if(*incx>0 && *incy>0) return (make_vector(x,*n,*incx).cast<double>().cwiseProduct(make_vector(y,*n,*incy).cast<double>())).sum();
else if(*incx<0 && *incy>0) return (make_vector(x,*n,-*incx).reverse().cast<double>().cwiseProduct(make_vector(y,*n,*incy).cast<double>())).sum();
else if(*incx>0 && *incy<0) return (make_vector(x,*n,*incx).cast<double>().cwiseProduct(make_vector(y,*n,-*incy).reverse().cast<double>())).sum();
else if(*incx<0 && *incy<0) return (make_vector(x,*n,-*incx).reverse().cast<double>().cwiseProduct(make_vector(y,*n,-*incy).reverse().cast<double>())).sum();
else return 0;
}
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/common.h
|
.h
| 4,361
| 164
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLAS_COMMON_H
#define EIGEN_BLAS_COMMON_H
#include "../Eigen/Core"
#include "../Eigen/Jacobi"
#include <complex>
#ifndef SCALAR
#error the token SCALAR must be defined to compile this file
#endif
#include "../Eigen/src/misc/blas.h"
#define NOTR 0
#define TR 1
#define ADJ 2
#define LEFT 0
#define RIGHT 1
#define UP 0
#define LO 1
#define NUNIT 0
#define UNIT 1
#define INVALID 0xff
#define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \
: ((X)=='T' || (X)=='t') ? TR \
: ((X)=='C' || (X)=='c') ? ADJ \
: INVALID)
#define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \
: ((X)=='R' || (X)=='r') ? RIGHT \
: INVALID)
#define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \
: ((X)=='L' || (X)=='l') ? LO \
: INVALID)
#define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \
: ((X)=='U' || (X)=='u') ? UNIT \
: INVALID)
inline bool check_op(const char* op)
{
return OP(*op)!=0xff;
}
inline bool check_side(const char* side)
{
return SIDE(*side)!=0xff;
}
inline bool check_uplo(const char* uplo)
{
return UPLO(*uplo)!=0xff;
}
namespace Eigen {
#include "BandTriangularSolver.h"
#include "GeneralRank1Update.h"
#include "PackedSelfadjointProduct.h"
#include "PackedTriangularMatrixVector.h"
#include "PackedTriangularSolverVector.h"
#include "Rank2Update.h"
}
using namespace Eigen;
typedef SCALAR Scalar;
typedef NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
enum
{
IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
Conj = IsComplex
};
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
typedef Map<const Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > ConstMatrixType;
typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
template<typename T>
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(T* data, int rows, int cols, int stride)
{
return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(const T* data, int rows, int cols, int stride)
{
return Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(T* data, int size, int incr)
{
return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(const T* data, int size, int incr)
{
return Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<Matrix<T,Dynamic,1> > make_vector(T* data, int size)
{
return Map<Matrix<T,Dynamic,1> >(data, size);
}
template<typename T>
Map<const Matrix<T,Dynamic,1> > make_vector(const T* data, int size)
{
return Map<const Matrix<T,Dynamic,1> >(data, size);
}
template<typename T>
T* get_compact_vector(T* x, int n, int incx)
{
if(incx==1)
return x;
typename Eigen::internal::remove_const<T>::type* ret = new Scalar[n];
if(incx<0) make_vector(ret,n) = make_vector(x,n,-incx).reverse();
else make_vector(ret,n) = make_vector(x,n, incx);
return ret;
}
template<typename T>
T* copy_back(T* x_cpy, T* x, int n, int incx)
{
if(x_cpy==x)
return 0;
if(incx<0) make_vector(x,n,-incx).reverse() = make_vector(x_cpy,n);
else make_vector(x,n, incx) = make_vector(x_cpy,n);
return x_cpy;
}
#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
#endif // EIGEN_BLAS_COMMON_H
|
Unknown
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/PackedTriangularMatrixVector.h
|
.h
| 3,165
| 80
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
#define EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
namespace internal {
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
struct packed_triangular_matrix_vector_product;
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor>
{
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = (Mode & Lower) ==Lower,
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
{
internal::conj_if<ConjRhs> cj;
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
for (Index i=0; i<size; ++i)
{
Index s = IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
Index r = IsLower ? size-i: i+1;
if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
ResMap(res+(IsLower ? s+i : 0),r) += alpha * cj(rhs[i]) * ConjLhsType(LhsMap(lhs+s,r));
if (HasUnitDiag)
res[i] += alpha * cj(rhs[i]);
lhs += IsLower ? size-i: i+1;
}
};
};
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor>
{
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = (Mode & Lower) ==Lower,
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
{
internal::conj_if<ConjRhs> cj;
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
typedef typename conj_expr_if<ConjRhs,RhsMap>::type ConjRhsType;
for (Index i=0; i<size; ++i)
{
Index s = !IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
Index r = IsLower ? i+1 : size-i;
if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
res[i] += alpha * (ConjLhsType(LhsMap(lhs+s,r)).cwiseProduct(ConjRhsType(RhsMap(rhs+(IsLower ? 0 : s+i),r)))).sum();
if (HasUnitDiag)
res[i] += alpha * cj(rhs[i]);
lhs += IsLower ? i+1 : size-i;
}
};
};
} // end namespace internal
#endif // EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
|
Unknown
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/level2_cplx_impl.h
|
.h
| 12,223
| 361
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
/** ZHEMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(hemv)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda,
const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy)
{
typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar);
static const functype func[2] = {
// array index: UP
(internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run),
// array index: LO
(internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run),
};
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
const Scalar* x = reinterpret_cast<const Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
if(*n==0)
return 1;
const Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) make_vector(actual_y, *n).setZero();
else make_vector(actual_y, *n) *= beta;
}
if(alpha!=Scalar(0))
{
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *lda, actual_x, actual_y, alpha);
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
/** ZHBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian band matrix, with k super-diagonals.
*/
// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPR performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
{
typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
static const functype func[2] = {
// array index: UP
(internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
// array index: LO
(internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
};
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* ap = reinterpret_cast<Scalar*>(pap);
RealScalar alpha = *palpha;
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, ap, x_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
/** ZHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
{
typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
static const functype func[2] = {
// array index: UP
(internal::packed_rank2_update_selector<Scalar,int,Upper>::run),
// array index: LO
(internal::packed_rank2_update_selector<Scalar,int,Lower>::run),
};
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* ap = reinterpret_cast<Scalar*>(pap);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, ap, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZHER performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
{
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
static const functype func[2] = {
// array index: UP
(selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
// array index: LO
(selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
};
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* a = reinterpret_cast<Scalar*>(pa);
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*lda<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
if(alpha==RealScalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
/** ZHER2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an n
* by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
static const functype func[2] = {
// array index: UP
(internal::rank2_update_selector<Scalar,int,Upper>::run),
// array index: LO
(internal::rank2_update_selector<Scalar,int,Lower>::run),
};
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERU performs the rank 1 operation
*
* A := alpha*x*y' + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERC performs the rank 1 operation
*
* A := alpha*x*conjg( y' ) + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
|
Unknown
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/PackedSelfadjointProduct.h
|
.h
| 2,036
| 54
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SELFADJOINT_PACKED_PRODUCT_H
#define EIGEN_SELFADJOINT_PACKED_PRODUCT_H
namespace internal {
/* Optimized matrix += alpha * uv'
* The matrix is in packed form.
*/
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_packed_rank1_update;
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
{
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
conj_if<ConjRhs> cj;
for (Index i=0; i<size; ++i)
{
Map<Matrix<Scalar,Dynamic,1> >(mat, UpLo==Lower ? size-i : (i+1)) += alpha * cj(vec[i]) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)));
//FIXME This should be handled outside.
mat[UpLo==Lower ? 0 : i] = numext::real(mat[UpLo==Lower ? 0 : i]);
mat += UpLo==Lower ? size-i : (i+1);
}
}
};
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_packed_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
{
selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,vec,alpha);
}
};
} // end namespace internal
#endif // EIGEN_SELFADJOINT_PACKED_PRODUCT_H
|
Unknown
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/dblat3.f
|
.f
| 104,262
| 2,874
|
*> \brief \b DBLAT3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM DBLAT3
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the DOUBLE PRECISION Level 3 Blas.
*>
*> The program must be driven by a short data file. The first 14 records
*> of the file are read using list-directed input, the last 6 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 20 lines:
*> 'dblat3.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'DBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 3 NUMBER OF VALUES OF ALPHA
*> 0.0 1.0 0.7 VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> 0.0 1.0 1.3 VALUES OF BETA
*> DGEMM T PUT F FOR NO TEST. SAME COLUMNS.
*> DSYMM T PUT F FOR NO TEST. SAME COLUMNS.
*> DTRMM T PUT F FOR NO TEST. SAME COLUMNS.
*> DTRSM T PUT F FOR NO TEST. SAME COLUMNS.
*> DSYRK T PUT F FOR NO TEST. SAME COLUMNS.
*> DSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S.
*> A Set of Level 3 Basic Linear Algebra Subprograms.
*>
*> Technical Memorandum No.88 (Revision 1), Mathematics and
*> Computer Science Division, Argonne National Laboratory, 9700
*> South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup double_blas_testing
*
* =====================================================================
PROGRAM DBLAT3
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 6 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER NMAX
PARAMETER ( NMAX = 65 )
INTEGER NIDMAX, NALMAX, NBEMAX
PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
DOUBLE PRECISION EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANSA, TRANSB
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
DOUBLE PRECISION AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ),
$ BB( NMAX*NMAX ), BET( NBEMAX ),
$ BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ G( NMAX ), W( 2*NMAX )
INTEGER IDIM( NIDMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
DOUBLE PRECISION DDIFF
LOGICAL LDE
EXTERNAL DDIFF, LDE
* .. External Subroutines ..
EXTERNAL DCHK1, DCHK2, DCHK3, DCHK4, DCHK5, DCHKE, DMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'DGEMM ', 'DSYMM ', 'DTRMM ', 'DTRSM ',
$ 'DSYRK ', 'DSYR2K'/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 220
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 220
END IF
10 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 220
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 220
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9984 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 20 I = 1, NSUBS
LTEST( I ) = .FALSE.
20 CONTINUE
30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT
DO 40 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 50
40 CONTINUE
WRITE( NOUT, FMT = 9990 )SNAMET
STOP
50 LTEST( I ) = LTESTT
GO TO 30
*
60 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(ZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of DMMCH using exact data.
*
N = MIN( 32, NMAX )
DO 100 J = 1, N
DO 90 I = 1, N
AB( I, J ) = MAX( I - J + 1, 0 )
90 CONTINUE
AB( J, NMAX + 1 ) = J
AB( 1, NMAX + J ) = J
C( J, 1 ) = ZERO
100 CONTINUE
DO 110 J = 1, N
CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
110 CONTINUE
* CC holds the exact result. On exit from DMMCH CT holds
* the result computed by DMMCH.
TRANSA = 'N'
TRANSB = 'N'
CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LDE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'T'
CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LDE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
DO 120 J = 1, N
AB( J, NMAX + 1 ) = N - J + 1
AB( 1, NMAX + J ) = N - J + 1
120 CONTINUE
DO 130 J = 1, N
CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 -
$ ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
TRANSA = 'T'
TRANSB = 'N'
CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LDE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'T'
CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LDE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 200 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL DCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 150, 160, 160, 170, 180 )ISNUM
* Test DGEMM, 01.
140 CALL DCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test DSYMM, 02.
150 CALL DCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test DTRMM, 03, DTRSM, 04.
160 CALL DCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB,
$ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C )
GO TO 190
* Test DSYRK, 05.
170 CALL DCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test DSYR2K, 06.
180 CALL DCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
GO TO 190
*
190 IF( FATAL.AND.SFATAL )
$ GO TO 210
END IF
200 CONTINUE
WRITE( NOUT, FMT = 9986 )
GO TO 230
*
210 CONTINUE
WRITE( NOUT, FMT = 9985 )
GO TO 230
*
220 CONTINUE
WRITE( NOUT, FMT = 9991 )
*
230 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' TESTS OF THE DOUBLE PRECISION LEVEL 3 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9994 FORMAT( ' FOR N ', 9I6 )
9993 FORMAT( ' FOR ALPHA ', 7F6.1 )
9992 FORMAT( ' FOR BETA ', 7F6.1 )
9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9989 FORMAT( ' ERROR IN DMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' DMMCH WAS CALLED WITH TRANSA = ', A1,
$ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ',
$ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ',
$ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ',
$ '*******' )
9988 FORMAT( A6, L2 )
9987 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9986 FORMAT( /' END OF TESTS' )
9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of DBLAT3.
*
END
SUBROUTINE DCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests DGEMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX
INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA,
$ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M,
$ MA, MB, MS, N, NA, NARGS, NB, NC, NS
LOGICAL NULL, RESET, SAME, TRANA, TRANB
CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DGEMM, DMAKE, DMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
*
NARGS = 13
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 110 IM = 1, NIDIM
M = IDIM( IM )
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICA = 1, 3
TRANSA = ICH( ICA: ICA )
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
*
IF( TRANA )THEN
MA = K
NA = M
ELSE
MA = M
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL DMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICB = 1, 3
TRANSB = ICH( ICB: ICB )
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
IF( TRANB )THEN
MB = N
NB = K
ELSE
MB = K
NB = N
END IF
* Set LDB to 1 more than minimum value if room.
LDB = MB
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 70
LBB = LDB*NB
*
* Generate the matrix B.
*
CALL DMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB,
$ LDB, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL DMAKE( 'GE', ' ', ' ', M, N, C, NMAX,
$ CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANAS = TRANSA
TRANBS = TRANSB
MS = M
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB,
$ BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL DGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
$ AA, LDA, BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANSA.EQ.TRANAS
ISAME( 2 ) = TRANSB.EQ.TRANBS
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LDE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LDE( BS, BB, LBB )
ISAME( 10 ) = LDBS.EQ.LDB
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LDE( CS, CC, LCC )
ELSE
ISAME( 12 ) = LDERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 13 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL DMMCH( TRANSA, TRANSB, M, N, K,
$ ALPHA, A, NMAX, B, NMAX, BETA,
$ C, NMAX, CT, G, CC, LDC, EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K,
$ ALPHA, LDA, LDB, BETA, LDC
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',',
$ 3( I3, ',' ), F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', ',
$ 'C,', I3, ').' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK1.
*
END
SUBROUTINE DCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests DSYMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX
INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC,
$ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA,
$ NARGS, NC, NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 SIDE, SIDES, UPLO, UPLOS
CHARACTER*2 ICHS, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMMCH, DSYMM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHS/'LR'/, ICHU/'UL'/
* .. Executable Statements ..
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 100 IM = 1, NIDIM
M = IDIM( IM )
*
DO 90 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 90
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 90
LBB = LDB*N
*
* Generate the matrix B.
*
CALL DMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET,
$ ZERO )
*
DO 80 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
*
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
* Generate the symmetric matrix A.
*
CALL DMAKE( 'SY', UPLO, ' ', NA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL DMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE,
$ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL DSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 110
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LDE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LDE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LDE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LDERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 110
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL DMMCH( 'N', 'N', M, N, M, ALPHA, A,
$ NMAX, B, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL DMMCH( 'N', 'N', M, N, N, ALPHA, B,
$ NMAX, A, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 120
*
110 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA,
$ LDB, BETA, LDC
*
120 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK2.
*
END
SUBROUTINE DCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS,
$ B, BB, BS, CT, G, C )
*
* Tests DTRMM and DTRSM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX
INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB,
$ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC,
$ NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO,
$ UPLOS
CHARACTER*2 ICHD, ICHS, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMMCH, DTRMM, DTRSM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/
* .. Executable Statements ..
*
NARGS = 11
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
* Set up zero matrix for DMMCH.
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
DO 140 IM = 1, NIDIM
M = IDIM( IM )
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 130
LBB = LDB*N
NULL = M.LE.0.OR.N.LE.0
*
DO 120 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 130
LAA = LDA*NA
*
DO 110 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 100 ICT = 1, 3
TRANSA = ICHT( ICT: ICT )
*
DO 90 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
CALL DMAKE( 'TR', UPLO, DIAG, NA, NA, A,
$ NMAX, AA, LDA, RESET, ZERO )
*
* Generate the matrix B.
*
CALL DMAKE( 'GE', ' ', ' ', M, N, B, NMAX,
$ BB, LDB, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
TRANAS = TRANSA
DIAGS = DIAG
MS = M
NS = N
ALS = ALPHA
DO 30 I = 1, LAA
AS( I ) = AA( I )
30 CONTINUE
LDAS = LDA
DO 40 I = 1, LBB
BS( I ) = BB( I )
40 CONTINUE
LDBS = LDB
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL DTRMM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL DTRSM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = TRANAS.EQ.TRANSA
ISAME( 4 ) = DIAGS.EQ.DIAG
ISAME( 5 ) = MS.EQ.M
ISAME( 6 ) = NS.EQ.N
ISAME( 7 ) = ALS.EQ.ALPHA
ISAME( 8 ) = LDE( AS, AA, LAA )
ISAME( 9 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 10 ) = LDE( BS, BB, LBB )
ELSE
ISAME( 10 ) = LDERES( 'GE', ' ', M, N, BS,
$ BB, LDB )
END IF
ISAME( 11 ) = LDBS.EQ.LDB
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 50 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
50 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL DMMCH( TRANSA, 'N', M, N, M,
$ ALPHA, A, NMAX, B, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL DMMCH( 'N', TRANSA, M, N, N,
$ ALPHA, B, NMAX, A, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
*
* Compute approximation to original
* matrix.
*
DO 70 J = 1, N
DO 60 I = 1, M
C( I, J ) = BB( I + ( J - 1 )*
$ LDB )
BB( I + ( J - 1 )*LDB ) = ALPHA*
$ B( I, J )
60 CONTINUE
70 CONTINUE
*
IF( LEFT )THEN
CALL DMMCH( TRANSA, 'N', M, N, M,
$ ONE, A, NMAX, C, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
ELSE
CALL DMMCH( 'N', TRANSA, M, N, N,
$ ONE, C, NMAX, A, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
END IF
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 150
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, LDA, LDB
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ', B,', I3, ') .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK3.
*
END
SUBROUTINE DCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests DSYRK.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, BETA, BETS, ERR, ERRMAX
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS,
$ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA,
$ NARGS, NC, NS
LOGICAL NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMMCH, DSYRK
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NTC'/, ICHU/'UL'/
* .. Executable Statements ..
*
NARGS = 10
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL DMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL DMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
BETS = BETA
DO 20 I = 1, LCC
CS( I ) = CC( I )
20 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL DSYRK( UPLO, TRANS, N, K, ALPHA, AA, LDA,
$ BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LDE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = BETS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LDE( CS, CC, LCC )
ELSE
ISAME( 9 ) = LDERES( 'SY', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 10 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
JC = 1
DO 40 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
CALL DMMCH( 'T', 'N', LJ, 1, K, ALPHA,
$ A( 1, JJ ), NMAX,
$ A( 1, J ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL DMMCH( 'N', 'T', LJ, 1, K, ALPHA,
$ A( JJ, 1 ), NMAX,
$ A( J, 1 ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
40 CONTINUE
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, BETA, LDC
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK4.
*
END
SUBROUTINE DCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
*
* Tests DSYR2K.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ),
$ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ),
$ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ G( NMAX ), W( 2*NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, BETA, BETS, ERR, ERRMAX
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB,
$ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS,
$ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS
LOGICAL NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMMCH, DSYR2K
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NTC'/, ICHU/'UL'/
* .. Executable Statements ..
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 130
LCC = LDC*N
NULL = N.LE.0
*
DO 120 IK = 1, NIDIM
K = IDIM( IK )
*
DO 110 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*NA
*
* Generate the matrix A.
*
IF( TRAN )THEN
CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA,
$ LDA, RESET, ZERO )
ELSE
CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA,
$ RESET, ZERO )
END IF
*
* Generate the matrix B.
*
LDB = LDA
LBB = LAA
IF( TRAN )THEN
CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ),
$ 2*NMAX, BB, LDB, RESET, ZERO )
ELSE
CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ),
$ NMAX, BB, LDB, RESET, ZERO )
END IF
*
DO 100 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 90 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 80 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL DMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BETS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL DSYR2K( UPLO, TRANS, N, K, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LDE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LDE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BETS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LDE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LDERES( 'SY', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
JJAB = 1
JC = 1
DO 70 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
DO 50 I = 1, K
W( I ) = AB( ( J - 1 )*2*NMAX + K +
$ I )
W( K + I ) = AB( ( J - 1 )*2*NMAX +
$ I )
50 CONTINUE
CALL DMMCH( 'T', 'N', LJ, 1, 2*K,
$ ALPHA, AB( JJAB ), 2*NMAX,
$ W, 2*NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
DO 60 I = 1, K
W( I ) = AB( ( K + I - 1 )*NMAX +
$ J )
W( K + I ) = AB( ( I - 1 )*NMAX +
$ J )
60 CONTINUE
CALL DMMCH( 'N', 'N', LJ, 1, 2*K,
$ ALPHA, AB( JJ ), NMAX, W,
$ 2*NMAX, BETA, C( JJ, J ),
$ NMAX, CT, G, CC( JC ), LDC,
$ EPS, ERR, FATAL, NOUT,
$ .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
IF( TRAN )
$ JJAB = JJAB + 2*NMAX
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 140
70 CONTINUE
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, LDB, BETA, LDC
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK5.
*
END
SUBROUTINE DCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 3 Blas.
* Requires a special version of the error-handling routine XERBLA.
* A, B and C should not need to be defined.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* 3-19-92: Initialize ALPHA and BETA (eca)
* 3-19-92: Fix argument 12 in calls to SSYMM with INFOT = 9 (eca)
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Parameters ..
DOUBLE PRECISION ONE, TWO
PARAMETER ( ONE = 1.0D0, TWO = 2.0D0 )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, BETA
* .. Local Arrays ..
DOUBLE PRECISION A( 2, 1 ), B( 2, 1 ), C( 2, 1 )
* .. External Subroutines ..
EXTERNAL CHKXER, DGEMM, DSYMM, DSYR2K, DSYRK, DTRMM,
$ DTRSM
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
*
* Initialize ALPHA and BETA.
*
ALPHA = ONE
BETA = TWO
*
GO TO ( 10, 20, 30, 40, 50, 60 )ISNUM
10 INFOT = 1
CALL DGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 1
CALL DGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
20 INFOT = 1
CALL DSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
30 INFOT = 1
CALL DTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
40 INFOT = 1
CALL DTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
50 INFOT = 1
CALL DSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSYRK( 'U', '/', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
60 INFOT = 1
CALL DSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSYR2K( 'U', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
70 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of DCHKE.
*
END
SUBROUTINE DMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET,
$ TRANSL )
*
* Generates values for an M by N matrix A.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'SY' or 'TR'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
DOUBLE PRECISION ROGUE
PARAMETER ( ROGUE = -1.0D10 )
* .. Scalar Arguments ..
DOUBLE PRECISION TRANSL
INTEGER LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
DOUBLE PRECISION DBEG
EXTERNAL DBEG
* .. Executable Statements ..
GEN = TYPE.EQ.'GE'
SYM = TYPE.EQ.'SY'
TRI = TYPE.EQ.'TR'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
A( I, J ) = DBEG( RESET ) + TRANSL
IF( I.NE.J )THEN
* Set some elements to zero
IF( N.GT.3.AND.J.EQ.N/2 )
$ A( I, J ) = ZERO
IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN
DO 90 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 60 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
70 CONTINUE
DO 80 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
END IF
RETURN
*
* End of DMAKE.
*
END
SUBROUTINE DMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL,
$ NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA, BETA, EPS, ERR
INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANSA, TRANSB
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ CC( LDCC, * ), CT( * ), G( * )
* .. Local Scalars ..
DOUBLE PRECISION ERRI
INTEGER I, J, K
LOGICAL TRANA, TRANB
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* .. Executable Statements ..
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
* Compute expected result, one column at a time, in CT using data
* in A, B and C.
* Compute gauges in G.
*
DO 120 J = 1, N
*
DO 10 I = 1, M
CT( I ) = ZERO
G( I ) = ZERO
10 CONTINUE
IF( .NOT.TRANA.AND..NOT.TRANB )THEN
DO 30 K = 1, KK
DO 20 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( K, J )
G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( K, J ) )
20 CONTINUE
30 CONTINUE
ELSE IF( TRANA.AND..NOT.TRANB )THEN
DO 50 K = 1, KK
DO 40 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( K, J )
G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( K, J ) )
40 CONTINUE
50 CONTINUE
ELSE IF( .NOT.TRANA.AND.TRANB )THEN
DO 70 K = 1, KK
DO 60 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( J, K )
G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( J, K ) )
60 CONTINUE
70 CONTINUE
ELSE IF( TRANA.AND.TRANB )THEN
DO 90 K = 1, KK
DO 80 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( J, K )
G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( J, K ) )
80 CONTINUE
90 CONTINUE
END IF
DO 100 I = 1, M
CT( I ) = ALPHA*CT( I ) + BETA*C( I, J )
G( I ) = ABS( ALPHA )*G( I ) + ABS( BETA )*ABS( C( I, J ) )
100 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 110 I = 1, M
ERRI = ABS( CT( I ) - CC( I, J ) )/EPS
IF( G( I ).NE.ZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.ONE )
$ GO TO 130
110 CONTINUE
*
120 CONTINUE
*
* If the loop completes, all results are at least half accurate.
GO TO 150
*
* Report fatal error.
*
130 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 140 I = 1, M
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J )
ELSE
WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I )
END IF
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9997 )J
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RESULT COMPU',
$ 'TED RESULT' )
9998 FORMAT( 1X, I7, 2G18.6 )
9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
*
* End of DMMCH.
*
END
LOGICAL FUNCTION LDE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
DOUBLE PRECISION RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LDE = .TRUE.
GO TO 30
20 CONTINUE
LDE = .FALSE.
30 RETURN
*
* End of LDE.
*
END
LOGICAL FUNCTION LDERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE' or 'SY'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
DOUBLE PRECISION AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'SY' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LDERES = .TRUE.
GO TO 80
70 CONTINUE
LDERES = .FALSE.
80 RETURN
*
* End of LDERES.
*
END
DOUBLE PRECISION FUNCTION DBEG( RESET )
*
* Generates random numbers uniformly distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, MI
* .. Save statement ..
SAVE I, IC, MI
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
I = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I is bounded between 1 and 999.
* If initial I = 1,2,3,6,7 or 9, the period will be 50.
* If initial I = 4 or 8, the period will be 25.
* If initial I = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I in 6.
*
IC = IC + 1
10 I = I*MI
I = I - 1000*( I/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
DBEG = ( I - 500 )/1001.0D0
RETURN
*
* End of DBEG.
*
END
DOUBLE PRECISION FUNCTION DDIFF( X, Y )
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
DOUBLE PRECISION X, Y
* .. Executable Statements ..
DDIFF = X - Y
RETURN
*
* End of DDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 3 BLAS
* routines.
*
* XERBLA is an error handler for the Level 3 BLAS routines.
*
* It is called by the Level 3 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/zblat3.f
|
.f
| 131,995
| 3,503
|
*> \brief \b ZBLAT3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM ZBLAT3
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX*16 Level 3 Blas.
*>
*> The program must be driven by a short data file. The first 14 records
*> of the file are read using list-directed input, the last 9 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 23 lines:
*> 'zblat3.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'ZBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 3 NUMBER OF VALUES OF ALPHA
*> (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
*> ZGEMM T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHEMM T PUT F FOR NO TEST. SAME COLUMNS.
*> ZSYMM T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTRMM T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTRSM T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHERK T PUT F FOR NO TEST. SAME COLUMNS.
*> ZSYRK T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHER2K T PUT F FOR NO TEST. SAME COLUMNS.
*> ZSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
*>
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S.
*> A Set of Level 3 Basic Linear Algebra Subprograms.
*>
*> Technical Memorandum No.88 (Revision 1), Mathematics and
*> Computer Science Division, Argonne National Laboratory, 9700
*> South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex16_blas_testing
*
* =====================================================================
PROGRAM ZBLAT3
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 9 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
INTEGER NMAX
PARAMETER ( NMAX = 65 )
INTEGER NIDMAX, NALMAX, NBEMAX
PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
DOUBLE PRECISION EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANSA, TRANSB
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
COMPLEX*16 AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ),
$ BB( NMAX*NMAX ), BET( NBEMAX ),
$ BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ W( 2*NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
DOUBLE PRECISION DDIFF
LOGICAL LZE
EXTERNAL DDIFF, LZE
* .. External Subroutines ..
EXTERNAL ZCHK1, ZCHK2, ZCHK3, ZCHK4, ZCHK5, ZCHKE, ZMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'ZGEMM ', 'ZHEMM ', 'ZSYMM ', 'ZTRMM ',
$ 'ZTRSM ', 'ZHERK ', 'ZSYRK ', 'ZHER2K',
$ 'ZSYR2K'/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 220
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 220
END IF
10 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 220
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 220
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9984 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 20 I = 1, NSUBS
LTEST( I ) = .FALSE.
20 CONTINUE
30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT
DO 40 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 50
40 CONTINUE
WRITE( NOUT, FMT = 9990 )SNAMET
STOP
50 LTEST( I ) = LTESTT
GO TO 30
*
60 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(RZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of ZMMCH using exact data.
*
N = MIN( 32, NMAX )
DO 100 J = 1, N
DO 90 I = 1, N
AB( I, J ) = MAX( I - J + 1, 0 )
90 CONTINUE
AB( J, NMAX + 1 ) = J
AB( 1, NMAX + J ) = J
C( J, 1 ) = ZERO
100 CONTINUE
DO 110 J = 1, N
CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
110 CONTINUE
* CC holds the exact result. On exit from ZMMCH CT holds
* the result computed by ZMMCH.
TRANSA = 'N'
TRANSB = 'N'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'C'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
DO 120 J = 1, N
AB( J, NMAX + 1 ) = N - J + 1
AB( 1, NMAX + J ) = N - J + 1
120 CONTINUE
DO 130 J = 1, N
CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 -
$ ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
TRANSA = 'C'
TRANSB = 'N'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'C'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 200 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL ZCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 150, 150, 160, 160, 170, 170,
$ 180, 180 )ISNUM
* Test ZGEMM, 01.
140 CALL ZCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test ZHEMM, 02, ZSYMM, 03.
150 CALL ZCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test ZTRMM, 04, ZTRSM, 05.
160 CALL ZCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB,
$ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C )
GO TO 190
* Test ZHERK, 06, ZSYRK, 07.
170 CALL ZCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test ZHER2K, 08, ZSYR2K, 09.
180 CALL ZCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
GO TO 190
*
190 IF( FATAL.AND.SFATAL )
$ GO TO 210
END IF
200 CONTINUE
WRITE( NOUT, FMT = 9986 )
GO TO 230
*
210 CONTINUE
WRITE( NOUT, FMT = 9985 )
GO TO 230
*
220 CONTINUE
WRITE( NOUT, FMT = 9991 )
*
230 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' TESTS OF THE COMPLEX*16 LEVEL 3 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9994 FORMAT( ' FOR N ', 9I6 )
9993 FORMAT( ' FOR ALPHA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9992 FORMAT( ' FOR BETA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9989 FORMAT( ' ERROR IN ZMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' ZMMCH WAS CALLED WITH TRANSA = ', A1,
$ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ',
$ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ',
$ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ',
$ '*******' )
9988 FORMAT( A6, L2 )
9987 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9986 FORMAT( /' END OF TESTS' )
9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of ZBLAT3.
*
END
SUBROUTINE ZCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests ZGEMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BLS
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA,
$ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M,
$ MA, MB, MS, N, NA, NARGS, NB, NC, NS
LOGICAL NULL, RESET, SAME, TRANA, TRANB
CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZGEMM, ZMAKE, ZMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
*
NARGS = 13
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 110 IM = 1, NIDIM
M = IDIM( IM )
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICA = 1, 3
TRANSA = ICH( ICA: ICA )
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
*
IF( TRANA )THEN
MA = K
NA = M
ELSE
MA = M
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL ZMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICB = 1, 3
TRANSB = ICH( ICB: ICB )
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
IF( TRANB )THEN
MB = N
NB = K
ELSE
MB = K
NB = N
END IF
* Set LDB to 1 more than minimum value if room.
LDB = MB
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 70
LBB = LDB*NB
*
* Generate the matrix B.
*
CALL ZMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB,
$ LDB, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL ZMAKE( 'GE', ' ', ' ', M, N, C, NMAX,
$ CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANAS = TRANSA
TRANBS = TRANSB
MS = M
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB,
$ BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL ZGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
$ AA, LDA, BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANSA.EQ.TRANAS
ISAME( 2 ) = TRANSB.EQ.TRANBS
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LZE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LZE( BS, BB, LBB )
ISAME( 10 ) = LDBS.EQ.LDB
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 12 ) = LZERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 13 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL ZMMCH( TRANSA, TRANSB, M, N, K,
$ ALPHA, A, NMAX, B, NMAX, BETA,
$ C, NMAX, CT, G, CC, LDC, EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K,
$ ALPHA, LDA, LDB, BETA, LDC
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',',
$ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3,
$ ',(', F4.1, ',', F4.1, '), C,', I3, ').' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK1.
*
END
SUBROUTINE ZCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests ZHEMM and ZSYMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BLS
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC,
$ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA,
$ NARGS, NC, NS
LOGICAL CONJ, LEFT, NULL, RESET, SAME
CHARACTER*1 SIDE, SIDES, UPLO, UPLOS
CHARACTER*2 ICHS, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZHEMM, ZMAKE, ZMMCH, ZSYMM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHS/'LR'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 2: 3 ).EQ.'HE'
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IM = 1, NIDIM
M = IDIM( IM )
*
DO 90 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 90
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 90
LBB = LDB*N
*
* Generate the matrix B.
*
CALL ZMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET,
$ ZERO )
*
DO 80 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
*
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
* Generate the hermitian or symmetric matrix A.
*
CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', NA, NA, A, NMAX,
$ AA, LDA, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL ZMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE,
$ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
IF( CONJ )THEN
CALL ZHEMM( SIDE, UPLO, M, N, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
ELSE
CALL ZSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 110
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LZE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LZERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 110
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL ZMMCH( 'N', 'N', M, N, M, ALPHA, A,
$ NMAX, B, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL ZMMCH( 'N', 'N', M, N, N, ALPHA, B,
$ NMAX, A, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 120
*
110 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA,
$ LDB, BETA, LDC
*
120 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1,
$ ',', F4.1, '), C,', I3, ') .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK2.
*
END
SUBROUTINE ZCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS,
$ B, BB, BS, CT, G, C )
*
* Tests ZTRMM and ZTRSM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB,
$ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC,
$ NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO,
$ UPLOS
CHARACTER*2 ICHD, ICHS, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZMAKE, ZMMCH, ZTRMM, ZTRSM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/
* .. Executable Statements ..
*
NARGS = 11
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
* Set up zero matrix for ZMMCH.
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
DO 140 IM = 1, NIDIM
M = IDIM( IM )
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 130
LBB = LDB*N
NULL = M.LE.0.OR.N.LE.0
*
DO 120 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 130
LAA = LDA*NA
*
DO 110 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 100 ICT = 1, 3
TRANSA = ICHT( ICT: ICT )
*
DO 90 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
CALL ZMAKE( 'TR', UPLO, DIAG, NA, NA, A,
$ NMAX, AA, LDA, RESET, ZERO )
*
* Generate the matrix B.
*
CALL ZMAKE( 'GE', ' ', ' ', M, N, B, NMAX,
$ BB, LDB, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
TRANAS = TRANSA
DIAGS = DIAG
MS = M
NS = N
ALS = ALPHA
DO 30 I = 1, LAA
AS( I ) = AA( I )
30 CONTINUE
LDAS = LDA
DO 40 I = 1, LBB
BS( I ) = BB( I )
40 CONTINUE
LDBS = LDB
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL ZTRMM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL ZTRSM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = TRANAS.EQ.TRANSA
ISAME( 4 ) = DIAGS.EQ.DIAG
ISAME( 5 ) = MS.EQ.M
ISAME( 6 ) = NS.EQ.N
ISAME( 7 ) = ALS.EQ.ALPHA
ISAME( 8 ) = LZE( AS, AA, LAA )
ISAME( 9 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 10 ) = LZE( BS, BB, LBB )
ELSE
ISAME( 10 ) = LZERES( 'GE', ' ', M, N, BS,
$ BB, LDB )
END IF
ISAME( 11 ) = LDBS.EQ.LDB
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 50 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
50 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL ZMMCH( TRANSA, 'N', M, N, M,
$ ALPHA, A, NMAX, B, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL ZMMCH( 'N', TRANSA, M, N, N,
$ ALPHA, B, NMAX, A, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
*
* Compute approximation to original
* matrix.
*
DO 70 J = 1, N
DO 60 I = 1, M
C( I, J ) = BB( I + ( J - 1 )*
$ LDB )
BB( I + ( J - 1 )*LDB ) = ALPHA*
$ B( I, J )
60 CONTINUE
70 CONTINUE
*
IF( LEFT )THEN
CALL ZMMCH( TRANSA, 'N', M, N, M,
$ ONE, A, NMAX, C, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
ELSE
CALL ZMMCH( 'N', TRANSA, M, N, N,
$ ONE, C, NMAX, A, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
END IF
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 150
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, LDA, LDB
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ',
$ ' .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK3.
*
END
SUBROUTINE ZCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests ZHERK and ZSYRK.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RONE, RZERO
PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BETS
DOUBLE PRECISION ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS,
$ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA,
$ NARGS, NC, NS
LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS
CHARACTER*2 ICHT, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZHERK, ZMAKE, ZMMCH, ZSYRK
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, DBLE
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NC'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 2: 3 ).EQ.'HE'
*
NARGS = 10
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICT = 1, 2
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'C'
IF( TRAN.AND..NOT.CONJ )
$ TRANS = 'T'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL ZMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
IF( CONJ )THEN
RALPHA = DBLE( ALPHA )
ALPHA = DCMPLX( RALPHA, RZERO )
END IF
*
DO 50 IB = 1, NBET
BETA = BET( IB )
IF( CONJ )THEN
RBETA = DBLE( BETA )
BETA = DCMPLX( RBETA, RZERO )
END IF
NULL = N.LE.0
IF( CONJ )
$ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ.
$ RZERO ).AND.RBETA.EQ.RONE )
*
* Generate the matrix C.
*
CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C,
$ NMAX, CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
IF( CONJ )THEN
RALS = RALPHA
ELSE
ALS = ALPHA
END IF
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
IF( CONJ )THEN
RBETS = RBETA
ELSE
BETS = BETA
END IF
DO 20 I = 1, LCC
CS( I ) = CC( I )
20 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( CONJ )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, RALPHA, LDA, RBETA, LDC
IF( REWI )
$ REWIND NTRA
CALL ZHERK( UPLO, TRANS, N, K, RALPHA, AA,
$ LDA, RBETA, CC, LDC )
ELSE
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL ZSYRK( UPLO, TRANS, N, K, ALPHA, AA,
$ LDA, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
IF( CONJ )THEN
ISAME( 5 ) = RALS.EQ.RALPHA
ELSE
ISAME( 5 ) = ALS.EQ.ALPHA
END IF
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( CONJ )THEN
ISAME( 8 ) = RBETS.EQ.RBETA
ELSE
ISAME( 8 ) = BETS.EQ.BETA
END IF
IF( NULL )THEN
ISAME( 9 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 9 ) = LZERES( SNAME( 2: 3 ), UPLO, N,
$ N, CS, CC, LDC )
END IF
ISAME( 10 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( CONJ )THEN
TRANST = 'C'
ELSE
TRANST = 'T'
END IF
JC = 1
DO 40 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
CALL ZMMCH( TRANST, 'N', LJ, 1, K,
$ ALPHA, A( 1, JJ ), NMAX,
$ A( 1, J ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL ZMMCH( 'N', TRANST, LJ, 1, K,
$ ALPHA, A( JJ, 1 ), NMAX,
$ A( J, 1 ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
40 CONTINUE
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( CONJ )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, RALPHA,
$ LDA, RBETA, LDC
ELSE
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, BETA, LDC
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1,
$ '), C,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK4.
*
END
SUBROUTINE ZCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
*
* Tests ZHER2K and ZSYR2K.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RONE, RZERO
PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ),
$ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ),
$ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ W( 2*NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BETS
DOUBLE PRECISION ERR, ERRMAX, RBETA, RBETS
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB,
$ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS,
$ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS
LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS
CHARACTER*2 ICHT, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZHER2K, ZMAKE, ZMMCH, ZSYR2K
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, DCONJG, MAX, DBLE
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NC'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 2: 3 ).EQ.'HE'
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 130
LCC = LDC*N
*
DO 120 IK = 1, NIDIM
K = IDIM( IK )
*
DO 110 ICT = 1, 2
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'C'
IF( TRAN.AND..NOT.CONJ )
$ TRANS = 'T'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*NA
*
* Generate the matrix A.
*
IF( TRAN )THEN
CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA,
$ LDA, RESET, ZERO )
ELSE
CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA,
$ RESET, ZERO )
END IF
*
* Generate the matrix B.
*
LDB = LDA
LBB = LAA
IF( TRAN )THEN
CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ),
$ 2*NMAX, BB, LDB, RESET, ZERO )
ELSE
CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ),
$ NMAX, BB, LDB, RESET, ZERO )
END IF
*
DO 100 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 90 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 80 IB = 1, NBET
BETA = BET( IB )
IF( CONJ )THEN
RBETA = DBLE( BETA )
BETA = DCMPLX( RBETA, RZERO )
END IF
NULL = N.LE.0
IF( CONJ )
$ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ.
$ ZERO ).AND.RBETA.EQ.RONE )
*
* Generate the matrix C.
*
CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C,
$ NMAX, CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
IF( CONJ )THEN
RBETS = RBETA
ELSE
BETS = BETA
END IF
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( CONJ )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, LDB, RBETA, LDC
IF( REWI )
$ REWIND NTRA
CALL ZHER2K( UPLO, TRANS, N, K, ALPHA, AA,
$ LDA, BB, LDB, RBETA, CC, LDC )
ELSE
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL ZSYR2K( UPLO, TRANS, N, K, ALPHA, AA,
$ LDA, BB, LDB, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LZE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
IF( CONJ )THEN
ISAME( 10 ) = RBETS.EQ.RBETA
ELSE
ISAME( 10 ) = BETS.EQ.BETA
END IF
IF( NULL )THEN
ISAME( 11 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LZERES( 'HE', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( CONJ )THEN
TRANST = 'C'
ELSE
TRANST = 'T'
END IF
JJAB = 1
JC = 1
DO 70 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
DO 50 I = 1, K
W( I ) = ALPHA*AB( ( J - 1 )*2*
$ NMAX + K + I )
IF( CONJ )THEN
W( K + I ) = DCONJG( ALPHA )*
$ AB( ( J - 1 )*2*
$ NMAX + I )
ELSE
W( K + I ) = ALPHA*
$ AB( ( J - 1 )*2*
$ NMAX + I )
END IF
50 CONTINUE
CALL ZMMCH( TRANST, 'N', LJ, 1, 2*K,
$ ONE, AB( JJAB ), 2*NMAX, W,
$ 2*NMAX, BETA, C( JJ, J ),
$ NMAX, CT, G, CC( JC ), LDC,
$ EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE
DO 60 I = 1, K
IF( CONJ )THEN
W( I ) = ALPHA*DCONJG( AB( ( K +
$ I - 1 )*NMAX + J ) )
W( K + I ) = DCONJG( ALPHA*
$ AB( ( I - 1 )*NMAX +
$ J ) )
ELSE
W( I ) = ALPHA*AB( ( K + I - 1 )*
$ NMAX + J )
W( K + I ) = ALPHA*
$ AB( ( I - 1 )*NMAX +
$ J )
END IF
60 CONTINUE
CALL ZMMCH( 'N', 'N', LJ, 1, 2*K, ONE,
$ AB( JJ ), NMAX, W, 2*NMAX,
$ BETA, C( JJ, J ), NMAX, CT,
$ G, CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
IF( TRAN )
$ JJAB = JJAB + 2*NMAX
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 140
70 CONTINUE
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( CONJ )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, LDB, RBETA, LDC
ELSE
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, LDB, BETA, LDC
END IF
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1,
$ ', C,', I3, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1,
$ ',', F4.1, '), C,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK5.
*
END
SUBROUTINE ZCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 3 Blas.
* Requires a special version of the error-handling routine XERBLA.
* A, B and C should not need to be defined.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* 3-19-92: Initialize ALPHA, BETA, RALPHA, and RBETA (eca)
* 3-19-92: Fix argument 12 in calls to ZSYMM and ZHEMM
* with INFOT = 9 (eca)
* 10-9-00: Declared INTRINSIC DCMPLX (susan)
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Parameters ..
REAL ONE, TWO
PARAMETER ( ONE = 1.0D0, TWO = 2.0D0 )
* .. Local Scalars ..
COMPLEX*16 ALPHA, BETA
DOUBLE PRECISION RALPHA, RBETA
* .. Local Arrays ..
COMPLEX*16 A( 2, 1 ), B( 2, 1 ), C( 2, 1 )
* .. External Subroutines ..
EXTERNAL ZGEMM, ZHEMM, ZHER2K, ZHERK, CHKXER, ZSYMM,
$ ZSYR2K, ZSYRK, ZTRMM, ZTRSM
* .. Intrinsic Functions ..
INTRINSIC DCMPLX
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
*
* Initialize ALPHA, BETA, RALPHA, and RBETA.
*
ALPHA = DCMPLX( ONE, -ONE )
BETA = DCMPLX( TWO, -TWO )
RALPHA = ONE
RBETA = TWO
*
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90 )ISNUM
10 INFOT = 1
CALL ZGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 1
CALL ZGEMM( '/', 'C', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 1
CALL ZGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGEMM( 'C', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'N', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'C', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'C', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'C', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'T', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'N', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'C', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'C', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'C', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'T', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'N', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'C', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'C', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'C', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'T', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'C', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'C', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'T', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'N', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'C', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'T', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'C', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'C', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'C', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'C', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'T', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
20 INFOT = 1
CALL ZHEMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHEMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHEMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHEMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHEMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHEMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHEMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHEMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHEMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHEMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHEMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHEMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHEMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHEMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
30 INFOT = 1
CALL ZSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
40 INFOT = 1
CALL ZTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
50 INFOT = 1
CALL ZTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
60 INFOT = 1
CALL ZHERK( '/', 'N', 0, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHERK( 'U', 'T', 0, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHERK( 'U', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHERK( 'U', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHERK( 'L', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHERK( 'L', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHERK( 'U', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHERK( 'U', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHERK( 'L', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHERK( 'L', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHERK( 'U', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHERK( 'U', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHERK( 'L', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHERK( 'L', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHERK( 'U', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHERK( 'U', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHERK( 'L', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHERK( 'L', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
70 INFOT = 1
CALL ZSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYRK( 'U', 'C', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
80 INFOT = 1
CALL ZHER2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHER2K( 'U', 'T', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHER2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHER2K( 'U', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHER2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHER2K( 'L', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHER2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHER2K( 'U', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHER2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHER2K( 'L', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHER2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHER2K( 'U', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHER2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHER2K( 'L', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHER2K( 'U', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHER2K( 'L', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHER2K( 'U', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHER2K( 'L', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
90 INFOT = 1
CALL ZSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYR2K( 'U', 'C', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
100 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of ZCHKE.
*
END
SUBROUTINE ZMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET,
$ TRANSL )
*
* Generates values for an M by N matrix A.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'HE', 'SY' or 'TR'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D10, 1.0D10 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
DOUBLE PRECISION RROGUE
PARAMETER ( RROGUE = -1.0D10 )
* .. Scalar Arguments ..
COMPLEX*16 TRANSL
INTEGER LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX*16 A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J, JJ
LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
COMPLEX*16 ZBEG
EXTERNAL ZBEG
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, DCONJG, DBLE
* .. Executable Statements ..
GEN = TYPE.EQ.'GE'
HER = TYPE.EQ.'HE'
SYM = TYPE.EQ.'SY'
TRI = TYPE.EQ.'TR'
UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
A( I, J ) = ZBEG( RESET ) + TRANSL
IF( I.NE.J )THEN
* Set some elements to zero
IF( N.GT.3.AND.J.EQ.N/2 )
$ A( I, J ) = ZERO
IF( HER )THEN
A( J, I ) = DCONJG( A( I, J ) )
ELSE IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( HER )
$ A( J, J ) = DCMPLX( DBLE( A( J, J ) ), RZERO )
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN
DO 90 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 60 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
70 CONTINUE
DO 80 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
IF( HER )THEN
JJ = J + ( J - 1 )*LDA
AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE )
END IF
90 CONTINUE
END IF
RETURN
*
* End of ZMAKE.
*
END
SUBROUTINE ZMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL,
$ NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO, RONE
PARAMETER ( RZERO = 0.0D0, RONE = 1.0D0 )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
DOUBLE PRECISION EPS, ERR
INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANSA, TRANSB
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ CC( LDCC, * ), CT( * )
DOUBLE PRECISION G( * )
* .. Local Scalars ..
COMPLEX*16 CL
DOUBLE PRECISION ERRI
INTEGER I, J, K
LOGICAL CTRANA, CTRANB, TRANA, TRANB
* .. Intrinsic Functions ..
INTRINSIC ABS, DIMAG, DCONJG, MAX, DBLE, SQRT
* .. Statement Functions ..
DOUBLE PRECISION ABS1
* .. Statement Function definitions ..
ABS1( CL ) = ABS( DBLE( CL ) ) + ABS( DIMAG( CL ) )
* .. Executable Statements ..
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
CTRANA = TRANSA.EQ.'C'
CTRANB = TRANSB.EQ.'C'
*
* Compute expected result, one column at a time, in CT using data
* in A, B and C.
* Compute gauges in G.
*
DO 220 J = 1, N
*
DO 10 I = 1, M
CT( I ) = ZERO
G( I ) = RZERO
10 CONTINUE
IF( .NOT.TRANA.AND..NOT.TRANB )THEN
DO 30 K = 1, KK
DO 20 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( K, J )
G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) )
20 CONTINUE
30 CONTINUE
ELSE IF( TRANA.AND..NOT.TRANB )THEN
IF( CTRANA )THEN
DO 50 K = 1, KK
DO 40 I = 1, M
CT( I ) = CT( I ) + DCONJG( A( K, I ) )*B( K, J )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( K, J ) )
40 CONTINUE
50 CONTINUE
ELSE
DO 70 K = 1, KK
DO 60 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( K, J )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( K, J ) )
60 CONTINUE
70 CONTINUE
END IF
ELSE IF( .NOT.TRANA.AND.TRANB )THEN
IF( CTRANB )THEN
DO 90 K = 1, KK
DO 80 I = 1, M
CT( I ) = CT( I ) + A( I, K )*DCONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( I, K ) )*
$ ABS1( B( J, K ) )
80 CONTINUE
90 CONTINUE
ELSE
DO 110 K = 1, KK
DO 100 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( J, K )
G( I ) = G( I ) + ABS1( A( I, K ) )*
$ ABS1( B( J, K ) )
100 CONTINUE
110 CONTINUE
END IF
ELSE IF( TRANA.AND.TRANB )THEN
IF( CTRANA )THEN
IF( CTRANB )THEN
DO 130 K = 1, KK
DO 120 I = 1, M
CT( I ) = CT( I ) + DCONJG( A( K, I ) )*
$ DCONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
120 CONTINUE
130 CONTINUE
ELSE
DO 150 K = 1, KK
DO 140 I = 1, M
CT( I ) = CT( I ) + DCONJG( A( K, I ) )*
$ B( J, K )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
140 CONTINUE
150 CONTINUE
END IF
ELSE
IF( CTRANB )THEN
DO 170 K = 1, KK
DO 160 I = 1, M
CT( I ) = CT( I ) + A( K, I )*
$ DCONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 190 K = 1, KK
DO 180 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( J, K )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
180 CONTINUE
190 CONTINUE
END IF
END IF
END IF
DO 200 I = 1, M
CT( I ) = ALPHA*CT( I ) + BETA*C( I, J )
G( I ) = ABS1( ALPHA )*G( I ) +
$ ABS1( BETA )*ABS1( C( I, J ) )
200 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 210 I = 1, M
ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS
IF( G( I ).NE.RZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.RONE )
$ GO TO 230
210 CONTINUE
*
220 CONTINUE
*
* If the loop completes, all results are at least half accurate.
GO TO 250
*
* Report fatal error.
*
230 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 240 I = 1, M
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J )
ELSE
WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I )
END IF
240 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9997 )J
*
250 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RE',
$ 'SULT COMPUTED RESULT' )
9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) )
9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
*
* End of ZMMCH.
*
END
LOGICAL FUNCTION LZE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
COMPLEX*16 RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LZE = .TRUE.
GO TO 30
20 CONTINUE
LZE = .FALSE.
30 RETURN
*
* End of LZE.
*
END
LOGICAL FUNCTION LZERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE' or 'HE' or 'SY'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX*16 AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LZERES = .TRUE.
GO TO 80
70 CONTINUE
LZERES = .FALSE.
80 RETURN
*
* End of LZERES.
*
END
COMPLEX*16 FUNCTION ZBEG( RESET )
*
* Generates complex numbers as pairs of random numbers uniformly
* distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, J, MI, MJ
* .. Save statement ..
SAVE I, IC, J, MI, MJ
* .. Intrinsic Functions ..
INTRINSIC DCMPLX
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
MJ = 457
I = 7
J = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I or J is bounded between 1 and 999.
* If initial I or J = 1,2,3,6,7 or 9, the period will be 50.
* If initial I or J = 4 or 8, the period will be 25.
* If initial I or J = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I or J
* in 6.
*
IC = IC + 1
10 I = I*MI
J = J*MJ
I = I - 1000*( I/1000 )
J = J - 1000*( J/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
ZBEG = DCMPLX( ( I - 500 )/1001.0D0, ( J - 500 )/1001.0D0 )
RETURN
*
* End of ZBEG.
*
END
DOUBLE PRECISION FUNCTION DDIFF( X, Y )
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
DOUBLE PRECISION X, Y
* .. Executable Statements ..
DDIFF = X - Y
RETURN
*
* End of DDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 3 BLAS
* routines.
*
* XERBLA is an error handler for the Level 3 BLAS routines.
*
* It is called by the Level 3 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/cblat2.f
|
.f
| 116,657
| 3,280
|
*> \brief \b CBLAT2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM CBLAT2
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX Level 2 Blas.
*>
*> The program must be driven by a short data file. The first 18 records
*> of the file are read using list-directed input, the last 17 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 35 lines:
*> 'cblat2.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 4 NUMBER OF VALUES OF K
*> 0 1 2 4 VALUES OF K
*> 4 NUMBER OF VALUES OF INCX AND INCY
*> 1 2 -1 -2 VALUES OF INCX AND INCY
*> 3 NUMBER OF VALUES OF ALPHA
*> (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
*> CGEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CGBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CHEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CHBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CHPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTRMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTRSV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTBSV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTPSV T PUT F FOR NO TEST. SAME COLUMNS.
*> CGERC T PUT F FOR NO TEST. SAME COLUMNS.
*> CGERU T PUT F FOR NO TEST. SAME COLUMNS.
*> CHER T PUT F FOR NO TEST. SAME COLUMNS.
*> CHPR T PUT F FOR NO TEST. SAME COLUMNS.
*> CHER2 T PUT F FOR NO TEST. SAME COLUMNS.
*> CHPR2 T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J..
*> An extended set of Fortran Basic Linear Algebra Subprograms.
*>
*> Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics
*> and Computer Science Division, Argonne National Laboratory,
*> 9700 South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> Or
*>
*> NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms
*> Group Ltd., NAG Central Office, 256 Banbury Road, Oxford
*> OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st
*> Street, Suite 100, Downers Grove, Illinois 60515-1263, USA.
*>
*>
*> -- Written on 10-August-1987.
*> Richard Hanson, Sandia National Labs.
*> Jeremy Du Croz, NAG Central Office.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex_blas_testing
*
* =====================================================================
PROGRAM CBLAT2
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 17 )
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
INTEGER NMAX, INCMAX
PARAMETER ( NMAX = 65, INCMAX = 2 )
INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX
PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7,
$ NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
REAL EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB,
$ NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANS
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( 2*NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
REAL SDIFF
LOGICAL LCE
EXTERNAL SDIFF, LCE
* .. External Subroutines ..
EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHK6,
$ CCHKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'CGEMV ', 'CGBMV ', 'CHEMV ', 'CHBMV ',
$ 'CHPMV ', 'CTRMV ', 'CTBMV ', 'CTPMV ',
$ 'CTRSV ', 'CTBSV ', 'CTPSV ', 'CGERC ',
$ 'CGERU ', 'CHER ', 'CHPR ', 'CHER2 ',
$ 'CHPR2 '/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 230
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 230
END IF
10 CONTINUE
* Values of K
READ( NIN, FMT = * )NKB
IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN
WRITE( NOUT, FMT = 9997 )'K', NKBMAX
GO TO 230
END IF
READ( NIN, FMT = * )( KB( I ), I = 1, NKB )
DO 20 I = 1, NKB
IF( KB( I ).LT.0 )THEN
WRITE( NOUT, FMT = 9995 )
GO TO 230
END IF
20 CONTINUE
* Values of INCX and INCY
READ( NIN, FMT = * )NINC
IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN
WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX
GO TO 230
END IF
READ( NIN, FMT = * )( INC( I ), I = 1, NINC )
DO 30 I = 1, NINC
IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN
WRITE( NOUT, FMT = 9994 )INCMAX
GO TO 230
END IF
30 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 230
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 230
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9993 )
WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB )
WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC )
WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9980 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 40 I = 1, NSUBS
LTEST( I ) = .FALSE.
40 CONTINUE
50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT
DO 60 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 70
60 CONTINUE
WRITE( NOUT, FMT = 9986 )SNAMET
STOP
70 LTEST( I ) = LTESTT
GO TO 50
*
80 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(RZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of CMVCH using exact data.
*
N = MIN( 32, NMAX )
DO 120 J = 1, N
DO 110 I = 1, N
A( I, J ) = MAX( I - J + 1, 0 )
110 CONTINUE
X( J ) = J
Y( J ) = ZERO
120 CONTINUE
DO 130 J = 1, N
YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
* YY holds the exact result. On exit from CMVCH YT holds
* the result computed by CMVCH.
TRANS = 'N'
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
TRANS = 'T'
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 210 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 140, 150, 150, 150, 160, 160,
$ 160, 160, 160, 160, 170, 170, 180,
$ 180, 190, 190 )ISNUM
* Test CGEMV, 01, and CGBMV, 02.
140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test CHEMV, 03, CHBMV, 04, and CHPMV, 05.
150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test CTRMV, 06, CTBMV, 07, CTPMV, 08,
* CTRSV, 09, CTBSV, 10, and CTPSV, 11.
160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z )
GO TO 200
* Test CGERC, 12, CGERU, 13.
170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test CHER, 14, and CHPR, 15.
180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test CHER2, 16, and CHPR2, 17.
190 CALL CCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
*
200 IF( FATAL.AND.SFATAL )
$ GO TO 220
END IF
210 CONTINUE
WRITE( NOUT, FMT = 9982 )
GO TO 240
*
220 CONTINUE
WRITE( NOUT, FMT = 9981 )
GO TO 240
*
230 CONTINUE
WRITE( NOUT, FMT = 9987 )
*
240 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' VALUE OF K IS LESS THAN 0' )
9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ',
$ I2 )
9993 FORMAT( ' TESTS OF THE COMPLEX LEVEL 2 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9992 FORMAT( ' FOR N ', 9I6 )
9991 FORMAT( ' FOR K ', 7I6 )
9990 FORMAT( ' FOR INCX AND INCY ', 7I6 )
9989 FORMAT( ' FOR ALPHA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9988 FORMAT( ' FOR BETA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9985 FORMAT( ' ERROR IN CMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' CMVCH WAS CALLED WITH TRANS = ', A1,
$ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', /
$ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.'
$ , /' ******* TESTS ABANDONED *******' )
9984 FORMAT( A6, L2 )
9983 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9982 FORMAT( /' END OF TESTS' )
9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of CBLAT2.
*
END
SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests CGEMV and CGBMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BLS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA,
$ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK,
$ NL, NS
LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN
CHARACTER*1 TRANS, TRANSS
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CGBMV, CGEMV, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 11
ELSE IF( BANDED )THEN
NARGS = 13
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IKU = 1, NK
IF( BANDED )THEN
KU = KB( IKU )
KL = MAX( KU - 1, 0 )
ELSE
KU = N - 1
KL = M - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = KL + KU + 1
ELSE
LDA = M
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA,
$ LDA, KL, KU, RESET, TRANSL )
*
DO 90 IC = 1, 3
TRANS = ICH( IC: IC )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
*
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*NL
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX,
$ ABS( INCX ), 0, NL - 1, RESET, TRANSL )
IF( NL.GT.1 )THEN
X( NL/2 ) = ZERO
XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*ML
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, ML, Y, 1,
$ YY, ABS( INCY ), 0, ML - 1,
$ RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANSS = TRANS
MS = M
NS = N
KLS = KL
KUS = KU
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ TRANS, M, N, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL CGEMV( TRANS, M, N, ALPHA, AA,
$ LDA, XX, INCX, BETA, YY,
$ INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANS, M, N, KL, KU, ALPHA, LDA,
$ INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL CGBMV( TRANS, M, N, KL, KU, ALPHA,
$ AA, LDA, XX, INCX, BETA,
$ YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 130
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANS.EQ.TRANSS
ISAME( 2 ) = MS.EQ.M
ISAME( 3 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LCE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LCE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LCE( YS, YY, LY )
ELSE
ISAME( 10 ) = LCERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 4 ) = KLS.EQ.KL
ISAME( 5 ) = KUS.EQ.KU
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LCE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LCE( XS, XX, LX )
ISAME( 10 ) = INCXS.EQ.INCX
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LCE( YS, YY, LY )
ELSE
ISAME( 12 ) = LCERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 13 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 130
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL CMVCH( TRANS, M, N, ALPHA, A,
$ NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 130
ELSE
* Avoid repeating tests with M.le.0 or
* N.le.0.
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 140
*
130 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU,
$ ALPHA, LDA, INCX, BETA, INCY
END IF
*
140 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK1.
*
END
SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests CHEMV, CHBMV and CHPMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BLS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY,
$ N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHBMV, CHEMV, CHPMV, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 10
ELSE IF( BANDED )THEN
NARGS = 11
ELSE IF( PACKED )THEN
NARGS = 9
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA,
$ LDA, K, K, RESET, TRANSL )
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
UPLOS = UPLO
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, N, ALPHA, LDA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL CHEMV( UPLO, N, ALPHA, AA, LDA, XX,
$ INCX, BETA, YY, INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, N, K, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL CHBMV( UPLO, N, K, ALPHA, AA, LDA,
$ XX, INCX, BETA, YY, INCY )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, N, ALPHA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL CHPMV( UPLO, N, ALPHA, AA, XX, INCX,
$ BETA, YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( AS, AA, LAA )
ISAME( 5 ) = LDAS.EQ.LDA
ISAME( 6 ) = LCE( XS, XX, LX )
ISAME( 7 ) = INCXS.EQ.INCX
ISAME( 8 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LCE( YS, YY, LY )
ELSE
ISAME( 9 ) = LCERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 10 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 3 ) = KS.EQ.K
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LCE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LCE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LCE( YS, YY, LY )
ELSE
ISAME( 10 ) = LCERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( PACKED )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( AS, AA, LAA )
ISAME( 5 ) = LCE( XS, XX, LX )
ISAME( 6 ) = INCXS.EQ.INCX
ISAME( 7 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 8 ) = LCE( YS, YY, LY )
ELSE
ISAME( 8 ) = LCERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 9 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL CMVCH( 'N', N, N, ALPHA, A, NMAX, X,
$ INCX, BETA, Y, INCY, YT, G,
$ YY, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX,
$ BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ BETA, INCY
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), AP, X,', I2, ',(', F4.1, ',', F4.1, '), Y,', I2,
$ ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', F4.1, '), ',
$ 'Y,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK2.
*
END
SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z )
*
* Tests CTRMV, CTBMV, CTPMV, CTRSV, CTBSV and CTPSV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XT( NMAX ), XX( NMAX*INCMAX ), Z( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX TRANSL
REAL ERR, ERRMAX
INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K,
$ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHD, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CMAKE, CMVCH, CTBMV, CTBSV, CTPMV, CTPSV,
$ CTRMV, CTRSV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'R'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 8
ELSE IF( BANDED )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 7
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
* Set up zero vector for CMVCH.
DO 10 I = 1, NMAX
Z( I ) = ZERO
10 CONTINUE
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
*
DO 70 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A,
$ NMAX, AA, LDA, K, K, RESET, TRANSL )
*
DO 60 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET,
$ TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
DIAGS = DIAG
NS = N
KS = K
DO 20 I = 1, LAA
AS( I ) = AA( I )
20 CONTINUE
LDAS = LDA
DO 30 I = 1, LX
XS( I ) = XX( I )
30 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTRMV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTBMV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL CTPMV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTRSV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTBSV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL CTPSV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = TRANS.EQ.TRANSS
ISAME( 3 ) = DIAG.EQ.DIAGS
ISAME( 4 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 5 ) = LCE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 7 ) = LCE( XS, XX, LX )
ELSE
ISAME( 7 ) = LCERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 8 ) = INCXS.EQ.INCX
ELSE IF( BANDED )THEN
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = LCE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 8 ) = LCE( XS, XX, LX )
ELSE
ISAME( 8 ) = LCERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 9 ) = INCXS.EQ.INCX
ELSE IF( PACKED )THEN
ISAME( 5 ) = LCE( AS, AA, LAA )
IF( NULL )THEN
ISAME( 6 ) = LCE( XS, XX, LX )
ELSE
ISAME( 6 ) = LCERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 7 ) = INCXS.EQ.INCX
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
*
* Check the result.
*
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X,
$ INCX, ZERO, Z, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
*
* Compute approximation to original vector.
*
DO 50 I = 1, N
Z( I ) = XX( 1 + ( I - 1 )*
$ ABS( INCX ) )
XX( 1 + ( I - 1 )*ABS( INCX ) )
$ = X( I )
50 CONTINUE
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, Z,
$ INCX, ZERO, X, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .FALSE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0.
GO TO 110
END IF
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA,
$ INCX
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K,
$ LDA, INCX
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ',
$ 'X,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ),
$ ' A,', I3, ', X,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,',
$ I3, ', X,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK3.
*
END
SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests CGERC and CGERU.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS,
$ NC, ND, NS
LOGICAL CONJ, NULL, RESET, SAME
* .. Local Arrays ..
COMPLEX W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CGERC, CGERU, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
CONJ = SNAME( 5: 5 ).EQ.'C'
* Define the number of arguments.
NARGS = 9
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
* Set LDA to 1 more than minimum value if room.
LDA = M
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
DO 100 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*M
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ),
$ 0, M - 1, RESET, TRANSL )
IF( M.GT.1 )THEN
X( M/2 ) = ZERO
XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO
END IF
*
DO 90 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX,
$ AA, LDA, M - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N,
$ ALPHA, INCX, INCY, LDA
IF( CONJ )THEN
IF( REWI )
$ REWIND NTRA
CALL CGERC( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
ELSE
IF( REWI )
$ REWIND NTRA
CALL CGERU( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 140
END IF
*
* See what data changed inside subroutine.
*
ISAME( 1 ) = MS.EQ.M
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LCE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LCE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LCERES( 'GE', ' ', M, N, AS, AA,
$ LDA )
END IF
ISAME( 9 ) = LDAS.EQ.LDA
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 140
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, M
Z( I ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, M
Z( I ) = X( M - I + 1 )
60 CONTINUE
END IF
DO 70 J = 1, N
IF( INCY.GT.0 )THEN
W( 1 ) = Y( J )
ELSE
W( 1 ) = Y( N - J + 1 )
END IF
IF( CONJ )
$ W( 1 ) = CONJG( W( 1 ) )
CALL CMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1,
$ ONE, A( 1, J ), 1, YT, G,
$ AA( 1 + ( J - 1 )*LDA ), EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 130
70 CONTINUE
ELSE
* Avoid repeating tests with M.le.0 or N.le.0.
GO TO 110
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 150
*
130 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
140 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), '(', F4.1, ',', F4.1,
$ '), X,', I2, ', Y,', I2, ', A,', I3, ') ',
$ ' .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK4.
*
END
SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests CHER and CHPR.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX ALPHA, TRANSL
REAL ERR, ERRMAX, RALPHA, RALS
INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA,
$ LDA, LDAS, LJ, LX, N, NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
COMPLEX W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHER, CHPR, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, CONJG, MAX, REAL
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 7
ELSE IF( PACKED )THEN
NARGS = 6
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IA = 1, NALF
RALPHA = REAL( ALF( IA ) )
ALPHA = CMPLX( RALPHA, RZERO )
NULL = N.LE.0.OR.RALPHA.EQ.RZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX,
$ AA, LDA, N - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
RALS = RALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ RALPHA, INCX, LDA
IF( REWI )
$ REWIND NTRA
CALL CHER( UPLO, N, RALPHA, XX, INCX, AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ RALPHA, INCX
IF( REWI )
$ REWIND NTRA
CALL CHPR( UPLO, N, RALPHA, XX, INCX, AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = RALS.EQ.RALPHA
ISAME( 4 ) = LCE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
IF( NULL )THEN
ISAME( 6 ) = LCE( AS, AA, LAA )
ELSE
ISAME( 6 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N, AS,
$ AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 7 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 40 I = 1, N
Z( I ) = X( I )
40 CONTINUE
ELSE
DO 50 I = 1, N
Z( I ) = X( N - I + 1 )
50 CONTINUE
END IF
JA = 1
DO 60 J = 1, N
W( 1 ) = CONJG( Z( J ) )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL CMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W,
$ 1, ONE, A( JJ, J ), 1, YT, G,
$ AA( JA ), EPS, ERR, FATAL, NOUT,
$ .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 110
60 CONTINUE
ELSE
* Avoid repeating tests if N.le.0.
IF( N.LE.0 )
$ GO TO 100
END IF
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, RALPHA, INCX, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, RALPHA, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK5.
*
END
SUBROUTINE CCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests CHER2 and CHPR2.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX, 2 )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N,
$ NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
COMPLEX W( 2 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHER2, CHPR2, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 8
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 140 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 140
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 130 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 120 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 110 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 100 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A,
$ NMAX, AA, LDA, N - 1, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL CHER2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY
IF( REWI )
$ REWIND NTRA
CALL CHPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 160
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LCE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LCE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N,
$ AS, AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 9 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 160
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, N
Z( I, 1 ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, N
Z( I, 1 ) = X( N - I + 1 )
60 CONTINUE
END IF
IF( INCY.GT.0 )THEN
DO 70 I = 1, N
Z( I, 2 ) = Y( I )
70 CONTINUE
ELSE
DO 80 I = 1, N
Z( I, 2 ) = Y( N - I + 1 )
80 CONTINUE
END IF
JA = 1
DO 90 J = 1, N
W( 1 ) = ALPHA*CONJG( Z( J, 2 ) )
W( 2 ) = CONJG( ALPHA )*CONJG( Z( J, 1 ) )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL CMVCH( 'N', LJ, 2, ONE, Z( JJ, 1 ),
$ NMAX, W, 1, ONE, A( JJ, J ), 1,
$ YT, G, AA( JA ), EPS, ERR, FATAL,
$ NOUT, .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 150
90 CONTINUE
ELSE
* Avoid repeating tests with N.le.0.
IF( N.LE.0 )
$ GO TO 140
END IF
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 170
*
150 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
160 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ INCY, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY
END IF
*
170 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), X,', I2, ', Y,', I2, ', AP) ',
$ ' .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), X,', I2, ', Y,', I2, ', A,', I3, ') ',
$ ' .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK6.
*
END
SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 2 Blas.
* Requires a special version of the error-handling routine XERBLA.
* ALPHA, RALPHA, BETA, A, X and Y should not need to be defined.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Local Scalars ..
COMPLEX ALPHA, BETA
REAL RALPHA
* .. Local Arrays ..
COMPLEX A( 1, 1 ), X( 1 ), Y( 1 )
* .. External Subroutines ..
EXTERNAL CGBMV, CGEMV, CGERC, CGERU, CHBMV, CHEMV, CHER,
$ CHER2, CHKXER, CHPMV, CHPR, CHPR2, CTBMV,
$ CTBSV, CTPMV, CTPSV, CTRMV, CTRSV
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90, 100, 110, 120, 130, 140, 150, 160,
$ 170 )ISNUM
10 INFOT = 1
CALL CGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
20 INFOT = 1
CALL CGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
30 INFOT = 1
CALL CHEMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHEMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHEMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
40 INFOT = 1
CALL CHBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
50 INFOT = 1
CALL CHPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
60 INFOT = 1
CALL CTRMV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTRMV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTRMV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
70 INFOT = 1
CALL CTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
80 INFOT = 1
CALL CTPMV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTPMV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTPMV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTPMV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTPMV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
90 INFOT = 1
CALL CTRSV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTRSV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTRSV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
100 INFOT = 1
CALL CTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
110 INFOT = 1
CALL CTPSV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTPSV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTPSV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTPSV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTPSV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
120 INFOT = 1
CALL CGERC( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGERC( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGERC( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CGERC( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CGERC( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
130 INFOT = 1
CALL CGERU( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGERU( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGERU( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CGERU( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CGERU( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
140 INFOT = 1
CALL CHER( '/', 0, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHER( 'U', -1, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHER( 'U', 0, RALPHA, X, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER( 'U', 2, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
150 INFOT = 1
CALL CHPR( '/', 0, RALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPR( 'U', -1, RALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHPR( 'U', 0, RALPHA, X, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
160 INFOT = 1
CALL CHER2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHER2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHER2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHER2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
170 INFOT = 1
CALL CHPR2( '/', 0, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPR2( 'U', -1, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHPR2( 'U', 0, ALPHA, X, 0, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHPR2( 'U', 0, ALPHA, X, 1, Y, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
180 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of CCHKE.
*
END
SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL,
$ KU, RESET, TRANSL )
*
* Generates values for an M by N matrix A within the bandwidth
* defined by KL and KU.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'GB', 'HE', 'HB', 'HP', 'TR', 'TB' OR 'TP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
COMPLEX ROGUE
PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
REAL RROGUE
PARAMETER ( RROGUE = -1.0E10 )
* .. Scalar Arguments ..
COMPLEX TRANSL
INTEGER KL, KU, LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, JJ, KK
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
COMPLEX CBEG
EXTERNAL CBEG
* .. Intrinsic Functions ..
INTRINSIC CMPLX, CONJG, MAX, MIN, REAL
* .. Executable Statements ..
GEN = TYPE( 1: 1 ).EQ.'G'
SYM = TYPE( 1: 1 ).EQ.'H'
TRI = TYPE( 1: 1 ).EQ.'T'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
IF( ( I.LE.J.AND.J - I.LE.KU ).OR.
$ ( I.GE.J.AND.I - J.LE.KL ) )THEN
A( I, J ) = CBEG( RESET ) + TRANSL
ELSE
A( I, J ) = ZERO
END IF
IF( I.NE.J )THEN
IF( SYM )THEN
A( J, I ) = CONJG( A( I, J ) )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( SYM )
$ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO )
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'GB' )THEN
DO 90 J = 1, N
DO 60 I1 = 1, KU + 1 - J
AA( I1 + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J )
AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J )
70 CONTINUE
DO 80 I3 = I2, LDA
AA( I3 + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'TR' )THEN
DO 130 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 100 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
100 CONTINUE
DO 110 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
110 CONTINUE
DO 120 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
120 CONTINUE
IF( SYM )THEN
JJ = J + ( J - 1 )*LDA
AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE )
END IF
130 CONTINUE
ELSE IF( TYPE.EQ.'HB'.OR.TYPE.EQ.'TB' )THEN
DO 170 J = 1, N
IF( UPPER )THEN
KK = KL + 1
IBEG = MAX( 1, KL + 2 - J )
IF( UNIT )THEN
IEND = KL
ELSE
IEND = KL + 1
END IF
ELSE
KK = 1
IF( UNIT )THEN
IBEG = 2
ELSE
IBEG = 1
END IF
IEND = MIN( KL + 1, 1 + M - J )
END IF
DO 140 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
140 CONTINUE
DO 150 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J )
150 CONTINUE
DO 160 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
160 CONTINUE
IF( SYM )THEN
JJ = KK + ( J - 1 )*LDA
AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE )
END IF
170 CONTINUE
ELSE IF( TYPE.EQ.'HP'.OR.TYPE.EQ.'TP' )THEN
IOFF = 0
DO 190 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 180 I = IBEG, IEND
IOFF = IOFF + 1
AA( IOFF ) = A( I, J )
IF( I.EQ.J )THEN
IF( UNIT )
$ AA( IOFF ) = ROGUE
IF( SYM )
$ AA( IOFF ) = CMPLX( REAL( AA( IOFF ) ), RROGUE )
END IF
180 CONTINUE
190 CONTINUE
END IF
RETURN
*
* End of CMAKE.
*
END
SUBROUTINE CMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
REAL RZERO, RONE
PARAMETER ( RZERO = 0.0, RONE = 1.0 )
* .. Scalar Arguments ..
COMPLEX ALPHA, BETA
REAL EPS, ERR
INTEGER INCX, INCY, M, N, NMAX, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANS
* .. Array Arguments ..
COMPLEX A( NMAX, * ), X( * ), Y( * ), YT( * ), YY( * )
REAL G( * )
* .. Local Scalars ..
COMPLEX C
REAL ERRI
INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL
LOGICAL CTRAN, TRAN
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT
* .. Statement Functions ..
REAL ABS1
* .. Statement Function definitions ..
ABS1( C ) = ABS( REAL( C ) ) + ABS( AIMAG( C ) )
* .. Executable Statements ..
TRAN = TRANS.EQ.'T'
CTRAN = TRANS.EQ.'C'
IF( TRAN.OR.CTRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
IF( INCX.LT.0 )THEN
KX = NL
INCXL = -1
ELSE
KX = 1
INCXL = 1
END IF
IF( INCY.LT.0 )THEN
KY = ML
INCYL = -1
ELSE
KY = 1
INCYL = 1
END IF
*
* Compute expected result in YT using data in A, X and Y.
* Compute gauges in G.
*
IY = KY
DO 40 I = 1, ML
YT( IY ) = ZERO
G( IY ) = RZERO
JX = KX
IF( TRAN )THEN
DO 10 J = 1, NL
YT( IY ) = YT( IY ) + A( J, I )*X( JX )
G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) )
JX = JX + INCXL
10 CONTINUE
ELSE IF( CTRAN )THEN
DO 20 J = 1, NL
YT( IY ) = YT( IY ) + CONJG( A( J, I ) )*X( JX )
G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) )
JX = JX + INCXL
20 CONTINUE
ELSE
DO 30 J = 1, NL
YT( IY ) = YT( IY ) + A( I, J )*X( JX )
G( IY ) = G( IY ) + ABS1( A( I, J ) )*ABS1( X( JX ) )
JX = JX + INCXL
30 CONTINUE
END IF
YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY )
G( IY ) = ABS1( ALPHA )*G( IY ) + ABS1( BETA )*ABS1( Y( IY ) )
IY = IY + INCYL
40 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 50 I = 1, ML
ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS
IF( G( I ).NE.RZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.RONE )
$ GO TO 60
50 CONTINUE
* If the loop completes, all results are at least half accurate.
GO TO 80
*
* Report fatal error.
*
60 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 70 I = 1, ML
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, YT( I ),
$ YY( 1 + ( I - 1 )*ABS( INCY ) )
ELSE
WRITE( NOUT, FMT = 9998 )I,
$ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I )
END IF
70 CONTINUE
*
80 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RE',
$ 'SULT COMPUTED RESULT' )
9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) )
*
* End of CMVCH.
*
END
LOGICAL FUNCTION LCE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
COMPLEX RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LCE = .TRUE.
GO TO 30
20 CONTINUE
LCE = .FALSE.
30 RETURN
*
* End of LCE.
*
END
LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE', 'HE' or 'HP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'HE' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LCERES = .TRUE.
GO TO 80
70 CONTINUE
LCERES = .FALSE.
80 RETURN
*
* End of LCERES.
*
END
COMPLEX FUNCTION CBEG( RESET )
*
* Generates complex numbers as pairs of random numbers uniformly
* distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, J, MI, MJ
* .. Save statement ..
SAVE I, IC, J, MI, MJ
* .. Intrinsic Functions ..
INTRINSIC CMPLX
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
MJ = 457
I = 7
J = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I or J is bounded between 1 and 999.
* If initial I or J = 1,2,3,6,7 or 9, the period will be 50.
* If initial I or J = 4 or 8, the period will be 25.
* If initial I or J = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I or J
* in 6.
*
IC = IC + 1
10 I = I*MI
J = J*MJ
I = I - 1000*( I/1000 )
J = J - 1000*( J/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 )
RETURN
*
* End of CBEG.
*
END
REAL FUNCTION SDIFF( X, Y )
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
*
* .. Scalar Arguments ..
REAL X, Y
* .. Executable Statements ..
SDIFF = X - Y
RETURN
*
* End of SDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 2 BLAS
* routines.
*
* XERBLA is an error handler for the Level 2 BLAS routines.
*
* It is called by the Level 2 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/dblat2.f
|
.f
| 112,335
| 3,177
|
*> \brief \b DBLAT2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM DBLAT2
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the DOUBLE PRECISION Level 2 Blas.
*>
*> The program must be driven by a short data file. The first 18 records
*> of the file are read using list-directed input, the last 16 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 34 lines:
*> 'dblat2.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'DBLAT2.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 4 NUMBER OF VALUES OF K
*> 0 1 2 4 VALUES OF K
*> 4 NUMBER OF VALUES OF INCX AND INCY
*> 1 2 -1 -2 VALUES OF INCX AND INCY
*> 3 NUMBER OF VALUES OF ALPHA
*> 0.0 1.0 0.7 VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> 0.0 1.0 0.9 VALUES OF BETAC
*> DGEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DGBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DSYMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DSBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DSPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DTRMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DTBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DTPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> DTRSV T PUT F FOR NO TEST. SAME COLUMNS.
*> DTBSV T PUT F FOR NO TEST. SAME COLUMNS.
*> DTPSV T PUT F FOR NO TEST. SAME COLUMNS.
*> DGER T PUT F FOR NO TEST. SAME COLUMNS.
*> DSYR T PUT F FOR NO TEST. SAME COLUMNS.
*> DSPR T PUT F FOR NO TEST. SAME COLUMNS.
*> DSYR2 T PUT F FOR NO TEST. SAME COLUMNS.
*> DSPR2 T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J..
*> An extended set of Fortran Basic Linear Algebra Subprograms.
*>
*> Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics
*> and Computer Science Division, Argonne National Laboratory,
*> 9700 South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> Or
*>
*> NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms
*> Group Ltd., NAG Central Office, 256 Banbury Road, Oxford
*> OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st
*> Street, Suite 100, Downers Grove, Illinois 60515-1263, USA.
*>
*>
*> -- Written on 10-August-1987.
*> Richard Hanson, Sandia National Labs.
*> Jeremy Du Croz, NAG Central Office.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup double_blas_testing
*
* =====================================================================
PROGRAM DBLAT2
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 16 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER NMAX, INCMAX
PARAMETER ( NMAX = 65, INCMAX = 2 )
INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX
PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7,
$ NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
DOUBLE PRECISION EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB,
$ NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANS
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ),
$ G( NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( 2*NMAX )
INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
DOUBLE PRECISION DDIFF
LOGICAL LDE
EXTERNAL DDIFF, LDE
* .. External Subroutines ..
EXTERNAL DCHK1, DCHK2, DCHK3, DCHK4, DCHK5, DCHK6,
$ DCHKE, DMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'DGEMV ', 'DGBMV ', 'DSYMV ', 'DSBMV ',
$ 'DSPMV ', 'DTRMV ', 'DTBMV ', 'DTPMV ',
$ 'DTRSV ', 'DTBSV ', 'DTPSV ', 'DGER ',
$ 'DSYR ', 'DSPR ', 'DSYR2 ', 'DSPR2 '/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 230
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 230
END IF
10 CONTINUE
* Values of K
READ( NIN, FMT = * )NKB
IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN
WRITE( NOUT, FMT = 9997 )'K', NKBMAX
GO TO 230
END IF
READ( NIN, FMT = * )( KB( I ), I = 1, NKB )
DO 20 I = 1, NKB
IF( KB( I ).LT.0 )THEN
WRITE( NOUT, FMT = 9995 )
GO TO 230
END IF
20 CONTINUE
* Values of INCX and INCY
READ( NIN, FMT = * )NINC
IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN
WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX
GO TO 230
END IF
READ( NIN, FMT = * )( INC( I ), I = 1, NINC )
DO 30 I = 1, NINC
IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN
WRITE( NOUT, FMT = 9994 )INCMAX
GO TO 230
END IF
30 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 230
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 230
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9993 )
WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB )
WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC )
WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9980 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 40 I = 1, NSUBS
LTEST( I ) = .FALSE.
40 CONTINUE
50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT
DO 60 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 70
60 CONTINUE
WRITE( NOUT, FMT = 9986 )SNAMET
STOP
70 LTEST( I ) = LTESTT
GO TO 50
*
80 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(ZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of DMVCH using exact data.
*
N = MIN( 32, NMAX )
DO 120 J = 1, N
DO 110 I = 1, N
A( I, J ) = MAX( I - J + 1, 0 )
110 CONTINUE
X( J ) = J
Y( J ) = ZERO
120 CONTINUE
DO 130 J = 1, N
YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
* YY holds the exact result. On exit from DMVCH YT holds
* the result computed by DMVCH.
TRANS = 'N'
CALL DMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LDE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
TRANS = 'T'
CALL DMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LDE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 210 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL DCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 140, 150, 150, 150, 160, 160,
$ 160, 160, 160, 160, 170, 180, 180,
$ 190, 190 )ISNUM
* Test DGEMV, 01, and DGBMV, 02.
140 CALL DCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test DSYMV, 03, DSBMV, 04, and DSPMV, 05.
150 CALL DCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test DTRMV, 06, DTBMV, 07, DTPMV, 08,
* DTRSV, 09, DTBSV, 10, and DTPSV, 11.
160 CALL DCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z )
GO TO 200
* Test DGER, 12.
170 CALL DCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test DSYR, 13, and DSPR, 14.
180 CALL DCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test DSYR2, 15, and DSPR2, 16.
190 CALL DCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
*
200 IF( FATAL.AND.SFATAL )
$ GO TO 220
END IF
210 CONTINUE
WRITE( NOUT, FMT = 9982 )
GO TO 240
*
220 CONTINUE
WRITE( NOUT, FMT = 9981 )
GO TO 240
*
230 CONTINUE
WRITE( NOUT, FMT = 9987 )
*
240 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' VALUE OF K IS LESS THAN 0' )
9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ',
$ I2 )
9993 FORMAT( ' TESTS OF THE DOUBLE PRECISION LEVEL 2 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9992 FORMAT( ' FOR N ', 9I6 )
9991 FORMAT( ' FOR K ', 7I6 )
9990 FORMAT( ' FOR INCX AND INCY ', 7I6 )
9989 FORMAT( ' FOR ALPHA ', 7F6.1 )
9988 FORMAT( ' FOR BETA ', 7F6.1 )
9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9985 FORMAT( ' ERROR IN DMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' DMVCH WAS CALLED WITH TRANS = ', A1,
$ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', /
$ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.'
$ , /' ******* TESTS ABANDONED *******' )
9984 FORMAT( A6, L2 )
9983 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9982 FORMAT( /' END OF TESTS' )
9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of DBLAT2.
*
END
SUBROUTINE DCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests DGEMV and DGBMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA,
$ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK,
$ NL, NS
LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN
CHARACTER*1 TRANS, TRANSS
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DGBMV, DGEMV, DMAKE, DMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 11
ELSE IF( BANDED )THEN
NARGS = 13
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IKU = 1, NK
IF( BANDED )THEN
KU = KB( IKU )
KL = MAX( KU - 1, 0 )
ELSE
KU = N - 1
KL = M - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = KL + KU + 1
ELSE
LDA = M
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL DMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA,
$ LDA, KL, KU, RESET, TRANSL )
*
DO 90 IC = 1, 3
TRANS = ICH( IC: IC )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
*
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*NL
*
* Generate the vector X.
*
TRANSL = HALF
CALL DMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX,
$ ABS( INCX ), 0, NL - 1, RESET, TRANSL )
IF( NL.GT.1 )THEN
X( NL/2 ) = ZERO
XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*ML
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL DMAKE( 'GE', ' ', ' ', 1, ML, Y, 1,
$ YY, ABS( INCY ), 0, ML - 1,
$ RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANSS = TRANS
MS = M
NS = N
KLS = KL
KUS = KU
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ TRANS, M, N, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL DGEMV( TRANS, M, N, ALPHA, AA,
$ LDA, XX, INCX, BETA, YY,
$ INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANS, M, N, KL, KU, ALPHA, LDA,
$ INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL DGBMV( TRANS, M, N, KL, KU, ALPHA,
$ AA, LDA, XX, INCX, BETA,
$ YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 130
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANS.EQ.TRANSS
ISAME( 2 ) = MS.EQ.M
ISAME( 3 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LDE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LDE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LDE( YS, YY, LY )
ELSE
ISAME( 10 ) = LDERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 4 ) = KLS.EQ.KL
ISAME( 5 ) = KUS.EQ.KU
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LDE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LDE( XS, XX, LX )
ISAME( 10 ) = INCXS.EQ.INCX
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LDE( YS, YY, LY )
ELSE
ISAME( 12 ) = LDERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 13 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 130
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL DMVCH( TRANS, M, N, ALPHA, A,
$ NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 130
ELSE
* Avoid repeating tests with M.le.0 or
* N.le.0.
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 140
*
130 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU,
$ ALPHA, LDA, INCX, BETA, INCY
END IF
*
140 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), F4.1,
$ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1,
$ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2,
$ ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK1.
*
END
SUBROUTINE DCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests DSYMV, DSBMV and DSPMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY,
$ N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMVCH, DSBMV, DSPMV, DSYMV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'Y'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 10
ELSE IF( BANDED )THEN
NARGS = 11
ELSE IF( PACKED )THEN
NARGS = 9
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL DMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA,
$ LDA, K, K, RESET, TRANSL )
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL DMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
UPLOS = UPLO
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, N, ALPHA, LDA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL DSYMV( UPLO, N, ALPHA, AA, LDA, XX,
$ INCX, BETA, YY, INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, N, K, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL DSBMV( UPLO, N, K, ALPHA, AA, LDA,
$ XX, INCX, BETA, YY, INCY )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, N, ALPHA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL DSPMV( UPLO, N, ALPHA, AA, XX, INCX,
$ BETA, YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LDE( AS, AA, LAA )
ISAME( 5 ) = LDAS.EQ.LDA
ISAME( 6 ) = LDE( XS, XX, LX )
ISAME( 7 ) = INCXS.EQ.INCX
ISAME( 8 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LDE( YS, YY, LY )
ELSE
ISAME( 9 ) = LDERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 10 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 3 ) = KS.EQ.K
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LDE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LDE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LDE( YS, YY, LY )
ELSE
ISAME( 10 ) = LDERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( PACKED )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LDE( AS, AA, LAA )
ISAME( 5 ) = LDE( XS, XX, LX )
ISAME( 6 ) = INCXS.EQ.INCX
ISAME( 7 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 8 ) = LDE( YS, YY, LY )
ELSE
ISAME( 8 ) = LDERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 9 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL DMVCH( 'N', N, N, ALPHA, A, NMAX, X,
$ INCX, BETA, Y, INCY, YT, G,
$ YY, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX,
$ BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ BETA, INCY
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', AP',
$ ', X,', I2, ',', F4.1, ', Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1,
$ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2,
$ ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', A,',
$ I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK2.
*
END
SUBROUTINE DCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z )
*
* Tests DTRMV, DTBMV, DTPMV, DTRSV, DTBSV and DTPSV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XT( NMAX ),
$ XX( NMAX*INCMAX ), Z( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
DOUBLE PRECISION ERR, ERRMAX, TRANSL
INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K,
$ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHD, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMVCH, DTBMV, DTBSV, DTPMV, DTPSV,
$ DTRMV, DTRSV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'R'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 8
ELSE IF( BANDED )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 7
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
* Set up zero vector for DMVCH.
DO 10 I = 1, NMAX
Z( I ) = ZERO
10 CONTINUE
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
*
DO 70 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL DMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A,
$ NMAX, AA, LDA, K, K, RESET, TRANSL )
*
DO 60 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET,
$ TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
DIAGS = DIAG
NS = N
KS = K
DO 20 I = 1, LAA
AS( I ) = AA( I )
20 CONTINUE
LDAS = LDA
DO 30 I = 1, LX
XS( I ) = XX( I )
30 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL DTRMV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL DTBMV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL DTPMV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL DTRSV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL DTBSV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL DTPSV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = TRANS.EQ.TRANSS
ISAME( 3 ) = DIAG.EQ.DIAGS
ISAME( 4 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 5 ) = LDE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 7 ) = LDE( XS, XX, LX )
ELSE
ISAME( 7 ) = LDERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 8 ) = INCXS.EQ.INCX
ELSE IF( BANDED )THEN
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = LDE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 8 ) = LDE( XS, XX, LX )
ELSE
ISAME( 8 ) = LDERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 9 ) = INCXS.EQ.INCX
ELSE IF( PACKED )THEN
ISAME( 5 ) = LDE( AS, AA, LAA )
IF( NULL )THEN
ISAME( 6 ) = LDE( XS, XX, LX )
ELSE
ISAME( 6 ) = LDERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 7 ) = INCXS.EQ.INCX
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
*
* Check the result.
*
CALL DMVCH( TRANS, N, N, ONE, A, NMAX, X,
$ INCX, ZERO, Z, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
*
* Compute approximation to original vector.
*
DO 50 I = 1, N
Z( I ) = XX( 1 + ( I - 1 )*
$ ABS( INCX ) )
XX( 1 + ( I - 1 )*ABS( INCX ) )
$ = X( I )
50 CONTINUE
CALL DMVCH( TRANS, N, N, ONE, A, NMAX, Z,
$ INCX, ZERO, X, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .FALSE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0.
GO TO 110
END IF
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA,
$ INCX
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K,
$ LDA, INCX
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ',
$ 'X,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ),
$ ' A,', I3, ', X,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,',
$ I3, ', X,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK3.
*
END
SUBROUTINE DCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests DGER.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS,
$ NC, ND, NS
LOGICAL NULL, RESET, SAME
* .. Local Arrays ..
DOUBLE PRECISION W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DGER, DMAKE, DMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* Define the number of arguments.
NARGS = 9
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
* Set LDA to 1 more than minimum value if room.
LDA = M
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
DO 100 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*M
*
* Generate the vector X.
*
TRANSL = HALF
CALL DMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ),
$ 0, M - 1, RESET, TRANSL )
IF( M.GT.1 )THEN
X( M/2 ) = ZERO
XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO
END IF
*
DO 90 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL DMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL DMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX,
$ AA, LDA, M - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL DGER( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 140
END IF
*
* See what data changed inside subroutine.
*
ISAME( 1 ) = MS.EQ.M
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LDE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LDE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LDE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LDERES( 'GE', ' ', M, N, AS, AA,
$ LDA )
END IF
ISAME( 9 ) = LDAS.EQ.LDA
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 140
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, M
Z( I ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, M
Z( I ) = X( M - I + 1 )
60 CONTINUE
END IF
DO 70 J = 1, N
IF( INCY.GT.0 )THEN
W( 1 ) = Y( J )
ELSE
W( 1 ) = Y( N - J + 1 )
END IF
CALL DMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1,
$ ONE, A( 1, J ), 1, YT, G,
$ AA( 1 + ( J - 1 )*LDA ), EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 130
70 CONTINUE
ELSE
* Avoid repeating tests with M.le.0 or N.le.0.
GO TO 110
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 150
*
130 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
140 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), F4.1, ', X,', I2,
$ ', Y,', I2, ', A,', I3, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK4.
*
END
SUBROUTINE DCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests DSYR and DSPR.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA,
$ LDA, LDAS, LJ, LX, N, NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
DOUBLE PRECISION W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMVCH, DSPR, DSYR
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'Y'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 7
ELSE IF( PACKED )THEN
NARGS = 6
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL DMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX,
$ AA, LDA, N - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, LDA
IF( REWI )
$ REWIND NTRA
CALL DSYR( UPLO, N, ALPHA, XX, INCX, AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX
IF( REWI )
$ REWIND NTRA
CALL DSPR( UPLO, N, ALPHA, XX, INCX, AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LDE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
IF( NULL )THEN
ISAME( 6 ) = LDE( AS, AA, LAA )
ELSE
ISAME( 6 ) = LDERES( SNAME( 2: 3 ), UPLO, N, N, AS,
$ AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 7 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 40 I = 1, N
Z( I ) = X( I )
40 CONTINUE
ELSE
DO 50 I = 1, N
Z( I ) = X( N - I + 1 )
50 CONTINUE
END IF
JA = 1
DO 60 J = 1, N
W( 1 ) = Z( J )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL DMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W,
$ 1, ONE, A( JJ, J ), 1, YT, G,
$ AA( JA ), EPS, ERR, FATAL, NOUT,
$ .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 110
60 CONTINUE
ELSE
* Avoid repeating tests if N.le.0.
IF( N.LE.0 )
$ GO TO 100
END IF
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK5.
*
END
SUBROUTINE DCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests DSYR2 and DSPR2.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX, 2 )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N,
$ NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
DOUBLE PRECISION W( 2 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LDE, LDERES
EXTERNAL LDE, LDERES
* .. External Subroutines ..
EXTERNAL DMAKE, DMVCH, DSPR2, DSYR2
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'Y'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 8
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 140 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 140
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 130 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 120 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 110 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL DMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 100 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL DMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A,
$ NMAX, AA, LDA, N - 1, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL DSYR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY
IF( REWI )
$ REWIND NTRA
CALL DSPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 160
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LDE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LDE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LDE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LDERES( SNAME( 2: 3 ), UPLO, N, N,
$ AS, AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 9 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 160
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, N
Z( I, 1 ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, N
Z( I, 1 ) = X( N - I + 1 )
60 CONTINUE
END IF
IF( INCY.GT.0 )THEN
DO 70 I = 1, N
Z( I, 2 ) = Y( I )
70 CONTINUE
ELSE
DO 80 I = 1, N
Z( I, 2 ) = Y( N - I + 1 )
80 CONTINUE
END IF
JA = 1
DO 90 J = 1, N
W( 1 ) = Z( J, 2 )
W( 2 ) = Z( J, 1 )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL DMVCH( 'N', LJ, 2, ALPHA, Z( JJ, 1 ),
$ NMAX, W, 1, ONE, A( JJ, J ), 1,
$ YT, G, AA( JA ), EPS, ERR, FATAL,
$ NOUT, .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 150
90 CONTINUE
ELSE
* Avoid repeating tests with N.le.0.
IF( N.LE.0 )
$ GO TO 140
END IF
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 170
*
150 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
160 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ INCY, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY
END IF
*
170 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', Y,', I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', Y,', I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of DCHK6.
*
END
SUBROUTINE DCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 2 Blas.
* Requires a special version of the error-handling routine XERBLA.
* ALPHA, BETA, A, X and Y should not need to be defined.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, BETA
* .. Local Arrays ..
DOUBLE PRECISION A( 1, 1 ), X( 1 ), Y( 1 )
* .. External Subroutines ..
EXTERNAL CHKXER, DGBMV, DGEMV, DGER, DSBMV, DSPMV, DSPR,
$ DSPR2, DSYMV, DSYR, DSYR2, DTBMV, DTBSV, DTPMV,
$ DTPSV, DTRMV, DTRSV
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90, 100, 110, 120, 130, 140, 150,
$ 160 )ISNUM
10 INFOT = 1
CALL DGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
20 INFOT = 1
CALL DGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
30 INFOT = 1
CALL DSYMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSYMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DSYMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DSYMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
40 INFOT = 1
CALL DSBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DSBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DSBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DSBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DSBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
50 INFOT = 1
CALL DSPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DSPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
60 INFOT = 1
CALL DTRMV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTRMV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTRMV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
70 INFOT = 1
CALL DTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
80 INFOT = 1
CALL DTPMV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTPMV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTPMV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTPMV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DTPMV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
90 INFOT = 1
CALL DTRSV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTRSV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTRSV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
100 INFOT = 1
CALL DTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
110 INFOT = 1
CALL DTPSV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DTPSV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DTPSV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DTPSV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DTPSV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
120 INFOT = 1
CALL DGER( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGER( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DGER( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DGER( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DGER( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
130 INFOT = 1
CALL DSYR( '/', 0, ALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSYR( 'U', -1, ALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DSYR( 'U', 0, ALPHA, X, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYR( 'U', 2, ALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
140 INFOT = 1
CALL DSPR( '/', 0, ALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSPR( 'U', -1, ALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DSPR( 'U', 0, ALPHA, X, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
150 INFOT = 1
CALL DSYR2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSYR2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DSYR2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSYR2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DSYR2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
160 INFOT = 1
CALL DSPR2( '/', 0, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DSPR2( 'U', -1, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DSPR2( 'U', 0, ALPHA, X, 0, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DSPR2( 'U', 0, ALPHA, X, 1, Y, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
170 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of DCHKE.
*
END
SUBROUTINE DMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL,
$ KU, RESET, TRANSL )
*
* Generates values for an M by N matrix A within the bandwidth
* defined by KL and KU.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'GB', 'SY', 'SB', 'SP', 'TR', 'TB' OR 'TP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
DOUBLE PRECISION ROGUE
PARAMETER ( ROGUE = -1.0D10 )
* .. Scalar Arguments ..
DOUBLE PRECISION TRANSL
INTEGER KL, KU, LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, KK
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
DOUBLE PRECISION DBEG
EXTERNAL DBEG
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
GEN = TYPE( 1: 1 ).EQ.'G'
SYM = TYPE( 1: 1 ).EQ.'S'
TRI = TYPE( 1: 1 ).EQ.'T'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
IF( ( I.LE.J.AND.J - I.LE.KU ).OR.
$ ( I.GE.J.AND.I - J.LE.KL ) )THEN
A( I, J ) = DBEG( RESET ) + TRANSL
ELSE
A( I, J ) = ZERO
END IF
IF( I.NE.J )THEN
IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'GB' )THEN
DO 90 J = 1, N
DO 60 I1 = 1, KU + 1 - J
AA( I1 + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J )
AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J )
70 CONTINUE
DO 80 I3 = I2, LDA
AA( I3 + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN
DO 130 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 100 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
100 CONTINUE
DO 110 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
110 CONTINUE
DO 120 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
120 CONTINUE
130 CONTINUE
ELSE IF( TYPE.EQ.'SB'.OR.TYPE.EQ.'TB' )THEN
DO 170 J = 1, N
IF( UPPER )THEN
KK = KL + 1
IBEG = MAX( 1, KL + 2 - J )
IF( UNIT )THEN
IEND = KL
ELSE
IEND = KL + 1
END IF
ELSE
KK = 1
IF( UNIT )THEN
IBEG = 2
ELSE
IBEG = 1
END IF
IEND = MIN( KL + 1, 1 + M - J )
END IF
DO 140 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
140 CONTINUE
DO 150 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J )
150 CONTINUE
DO 160 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
160 CONTINUE
170 CONTINUE
ELSE IF( TYPE.EQ.'SP'.OR.TYPE.EQ.'TP' )THEN
IOFF = 0
DO 190 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 180 I = IBEG, IEND
IOFF = IOFF + 1
AA( IOFF ) = A( I, J )
IF( I.EQ.J )THEN
IF( UNIT )
$ AA( IOFF ) = ROGUE
END IF
180 CONTINUE
190 CONTINUE
END IF
RETURN
*
* End of DMAKE.
*
END
SUBROUTINE DMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA, BETA, EPS, ERR
INTEGER INCX, INCY, M, N, NMAX, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANS
* .. Array Arguments ..
DOUBLE PRECISION A( NMAX, * ), G( * ), X( * ), Y( * ), YT( * ),
$ YY( * )
* .. Local Scalars ..
DOUBLE PRECISION ERRI
INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL
LOGICAL TRAN
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* .. Executable Statements ..
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
IF( INCX.LT.0 )THEN
KX = NL
INCXL = -1
ELSE
KX = 1
INCXL = 1
END IF
IF( INCY.LT.0 )THEN
KY = ML
INCYL = -1
ELSE
KY = 1
INCYL = 1
END IF
*
* Compute expected result in YT using data in A, X and Y.
* Compute gauges in G.
*
IY = KY
DO 30 I = 1, ML
YT( IY ) = ZERO
G( IY ) = ZERO
JX = KX
IF( TRAN )THEN
DO 10 J = 1, NL
YT( IY ) = YT( IY ) + A( J, I )*X( JX )
G( IY ) = G( IY ) + ABS( A( J, I )*X( JX ) )
JX = JX + INCXL
10 CONTINUE
ELSE
DO 20 J = 1, NL
YT( IY ) = YT( IY ) + A( I, J )*X( JX )
G( IY ) = G( IY ) + ABS( A( I, J )*X( JX ) )
JX = JX + INCXL
20 CONTINUE
END IF
YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY )
G( IY ) = ABS( ALPHA )*G( IY ) + ABS( BETA*Y( IY ) )
IY = IY + INCYL
30 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 40 I = 1, ML
ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS
IF( G( I ).NE.ZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.ONE )
$ GO TO 50
40 CONTINUE
* If the loop completes, all results are at least half accurate.
GO TO 70
*
* Report fatal error.
*
50 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 60 I = 1, ML
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, YT( I ),
$ YY( 1 + ( I - 1 )*ABS( INCY ) )
ELSE
WRITE( NOUT, FMT = 9998 )I,
$ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I )
END IF
60 CONTINUE
*
70 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RESULT COMPU',
$ 'TED RESULT' )
9998 FORMAT( 1X, I7, 2G18.6 )
*
* End of DMVCH.
*
END
LOGICAL FUNCTION LDE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
DOUBLE PRECISION RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LDE = .TRUE.
GO TO 30
20 CONTINUE
LDE = .FALSE.
30 RETURN
*
* End of LDE.
*
END
LOGICAL FUNCTION LDERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE', 'SY' or 'SP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
DOUBLE PRECISION AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'SY' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LDERES = .TRUE.
GO TO 80
70 CONTINUE
LDERES = .FALSE.
80 RETURN
*
* End of LDERES.
*
END
DOUBLE PRECISION FUNCTION DBEG( RESET )
*
* Generates random numbers uniformly distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, MI
* .. Save statement ..
SAVE I, IC, MI
* .. Intrinsic Functions ..
INTRINSIC DBLE
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
I = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I is bounded between 1 and 999.
* If initial I = 1,2,3,6,7 or 9, the period will be 50.
* If initial I = 4 or 8, the period will be 25.
* If initial I = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I in 6.
*
IC = IC + 1
10 I = I*MI
I = I - 1000*( I/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
DBEG = DBLE( I - 500 )/1001.0D0
RETURN
*
* End of DBEG.
*
END
DOUBLE PRECISION FUNCTION DDIFF( X, Y )
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
*
* .. Scalar Arguments ..
DOUBLE PRECISION X, Y
* .. Executable Statements ..
DDIFF = X - Y
RETURN
*
* End of DDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 2 BLAS
* routines.
*
* XERBLA is an error handler for the Level 2 BLAS routines.
*
* It is called by the Level 2 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/cblat3.f
|
.f
| 131,550
| 3,493
|
*> \brief \b CBLAT3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM CBLAT3
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX Level 3 Blas.
*>
*> The program must be driven by a short data file. The first 14 records
*> of the file are read using list-directed input, the last 9 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 23 lines:
*> 'cblat3.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'CBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 3 NUMBER OF VALUES OF ALPHA
*> (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
*> CGEMM T PUT F FOR NO TEST. SAME COLUMNS.
*> CHEMM T PUT F FOR NO TEST. SAME COLUMNS.
*> CSYMM T PUT F FOR NO TEST. SAME COLUMNS.
*> CTRMM T PUT F FOR NO TEST. SAME COLUMNS.
*> CTRSM T PUT F FOR NO TEST. SAME COLUMNS.
*> CHERK T PUT F FOR NO TEST. SAME COLUMNS.
*> CSYRK T PUT F FOR NO TEST. SAME COLUMNS.
*> CHER2K T PUT F FOR NO TEST. SAME COLUMNS.
*> CSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S.
*> A Set of Level 3 Basic Linear Algebra Subprograms.
*>
*> Technical Memorandum No.88 (Revision 1), Mathematics and
*> Computer Science Division, Argonne National Laboratory, 9700
*> South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex_blas_testing
*
* =====================================================================
PROGRAM CBLAT3
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 9 )
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
INTEGER NMAX
PARAMETER ( NMAX = 65 )
INTEGER NIDMAX, NALMAX, NBEMAX
PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
REAL EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANSA, TRANSB
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
COMPLEX AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ),
$ BB( NMAX*NMAX ), BET( NBEMAX ),
$ BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ W( 2*NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
REAL SDIFF
LOGICAL LCE
EXTERNAL SDIFF, LCE
* .. External Subroutines ..
EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHKE, CMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'CGEMM ', 'CHEMM ', 'CSYMM ', 'CTRMM ',
$ 'CTRSM ', 'CHERK ', 'CSYRK ', 'CHER2K',
$ 'CSYR2K'/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 220
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 220
END IF
10 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 220
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 220
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9984 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 20 I = 1, NSUBS
LTEST( I ) = .FALSE.
20 CONTINUE
30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT
DO 40 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 50
40 CONTINUE
WRITE( NOUT, FMT = 9990 )SNAMET
STOP
50 LTEST( I ) = LTESTT
GO TO 30
*
60 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(RZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of CMMCH using exact data.
*
N = MIN( 32, NMAX )
DO 100 J = 1, N
DO 90 I = 1, N
AB( I, J ) = MAX( I - J + 1, 0 )
90 CONTINUE
AB( J, NMAX + 1 ) = J
AB( 1, NMAX + J ) = J
C( J, 1 ) = ZERO
100 CONTINUE
DO 110 J = 1, N
CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
110 CONTINUE
* CC holds the exact result. On exit from CMMCH CT holds
* the result computed by CMMCH.
TRANSA = 'N'
TRANSB = 'N'
CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'C'
CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
DO 120 J = 1, N
AB( J, NMAX + 1 ) = N - J + 1
AB( 1, NMAX + J ) = N - J + 1
120 CONTINUE
DO 130 J = 1, N
CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 -
$ ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
TRANSA = 'C'
TRANSB = 'N'
CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'C'
CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 200 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 150, 150, 160, 160, 170, 170,
$ 180, 180 )ISNUM
* Test CGEMM, 01.
140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test CHEMM, 02, CSYMM, 03.
150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test CTRMM, 04, CTRSM, 05.
160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB,
$ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C )
GO TO 190
* Test CHERK, 06, CSYRK, 07.
170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test CHER2K, 08, CSYR2K, 09.
180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
GO TO 190
*
190 IF( FATAL.AND.SFATAL )
$ GO TO 210
END IF
200 CONTINUE
WRITE( NOUT, FMT = 9986 )
GO TO 230
*
210 CONTINUE
WRITE( NOUT, FMT = 9985 )
GO TO 230
*
220 CONTINUE
WRITE( NOUT, FMT = 9991 )
*
230 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' TESTS OF THE COMPLEX LEVEL 3 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9994 FORMAT( ' FOR N ', 9I6 )
9993 FORMAT( ' FOR ALPHA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9992 FORMAT( ' FOR BETA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9989 FORMAT( ' ERROR IN CMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' CMMCH WAS CALLED WITH TRANSA = ', A1,
$ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ',
$ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ',
$ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ',
$ '*******' )
9988 FORMAT( A6, L2 )
9987 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9986 FORMAT( /' END OF TESTS' )
9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of CBLAT3.
*
END
SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests CGEMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BLS
REAL ERR, ERRMAX
INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA,
$ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M,
$ MA, MB, MS, N, NA, NARGS, NB, NC, NS
LOGICAL NULL, RESET, SAME, TRANA, TRANB
CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CGEMM, CMAKE, CMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
*
NARGS = 13
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 110 IM = 1, NIDIM
M = IDIM( IM )
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICA = 1, 3
TRANSA = ICH( ICA: ICA )
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
*
IF( TRANA )THEN
MA = K
NA = M
ELSE
MA = M
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL CMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICB = 1, 3
TRANSB = ICH( ICB: ICB )
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
IF( TRANB )THEN
MB = N
NB = K
ELSE
MB = K
NB = N
END IF
* Set LDB to 1 more than minimum value if room.
LDB = MB
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 70
LBB = LDB*NB
*
* Generate the matrix B.
*
CALL CMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB,
$ LDB, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL CMAKE( 'GE', ' ', ' ', M, N, C, NMAX,
$ CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANAS = TRANSA
TRANBS = TRANSB
MS = M
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB,
$ BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL CGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
$ AA, LDA, BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANSA.EQ.TRANAS
ISAME( 2 ) = TRANSB.EQ.TRANBS
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LCE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LCE( BS, BB, LBB )
ISAME( 10 ) = LDBS.EQ.LDB
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LCE( CS, CC, LCC )
ELSE
ISAME( 12 ) = LCERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 13 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL CMMCH( TRANSA, TRANSB, M, N, K,
$ ALPHA, A, NMAX, B, NMAX, BETA,
$ C, NMAX, CT, G, CC, LDC, EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K,
$ ALPHA, LDA, LDB, BETA, LDC
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',',
$ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3,
$ ',(', F4.1, ',', F4.1, '), C,', I3, ').' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK1.
*
END
SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests CHEMM and CSYMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BLS
REAL ERR, ERRMAX
INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC,
$ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA,
$ NARGS, NC, NS
LOGICAL CONJ, LEFT, NULL, RESET, SAME
CHARACTER*1 SIDE, SIDES, UPLO, UPLOS
CHARACTER*2 ICHS, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHEMM, CMAKE, CMMCH, CSYMM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHS/'LR'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 2: 3 ).EQ.'HE'
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IM = 1, NIDIM
M = IDIM( IM )
*
DO 90 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 90
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 90
LBB = LDB*N
*
* Generate the matrix B.
*
CALL CMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET,
$ ZERO )
*
DO 80 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
*
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
* Generate the hermitian or symmetric matrix A.
*
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', NA, NA, A, NMAX,
$ AA, LDA, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL CMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE,
$ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
IF( CONJ )THEN
CALL CHEMM( SIDE, UPLO, M, N, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
ELSE
CALL CSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 110
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LCE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LCE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LCE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LCERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 110
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL CMMCH( 'N', 'N', M, N, M, ALPHA, A,
$ NMAX, B, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL CMMCH( 'N', 'N', M, N, N, ALPHA, B,
$ NMAX, A, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 120
*
110 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA,
$ LDB, BETA, LDC
*
120 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1,
$ ',', F4.1, '), C,', I3, ') .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK2.
*
END
SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS,
$ B, BB, BS, CT, G, C )
*
* Tests CTRMM and CTRSM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CT( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX ALPHA, ALS
REAL ERR, ERRMAX
INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB,
$ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC,
$ NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO,
$ UPLOS
CHARACTER*2 ICHD, ICHS, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CMAKE, CMMCH, CTRMM, CTRSM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/
* .. Executable Statements ..
*
NARGS = 11
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
* Set up zero matrix for CMMCH.
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
DO 140 IM = 1, NIDIM
M = IDIM( IM )
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 130
LBB = LDB*N
NULL = M.LE.0.OR.N.LE.0
*
DO 120 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 130
LAA = LDA*NA
*
DO 110 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 100 ICT = 1, 3
TRANSA = ICHT( ICT: ICT )
*
DO 90 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
CALL CMAKE( 'TR', UPLO, DIAG, NA, NA, A,
$ NMAX, AA, LDA, RESET, ZERO )
*
* Generate the matrix B.
*
CALL CMAKE( 'GE', ' ', ' ', M, N, B, NMAX,
$ BB, LDB, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
TRANAS = TRANSA
DIAGS = DIAG
MS = M
NS = N
ALS = ALPHA
DO 30 I = 1, LAA
AS( I ) = AA( I )
30 CONTINUE
LDAS = LDA
DO 40 I = 1, LBB
BS( I ) = BB( I )
40 CONTINUE
LDBS = LDB
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL CTRMM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL CTRSM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = TRANAS.EQ.TRANSA
ISAME( 4 ) = DIAGS.EQ.DIAG
ISAME( 5 ) = MS.EQ.M
ISAME( 6 ) = NS.EQ.N
ISAME( 7 ) = ALS.EQ.ALPHA
ISAME( 8 ) = LCE( AS, AA, LAA )
ISAME( 9 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 10 ) = LCE( BS, BB, LBB )
ELSE
ISAME( 10 ) = LCERES( 'GE', ' ', M, N, BS,
$ BB, LDB )
END IF
ISAME( 11 ) = LDBS.EQ.LDB
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 50 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
50 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL CMMCH( TRANSA, 'N', M, N, M,
$ ALPHA, A, NMAX, B, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL CMMCH( 'N', TRANSA, M, N, N,
$ ALPHA, B, NMAX, A, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
*
* Compute approximation to original
* matrix.
*
DO 70 J = 1, N
DO 60 I = 1, M
C( I, J ) = BB( I + ( J - 1 )*
$ LDB )
BB( I + ( J - 1 )*LDB ) = ALPHA*
$ B( I, J )
60 CONTINUE
70 CONTINUE
*
IF( LEFT )THEN
CALL CMMCH( TRANSA, 'N', M, N, M,
$ ONE, A, NMAX, C, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
ELSE
CALL CMMCH( 'N', TRANSA, M, N, N,
$ ONE, C, NMAX, A, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
END IF
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 150
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, LDA, LDB
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ',
$ ' .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK3.
*
END
SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests CHERK and CSYRK.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
REAL RONE, RZERO
PARAMETER ( RONE = 1.0, RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BETS
REAL ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS,
$ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA,
$ NARGS, NC, NS
LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS
CHARACTER*2 ICHT, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHERK, CMAKE, CMMCH, CSYRK
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, REAL
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NC'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 2: 3 ).EQ.'HE'
*
NARGS = 10
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICT = 1, 2
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'C'
IF( TRAN.AND..NOT.CONJ )
$ TRANS = 'T'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL CMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
IF( CONJ )THEN
RALPHA = REAL( ALPHA )
ALPHA = CMPLX( RALPHA, RZERO )
END IF
*
DO 50 IB = 1, NBET
BETA = BET( IB )
IF( CONJ )THEN
RBETA = REAL( BETA )
BETA = CMPLX( RBETA, RZERO )
END IF
NULL = N.LE.0
IF( CONJ )
$ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ.
$ RZERO ).AND.RBETA.EQ.RONE )
*
* Generate the matrix C.
*
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C,
$ NMAX, CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
IF( CONJ )THEN
RALS = RALPHA
ELSE
ALS = ALPHA
END IF
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
IF( CONJ )THEN
RBETS = RBETA
ELSE
BETS = BETA
END IF
DO 20 I = 1, LCC
CS( I ) = CC( I )
20 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( CONJ )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, RALPHA, LDA, RBETA, LDC
IF( REWI )
$ REWIND NTRA
CALL CHERK( UPLO, TRANS, N, K, RALPHA, AA,
$ LDA, RBETA, CC, LDC )
ELSE
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL CSYRK( UPLO, TRANS, N, K, ALPHA, AA,
$ LDA, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
IF( CONJ )THEN
ISAME( 5 ) = RALS.EQ.RALPHA
ELSE
ISAME( 5 ) = ALS.EQ.ALPHA
END IF
ISAME( 6 ) = LCE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( CONJ )THEN
ISAME( 8 ) = RBETS.EQ.RBETA
ELSE
ISAME( 8 ) = BETS.EQ.BETA
END IF
IF( NULL )THEN
ISAME( 9 ) = LCE( CS, CC, LCC )
ELSE
ISAME( 9 ) = LCERES( SNAME( 2: 3 ), UPLO, N,
$ N, CS, CC, LDC )
END IF
ISAME( 10 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( CONJ )THEN
TRANST = 'C'
ELSE
TRANST = 'T'
END IF
JC = 1
DO 40 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
CALL CMMCH( TRANST, 'N', LJ, 1, K,
$ ALPHA, A( 1, JJ ), NMAX,
$ A( 1, J ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL CMMCH( 'N', TRANST, LJ, 1, K,
$ ALPHA, A( JJ, 1 ), NMAX,
$ A( J, 1 ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
40 CONTINUE
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( CONJ )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, RALPHA,
$ LDA, RBETA, LDC
ELSE
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, BETA, LDC
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1,
$ '), C,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK4.
*
END
SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
*
* Tests CHER2K and CSYR2K.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
REAL RONE, RZERO
PARAMETER ( RONE = 1.0, RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ),
$ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ),
$ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ W( 2*NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BETS
REAL ERR, ERRMAX, RBETA, RBETS
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB,
$ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS,
$ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS
LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS
CHARACTER*2 ICHT, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHER2K, CMAKE, CMMCH, CSYR2K
* .. Intrinsic Functions ..
INTRINSIC CMPLX, CONJG, MAX, REAL
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NC'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 2: 3 ).EQ.'HE'
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 130
LCC = LDC*N
*
DO 120 IK = 1, NIDIM
K = IDIM( IK )
*
DO 110 ICT = 1, 2
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'C'
IF( TRAN.AND..NOT.CONJ )
$ TRANS = 'T'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*NA
*
* Generate the matrix A.
*
IF( TRAN )THEN
CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA,
$ LDA, RESET, ZERO )
ELSE
CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA,
$ RESET, ZERO )
END IF
*
* Generate the matrix B.
*
LDB = LDA
LBB = LAA
IF( TRAN )THEN
CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ),
$ 2*NMAX, BB, LDB, RESET, ZERO )
ELSE
CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ),
$ NMAX, BB, LDB, RESET, ZERO )
END IF
*
DO 100 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 90 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 80 IB = 1, NBET
BETA = BET( IB )
IF( CONJ )THEN
RBETA = REAL( BETA )
BETA = CMPLX( RBETA, RZERO )
END IF
NULL = N.LE.0
IF( CONJ )
$ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ.
$ ZERO ).AND.RBETA.EQ.RONE )
*
* Generate the matrix C.
*
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C,
$ NMAX, CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
IF( CONJ )THEN
RBETS = RBETA
ELSE
BETS = BETA
END IF
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( CONJ )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, LDB, RBETA, LDC
IF( REWI )
$ REWIND NTRA
CALL CHER2K( UPLO, TRANS, N, K, ALPHA, AA,
$ LDA, BB, LDB, RBETA, CC, LDC )
ELSE
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL CSYR2K( UPLO, TRANS, N, K, ALPHA, AA,
$ LDA, BB, LDB, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LCE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LCE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
IF( CONJ )THEN
ISAME( 10 ) = RBETS.EQ.RBETA
ELSE
ISAME( 10 ) = BETS.EQ.BETA
END IF
IF( NULL )THEN
ISAME( 11 ) = LCE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LCERES( 'HE', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( CONJ )THEN
TRANST = 'C'
ELSE
TRANST = 'T'
END IF
JJAB = 1
JC = 1
DO 70 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
DO 50 I = 1, K
W( I ) = ALPHA*AB( ( J - 1 )*2*
$ NMAX + K + I )
IF( CONJ )THEN
W( K + I ) = CONJG( ALPHA )*
$ AB( ( J - 1 )*2*
$ NMAX + I )
ELSE
W( K + I ) = ALPHA*
$ AB( ( J - 1 )*2*
$ NMAX + I )
END IF
50 CONTINUE
CALL CMMCH( TRANST, 'N', LJ, 1, 2*K,
$ ONE, AB( JJAB ), 2*NMAX, W,
$ 2*NMAX, BETA, C( JJ, J ),
$ NMAX, CT, G, CC( JC ), LDC,
$ EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE
DO 60 I = 1, K
IF( CONJ )THEN
W( I ) = ALPHA*CONJG( AB( ( K +
$ I - 1 )*NMAX + J ) )
W( K + I ) = CONJG( ALPHA*
$ AB( ( I - 1 )*NMAX +
$ J ) )
ELSE
W( I ) = ALPHA*AB( ( K + I - 1 )*
$ NMAX + J )
W( K + I ) = ALPHA*
$ AB( ( I - 1 )*NMAX +
$ J )
END IF
60 CONTINUE
CALL CMMCH( 'N', 'N', LJ, 1, 2*K, ONE,
$ AB( JJ ), NMAX, W, 2*NMAX,
$ BETA, C( JJ, J ), NMAX, CT,
$ G, CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
IF( TRAN )
$ JJAB = JJAB + 2*NMAX
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 140
70 CONTINUE
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( CONJ )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, LDB, RBETA, LDC
ELSE
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, LDB, BETA, LDC
END IF
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1,
$ ', C,', I3, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1,
$ ',', F4.1, '), C,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK5.
*
END
SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 3 Blas.
* Requires a special version of the error-handling routine XERBLA.
* A, B and C should not need to be defined.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* 3-19-92: Initialize ALPHA, BETA, RALPHA, and RBETA (eca)
* 3-19-92: Fix argument 12 in calls to CSYMM and CHEMM
* with INFOT = 9 (eca)
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Parameters ..
REAL ONE, TWO
PARAMETER ( ONE = 1.0E0, TWO = 2.0E0 )
* .. Local Scalars ..
COMPLEX ALPHA, BETA
REAL RALPHA, RBETA
* .. Local Arrays ..
COMPLEX A( 2, 1 ), B( 2, 1 ), C( 2, 1 )
* .. External Subroutines ..
EXTERNAL CGEMM, CHEMM, CHER2K, CHERK, CHKXER, CSYMM,
$ CSYR2K, CSYRK, CTRMM, CTRSM
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
*
* Initialize ALPHA, BETA, RALPHA, and RBETA.
*
ALPHA = CMPLX( ONE, -ONE )
BETA = CMPLX( TWO, -TWO )
RALPHA = ONE
RBETA = TWO
*
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90 )ISNUM
10 INFOT = 1
CALL CGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 1
CALL CGEMM( '/', 'C', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 1
CALL CGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGEMM( 'C', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'N', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'C', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'C', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'C', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'T', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'N', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'C', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'C', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'C', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'T', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'N', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'C', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'C', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'C', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'T', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'C', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'C', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'T', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'N', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'C', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'T', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'C', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'C', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'C', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'C', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'T', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
20 INFOT = 1
CALL CHEMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHEMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHEMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHEMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHEMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHEMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHEMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHEMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHEMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHEMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHEMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHEMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
30 INFOT = 1
CALL CSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
40 INFOT = 1
CALL CTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
50 INFOT = 1
CALL CTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
60 INFOT = 1
CALL CHERK( '/', 'N', 0, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHERK( 'U', 'T', 0, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHERK( 'U', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHERK( 'U', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHERK( 'L', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHERK( 'L', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHERK( 'U', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHERK( 'U', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHERK( 'L', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHERK( 'L', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHERK( 'U', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHERK( 'U', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHERK( 'L', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHERK( 'L', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHERK( 'U', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHERK( 'U', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHERK( 'L', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHERK( 'L', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
70 INFOT = 1
CALL CSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYRK( 'U', 'C', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
80 INFOT = 1
CALL CHER2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHER2K( 'U', 'T', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHER2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHER2K( 'U', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHER2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHER2K( 'L', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHER2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHER2K( 'U', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHER2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CHER2K( 'L', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER2K( 'U', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER2K( 'L', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHER2K( 'U', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHER2K( 'L', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHER2K( 'U', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CHER2K( 'L', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 100
90 INFOT = 1
CALL CSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYR2K( 'U', 'C', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
100 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of CCHKE.
*
END
SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET,
$ TRANSL )
*
* Generates values for an M by N matrix A.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'HE', 'SY' or 'TR'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
COMPLEX ROGUE
PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
REAL RROGUE
PARAMETER ( RROGUE = -1.0E10 )
* .. Scalar Arguments ..
COMPLEX TRANSL
INTEGER LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J, JJ
LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
COMPLEX CBEG
EXTERNAL CBEG
* .. Intrinsic Functions ..
INTRINSIC CMPLX, CONJG, REAL
* .. Executable Statements ..
GEN = TYPE.EQ.'GE'
HER = TYPE.EQ.'HE'
SYM = TYPE.EQ.'SY'
TRI = TYPE.EQ.'TR'
UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
A( I, J ) = CBEG( RESET ) + TRANSL
IF( I.NE.J )THEN
* Set some elements to zero
IF( N.GT.3.AND.J.EQ.N/2 )
$ A( I, J ) = ZERO
IF( HER )THEN
A( J, I ) = CONJG( A( I, J ) )
ELSE IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( HER )
$ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO )
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN
DO 90 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 60 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
70 CONTINUE
DO 80 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
IF( HER )THEN
JJ = J + ( J - 1 )*LDA
AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE )
END IF
90 CONTINUE
END IF
RETURN
*
* End of CMAKE.
*
END
SUBROUTINE CMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL,
$ NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
REAL RZERO, RONE
PARAMETER ( RZERO = 0.0, RONE = 1.0 )
* .. Scalar Arguments ..
COMPLEX ALPHA, BETA
REAL EPS, ERR
INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANSA, TRANSB
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ CC( LDCC, * ), CT( * )
REAL G( * )
* .. Local Scalars ..
COMPLEX CL
REAL ERRI
INTEGER I, J, K
LOGICAL CTRANA, CTRANB, TRANA, TRANB
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT
* .. Statement Functions ..
REAL ABS1
* .. Statement Function definitions ..
ABS1( CL ) = ABS( REAL( CL ) ) + ABS( AIMAG( CL ) )
* .. Executable Statements ..
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
CTRANA = TRANSA.EQ.'C'
CTRANB = TRANSB.EQ.'C'
*
* Compute expected result, one column at a time, in CT using data
* in A, B and C.
* Compute gauges in G.
*
DO 220 J = 1, N
*
DO 10 I = 1, M
CT( I ) = ZERO
G( I ) = RZERO
10 CONTINUE
IF( .NOT.TRANA.AND..NOT.TRANB )THEN
DO 30 K = 1, KK
DO 20 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( K, J )
G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) )
20 CONTINUE
30 CONTINUE
ELSE IF( TRANA.AND..NOT.TRANB )THEN
IF( CTRANA )THEN
DO 50 K = 1, KK
DO 40 I = 1, M
CT( I ) = CT( I ) + CONJG( A( K, I ) )*B( K, J )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( K, J ) )
40 CONTINUE
50 CONTINUE
ELSE
DO 70 K = 1, KK
DO 60 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( K, J )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( K, J ) )
60 CONTINUE
70 CONTINUE
END IF
ELSE IF( .NOT.TRANA.AND.TRANB )THEN
IF( CTRANB )THEN
DO 90 K = 1, KK
DO 80 I = 1, M
CT( I ) = CT( I ) + A( I, K )*CONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( I, K ) )*
$ ABS1( B( J, K ) )
80 CONTINUE
90 CONTINUE
ELSE
DO 110 K = 1, KK
DO 100 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( J, K )
G( I ) = G( I ) + ABS1( A( I, K ) )*
$ ABS1( B( J, K ) )
100 CONTINUE
110 CONTINUE
END IF
ELSE IF( TRANA.AND.TRANB )THEN
IF( CTRANA )THEN
IF( CTRANB )THEN
DO 130 K = 1, KK
DO 120 I = 1, M
CT( I ) = CT( I ) + CONJG( A( K, I ) )*
$ CONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
120 CONTINUE
130 CONTINUE
ELSE
DO 150 K = 1, KK
DO 140 I = 1, M
CT( I ) = CT( I ) + CONJG( A( K, I ) )*B( J, K )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
140 CONTINUE
150 CONTINUE
END IF
ELSE
IF( CTRANB )THEN
DO 170 K = 1, KK
DO 160 I = 1, M
CT( I ) = CT( I ) + A( K, I )*CONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 190 K = 1, KK
DO 180 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( J, K )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
180 CONTINUE
190 CONTINUE
END IF
END IF
END IF
DO 200 I = 1, M
CT( I ) = ALPHA*CT( I ) + BETA*C( I, J )
G( I ) = ABS1( ALPHA )*G( I ) +
$ ABS1( BETA )*ABS1( C( I, J ) )
200 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 210 I = 1, M
ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS
IF( G( I ).NE.RZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.RONE )
$ GO TO 230
210 CONTINUE
*
220 CONTINUE
*
* If the loop completes, all results are at least half accurate.
GO TO 250
*
* Report fatal error.
*
230 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 240 I = 1, M
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J )
ELSE
WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I )
END IF
240 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9997 )J
*
250 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RE',
$ 'SULT COMPUTED RESULT' )
9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) )
9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
*
* End of CMMCH.
*
END
LOGICAL FUNCTION LCE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
COMPLEX RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LCE = .TRUE.
GO TO 30
20 CONTINUE
LCE = .FALSE.
30 RETURN
*
* End of LCE.
*
END
LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE' or 'HE' or 'SY'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LCERES = .TRUE.
GO TO 80
70 CONTINUE
LCERES = .FALSE.
80 RETURN
*
* End of LCERES.
*
END
COMPLEX FUNCTION CBEG( RESET )
*
* Generates complex numbers as pairs of random numbers uniformly
* distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, J, MI, MJ
* .. Save statement ..
SAVE I, IC, J, MI, MJ
* .. Intrinsic Functions ..
INTRINSIC CMPLX
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
MJ = 457
I = 7
J = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I or J is bounded between 1 and 999.
* If initial I or J = 1,2,3,6,7 or 9, the period will be 50.
* If initial I or J = 4 or 8, the period will be 25.
* If initial I or J = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I or J
* in 6.
*
IC = IC + 1
10 I = I*MI
J = J*MJ
I = I - 1000*( I/1000 )
J = J - 1000*( J/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 )
RETURN
*
* End of CBEG.
*
END
REAL FUNCTION SDIFF( X, Y )
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
REAL X, Y
* .. Executable Statements ..
SDIFF = X - Y
RETURN
*
* End of SDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 3 BLAS
* routines.
*
* XERBLA is an error handler for the Level 3 BLAS routines.
*
* It is called by the Level 3 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/cblat1.f
|
.f
| 32,109
| 725
|
*> \brief \b CBLAT1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM CBLAT1
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX Level 1 BLAS.
*> Based upon the original BLAS test routine together with:
*>
*> F06GAF Example Program Text
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex_blas_testing
*
* =====================================================================
PROGRAM CBLAT1
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
REAL SFAC
INTEGER IC
* .. External Subroutines ..
EXTERNAL CHECK1, CHECK2, HEADER
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA SFAC/9.765625E-4/
* .. Executable Statements ..
WRITE (NOUT,99999)
DO 20 IC = 1, 10
ICASE = IC
CALL HEADER
*
* Initialize PASS, INCX, INCY, and MODE for a new case.
* The value 9999 for INCX, INCY or MODE will appear in the
* detailed output, if any, for cases that do not involve
* these parameters.
*
PASS = .TRUE.
INCX = 9999
INCY = 9999
MODE = 9999
IF (ICASE.LE.5) THEN
CALL CHECK2(SFAC)
ELSE IF (ICASE.GE.6) THEN
CALL CHECK1(SFAC)
END IF
* -- Print
IF (PASS) WRITE (NOUT,99998)
20 CONTINUE
STOP
*
99999 FORMAT (' Complex BLAS Test Program Results',/1X)
99998 FORMAT (' ----- PASS -----')
END
SUBROUTINE HEADER
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Arrays ..
CHARACTER*6 L(10)
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA L(1)/'CDOTC '/
DATA L(2)/'CDOTU '/
DATA L(3)/'CAXPY '/
DATA L(4)/'CCOPY '/
DATA L(5)/'CSWAP '/
DATA L(6)/'SCNRM2'/
DATA L(7)/'SCASUM'/
DATA L(8)/'CSCAL '/
DATA L(9)/'CSSCAL'/
DATA L(10)/'ICAMAX'/
* .. Executable Statements ..
WRITE (NOUT,99999) ICASE, L(ICASE)
RETURN
*
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
END
SUBROUTINE CHECK1(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
REAL SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
COMPLEX CA
REAL SA
INTEGER I, J, LEN, NP1
* .. Local Arrays ..
COMPLEX CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8),
+ MWPCS(5), MWPCT(5)
REAL STRUE2(5), STRUE4(5)
INTEGER ITRUE3(5)
* .. External Functions ..
REAL SCASUM, SCNRM2
INTEGER ICAMAX
EXTERNAL SCASUM, SCNRM2, ICAMAX
* .. External Subroutines ..
EXTERNAL CSCAL, CSSCAL, CTEST, ITEST1, STEST1
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA SA, CA/0.3E0, (0.4E0,-0.7E0)/
DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0),
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
+ (1.0E0,2.0E0), (0.3E0,-0.4E0), (3.0E0,4.0E0),
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
+ (0.1E0,-0.3E0), (0.5E0,-0.1E0), (5.0E0,6.0E0),
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (0.1E0,0.1E0),
+ (-0.6E0,0.1E0), (0.1E0,-0.3E0), (7.0E0,8.0E0),
+ (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
+ (7.0E0,8.0E0), (0.3E0,0.1E0), (0.5E0,0.0E0),
+ (0.0E0,0.5E0), (0.0E0,0.2E0), (2.0E0,3.0E0),
+ (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0)/
DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0),
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
+ (4.0E0,5.0E0), (0.3E0,-0.4E0), (6.0E0,7.0E0),
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
+ (0.1E0,-0.3E0), (8.0E0,9.0E0), (0.5E0,-0.1E0),
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (0.1E0,0.1E0),
+ (3.0E0,6.0E0), (-0.6E0,0.1E0), (4.0E0,7.0E0),
+ (0.1E0,-0.3E0), (7.0E0,2.0E0), (7.0E0,2.0E0),
+ (7.0E0,2.0E0), (0.3E0,0.1E0), (5.0E0,8.0E0),
+ (0.5E0,0.0E0), (6.0E0,9.0E0), (0.0E0,0.5E0),
+ (8.0E0,3.0E0), (0.0E0,0.2E0), (9.0E0,4.0E0)/
DATA STRUE2/0.0E0, 0.5E0, 0.6E0, 0.7E0, 0.8E0/
DATA STRUE4/0.0E0, 0.7E0, 1.0E0, 1.3E0, 1.6E0/
DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0),
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
+ (1.0E0,2.0E0), (-0.16E0,-0.37E0), (3.0E0,4.0E0),
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
+ (-0.17E0,-0.19E0), (0.13E0,-0.39E0),
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
+ (0.11E0,-0.03E0), (-0.17E0,0.46E0),
+ (-0.17E0,-0.19E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
+ (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
+ (0.19E0,-0.17E0), (0.20E0,-0.35E0),
+ (0.35E0,0.20E0), (0.14E0,0.08E0),
+ (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0),
+ (2.0E0,3.0E0)/
DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0),
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
+ (4.0E0,5.0E0), (-0.16E0,-0.37E0), (6.0E0,7.0E0),
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
+ (-0.17E0,-0.19E0), (8.0E0,9.0E0),
+ (0.13E0,-0.39E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
+ (0.11E0,-0.03E0), (3.0E0,6.0E0),
+ (-0.17E0,0.46E0), (4.0E0,7.0E0),
+ (-0.17E0,-0.19E0), (7.0E0,2.0E0), (7.0E0,2.0E0),
+ (7.0E0,2.0E0), (0.19E0,-0.17E0), (5.0E0,8.0E0),
+ (0.20E0,-0.35E0), (6.0E0,9.0E0),
+ (0.35E0,0.20E0), (8.0E0,3.0E0),
+ (0.14E0,0.08E0), (9.0E0,4.0E0)/
DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0),
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
+ (1.0E0,2.0E0), (0.09E0,-0.12E0), (3.0E0,4.0E0),
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
+ (0.03E0,-0.09E0), (0.15E0,-0.03E0),
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
+ (0.03E0,0.03E0), (-0.18E0,0.03E0),
+ (0.03E0,-0.09E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
+ (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
+ (0.09E0,0.03E0), (0.15E0,0.00E0),
+ (0.00E0,0.15E0), (0.00E0,0.06E0), (2.0E0,3.0E0),
+ (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0)/
DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0),
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
+ (4.0E0,5.0E0), (0.09E0,-0.12E0), (6.0E0,7.0E0),
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
+ (0.03E0,-0.09E0), (8.0E0,9.0E0),
+ (0.15E0,-0.03E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
+ (0.03E0,0.03E0), (3.0E0,6.0E0),
+ (-0.18E0,0.03E0), (4.0E0,7.0E0),
+ (0.03E0,-0.09E0), (7.0E0,2.0E0), (7.0E0,2.0E0),
+ (7.0E0,2.0E0), (0.09E0,0.03E0), (5.0E0,8.0E0),
+ (0.15E0,0.00E0), (6.0E0,9.0E0), (0.00E0,0.15E0),
+ (8.0E0,3.0E0), (0.00E0,0.06E0), (9.0E0,4.0E0)/
DATA ITRUE3/0, 1, 2, 2, 2/
* .. Executable Statements ..
DO 60 INCX = 1, 2
DO 40 NP1 = 1, 5
N = NP1 - 1
LEN = 2*MAX(N,1)
* .. Set vector arguments ..
DO 20 I = 1, LEN
CX(I) = CV(I,NP1,INCX)
20 CONTINUE
IF (ICASE.EQ.6) THEN
* .. SCNRM2 ..
CALL STEST1(SCNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1),
+ SFAC)
ELSE IF (ICASE.EQ.7) THEN
* .. SCASUM ..
CALL STEST1(SCASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1),
+ SFAC)
ELSE IF (ICASE.EQ.8) THEN
* .. CSCAL ..
CALL CSCAL(N,CA,CX,INCX)
CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX),
+ SFAC)
ELSE IF (ICASE.EQ.9) THEN
* .. CSSCAL ..
CALL CSSCAL(N,SA,CX,INCX)
CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX),
+ SFAC)
ELSE IF (ICASE.EQ.10) THEN
* .. ICAMAX ..
CALL ITEST1(ICAMAX(N,CX,INCX),ITRUE3(NP1))
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
STOP
END IF
*
40 CONTINUE
60 CONTINUE
*
INCX = 1
IF (ICASE.EQ.8) THEN
* CSCAL
* Add a test for alpha equal to zero.
CA = (0.0E0,0.0E0)
DO 80 I = 1, 5
MWPCT(I) = (0.0E0,0.0E0)
MWPCS(I) = (1.0E0,1.0E0)
80 CONTINUE
CALL CSCAL(5,CA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
ELSE IF (ICASE.EQ.9) THEN
* CSSCAL
* Add a test for alpha equal to zero.
SA = 0.0E0
DO 100 I = 1, 5
MWPCT(I) = (0.0E0,0.0E0)
MWPCS(I) = (1.0E0,1.0E0)
100 CONTINUE
CALL CSSCAL(5,SA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
* Add a test for alpha equal to one.
SA = 1.0E0
DO 120 I = 1, 5
MWPCT(I) = CX(I)
MWPCS(I) = CX(I)
120 CONTINUE
CALL CSSCAL(5,SA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
* Add a test for alpha equal to minus one.
SA = -1.0E0
DO 140 I = 1, 5
MWPCT(I) = -CX(I)
MWPCS(I) = -CX(I)
140 CONTINUE
CALL CSSCAL(5,SA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
END IF
RETURN
END
SUBROUTINE CHECK2(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
REAL SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
COMPLEX CA
INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY
* .. Local Arrays ..
COMPLEX CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14),
+ CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4),
+ CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7)
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
* .. External Functions ..
COMPLEX CDOTC, CDOTU
EXTERNAL CDOTC, CDOTU
* .. External Subroutines ..
EXTERNAL CAXPY, CCOPY, CSWAP, CTEST
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA CA/(0.4E0,-0.7E0)/
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA CX1/(0.7E0,-0.8E0), (-0.4E0,-0.7E0),
+ (-0.1E0,-0.9E0), (0.2E0,-0.8E0),
+ (-0.9E0,-0.4E0), (0.1E0,0.4E0), (-0.6E0,0.6E0)/
DATA CY1/(0.6E0,-0.6E0), (-0.9E0,0.5E0),
+ (0.7E0,-0.6E0), (0.1E0,-0.5E0), (-0.1E0,-0.2E0),
+ (-0.5E0,-0.3E0), (0.8E0,-0.7E0)/
DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.32E0,-1.41E0),
+ (-1.55E0,0.5E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.32E0,-1.41E0), (-1.55E0,0.5E0),
+ (0.03E0,-0.89E0), (-0.38E0,-0.96E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (-0.07E0,-0.89E0),
+ (-0.9E0,0.5E0), (0.42E0,-1.41E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.78E0,0.06E0), (-0.9E0,0.5E0),
+ (0.06E0,-0.13E0), (0.1E0,-0.5E0),
+ (-0.77E0,-0.49E0), (-0.5E0,-0.3E0),
+ (0.52E0,-1.51E0)/
DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (-0.07E0,-0.89E0),
+ (-1.18E0,-0.31E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.78E0,0.06E0), (-1.54E0,0.97E0),
+ (0.03E0,-0.89E0), (-0.18E0,-1.31E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.32E0,-1.41E0), (-0.9E0,0.5E0),
+ (0.05E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.32E0,-1.41E0),
+ (-0.9E0,0.5E0), (0.05E0,-0.6E0), (0.1E0,-0.5E0),
+ (-0.77E0,-0.49E0), (-0.5E0,-0.3E0),
+ (0.32E0,-1.16E0)/
DATA CT7/(0.0E0,0.0E0), (-0.06E0,-0.90E0),
+ (0.65E0,-0.47E0), (-0.34E0,-1.22E0),
+ (0.0E0,0.0E0), (-0.06E0,-0.90E0),
+ (-0.59E0,-1.46E0), (-1.04E0,-0.04E0),
+ (0.0E0,0.0E0), (-0.06E0,-0.90E0),
+ (-0.83E0,0.59E0), (0.07E0,-0.37E0),
+ (0.0E0,0.0E0), (-0.06E0,-0.90E0),
+ (-0.76E0,-1.15E0), (-1.33E0,-1.82E0)/
DATA CT6/(0.0E0,0.0E0), (0.90E0,0.06E0),
+ (0.91E0,-0.77E0), (1.80E0,-0.10E0),
+ (0.0E0,0.0E0), (0.90E0,0.06E0), (1.45E0,0.74E0),
+ (0.20E0,0.90E0), (0.0E0,0.0E0), (0.90E0,0.06E0),
+ (-0.55E0,0.23E0), (0.83E0,-0.39E0),
+ (0.0E0,0.0E0), (0.90E0,0.06E0), (1.04E0,0.79E0),
+ (1.95E0,1.22E0)/
DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7E0,-0.8E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.6E0,-0.6E0), (-0.9E0,0.5E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.6E0,-0.6E0),
+ (-0.9E0,0.5E0), (0.7E0,-0.6E0), (0.1E0,-0.5E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7E0,-0.8E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.7E0,-0.6E0), (-0.4E0,-0.7E0),
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.8E0,-0.7E0),
+ (-0.4E0,-0.7E0), (-0.1E0,-0.2E0),
+ (0.2E0,-0.8E0), (0.7E0,-0.6E0), (0.1E0,0.4E0),
+ (0.6E0,-0.6E0)/
DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7E0,-0.8E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (-0.9E0,0.5E0), (-0.4E0,-0.7E0),
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.1E0,-0.5E0),
+ (-0.4E0,-0.7E0), (0.7E0,-0.6E0), (0.2E0,-0.8E0),
+ (-0.9E0,0.5E0), (0.1E0,0.4E0), (0.6E0,-0.6E0)/
DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7E0,-0.8E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.6E0,-0.6E0), (0.7E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.6E0,-0.6E0),
+ (0.7E0,-0.6E0), (-0.1E0,-0.2E0), (0.8E0,-0.7E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.7E0,-0.8E0), (-0.4E0,-0.7E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.7E0,-0.8E0),
+ (-0.4E0,-0.7E0), (-0.1E0,-0.9E0),
+ (0.2E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0)/
DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (-0.1E0,-0.9E0), (-0.9E0,0.5E0),
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (-0.6E0,0.6E0),
+ (-0.9E0,0.5E0), (-0.9E0,-0.4E0), (0.1E0,-0.5E0),
+ (-0.1E0,-0.9E0), (-0.5E0,-0.3E0),
+ (0.7E0,-0.8E0)/
DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (-0.1E0,-0.9E0), (0.7E0,-0.8E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (-0.6E0,0.6E0),
+ (-0.9E0,-0.4E0), (-0.1E0,-0.9E0),
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0)/
DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6E0,-0.6E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.7E0,-0.8E0), (-0.9E0,0.5E0),
+ (-0.4E0,-0.7E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.7E0,-0.8E0),
+ (-0.9E0,0.5E0), (-0.4E0,-0.7E0), (0.1E0,-0.5E0),
+ (-0.1E0,-0.9E0), (-0.5E0,-0.3E0),
+ (0.2E0,-0.8E0)/
DATA CSIZE1/(0.0E0,0.0E0), (0.9E0,0.9E0),
+ (1.63E0,1.73E0), (2.90E0,2.78E0)/
DATA CSIZE3/(0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (1.17E0,1.17E0),
+ (1.17E0,1.17E0), (1.17E0,1.17E0),
+ (1.17E0,1.17E0), (1.17E0,1.17E0),
+ (1.17E0,1.17E0), (1.17E0,1.17E0)/
DATA CSIZE2/(0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (1.54E0,1.54E0),
+ (1.54E0,1.54E0), (1.54E0,1.54E0),
+ (1.54E0,1.54E0), (1.54E0,1.54E0),
+ (1.54E0,1.54E0), (1.54E0,1.54E0)/
* .. Executable Statements ..
DO 60 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 40 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
* .. initialize all argument arrays ..
DO 20 I = 1, 7
CX(I) = CX1(I)
CY(I) = CY1(I)
20 CONTINUE
IF (ICASE.EQ.1) THEN
* .. CDOTC ..
CDOT(1) = CDOTC(N,CX,INCX,CY,INCY)
CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC)
ELSE IF (ICASE.EQ.2) THEN
* .. CDOTU ..
CDOT(1) = CDOTU(N,CX,INCX,CY,INCY)
CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC)
ELSE IF (ICASE.EQ.3) THEN
* .. CAXPY ..
CALL CAXPY(N,CA,CX,INCX,CY,INCY)
CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC)
ELSE IF (ICASE.EQ.4) THEN
* .. CCOPY ..
CALL CCOPY(N,CX,INCX,CY,INCY)
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0E0)
ELSE IF (ICASE.EQ.5) THEN
* .. CSWAP ..
CALL CSWAP(N,CX,INCX,CY,INCY)
CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0E0)
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0E0)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
STOP
END IF
*
40 CONTINUE
60 CONTINUE
RETURN
END
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
REAL ZERO
PARAMETER (NOUT=6, ZERO=0.0E0)
* .. Scalar Arguments ..
REAL SFAC
INTEGER LEN
* .. Array Arguments ..
REAL SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
REAL SD
INTEGER I
* .. External Functions ..
REAL SDIFF
EXTERNAL SDIFF
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Executable Statements ..
*
DO 40 I = 1, LEN
SD = SCOMP(I) - STRUE(I)
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I),
+ STRUE(I), SD, SSIZE(I)
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY MODE I ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,3I5,I3,2E36.8,2E12.4)
END
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
* ************************* STEST1 *****************************
*
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
REAL SCOMP1, SFAC, STRUE1
* .. Array Arguments ..
REAL SSIZE(*)
* .. Local Arrays ..
REAL SCOMP(1), STRUE(1)
* .. External Subroutines ..
EXTERNAL STEST
* .. Executable Statements ..
*
SCOMP(1) = SCOMP1
STRUE(1) = STRUE1
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
*
RETURN
END
REAL FUNCTION SDIFF(SA,SB)
* ********************************* SDIFF **************************
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
*
* .. Scalar Arguments ..
REAL SA, SB
* .. Executable Statements ..
SDIFF = SA - SB
RETURN
END
SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC)
* **************************** CTEST *****************************
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
REAL SFAC
INTEGER LEN
* .. Array Arguments ..
COMPLEX CCOMP(LEN), CSIZE(LEN), CTRUE(LEN)
* .. Local Scalars ..
INTEGER I
* .. Local Arrays ..
REAL SCOMP(20), SSIZE(20), STRUE(20)
* .. External Subroutines ..
EXTERNAL STEST
* .. Intrinsic Functions ..
INTRINSIC AIMAG, REAL
* .. Executable Statements ..
DO 20 I = 1, LEN
SCOMP(2*I-1) = REAL(CCOMP(I))
SCOMP(2*I) = AIMAG(CCOMP(I))
STRUE(2*I-1) = REAL(CTRUE(I))
STRUE(2*I) = AIMAG(CTRUE(I))
SSIZE(2*I-1) = REAL(CSIZE(I))
SSIZE(2*I) = AIMAG(CSIZE(I))
20 CONTINUE
*
CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC)
RETURN
END
SUBROUTINE ITEST1(ICOMP,ITRUE)
* ********************************* ITEST1 *************************
*
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
* EQUALITY.
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
INTEGER ICOMP, ITRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER ID
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Executable Statements ..
IF (ICOMP.EQ.ITRUE) GO TO 40
*
* HERE ICOMP IS NOT EQUAL TO ITRUE.
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 ID = ICOMP - ITRUE
WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY MODE ',
+ ' COMP TRUE DIFFERENCE',
+ /1X)
99997 FORMAT (1X,I4,I3,3I5,2I36,I12)
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/sblat1.f
|
.f
| 43,388
| 1,022
|
*> \brief \b SBLAT1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM SBLAT1
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the REAL Level 1 BLAS.
*>
*> Based upon the original BLAS test routine together with:
*> F06EAF Example Program Text
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup single_blas_testing
*
* =====================================================================
PROGRAM SBLAT1
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL SFAC
INTEGER IC
* .. External Subroutines ..
EXTERNAL CHECK0, CHECK1, CHECK2, CHECK3, HEADER
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA SFAC/9.765625E-4/
* .. Executable Statements ..
WRITE (NOUT,99999)
DO 20 IC = 1, 13
ICASE = IC
CALL HEADER
*
* .. Initialize PASS, INCX, and INCY for a new case. ..
* .. the value 9999 for INCX or INCY will appear in the ..
* .. detailed output, if any, for cases that do not involve ..
* .. these parameters ..
*
PASS = .TRUE.
INCX = 9999
INCY = 9999
IF (ICASE.EQ.3 .OR. ICASE.EQ.11) THEN
CALL CHECK0(SFAC)
ELSE IF (ICASE.EQ.7 .OR. ICASE.EQ.8 .OR. ICASE.EQ.9 .OR.
+ ICASE.EQ.10) THEN
CALL CHECK1(SFAC)
ELSE IF (ICASE.EQ.1 .OR. ICASE.EQ.2 .OR. ICASE.EQ.5 .OR.
+ ICASE.EQ.6 .OR. ICASE.EQ.12 .OR. ICASE.EQ.13) THEN
CALL CHECK2(SFAC)
ELSE IF (ICASE.EQ.4) THEN
CALL CHECK3(SFAC)
END IF
* -- Print
IF (PASS) WRITE (NOUT,99998)
20 CONTINUE
STOP
*
99999 FORMAT (' Real BLAS Test Program Results',/1X)
99998 FORMAT (' ----- PASS -----')
END
SUBROUTINE HEADER
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Arrays ..
CHARACTER*6 L(13)
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA L(1)/' SDOT '/
DATA L(2)/'SAXPY '/
DATA L(3)/'SROTG '/
DATA L(4)/' SROT '/
DATA L(5)/'SCOPY '/
DATA L(6)/'SSWAP '/
DATA L(7)/'SNRM2 '/
DATA L(8)/'SASUM '/
DATA L(9)/'SSCAL '/
DATA L(10)/'ISAMAX'/
DATA L(11)/'SROTMG'/
DATA L(12)/'SROTM '/
DATA L(13)/'SDSDOT'/
* .. Executable Statements ..
WRITE (NOUT,99999) ICASE, L(ICASE)
RETURN
*
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
END
SUBROUTINE CHECK0(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
REAL SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL D12, SA, SB, SC, SS
INTEGER I, K
* .. Local Arrays ..
REAL DA1(8), DATRUE(8), DB1(8), DBTRUE(8), DC1(8),
+ DS1(8), DAB(4,9), DTEMP(9), DTRUE(9,9)
* .. External Subroutines ..
EXTERNAL SROTG, SROTMG, STEST1
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA DA1/0.3E0, 0.4E0, -0.3E0, -0.4E0, -0.3E0, 0.0E0,
+ 0.0E0, 1.0E0/
DATA DB1/0.4E0, 0.3E0, 0.4E0, 0.3E0, -0.4E0, 0.0E0,
+ 1.0E0, 0.0E0/
DATA DC1/0.6E0, 0.8E0, -0.6E0, 0.8E0, 0.6E0, 1.0E0,
+ 0.0E0, 1.0E0/
DATA DS1/0.8E0, 0.6E0, 0.8E0, -0.6E0, 0.8E0, 0.0E0,
+ 1.0E0, 0.0E0/
DATA DATRUE/0.5E0, 0.5E0, 0.5E0, -0.5E0, -0.5E0,
+ 0.0E0, 1.0E0, 1.0E0/
DATA DBTRUE/0.0E0, 0.6E0, 0.0E0, -0.6E0, 0.0E0,
+ 0.0E0, 1.0E0, 0.0E0/
* INPUT FOR MODIFIED GIVENS
DATA DAB/ .1E0,.3E0,1.2E0,.2E0,
A .7E0, .2E0, .6E0, 4.2E0,
B 0.E0,0.E0,0.E0,0.E0,
C 4.E0, -1.E0, 2.E0, 4.E0,
D 6.E-10, 2.E-2, 1.E5, 10.E0,
E 4.E10, 2.E-2, 1.E-5, 10.E0,
F 2.E-10, 4.E-2, 1.E5, 10.E0,
G 2.E10, 4.E-2, 1.E-5, 10.E0,
H 4.E0, -2.E0, 8.E0, 4.E0 /
* TRUE RESULTS FOR MODIFIED GIVENS
DATA DTRUE/0.E0,0.E0, 1.3E0, .2E0, 0.E0,0.E0,0.E0, .5E0, 0.E0,
A 0.E0,0.E0, 4.5E0, 4.2E0, 1.E0, .5E0, 0.E0,0.E0,0.E0,
B 0.E0,0.E0,0.E0,0.E0, -2.E0, 0.E0,0.E0,0.E0,0.E0,
C 0.E0,0.E0,0.E0, 4.E0, -1.E0, 0.E0,0.E0,0.E0,0.E0,
D 0.E0, 15.E-3, 0.E0, 10.E0, -1.E0, 0.E0, -1.E-4,
E 0.E0, 1.E0,
F 0.E0,0.E0, 6144.E-5, 10.E0, -1.E0, 4096.E0, -1.E6,
G 0.E0, 1.E0,
H 0.E0,0.E0,15.E0,10.E0,-1.E0, 5.E-5, 0.E0,1.E0,0.E0,
I 0.E0,0.E0, 15.E0, 10.E0, -1. E0, 5.E5, -4096.E0,
J 1.E0, 4096.E-6,
K 0.E0,0.E0, 7.E0, 4.E0, 0.E0,0.E0, -.5E0, -.25E0, 0.E0/
* 4096 = 2 ** 12
DATA D12 /4096.E0/
DTRUE(1,1) = 12.E0 / 130.E0
DTRUE(2,1) = 36.E0 / 130.E0
DTRUE(7,1) = -1.E0 / 6.E0
DTRUE(1,2) = 14.E0 / 75.E0
DTRUE(2,2) = 49.E0 / 75.E0
DTRUE(9,2) = 1.E0 / 7.E0
DTRUE(1,5) = 45.E-11 * (D12 * D12)
DTRUE(3,5) = 4.E5 / (3.E0 * D12)
DTRUE(6,5) = 1.E0 / D12
DTRUE(8,5) = 1.E4 / (3.E0 * D12)
DTRUE(1,6) = 4.E10 / (1.5E0 * D12 * D12)
DTRUE(2,6) = 2.E-2 / 1.5E0
DTRUE(8,6) = 5.E-7 * D12
DTRUE(1,7) = 4.E0 / 150.E0
DTRUE(2,7) = (2.E-10 / 1.5E0) * (D12 * D12)
DTRUE(7,7) = -DTRUE(6,5)
DTRUE(9,7) = 1.E4 / D12
DTRUE(1,8) = DTRUE(1,7)
DTRUE(2,8) = 2.E10 / (1.5E0 * D12 * D12)
DTRUE(1,9) = 32.E0 / 7.E0
DTRUE(2,9) = -16.E0 / 7.E0
* .. Executable Statements ..
*
* Compute true values which cannot be prestored
* in decimal notation
*
DBTRUE(1) = 1.0E0/0.6E0
DBTRUE(3) = -1.0E0/0.6E0
DBTRUE(5) = 1.0E0/0.6E0
*
DO 20 K = 1, 8
* .. Set N=K for identification in output if any ..
N = K
IF (ICASE.EQ.3) THEN
* .. SROTG ..
IF (K.GT.8) GO TO 40
SA = DA1(K)
SB = DB1(K)
CALL SROTG(SA,SB,SC,SS)
CALL STEST1(SA,DATRUE(K),DATRUE(K),SFAC)
CALL STEST1(SB,DBTRUE(K),DBTRUE(K),SFAC)
CALL STEST1(SC,DC1(K),DC1(K),SFAC)
CALL STEST1(SS,DS1(K),DS1(K),SFAC)
ELSEIF (ICASE.EQ.11) THEN
* .. SROTMG ..
DO I=1,4
DTEMP(I)= DAB(I,K)
DTEMP(I+4) = 0.0
END DO
DTEMP(9) = 0.0
CALL SROTMG(DTEMP(1),DTEMP(2),DTEMP(3),DTEMP(4),DTEMP(5))
CALL STEST(9,DTEMP,DTRUE(1,K),DTRUE(1,K),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK0'
STOP
END IF
20 CONTINUE
40 RETURN
END
SUBROUTINE CHECK1(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
REAL SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER I, LEN, NP1
* .. Local Arrays ..
REAL DTRUE1(5), DTRUE3(5), DTRUE5(8,5,2), DV(8,5,2),
+ SA(10), STEMP(1), STRUE(8), SX(8)
INTEGER ITRUE2(5)
* .. External Functions ..
REAL SASUM, SNRM2
INTEGER ISAMAX
EXTERNAL SASUM, SNRM2, ISAMAX
* .. External Subroutines ..
EXTERNAL ITEST1, SSCAL, STEST, STEST1
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA SA/0.3E0, -1.0E0, 0.0E0, 1.0E0, 0.3E0, 0.3E0,
+ 0.3E0, 0.3E0, 0.3E0, 0.3E0/
DATA DV/0.1E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0,
+ 2.0E0, 2.0E0, 0.3E0, 3.0E0, 3.0E0, 3.0E0, 3.0E0,
+ 3.0E0, 3.0E0, 3.0E0, 0.3E0, -0.4E0, 4.0E0,
+ 4.0E0, 4.0E0, 4.0E0, 4.0E0, 4.0E0, 0.2E0,
+ -0.6E0, 0.3E0, 5.0E0, 5.0E0, 5.0E0, 5.0E0,
+ 5.0E0, 0.1E0, -0.3E0, 0.5E0, -0.1E0, 6.0E0,
+ 6.0E0, 6.0E0, 6.0E0, 0.1E0, 8.0E0, 8.0E0, 8.0E0,
+ 8.0E0, 8.0E0, 8.0E0, 8.0E0, 0.3E0, 9.0E0, 9.0E0,
+ 9.0E0, 9.0E0, 9.0E0, 9.0E0, 9.0E0, 0.3E0, 2.0E0,
+ -0.4E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0,
+ 0.2E0, 3.0E0, -0.6E0, 5.0E0, 0.3E0, 2.0E0,
+ 2.0E0, 2.0E0, 0.1E0, 4.0E0, -0.3E0, 6.0E0,
+ -0.5E0, 7.0E0, -0.1E0, 3.0E0/
DATA DTRUE1/0.0E0, 0.3E0, 0.5E0, 0.7E0, 0.6E0/
DATA DTRUE3/0.0E0, 0.3E0, 0.7E0, 1.1E0, 1.0E0/
DATA DTRUE5/0.10E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0,
+ 2.0E0, 2.0E0, 2.0E0, -0.3E0, 3.0E0, 3.0E0,
+ 3.0E0, 3.0E0, 3.0E0, 3.0E0, 3.0E0, 0.0E0, 0.0E0,
+ 4.0E0, 4.0E0, 4.0E0, 4.0E0, 4.0E0, 4.0E0,
+ 0.20E0, -0.60E0, 0.30E0, 5.0E0, 5.0E0, 5.0E0,
+ 5.0E0, 5.0E0, 0.03E0, -0.09E0, 0.15E0, -0.03E0,
+ 6.0E0, 6.0E0, 6.0E0, 6.0E0, 0.10E0, 8.0E0,
+ 8.0E0, 8.0E0, 8.0E0, 8.0E0, 8.0E0, 8.0E0,
+ 0.09E0, 9.0E0, 9.0E0, 9.0E0, 9.0E0, 9.0E0,
+ 9.0E0, 9.0E0, 0.09E0, 2.0E0, -0.12E0, 2.0E0,
+ 2.0E0, 2.0E0, 2.0E0, 2.0E0, 0.06E0, 3.0E0,
+ -0.18E0, 5.0E0, 0.09E0, 2.0E0, 2.0E0, 2.0E0,
+ 0.03E0, 4.0E0, -0.09E0, 6.0E0, -0.15E0, 7.0E0,
+ -0.03E0, 3.0E0/
DATA ITRUE2/0, 1, 2, 2, 3/
* .. Executable Statements ..
DO 80 INCX = 1, 2
DO 60 NP1 = 1, 5
N = NP1 - 1
LEN = 2*MAX(N,1)
* .. Set vector arguments ..
DO 20 I = 1, LEN
SX(I) = DV(I,NP1,INCX)
20 CONTINUE
*
IF (ICASE.EQ.7) THEN
* .. SNRM2 ..
STEMP(1) = DTRUE1(NP1)
CALL STEST1(SNRM2(N,SX,INCX),STEMP(1),STEMP,SFAC)
ELSE IF (ICASE.EQ.8) THEN
* .. SASUM ..
STEMP(1) = DTRUE3(NP1)
CALL STEST1(SASUM(N,SX,INCX),STEMP(1),STEMP,SFAC)
ELSE IF (ICASE.EQ.9) THEN
* .. SSCAL ..
CALL SSCAL(N,SA((INCX-1)*5+NP1),SX,INCX)
DO 40 I = 1, LEN
STRUE(I) = DTRUE5(I,NP1,INCX)
40 CONTINUE
CALL STEST(LEN,SX,STRUE,STRUE,SFAC)
ELSE IF (ICASE.EQ.10) THEN
* .. ISAMAX ..
CALL ITEST1(ISAMAX(N,SX,INCX),ITRUE2(NP1))
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
STOP
END IF
60 CONTINUE
80 CONTINUE
RETURN
END
SUBROUTINE CHECK2(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
REAL SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL SA
INTEGER I, J, KI, KN, KNI, KPAR, KSIZE, LENX, LENY,
$ MX, MY
* .. Local Arrays ..
REAL DT10X(7,4,4), DT10Y(7,4,4), DT7(4,4),
$ DT8(7,4,4), DX1(7),
$ DY1(7), SSIZE1(4), SSIZE2(14,2), SSIZE3(4),
$ SSIZE(7), STX(7), STY(7), SX(7), SY(7),
$ DPAR(5,4), DT19X(7,4,16),DT19XA(7,4,4),
$ DT19XB(7,4,4), DT19XC(7,4,4),DT19XD(7,4,4),
$ DT19Y(7,4,16), DT19YA(7,4,4),DT19YB(7,4,4),
$ DT19YC(7,4,4), DT19YD(7,4,4), DTEMP(5),
$ ST7B(4,4)
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
* .. External Functions ..
REAL SDOT, SDSDOT
EXTERNAL SDOT, SDSDOT
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SROTM, SSWAP, STEST, STEST1
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
EQUIVALENCE (DT19X(1,1,1),DT19XA(1,1,1)),(DT19X(1,1,5),
A DT19XB(1,1,1)),(DT19X(1,1,9),DT19XC(1,1,1)),
B (DT19X(1,1,13),DT19XD(1,1,1))
EQUIVALENCE (DT19Y(1,1,1),DT19YA(1,1,1)),(DT19Y(1,1,5),
A DT19YB(1,1,1)),(DT19Y(1,1,9),DT19YC(1,1,1)),
B (DT19Y(1,1,13),DT19YD(1,1,1))
DATA SA/0.3E0/
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA DX1/0.6E0, 0.1E0, -0.5E0, 0.8E0, 0.9E0, -0.3E0,
+ -0.4E0/
DATA DY1/0.5E0, -0.9E0, 0.3E0, 0.7E0, -0.6E0, 0.2E0,
+ 0.8E0/
DATA DT7/0.0E0, 0.30E0, 0.21E0, 0.62E0, 0.0E0,
+ 0.30E0, -0.07E0, 0.85E0, 0.0E0, 0.30E0, -0.79E0,
+ -0.74E0, 0.0E0, 0.30E0, 0.33E0, 1.27E0/
DATA ST7B/ .1, .4, .31, .72, .1, .4, .03, .95,
+ .1, .4, -.69, -.64, .1, .4, .43, 1.37/
DATA DT8/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.68E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.68E0, -0.87E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.68E0, -0.87E0, 0.15E0,
+ 0.94E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.68E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.35E0, -0.9E0, 0.48E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.38E0, -0.9E0, 0.57E0, 0.7E0, -0.75E0,
+ 0.2E0, 0.98E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.68E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.35E0, -0.72E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.38E0,
+ -0.63E0, 0.15E0, 0.88E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.68E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.68E0, -0.9E0, 0.33E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.68E0, -0.9E0, 0.33E0, 0.7E0,
+ -0.75E0, 0.2E0, 1.04E0/
DATA DT10X/0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.5E0, -0.9E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.5E0, -0.9E0, 0.3E0, 0.7E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.3E0, 0.1E0, 0.5E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.8E0, 0.1E0, -0.6E0,
+ 0.8E0, 0.3E0, -0.3E0, 0.5E0, 0.6E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.9E0,
+ 0.1E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.7E0,
+ 0.1E0, 0.3E0, 0.8E0, -0.9E0, -0.3E0, 0.5E0,
+ 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.5E0, 0.3E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.5E0, 0.3E0, -0.6E0, 0.8E0, 0.0E0, 0.0E0,
+ 0.0E0/
DATA DT10Y/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.6E0, 0.1E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.6E0, 0.1E0, -0.5E0, 0.8E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, -0.5E0, -0.9E0, 0.6E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, -0.4E0, -0.9E0, 0.9E0,
+ 0.7E0, -0.5E0, 0.2E0, 0.6E0, 0.5E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.5E0,
+ 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ -0.4E0, 0.9E0, -0.5E0, 0.6E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.6E0, -0.9E0, 0.1E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.6E0, -0.9E0, 0.1E0, 0.7E0,
+ -0.5E0, 0.2E0, 0.8E0/
DATA SSIZE1/0.0E0, 0.3E0, 1.6E0, 3.2E0/
DATA SSIZE2/0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0,
+ 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0,
+ 1.17E0, 1.17E0, 1.17E0/
DATA SSIZE3/ .1, .4, 1.7, 3.3 /
*
* FOR DROTM
*
DATA DPAR/-2.E0, 0.E0,0.E0,0.E0,0.E0,
A -1.E0, 2.E0, -3.E0, -4.E0, 5.E0,
B 0.E0, 0.E0, 2.E0, -3.E0, 0.E0,
C 1.E0, 5.E0, 2.E0, 0.E0, -4.E0/
* TRUE X RESULTS F0R ROTATIONS DROTM
DATA DT19XA/.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E -.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F -.9E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G 3.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .6E0, .1E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
I -.8E0, 3.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
J -.9E0, 2.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
K 3.5E0, -.4E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
L .6E0, .1E0, -.5E0, .8E0, 0.E0,0.E0,0.E0,
M -.8E0, 3.8E0, -2.2E0, -1.2E0, 0.E0,0.E0,0.E0,
N -.9E0, 2.8E0, -1.4E0, -1.3E0, 0.E0,0.E0,0.E0,
O 3.5E0, -.4E0, -2.2E0, 4.7E0, 0.E0,0.E0,0.E0/
*
DATA DT19XB/.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E -.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F -.9E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G 3.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .6E0, .1E0, -.5E0, 0.E0,0.E0,0.E0,0.E0,
I 0.E0, .1E0, -3.0E0, 0.E0,0.E0,0.E0,0.E0,
J -.3E0, .1E0, -2.0E0, 0.E0,0.E0,0.E0,0.E0,
K 3.3E0, .1E0, -2.0E0, 0.E0,0.E0,0.E0,0.E0,
L .6E0, .1E0, -.5E0, .8E0, .9E0, -.3E0, -.4E0,
M -2.0E0, .1E0, 1.4E0, .8E0, .6E0, -.3E0, -2.8E0,
N -1.8E0, .1E0, 1.3E0, .8E0, 0.E0, -.3E0, -1.9E0,
O 3.8E0, .1E0, -3.1E0, .8E0, 4.8E0, -.3E0, -1.5E0 /
*
DATA DT19XC/.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E -.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F -.9E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G 3.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .6E0, .1E0, -.5E0, 0.E0,0.E0,0.E0,0.E0,
I 4.8E0, .1E0, -3.0E0, 0.E0,0.E0,0.E0,0.E0,
J 3.3E0, .1E0, -2.0E0, 0.E0,0.E0,0.E0,0.E0,
K 2.1E0, .1E0, -2.0E0, 0.E0,0.E0,0.E0,0.E0,
L .6E0, .1E0, -.5E0, .8E0, .9E0, -.3E0, -.4E0,
M -1.6E0, .1E0, -2.2E0, .8E0, 5.4E0, -.3E0, -2.8E0,
N -1.5E0, .1E0, -1.4E0, .8E0, 3.6E0, -.3E0, -1.9E0,
O 3.7E0, .1E0, -2.2E0, .8E0, 3.6E0, -.3E0, -1.5E0 /
*
DATA DT19XD/.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E -.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F -.9E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G 3.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .6E0, .1E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
I -.8E0, -1.0E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
J -.9E0, -.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
K 3.5E0, .8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
L .6E0, .1E0, -.5E0, .8E0, 0.E0,0.E0,0.E0,
M -.8E0, -1.0E0, 1.4E0, -1.6E0, 0.E0,0.E0,0.E0,
N -.9E0, -.8E0, 1.3E0, -1.6E0, 0.E0,0.E0,0.E0,
O 3.5E0, .8E0, -3.1E0, 4.8E0, 0.E0,0.E0,0.E0/
* TRUE Y RESULTS FOR ROTATIONS DROTM
DATA DT19YA/.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E .7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F 1.7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G -2.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .5E0, -.9E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
I .7E0, -4.8E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
J 1.7E0, -.7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
K -2.6E0, 3.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
L .5E0, -.9E0, .3E0, .7E0, 0.E0,0.E0,0.E0,
M .7E0, -4.8E0, 3.0E0, 1.1E0, 0.E0,0.E0,0.E0,
N 1.7E0, -.7E0, -.7E0, 2.3E0, 0.E0,0.E0,0.E0,
O -2.6E0, 3.5E0, -.7E0, -3.6E0, 0.E0,0.E0,0.E0/
*
DATA DT19YB/.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E .7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F 1.7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G -2.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .5E0, -.9E0, .3E0, 0.E0,0.E0,0.E0,0.E0,
I 4.0E0, -.9E0, -.3E0, 0.E0,0.E0,0.E0,0.E0,
J -.5E0, -.9E0, 1.5E0, 0.E0,0.E0,0.E0,0.E0,
K -1.5E0, -.9E0, -1.8E0, 0.E0,0.E0,0.E0,0.E0,
L .5E0, -.9E0, .3E0, .7E0, -.6E0, .2E0, .8E0,
M 3.7E0, -.9E0, -1.2E0, .7E0, -1.5E0, .2E0, 2.2E0,
N -.3E0, -.9E0, 2.1E0, .7E0, -1.6E0, .2E0, 2.0E0,
O -1.6E0, -.9E0, -2.1E0, .7E0, 2.9E0, .2E0, -3.8E0 /
*
DATA DT19YC/.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E .7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F 1.7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G -2.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .5E0, -.9E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
I 4.0E0, -6.3E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
J -.5E0, .3E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
K -1.5E0, 3.0E0, 0.E0,0.E0,0.E0,0.E0,0.E0,
L .5E0, -.9E0, .3E0, .7E0, 0.E0,0.E0,0.E0,
M 3.7E0, -7.2E0, 3.0E0, 1.7E0, 0.E0,0.E0,0.E0,
N -.3E0, .9E0, -.7E0, 1.9E0, 0.E0,0.E0,0.E0,
O -1.6E0, 2.7E0, -.7E0, -3.4E0, 0.E0,0.E0,0.E0/
*
DATA DT19YD/.5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
A .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
B .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
C .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
D .5E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
E .7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
F 1.7E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
G -2.6E0, 0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,
H .5E0, -.9E0, .3E0, 0.E0,0.E0,0.E0,0.E0,
I .7E0, -.9E0, 1.2E0, 0.E0,0.E0,0.E0,0.E0,
J 1.7E0, -.9E0, .5E0, 0.E0,0.E0,0.E0,0.E0,
K -2.6E0, -.9E0, -1.3E0, 0.E0,0.E0,0.E0,0.E0,
L .5E0, -.9E0, .3E0, .7E0, -.6E0, .2E0, .8E0,
M .7E0, -.9E0, 1.2E0, .7E0, -1.5E0, .2E0, 1.6E0,
N 1.7E0, -.9E0, .5E0, .7E0, -1.6E0, .2E0, 2.4E0,
O -2.6E0, -.9E0, -1.3E0, .7E0, 2.9E0, .2E0, -4.0E0 /
*
* .. Executable Statements ..
*
DO 120 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 100 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
* .. Initialize all argument arrays ..
DO 20 I = 1, 7
SX(I) = DX1(I)
SY(I) = DY1(I)
20 CONTINUE
*
IF (ICASE.EQ.1) THEN
* .. SDOT ..
CALL STEST1(SDOT(N,SX,INCX,SY,INCY),DT7(KN,KI),SSIZE1(KN)
+ ,SFAC)
ELSE IF (ICASE.EQ.2) THEN
* .. SAXPY ..
CALL SAXPY(N,SA,SX,INCX,SY,INCY)
DO 40 J = 1, LENY
STY(J) = DT8(J,KN,KI)
40 CONTINUE
CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC)
ELSE IF (ICASE.EQ.5) THEN
* .. SCOPY ..
DO 60 I = 1, 7
STY(I) = DT10Y(I,KN,KI)
60 CONTINUE
CALL SCOPY(N,SX,INCX,SY,INCY)
CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0E0)
ELSE IF (ICASE.EQ.6) THEN
* .. SSWAP ..
CALL SSWAP(N,SX,INCX,SY,INCY)
DO 80 I = 1, 7
STX(I) = DT10X(I,KN,KI)
STY(I) = DT10Y(I,KN,KI)
80 CONTINUE
CALL STEST(LENX,SX,STX,SSIZE2(1,1),1.0E0)
CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0E0)
ELSEIF (ICASE.EQ.12) THEN
* .. SROTM ..
KNI=KN+4*(KI-1)
DO KPAR=1,4
DO I=1,7
SX(I) = DX1(I)
SY(I) = DY1(I)
STX(I)= DT19X(I,KPAR,KNI)
STY(I)= DT19Y(I,KPAR,KNI)
END DO
*
DO I=1,5
DTEMP(I) = DPAR(I,KPAR)
END DO
*
DO I=1,LENX
SSIZE(I)=STX(I)
END DO
* SEE REMARK ABOVE ABOUT DT11X(1,2,7)
* AND DT11X(5,3,8).
IF ((KPAR .EQ. 2) .AND. (KNI .EQ. 7))
$ SSIZE(1) = 2.4E0
IF ((KPAR .EQ. 3) .AND. (KNI .EQ. 8))
$ SSIZE(5) = 1.8E0
*
CALL SROTM(N,SX,INCX,SY,INCY,DTEMP)
CALL STEST(LENX,SX,STX,SSIZE,SFAC)
CALL STEST(LENY,SY,STY,STY,SFAC)
END DO
ELSEIF (ICASE.EQ.13) THEN
* .. SDSROT ..
CALL STEST1 (SDSDOT(N,.1,SX,INCX,SY,INCY),
$ ST7B(KN,KI),SSIZE3(KN),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
STOP
END IF
100 CONTINUE
120 CONTINUE
RETURN
END
SUBROUTINE CHECK3(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
REAL SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL SC, SS
INTEGER I, K, KI, KN, KSIZE, LENX, LENY, MX, MY
* .. Local Arrays ..
REAL COPYX(5), COPYY(5), DT9X(7,4,4), DT9Y(7,4,4),
+ DX1(7), DY1(7), MWPC(11), MWPS(11), MWPSTX(5),
+ MWPSTY(5), MWPTX(11,5), MWPTY(11,5), MWPX(5),
+ MWPY(5), SSIZE2(14,2), STX(7), STY(7), SX(7),
+ SY(7)
INTEGER INCXS(4), INCYS(4), LENS(4,2), MWPINX(11),
+ MWPINY(11), MWPN(11), NS(4)
* .. External Subroutines ..
EXTERNAL SROT, STEST
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA DX1/0.6E0, 0.1E0, -0.5E0, 0.8E0, 0.9E0, -0.3E0,
+ -0.4E0/
DATA DY1/0.5E0, -0.9E0, 0.3E0, 0.7E0, -0.6E0, 0.2E0,
+ 0.8E0/
DATA SC, SS/0.8E0, 0.6E0/
DATA DT9X/0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.78E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.78E0, -0.46E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.78E0, -0.46E0, -0.22E0,
+ 1.06E0, 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.78E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.66E0, 0.1E0, -0.1E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.96E0, 0.1E0, -0.76E0, 0.8E0, 0.90E0,
+ -0.3E0, -0.02E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.78E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.06E0, 0.1E0,
+ -0.1E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.90E0,
+ 0.1E0, -0.22E0, 0.8E0, 0.18E0, -0.3E0, -0.02E0,
+ 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.78E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.78E0, 0.26E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.78E0, 0.26E0, -0.76E0, 1.12E0,
+ 0.0E0, 0.0E0, 0.0E0/
DATA DT9Y/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.04E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.04E0, -0.78E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.04E0, -0.78E0, 0.54E0,
+ 0.08E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.04E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.7E0,
+ -0.9E0, -0.12E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.64E0, -0.9E0, -0.30E0, 0.7E0, -0.18E0, 0.2E0,
+ 0.28E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.04E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.7E0, -1.08E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.64E0, -1.26E0,
+ 0.54E0, 0.20E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.04E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.04E0, -0.9E0, 0.18E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.04E0, -0.9E0, 0.18E0, 0.7E0,
+ -0.18E0, 0.2E0, 0.16E0/
DATA SSIZE2/0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0,
+ 0.0E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0,
+ 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0,
+ 1.17E0, 1.17E0, 1.17E0/
* .. Executable Statements ..
*
DO 60 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 40 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
*
IF (ICASE.EQ.4) THEN
* .. SROT ..
DO 20 I = 1, 7
SX(I) = DX1(I)
SY(I) = DY1(I)
STX(I) = DT9X(I,KN,KI)
STY(I) = DT9Y(I,KN,KI)
20 CONTINUE
CALL SROT(N,SX,INCX,SY,INCY,SC,SS)
CALL STEST(LENX,SX,STX,SSIZE2(1,KSIZE),SFAC)
CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK3'
STOP
END IF
40 CONTINUE
60 CONTINUE
*
MWPC(1) = 1
DO 80 I = 2, 11
MWPC(I) = 0
80 CONTINUE
MWPS(1) = 0
DO 100 I = 2, 6
MWPS(I) = 1
100 CONTINUE
DO 120 I = 7, 11
MWPS(I) = -1
120 CONTINUE
MWPINX(1) = 1
MWPINX(2) = 1
MWPINX(3) = 1
MWPINX(4) = -1
MWPINX(5) = 1
MWPINX(6) = -1
MWPINX(7) = 1
MWPINX(8) = 1
MWPINX(9) = -1
MWPINX(10) = 1
MWPINX(11) = -1
MWPINY(1) = 1
MWPINY(2) = 1
MWPINY(3) = -1
MWPINY(4) = -1
MWPINY(5) = 2
MWPINY(6) = 1
MWPINY(7) = 1
MWPINY(8) = -1
MWPINY(9) = -1
MWPINY(10) = 2
MWPINY(11) = 1
DO 140 I = 1, 11
MWPN(I) = 5
140 CONTINUE
MWPN(5) = 3
MWPN(10) = 3
DO 160 I = 1, 5
MWPX(I) = I
MWPY(I) = I
MWPTX(1,I) = I
MWPTY(1,I) = I
MWPTX(2,I) = I
MWPTY(2,I) = -I
MWPTX(3,I) = 6 - I
MWPTY(3,I) = I - 6
MWPTX(4,I) = I
MWPTY(4,I) = -I
MWPTX(6,I) = 6 - I
MWPTY(6,I) = I - 6
MWPTX(7,I) = -I
MWPTY(7,I) = I
MWPTX(8,I) = I - 6
MWPTY(8,I) = 6 - I
MWPTX(9,I) = -I
MWPTY(9,I) = I
MWPTX(11,I) = I - 6
MWPTY(11,I) = 6 - I
160 CONTINUE
MWPTX(5,1) = 1
MWPTX(5,2) = 3
MWPTX(5,3) = 5
MWPTX(5,4) = 4
MWPTX(5,5) = 5
MWPTY(5,1) = -1
MWPTY(5,2) = 2
MWPTY(5,3) = -2
MWPTY(5,4) = 4
MWPTY(5,5) = -3
MWPTX(10,1) = -1
MWPTX(10,2) = -3
MWPTX(10,3) = -5
MWPTX(10,4) = 4
MWPTX(10,5) = 5
MWPTY(10,1) = 1
MWPTY(10,2) = 2
MWPTY(10,3) = 2
MWPTY(10,4) = 4
MWPTY(10,5) = 3
DO 200 I = 1, 11
INCX = MWPINX(I)
INCY = MWPINY(I)
DO 180 K = 1, 5
COPYX(K) = MWPX(K)
COPYY(K) = MWPY(K)
MWPSTX(K) = MWPTX(I,K)
MWPSTY(K) = MWPTY(I,K)
180 CONTINUE
CALL SROT(MWPN(I),COPYX,INCX,COPYY,INCY,MWPC(I),MWPS(I))
CALL STEST(5,COPYX,MWPSTX,MWPSTX,SFAC)
CALL STEST(5,COPYY,MWPSTY,MWPSTY,SFAC)
200 CONTINUE
RETURN
END
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
REAL ZERO
PARAMETER (NOUT=6, ZERO=0.0E0)
* .. Scalar Arguments ..
REAL SFAC
INTEGER LEN
* .. Array Arguments ..
REAL SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL SD
INTEGER I
* .. External Functions ..
REAL SDIFF
EXTERNAL SDIFF
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
DO 40 I = 1, LEN
SD = SCOMP(I) - STRUE(I)
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, I, SCOMP(I),
+ STRUE(I), SD, SSIZE(I)
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY I ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,2I5,I3,2E36.8,2E12.4)
END
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
* ************************* STEST1 *****************************
*
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
REAL SCOMP1, SFAC, STRUE1
* .. Array Arguments ..
REAL SSIZE(*)
* .. Local Arrays ..
REAL SCOMP(1), STRUE(1)
* .. External Subroutines ..
EXTERNAL STEST
* .. Executable Statements ..
*
SCOMP(1) = SCOMP1
STRUE(1) = STRUE1
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
*
RETURN
END
REAL FUNCTION SDIFF(SA,SB)
* ********************************* SDIFF **************************
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
*
* .. Scalar Arguments ..
REAL SA, SB
* .. Executable Statements ..
SDIFF = SA - SB
RETURN
END
SUBROUTINE ITEST1(ICOMP,ITRUE)
* ********************************* ITEST1 *************************
*
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
* EQUALITY.
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
INTEGER ICOMP, ITRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER ID
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
IF (ICOMP.EQ.ITRUE) GO TO 40
*
* HERE ICOMP IS NOT EQUAL TO ITRUE.
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 ID = ICOMP - ITRUE
WRITE (NOUT,99997) ICASE, N, INCX, INCY, ICOMP, ITRUE, ID
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY ',
+ ' COMP TRUE DIFFERENCE',
+ /1X)
99997 FORMAT (1X,I4,I3,2I5,2I36,I12)
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/runblastest.sh
|
.sh
| 1,016
| 46
|
#!/bin/bash
black='\E[30m'
red='\E[31m'
green='\E[32m'
yellow='\E[33m'
blue='\E[34m'
magenta='\E[35m'
cyan='\E[36m'
white='\E[37m'
if [ -f $2 ]; then
data=$2
if [ -f $1.summ ]; then rm $1.summ; fi
if [ -f $1.snap ]; then rm $1.snap; fi
else
data=$1
fi
if ! ./$1 < $data > /dev/null 2> .runtest.log ; then
echo -e $red Test $1 failed: $black
echo -e $blue
cat .runtest.log
echo -e $black
exit 1
else
if [ -f $1.summ ]; then
if [ `grep "FATAL ERROR" $1.summ | wc -l` -gt 0 ]; then
echo -e $red "Test $1 failed (FATAL ERROR, read the file $1.summ for details)" $black
echo -e $blue
cat .runtest.log
echo -e $black
exit 1;
fi
if [ `grep "FAILED THE TESTS OF ERROR-EXITS" $1.summ | wc -l` -gt 0 ]; then
echo -e $red "Test $1 failed (FAILED THE TESTS OF ERROR-EXITS, read the file $1.summ for details)" $black
echo -e $blue
cat .runtest.log
echo -e $black
exit 1;
fi
fi
echo -e $green Test $1 passed$black
fi
|
Shell
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/sblat3.f
|
.f
| 104,172
| 2,874
|
*> \brief \b SBLAT3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM SBLAT3
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the REAL Level 3 Blas.
*>
*> The program must be driven by a short data file. The first 14 records
*> of the file are read using list-directed input, the last 6 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 20 lines:
*> 'sblat3.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'SBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 3 NUMBER OF VALUES OF ALPHA
*> 0.0 1.0 0.7 VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> 0.0 1.0 1.3 VALUES OF BETA
*> SGEMM T PUT F FOR NO TEST. SAME COLUMNS.
*> SSYMM T PUT F FOR NO TEST. SAME COLUMNS.
*> STRMM T PUT F FOR NO TEST. SAME COLUMNS.
*> STRSM T PUT F FOR NO TEST. SAME COLUMNS.
*> SSYRK T PUT F FOR NO TEST. SAME COLUMNS.
*> SSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S.
*> A Set of Level 3 Basic Linear Algebra Subprograms.
*>
*> Technical Memorandum No.88 (Revision 1), Mathematics and
*> Computer Science Division, Argonne National Laboratory, 9700
*> South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup single_blas_testing
*
* =====================================================================
PROGRAM SBLAT3
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 6 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
INTEGER NMAX
PARAMETER ( NMAX = 65 )
INTEGER NIDMAX, NALMAX, NBEMAX
PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
REAL EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANSA, TRANSB
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
REAL AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ),
$ BB( NMAX*NMAX ), BET( NBEMAX ),
$ BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ G( NMAX ), W( 2*NMAX )
INTEGER IDIM( NIDMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
REAL SDIFF
LOGICAL LSE
EXTERNAL SDIFF, LSE
* .. External Subroutines ..
EXTERNAL SCHK1, SCHK2, SCHK3, SCHK4, SCHK5, SCHKE, SMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'SGEMM ', 'SSYMM ', 'STRMM ', 'STRSM ',
$ 'SSYRK ', 'SSYR2K'/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 220
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 220
END IF
10 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 220
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 220
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9984 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 20 I = 1, NSUBS
LTEST( I ) = .FALSE.
20 CONTINUE
30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT
DO 40 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 50
40 CONTINUE
WRITE( NOUT, FMT = 9990 )SNAMET
STOP
50 LTEST( I ) = LTESTT
GO TO 30
*
60 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(ZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of SMMCH using exact data.
*
N = MIN( 32, NMAX )
DO 100 J = 1, N
DO 90 I = 1, N
AB( I, J ) = MAX( I - J + 1, 0 )
90 CONTINUE
AB( J, NMAX + 1 ) = J
AB( 1, NMAX + J ) = J
C( J, 1 ) = ZERO
100 CONTINUE
DO 110 J = 1, N
CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
110 CONTINUE
* CC holds the exact result. On exit from SMMCH CT holds
* the result computed by SMMCH.
TRANSA = 'N'
TRANSB = 'N'
CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LSE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'T'
CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LSE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
DO 120 J = 1, N
AB( J, NMAX + 1 ) = N - J + 1
AB( 1, NMAX + J ) = N - J + 1
120 CONTINUE
DO 130 J = 1, N
CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 -
$ ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
TRANSA = 'T'
TRANSB = 'N'
CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LSE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'T'
CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LSE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 200 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL SCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 150, 160, 160, 170, 180 )ISNUM
* Test SGEMM, 01.
140 CALL SCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test SSYMM, 02.
150 CALL SCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test STRMM, 03, STRSM, 04.
160 CALL SCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB,
$ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C )
GO TO 190
* Test SSYRK, 05.
170 CALL SCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G )
GO TO 190
* Test SSYR2K, 06.
180 CALL SCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
GO TO 190
*
190 IF( FATAL.AND.SFATAL )
$ GO TO 210
END IF
200 CONTINUE
WRITE( NOUT, FMT = 9986 )
GO TO 230
*
210 CONTINUE
WRITE( NOUT, FMT = 9985 )
GO TO 230
*
220 CONTINUE
WRITE( NOUT, FMT = 9991 )
*
230 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' TESTS OF THE REAL LEVEL 3 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9994 FORMAT( ' FOR N ', 9I6 )
9993 FORMAT( ' FOR ALPHA ', 7F6.1 )
9992 FORMAT( ' FOR BETA ', 7F6.1 )
9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9989 FORMAT( ' ERROR IN SMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' SMMCH WAS CALLED WITH TRANSA = ', A1,
$ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ',
$ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ',
$ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ',
$ '*******' )
9988 FORMAT( A6, L2 )
9987 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9986 FORMAT( /' END OF TESTS' )
9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of SBLAT3.
*
END
SUBROUTINE SCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests SGEMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX
INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA,
$ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M,
$ MA, MB, MS, N, NA, NARGS, NB, NC, NS
LOGICAL NULL, RESET, SAME, TRANA, TRANB
CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SGEMM, SMAKE, SMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
*
NARGS = 13
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 110 IM = 1, NIDIM
M = IDIM( IM )
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICA = 1, 3
TRANSA = ICH( ICA: ICA )
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
*
IF( TRANA )THEN
MA = K
NA = M
ELSE
MA = M
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL SMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICB = 1, 3
TRANSB = ICH( ICB: ICB )
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
IF( TRANB )THEN
MB = N
NB = K
ELSE
MB = K
NB = N
END IF
* Set LDB to 1 more than minimum value if room.
LDB = MB
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 70
LBB = LDB*NB
*
* Generate the matrix B.
*
CALL SMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB,
$ LDB, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL SMAKE( 'GE', ' ', ' ', M, N, C, NMAX,
$ CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANAS = TRANSA
TRANBS = TRANSB
MS = M
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB,
$ BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL SGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
$ AA, LDA, BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANSA.EQ.TRANAS
ISAME( 2 ) = TRANSB.EQ.TRANBS
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LSE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LSE( BS, BB, LBB )
ISAME( 10 ) = LDBS.EQ.LDB
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LSE( CS, CC, LCC )
ELSE
ISAME( 12 ) = LSERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 13 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL SMMCH( TRANSA, TRANSB, M, N, K,
$ ALPHA, A, NMAX, B, NMAX, BETA,
$ C, NMAX, CT, G, CC, LDC, EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K,
$ ALPHA, LDA, LDB, BETA, LDC
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',',
$ 3( I3, ',' ), F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', ',
$ 'C,', I3, ').' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK1.
*
END
SUBROUTINE SCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests SSYMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX
INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC,
$ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA,
$ NARGS, NC, NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 SIDE, SIDES, UPLO, UPLOS
CHARACTER*2 ICHS, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMMCH, SSYMM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHS/'LR'/, ICHU/'UL'/
* .. Executable Statements ..
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 100 IM = 1, NIDIM
M = IDIM( IM )
*
DO 90 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 90
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 90
LBB = LDB*N
*
* Generate the matrix B.
*
CALL SMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET,
$ ZERO )
*
DO 80 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
*
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
* Generate the symmetric matrix A.
*
CALL SMAKE( 'SY', UPLO, ' ', NA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL SMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE,
$ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL SSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 110
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LSE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LSE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LSE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LSERES( 'GE', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 110
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL SMMCH( 'N', 'N', M, N, M, ALPHA, A,
$ NMAX, B, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL SMMCH( 'N', 'N', M, N, N, ALPHA, B,
$ NMAX, A, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 120
*
110 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA,
$ LDB, BETA, LDC
*
120 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK2.
*
END
SUBROUTINE SCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS,
$ B, BB, BS, CT, G, C )
*
* Tests STRMM and STRSM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
REAL ALPHA, ALS, ERR, ERRMAX
INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB,
$ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC,
$ NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO,
$ UPLOS
CHARACTER*2 ICHD, ICHS, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMMCH, STRMM, STRSM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/
* .. Executable Statements ..
*
NARGS = 11
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
* Set up zero matrix for SMMCH.
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
DO 140 IM = 1, NIDIM
M = IDIM( IM )
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 130
LBB = LDB*N
NULL = M.LE.0.OR.N.LE.0
*
DO 120 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 130
LAA = LDA*NA
*
DO 110 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 100 ICT = 1, 3
TRANSA = ICHT( ICT: ICT )
*
DO 90 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
CALL SMAKE( 'TR', UPLO, DIAG, NA, NA, A,
$ NMAX, AA, LDA, RESET, ZERO )
*
* Generate the matrix B.
*
CALL SMAKE( 'GE', ' ', ' ', M, N, B, NMAX,
$ BB, LDB, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
TRANAS = TRANSA
DIAGS = DIAG
MS = M
NS = N
ALS = ALPHA
DO 30 I = 1, LAA
AS( I ) = AA( I )
30 CONTINUE
LDAS = LDA
DO 40 I = 1, LBB
BS( I ) = BB( I )
40 CONTINUE
LDBS = LDB
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL STRMM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB
IF( REWI )
$ REWIND NTRA
CALL STRSM( SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, AA, LDA, BB, LDB )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = TRANAS.EQ.TRANSA
ISAME( 4 ) = DIAGS.EQ.DIAG
ISAME( 5 ) = MS.EQ.M
ISAME( 6 ) = NS.EQ.N
ISAME( 7 ) = ALS.EQ.ALPHA
ISAME( 8 ) = LSE( AS, AA, LAA )
ISAME( 9 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 10 ) = LSE( BS, BB, LBB )
ELSE
ISAME( 10 ) = LSERES( 'GE', ' ', M, N, BS,
$ BB, LDB )
END IF
ISAME( 11 ) = LDBS.EQ.LDB
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 50 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
50 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MM' )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL SMMCH( TRANSA, 'N', M, N, M,
$ ALPHA, A, NMAX, B, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL SMMCH( 'N', TRANSA, M, N, N,
$ ALPHA, B, NMAX, A, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN
*
* Compute approximation to original
* matrix.
*
DO 70 J = 1, N
DO 60 I = 1, M
C( I, J ) = BB( I + ( J - 1 )*
$ LDB )
BB( I + ( J - 1 )*LDB ) = ALPHA*
$ B( I, J )
60 CONTINUE
70 CONTINUE
*
IF( LEFT )THEN
CALL SMMCH( TRANSA, 'N', M, N, M,
$ ONE, A, NMAX, C, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
ELSE
CALL SMMCH( 'N', TRANSA, M, N, N,
$ ONE, C, NMAX, A, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
END IF
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 150
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M,
$ N, ALPHA, LDA, LDB
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ', B,', I3, ') .' )
9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK3.
*
END
SUBROUTINE SCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G )
*
* Tests SSYRK.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
REAL ALPHA, ALS, BETA, BETS, ERR, ERRMAX
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS,
$ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA,
$ NARGS, NC, NS
LOGICAL NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMMCH, SSYRK
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NTC'/, ICHU/'UL'/
* .. Executable Statements ..
*
NARGS = 10
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL SMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL SMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
BETS = BETA
DO 20 I = 1, LCC
CS( I ) = CC( I )
20 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL SSYRK( UPLO, TRANS, N, K, ALPHA, AA, LDA,
$ BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LSE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = BETS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LSE( CS, CC, LCC )
ELSE
ISAME( 9 ) = LSERES( 'SY', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 10 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
JC = 1
DO 40 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
CALL SMMCH( 'T', 'N', LJ, 1, K, ALPHA,
$ A( 1, JJ ), NMAX,
$ A( 1, J ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL SMMCH( 'N', 'T', LJ, 1, K, ALPHA,
$ A( JJ, 1 ), NMAX,
$ A( J, 1 ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
40 CONTINUE
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, BETA, LDC
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK4.
*
END
SUBROUTINE SCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W )
*
* Tests SSYR2K.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ),
$ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ),
$ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ G( NMAX ), W( 2*NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
REAL ALPHA, ALS, BETA, BETS, ERR, ERRMAX
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB,
$ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS,
$ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS
LOGICAL NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMMCH, SSYR2K
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NTC'/, ICHU/'UL'/
* .. Executable Statements ..
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 130
LCC = LDC*N
NULL = N.LE.0
*
DO 120 IK = 1, NIDIM
K = IDIM( IK )
*
DO 110 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*NA
*
* Generate the matrix A.
*
IF( TRAN )THEN
CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA,
$ LDA, RESET, ZERO )
ELSE
CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA,
$ RESET, ZERO )
END IF
*
* Generate the matrix B.
*
LDB = LDA
LBB = LAA
IF( TRAN )THEN
CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ),
$ 2*NMAX, BB, LDB, RESET, ZERO )
ELSE
CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ),
$ NMAX, BB, LDB, RESET, ZERO )
END IF
*
DO 100 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 90 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 80 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL SMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BETS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO,
$ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC
IF( REWI )
$ REWIND NTRA
CALL SSYR2K( UPLO, TRANS, N, K, ALPHA, AA, LDA,
$ BB, LDB, BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LSE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LSE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BETS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LSE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LSERES( 'SY', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
JJAB = 1
JC = 1
DO 70 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
DO 50 I = 1, K
W( I ) = AB( ( J - 1 )*2*NMAX + K +
$ I )
W( K + I ) = AB( ( J - 1 )*2*NMAX +
$ I )
50 CONTINUE
CALL SMMCH( 'T', 'N', LJ, 1, 2*K,
$ ALPHA, AB( JJAB ), 2*NMAX,
$ W, 2*NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
DO 60 I = 1, K
W( I ) = AB( ( K + I - 1 )*NMAX +
$ J )
W( K + I ) = AB( ( I - 1 )*NMAX +
$ J )
60 CONTINUE
CALL SMMCH( 'N', 'N', LJ, 1, 2*K,
$ ALPHA, AB( JJ ), NMAX, W,
$ 2*NMAX, BETA, C( JJ, J ),
$ NMAX, CT, G, CC( JC ), LDC,
$ EPS, ERR, FATAL, NOUT,
$ .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
IF( TRAN )
$ JJAB = JJAB + 2*NMAX
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 140
70 CONTINUE
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA,
$ LDA, LDB, BETA, LDC
*
160 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK5.
*
END
SUBROUTINE SCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 3 Blas.
* Requires a special version of the error-handling routine XERBLA.
* A, B and C should not need to be defined.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* 3-19-92: Initialize ALPHA and BETA (eca)
* 3-19-92: Fix argument 12 in calls to SSYMM with INFOT = 9 (eca)
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Parameters ..
REAL ONE, TWO
PARAMETER ( ONE = 1.0E0, TWO = 2.0E0 )
* .. Local Scalars ..
REAL ALPHA, BETA
* .. Local Arrays ..
REAL A( 2, 1 ), B( 2, 1 ), C( 2, 1 )
* .. External Subroutines ..
EXTERNAL CHKXER, SGEMM, SSYMM, SSYR2K, SSYRK, STRMM,
$ STRSM
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
*
* Initialize ALPHA and BETA.
*
ALPHA = ONE
BETA = TWO
*
GO TO ( 10, 20, 30, 40, 50, 60 )ISNUM
10 INFOT = 1
CALL SGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 1
CALL SGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL SGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL SGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL SGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL SGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
20 INFOT = 1
CALL SSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
30 INFOT = 1
CALL STRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
40 INFOT = 1
CALL STRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL STRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
50 INFOT = 1
CALL SSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYRK( 'U', '/', 0, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 70
60 INFOT = 1
CALL SSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYR2K( 'U', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
70 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of SCHKE.
*
END
SUBROUTINE SMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET,
$ TRANSL )
*
* Generates values for an M by N matrix A.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'SY' or 'TR'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
REAL ROGUE
PARAMETER ( ROGUE = -1.0E10 )
* .. Scalar Arguments ..
REAL TRANSL
INTEGER LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
REAL A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
REAL SBEG
EXTERNAL SBEG
* .. Executable Statements ..
GEN = TYPE.EQ.'GE'
SYM = TYPE.EQ.'SY'
TRI = TYPE.EQ.'TR'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
A( I, J ) = SBEG( RESET ) + TRANSL
IF( I.NE.J )THEN
* Set some elements to zero
IF( N.GT.3.AND.J.EQ.N/2 )
$ A( I, J ) = ZERO
IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN
DO 90 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 60 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
70 CONTINUE
DO 80 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
END IF
RETURN
*
* End of SMAKE.
*
END
SUBROUTINE SMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL,
$ NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
* .. Scalar Arguments ..
REAL ALPHA, BETA, EPS, ERR
INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANSA, TRANSB
* .. Array Arguments ..
REAL A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ CC( LDCC, * ), CT( * ), G( * )
* .. Local Scalars ..
REAL ERRI
INTEGER I, J, K
LOGICAL TRANA, TRANB
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* .. Executable Statements ..
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
* Compute expected result, one column at a time, in CT using data
* in A, B and C.
* Compute gauges in G.
*
DO 120 J = 1, N
*
DO 10 I = 1, M
CT( I ) = ZERO
G( I ) = ZERO
10 CONTINUE
IF( .NOT.TRANA.AND..NOT.TRANB )THEN
DO 30 K = 1, KK
DO 20 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( K, J )
G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( K, J ) )
20 CONTINUE
30 CONTINUE
ELSE IF( TRANA.AND..NOT.TRANB )THEN
DO 50 K = 1, KK
DO 40 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( K, J )
G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( K, J ) )
40 CONTINUE
50 CONTINUE
ELSE IF( .NOT.TRANA.AND.TRANB )THEN
DO 70 K = 1, KK
DO 60 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( J, K )
G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( J, K ) )
60 CONTINUE
70 CONTINUE
ELSE IF( TRANA.AND.TRANB )THEN
DO 90 K = 1, KK
DO 80 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( J, K )
G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( J, K ) )
80 CONTINUE
90 CONTINUE
END IF
DO 100 I = 1, M
CT( I ) = ALPHA*CT( I ) + BETA*C( I, J )
G( I ) = ABS( ALPHA )*G( I ) + ABS( BETA )*ABS( C( I, J ) )
100 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 110 I = 1, M
ERRI = ABS( CT( I ) - CC( I, J ) )/EPS
IF( G( I ).NE.ZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.ONE )
$ GO TO 130
110 CONTINUE
*
120 CONTINUE
*
* If the loop completes, all results are at least half accurate.
GO TO 150
*
* Report fatal error.
*
130 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 140 I = 1, M
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J )
ELSE
WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I )
END IF
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9997 )J
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RESULT COMPU',
$ 'TED RESULT' )
9998 FORMAT( 1X, I7, 2G18.6 )
9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
*
* End of SMMCH.
*
END
LOGICAL FUNCTION LSE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
REAL RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LSE = .TRUE.
GO TO 30
20 CONTINUE
LSE = .FALSE.
30 RETURN
*
* End of LSE.
*
END
LOGICAL FUNCTION LSERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE' or 'SY'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
REAL AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'SY' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LSERES = .TRUE.
GO TO 80
70 CONTINUE
LSERES = .FALSE.
80 RETURN
*
* End of LSERES.
*
END
REAL FUNCTION SBEG( RESET )
*
* Generates random numbers uniformly distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, MI
* .. Save statement ..
SAVE I, IC, MI
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
I = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I is bounded between 1 and 999.
* If initial I = 1,2,3,6,7 or 9, the period will be 50.
* If initial I = 4 or 8, the period will be 25.
* If initial I = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I in 6.
*
IC = IC + 1
10 I = I*MI
I = I - 1000*( I/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
SBEG = ( I - 500 )/1001.0
RETURN
*
* End of SBEG.
*
END
REAL FUNCTION SDIFF( X, Y )
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
REAL X, Y
* .. Executable Statements ..
SDIFF = X - Y
RETURN
*
* End of SDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 3 BLAS
* routines.
*
* XERBLA is an error handler for the Level 3 BLAS routines.
*
* It is called by the Level 3 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/zblat2.f
|
.f
| 117,003
| 3,288
|
*> \brief \b ZBLAT2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM ZBLAT2
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX*16 Level 2 Blas.
*>
*> The program must be driven by a short data file. The first 18 records
*> of the file are read using list-directed input, the last 17 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 35 lines:
*> 'zblat2.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 4 NUMBER OF VALUES OF K
*> 0 1 2 4 VALUES OF K
*> 4 NUMBER OF VALUES OF INCX AND INCY
*> 1 2 -1 -2 VALUES OF INCX AND INCY
*> 3 NUMBER OF VALUES OF ALPHA
*> (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
*> ZGEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZGBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTRMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTRSV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTBSV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZTPSV T PUT F FOR NO TEST. SAME COLUMNS.
*> ZGERC T PUT F FOR NO TEST. SAME COLUMNS.
*> ZGERU T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHER T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHPR T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHER2 T PUT F FOR NO TEST. SAME COLUMNS.
*> ZHPR2 T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J..
*> An extended set of Fortran Basic Linear Algebra Subprograms.
*>
*> Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics
*> and Computer Science Division, Argonne National Laboratory,
*> 9700 South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> Or
*>
*> NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms
*> Group Ltd., NAG Central Office, 256 Banbury Road, Oxford
*> OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st
*> Street, Suite 100, Downers Grove, Illinois 60515-1263, USA.
*>
*>
*> -- Written on 10-August-1987.
*> Richard Hanson, Sandia National Labs.
*> Jeremy Du Croz, NAG Central Office.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex16_blas_testing
*
* =====================================================================
PROGRAM ZBLAT2
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 17 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
INTEGER NMAX, INCMAX
PARAMETER ( NMAX = 65, INCMAX = 2 )
INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX
PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7,
$ NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
DOUBLE PRECISION EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB,
$ NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANS
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( 2*NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
DOUBLE PRECISION DDIFF
LOGICAL LZE
EXTERNAL DDIFF, LZE
* .. External Subroutines ..
EXTERNAL ZCHK1, ZCHK2, ZCHK3, ZCHK4, ZCHK5, ZCHK6,
$ ZCHKE, ZMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'ZGEMV ', 'ZGBMV ', 'ZHEMV ', 'ZHBMV ',
$ 'ZHPMV ', 'ZTRMV ', 'ZTBMV ', 'ZTPMV ',
$ 'ZTRSV ', 'ZTBSV ', 'ZTPSV ', 'ZGERC ',
$ 'ZGERU ', 'ZHER ', 'ZHPR ', 'ZHER2 ',
$ 'ZHPR2 '/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 230
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 230
END IF
10 CONTINUE
* Values of K
READ( NIN, FMT = * )NKB
IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN
WRITE( NOUT, FMT = 9997 )'K', NKBMAX
GO TO 230
END IF
READ( NIN, FMT = * )( KB( I ), I = 1, NKB )
DO 20 I = 1, NKB
IF( KB( I ).LT.0 )THEN
WRITE( NOUT, FMT = 9995 )
GO TO 230
END IF
20 CONTINUE
* Values of INCX and INCY
READ( NIN, FMT = * )NINC
IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN
WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX
GO TO 230
END IF
READ( NIN, FMT = * )( INC( I ), I = 1, NINC )
DO 30 I = 1, NINC
IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN
WRITE( NOUT, FMT = 9994 )INCMAX
GO TO 230
END IF
30 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 230
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 230
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9993 )
WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB )
WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC )
WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9980 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 40 I = 1, NSUBS
LTEST( I ) = .FALSE.
40 CONTINUE
50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT
DO 60 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 70
60 CONTINUE
WRITE( NOUT, FMT = 9986 )SNAMET
STOP
70 LTEST( I ) = LTESTT
GO TO 50
*
80 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(RZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of ZMVCH using exact data.
*
N = MIN( 32, NMAX )
DO 120 J = 1, N
DO 110 I = 1, N
A( I, J ) = MAX( I - J + 1, 0 )
110 CONTINUE
X( J ) = J
Y( J ) = ZERO
120 CONTINUE
DO 130 J = 1, N
YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
* YY holds the exact result. On exit from ZMVCH YT holds
* the result computed by ZMVCH.
TRANS = 'N'
CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
TRANS = 'T'
CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 210 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL ZCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 140, 150, 150, 150, 160, 160,
$ 160, 160, 160, 160, 170, 170, 180,
$ 180, 190, 190 )ISNUM
* Test ZGEMV, 01, and ZGBMV, 02.
140 CALL ZCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test ZHEMV, 03, ZHBMV, 04, and ZHPMV, 05.
150 CALL ZCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test ZTRMV, 06, ZTBMV, 07, ZTPMV, 08,
* ZTRSV, 09, ZTBSV, 10, and ZTPSV, 11.
160 CALL ZCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z )
GO TO 200
* Test ZGERC, 12, ZGERU, 13.
170 CALL ZCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test ZHER, 14, and ZHPR, 15.
180 CALL ZCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test ZHER2, 16, and ZHPR2, 17.
190 CALL ZCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
*
200 IF( FATAL.AND.SFATAL )
$ GO TO 220
END IF
210 CONTINUE
WRITE( NOUT, FMT = 9982 )
GO TO 240
*
220 CONTINUE
WRITE( NOUT, FMT = 9981 )
GO TO 240
*
230 CONTINUE
WRITE( NOUT, FMT = 9987 )
*
240 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' VALUE OF K IS LESS THAN 0' )
9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ',
$ I2 )
9993 FORMAT( ' TESTS OF THE COMPLEX*16 LEVEL 2 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9992 FORMAT( ' FOR N ', 9I6 )
9991 FORMAT( ' FOR K ', 7I6 )
9990 FORMAT( ' FOR INCX AND INCY ', 7I6 )
9989 FORMAT( ' FOR ALPHA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9988 FORMAT( ' FOR BETA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9985 FORMAT( ' ERROR IN ZMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' ZMVCH WAS CALLED WITH TRANS = ', A1,
$ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', /
$ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.'
$ , /' ******* TESTS ABANDONED *******' )
9984 FORMAT( A6, L2 )
9983 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9982 FORMAT( /' END OF TESTS' )
9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of ZBLAT2.
*
END
SUBROUTINE ZCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests ZGEMV and ZGBMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, HALF
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ HALF = ( 0.5D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BLS, TRANSL
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA,
$ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK,
$ NL, NS
LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN
CHARACTER*1 TRANS, TRANSS
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZGBMV, ZGEMV, ZMAKE, ZMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 11
ELSE IF( BANDED )THEN
NARGS = 13
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IKU = 1, NK
IF( BANDED )THEN
KU = KB( IKU )
KL = MAX( KU - 1, 0 )
ELSE
KU = N - 1
KL = M - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = KL + KU + 1
ELSE
LDA = M
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL ZMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA,
$ LDA, KL, KU, RESET, TRANSL )
*
DO 90 IC = 1, 3
TRANS = ICH( IC: IC )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
*
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*NL
*
* Generate the vector X.
*
TRANSL = HALF
CALL ZMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX,
$ ABS( INCX ), 0, NL - 1, RESET, TRANSL )
IF( NL.GT.1 )THEN
X( NL/2 ) = ZERO
XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*ML
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL ZMAKE( 'GE', ' ', ' ', 1, ML, Y, 1,
$ YY, ABS( INCY ), 0, ML - 1,
$ RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANSS = TRANS
MS = M
NS = N
KLS = KL
KUS = KU
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ TRANS, M, N, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL ZGEMV( TRANS, M, N, ALPHA, AA,
$ LDA, XX, INCX, BETA, YY,
$ INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANS, M, N, KL, KU, ALPHA, LDA,
$ INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL ZGBMV( TRANS, M, N, KL, KU, ALPHA,
$ AA, LDA, XX, INCX, BETA,
$ YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 130
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANS.EQ.TRANSS
ISAME( 2 ) = MS.EQ.M
ISAME( 3 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LZE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LZE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LZE( YS, YY, LY )
ELSE
ISAME( 10 ) = LZERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 4 ) = KLS.EQ.KL
ISAME( 5 ) = KUS.EQ.KU
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LZE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LZE( XS, XX, LX )
ISAME( 10 ) = INCXS.EQ.INCX
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LZE( YS, YY, LY )
ELSE
ISAME( 12 ) = LZERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 13 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 130
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL ZMVCH( TRANS, M, N, ALPHA, A,
$ NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 130
ELSE
* Avoid repeating tests with M.le.0 or
* N.le.0.
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 140
*
130 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU,
$ ALPHA, LDA, INCX, BETA, INCY
END IF
*
140 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK1.
*
END
SUBROUTINE ZCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests ZHEMV, ZHBMV and ZHPMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, HALF
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ HALF = ( 0.5D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BLS, TRANSL
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY,
$ N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZHBMV, ZHEMV, ZHPMV, ZMAKE, ZMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 10
ELSE IF( BANDED )THEN
NARGS = 11
ELSE IF( PACKED )THEN
NARGS = 9
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA,
$ LDA, K, K, RESET, TRANSL )
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL ZMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
UPLOS = UPLO
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, N, ALPHA, LDA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL ZHEMV( UPLO, N, ALPHA, AA, LDA, XX,
$ INCX, BETA, YY, INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, N, K, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL ZHBMV( UPLO, N, K, ALPHA, AA, LDA,
$ XX, INCX, BETA, YY, INCY )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, N, ALPHA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL ZHPMV( UPLO, N, ALPHA, AA, XX, INCX,
$ BETA, YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LZE( AS, AA, LAA )
ISAME( 5 ) = LDAS.EQ.LDA
ISAME( 6 ) = LZE( XS, XX, LX )
ISAME( 7 ) = INCXS.EQ.INCX
ISAME( 8 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LZE( YS, YY, LY )
ELSE
ISAME( 9 ) = LZERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 10 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 3 ) = KS.EQ.K
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LZE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LZE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LZE( YS, YY, LY )
ELSE
ISAME( 10 ) = LZERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( PACKED )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LZE( AS, AA, LAA )
ISAME( 5 ) = LZE( XS, XX, LX )
ISAME( 6 ) = INCXS.EQ.INCX
ISAME( 7 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 8 ) = LZE( YS, YY, LY )
ELSE
ISAME( 8 ) = LZERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 9 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL ZMVCH( 'N', N, N, ALPHA, A, NMAX, X,
$ INCX, BETA, Y, INCY, YT, G,
$ YY, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX,
$ BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ BETA, INCY
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), AP, X,', I2, ',(', F4.1, ',', F4.1, '), Y,', I2,
$ ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', F4.1, '), ',
$ 'Y,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK2.
*
END
SUBROUTINE ZCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z )
*
* Tests ZTRMV, ZTBMV, ZTPMV, ZTRSV, ZTBSV and ZTPSV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ HALF = ( 0.5D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XT( NMAX ), XX( NMAX*INCMAX ), Z( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX*16 TRANSL
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K,
$ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHD, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZMAKE, ZMVCH, ZTBMV, ZTBSV, ZTPMV, ZTPSV,
$ ZTRMV, ZTRSV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'R'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 8
ELSE IF( BANDED )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 7
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
* Set up zero vector for ZMVCH.
DO 10 I = 1, NMAX
Z( I ) = ZERO
10 CONTINUE
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
*
DO 70 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL ZMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A,
$ NMAX, AA, LDA, K, K, RESET, TRANSL )
*
DO 60 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET,
$ TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
DIAGS = DIAG
NS = N
KS = K
DO 20 I = 1, LAA
AS( I ) = AA( I )
20 CONTINUE
LDAS = LDA
DO 30 I = 1, LX
XS( I ) = XX( I )
30 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL ZTRMV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL ZTBMV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL ZTPMV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL ZTRSV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL ZTBSV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL ZTPSV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = TRANS.EQ.TRANSS
ISAME( 3 ) = DIAG.EQ.DIAGS
ISAME( 4 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 5 ) = LZE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 7 ) = LZE( XS, XX, LX )
ELSE
ISAME( 7 ) = LZERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 8 ) = INCXS.EQ.INCX
ELSE IF( BANDED )THEN
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 8 ) = LZE( XS, XX, LX )
ELSE
ISAME( 8 ) = LZERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 9 ) = INCXS.EQ.INCX
ELSE IF( PACKED )THEN
ISAME( 5 ) = LZE( AS, AA, LAA )
IF( NULL )THEN
ISAME( 6 ) = LZE( XS, XX, LX )
ELSE
ISAME( 6 ) = LZERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 7 ) = INCXS.EQ.INCX
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
*
* Check the result.
*
CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, X,
$ INCX, ZERO, Z, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
*
* Compute approximation to original vector.
*
DO 50 I = 1, N
Z( I ) = XX( 1 + ( I - 1 )*
$ ABS( INCX ) )
XX( 1 + ( I - 1 )*ABS( INCX ) )
$ = X( I )
50 CONTINUE
CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, Z,
$ INCX, ZERO, X, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .FALSE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0.
GO TO 110
END IF
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA,
$ INCX
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K,
$ LDA, INCX
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ',
$ 'X,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ),
$ ' A,', I3, ', X,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,',
$ I3, ', X,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK3.
*
END
SUBROUTINE ZCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests ZGERC and ZGERU.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ HALF = ( 0.5D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, TRANSL
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS,
$ NC, ND, NS
LOGICAL CONJ, NULL, RESET, SAME
* .. Local Arrays ..
COMPLEX*16 W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZGERC, ZGERU, ZMAKE, ZMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, DCONJG, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
CONJ = SNAME( 5: 5 ).EQ.'C'
* Define the number of arguments.
NARGS = 9
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
* Set LDA to 1 more than minimum value if room.
LDA = M
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
DO 100 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*M
*
* Generate the vector X.
*
TRANSL = HALF
CALL ZMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ),
$ 0, M - 1, RESET, TRANSL )
IF( M.GT.1 )THEN
X( M/2 ) = ZERO
XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO
END IF
*
DO 90 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL ZMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL ZMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX,
$ AA, LDA, M - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N,
$ ALPHA, INCX, INCY, LDA
IF( CONJ )THEN
IF( REWI )
$ REWIND NTRA
CALL ZGERC( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
ELSE
IF( REWI )
$ REWIND NTRA
CALL ZGERU( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 140
END IF
*
* See what data changed inside subroutine.
*
ISAME( 1 ) = MS.EQ.M
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LZE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LZE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LZE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LZERES( 'GE', ' ', M, N, AS, AA,
$ LDA )
END IF
ISAME( 9 ) = LDAS.EQ.LDA
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 140
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, M
Z( I ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, M
Z( I ) = X( M - I + 1 )
60 CONTINUE
END IF
DO 70 J = 1, N
IF( INCY.GT.0 )THEN
W( 1 ) = Y( J )
ELSE
W( 1 ) = Y( N - J + 1 )
END IF
IF( CONJ )
$ W( 1 ) = DCONJG( W( 1 ) )
CALL ZMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1,
$ ONE, A( 1, J ), 1, YT, G,
$ AA( 1 + ( J - 1 )*LDA ), EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 130
70 CONTINUE
ELSE
* Avoid repeating tests with M.le.0 or N.le.0.
GO TO 110
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 150
*
130 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
140 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), '(', F4.1, ',', F4.1,
$ '), X,', I2, ', Y,', I2, ', A,', I3, ') ',
$ ' .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK4.
*
END
SUBROUTINE ZCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests ZHER and ZHPR.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ HALF = ( 0.5D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX*16 ALPHA, TRANSL
DOUBLE PRECISION ERR, ERRMAX, RALPHA, RALS
INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA,
$ LDA, LDAS, LJ, LX, N, NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
COMPLEX*16 W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZHER, ZHPR, ZMAKE, ZMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 7
ELSE IF( PACKED )THEN
NARGS = 6
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IA = 1, NALF
RALPHA = DBLE( ALF( IA ) )
ALPHA = DCMPLX( RALPHA, RZERO )
NULL = N.LE.0.OR.RALPHA.EQ.RZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX,
$ AA, LDA, N - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
RALS = RALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ RALPHA, INCX, LDA
IF( REWI )
$ REWIND NTRA
CALL ZHER( UPLO, N, RALPHA, XX, INCX, AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ RALPHA, INCX
IF( REWI )
$ REWIND NTRA
CALL ZHPR( UPLO, N, RALPHA, XX, INCX, AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = RALS.EQ.RALPHA
ISAME( 4 ) = LZE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
IF( NULL )THEN
ISAME( 6 ) = LZE( AS, AA, LAA )
ELSE
ISAME( 6 ) = LZERES( SNAME( 2: 3 ), UPLO, N, N, AS,
$ AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 7 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 40 I = 1, N
Z( I ) = X( I )
40 CONTINUE
ELSE
DO 50 I = 1, N
Z( I ) = X( N - I + 1 )
50 CONTINUE
END IF
JA = 1
DO 60 J = 1, N
W( 1 ) = DCONJG( Z( J ) )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL ZMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W,
$ 1, ONE, A( JJ, J ), 1, YT, G,
$ AA( JA ), EPS, ERR, FATAL, NOUT,
$ .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 110
60 CONTINUE
ELSE
* Avoid repeating tests if N.le.0.
IF( N.LE.0 )
$ GO TO 100
END IF
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, RALPHA, INCX, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, RALPHA, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK5.
*
END
SUBROUTINE ZCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests ZHER2 and ZHPR2.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ HALF = ( 0.5D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX, 2 )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, TRANSL
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N,
$ NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
COMPLEX*16 W( 2 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZHER2, ZHPR2, ZMAKE, ZMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, DCONJG, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 8
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 140 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 140
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 130 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 120 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 110 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL ZMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 100 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A,
$ NMAX, AA, LDA, N - 1, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL ZHER2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY
IF( REWI )
$ REWIND NTRA
CALL ZHPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 160
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LZE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LZE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LZE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LZERES( SNAME( 2: 3 ), UPLO, N, N,
$ AS, AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 9 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 160
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, N
Z( I, 1 ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, N
Z( I, 1 ) = X( N - I + 1 )
60 CONTINUE
END IF
IF( INCY.GT.0 )THEN
DO 70 I = 1, N
Z( I, 2 ) = Y( I )
70 CONTINUE
ELSE
DO 80 I = 1, N
Z( I, 2 ) = Y( N - I + 1 )
80 CONTINUE
END IF
JA = 1
DO 90 J = 1, N
W( 1 ) = ALPHA*DCONJG( Z( J, 2 ) )
W( 2 ) = DCONJG( ALPHA )*DCONJG( Z( J, 1 ) )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL ZMVCH( 'N', LJ, 2, ONE, Z( JJ, 1 ),
$ NMAX, W, 1, ONE, A( JJ, J ), 1,
$ YT, G, AA( JA ), EPS, ERR, FATAL,
$ NOUT, .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 150
90 CONTINUE
ELSE
* Avoid repeating tests with N.le.0.
IF( N.LE.0 )
$ GO TO 140
END IF
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 170
*
150 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
160 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ INCY, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY
END IF
*
170 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), X,', I2, ', Y,', I2, ', AP) ',
$ ' .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), X,', I2, ', Y,', I2, ', A,', I3, ') ',
$ ' .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK6.
*
END
SUBROUTINE ZCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 2 Blas.
* Requires a special version of the error-handling routine XERBLA.
* ALPHA, RALPHA, BETA, A, X and Y should not need to be defined.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Local Scalars ..
COMPLEX*16 ALPHA, BETA
DOUBLE PRECISION RALPHA
* .. Local Arrays ..
COMPLEX*16 A( 1, 1 ), X( 1 ), Y( 1 )
* .. External Subroutines ..
EXTERNAL CHKXER, ZGBMV, ZGEMV, ZGERC, ZGERU, ZHBMV,
$ ZHEMV, ZHER, ZHER2, ZHPMV, ZHPR, ZHPR2, ZTBMV,
$ ZTBSV, ZTPMV, ZTPSV, ZTRMV, ZTRSV
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90, 100, 110, 120, 130, 140, 150, 160,
$ 170 )ISNUM
10 INFOT = 1
CALL ZGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
20 INFOT = 1
CALL ZGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL ZGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
30 INFOT = 1
CALL ZHEMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHEMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHEMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHEMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHEMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
40 INFOT = 1
CALL ZHBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZHBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZHBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
50 INFOT = 1
CALL ZHPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZHPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
60 INFOT = 1
CALL ZTRMV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTRMV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTRMV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
70 INFOT = 1
CALL ZTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
80 INFOT = 1
CALL ZTPMV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTPMV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTPMV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTPMV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZTPMV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
90 INFOT = 1
CALL ZTRSV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTRSV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTRSV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
100 INFOT = 1
CALL ZTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
110 INFOT = 1
CALL ZTPSV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZTPSV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZTPSV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZTPSV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZTPSV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
120 INFOT = 1
CALL ZGERC( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGERC( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGERC( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZGERC( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZGERC( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
130 INFOT = 1
CALL ZGERU( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGERU( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZGERU( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZGERU( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZGERU( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
140 INFOT = 1
CALL ZHER( '/', 0, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHER( 'U', -1, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHER( 'U', 0, RALPHA, X, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHER( 'U', 2, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
150 INFOT = 1
CALL ZHPR( '/', 0, RALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPR( 'U', -1, RALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHPR( 'U', 0, RALPHA, X, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
160 INFOT = 1
CALL ZHER2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHER2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHER2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHER2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHER2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
170 INFOT = 1
CALL ZHPR2( '/', 0, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPR2( 'U', -1, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHPR2( 'U', 0, ALPHA, X, 0, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHPR2( 'U', 0, ALPHA, X, 1, Y, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
180 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of ZCHKE.
*
END
SUBROUTINE ZMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL,
$ KU, RESET, TRANSL )
*
* Generates values for an M by N matrix A within the bandwidth
* defined by KL and KU.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'GB', 'HE', 'HB', 'HP', 'TR', 'TB' OR 'TP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D10, 1.0D10 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
DOUBLE PRECISION RROGUE
PARAMETER ( RROGUE = -1.0D10 )
* .. Scalar Arguments ..
COMPLEX*16 TRANSL
INTEGER KL, KU, LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX*16 A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, JJ, KK
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
COMPLEX*16 ZBEG
EXTERNAL ZBEG
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, DCONJG, MAX, MIN
* .. Executable Statements ..
GEN = TYPE( 1: 1 ).EQ.'G'
SYM = TYPE( 1: 1 ).EQ.'H'
TRI = TYPE( 1: 1 ).EQ.'T'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
IF( ( I.LE.J.AND.J - I.LE.KU ).OR.
$ ( I.GE.J.AND.I - J.LE.KL ) )THEN
A( I, J ) = ZBEG( RESET ) + TRANSL
ELSE
A( I, J ) = ZERO
END IF
IF( I.NE.J )THEN
IF( SYM )THEN
A( J, I ) = DCONJG( A( I, J ) )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( SYM )
$ A( J, J ) = DCMPLX( DBLE( A( J, J ) ), RZERO )
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'GB' )THEN
DO 90 J = 1, N
DO 60 I1 = 1, KU + 1 - J
AA( I1 + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J )
AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J )
70 CONTINUE
DO 80 I3 = I2, LDA
AA( I3 + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'TR' )THEN
DO 130 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 100 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
100 CONTINUE
DO 110 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
110 CONTINUE
DO 120 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
120 CONTINUE
IF( SYM )THEN
JJ = J + ( J - 1 )*LDA
AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE )
END IF
130 CONTINUE
ELSE IF( TYPE.EQ.'HB'.OR.TYPE.EQ.'TB' )THEN
DO 170 J = 1, N
IF( UPPER )THEN
KK = KL + 1
IBEG = MAX( 1, KL + 2 - J )
IF( UNIT )THEN
IEND = KL
ELSE
IEND = KL + 1
END IF
ELSE
KK = 1
IF( UNIT )THEN
IBEG = 2
ELSE
IBEG = 1
END IF
IEND = MIN( KL + 1, 1 + M - J )
END IF
DO 140 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
140 CONTINUE
DO 150 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J )
150 CONTINUE
DO 160 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
160 CONTINUE
IF( SYM )THEN
JJ = KK + ( J - 1 )*LDA
AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE )
END IF
170 CONTINUE
ELSE IF( TYPE.EQ.'HP'.OR.TYPE.EQ.'TP' )THEN
IOFF = 0
DO 190 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 180 I = IBEG, IEND
IOFF = IOFF + 1
AA( IOFF ) = A( I, J )
IF( I.EQ.J )THEN
IF( UNIT )
$ AA( IOFF ) = ROGUE
IF( SYM )
$ AA( IOFF ) = DCMPLX( DBLE( AA( IOFF ) ), RROGUE )
END IF
180 CONTINUE
190 CONTINUE
END IF
RETURN
*
* End of ZMAKE.
*
END
SUBROUTINE ZMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO, RONE
PARAMETER ( RZERO = 0.0D0, RONE = 1.0D0 )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
DOUBLE PRECISION EPS, ERR
INTEGER INCX, INCY, M, N, NMAX, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANS
* .. Array Arguments ..
COMPLEX*16 A( NMAX, * ), X( * ), Y( * ), YT( * ), YY( * )
DOUBLE PRECISION G( * )
* .. Local Scalars ..
COMPLEX*16 C
DOUBLE PRECISION ERRI
INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL
LOGICAL CTRAN, TRAN
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, SQRT
* .. Statement Functions ..
DOUBLE PRECISION ABS1
* .. Statement Function definitions ..
ABS1( C ) = ABS( DBLE( C ) ) + ABS( DIMAG( C ) )
* .. Executable Statements ..
TRAN = TRANS.EQ.'T'
CTRAN = TRANS.EQ.'C'
IF( TRAN.OR.CTRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
IF( INCX.LT.0 )THEN
KX = NL
INCXL = -1
ELSE
KX = 1
INCXL = 1
END IF
IF( INCY.LT.0 )THEN
KY = ML
INCYL = -1
ELSE
KY = 1
INCYL = 1
END IF
*
* Compute expected result in YT using data in A, X and Y.
* Compute gauges in G.
*
IY = KY
DO 40 I = 1, ML
YT( IY ) = ZERO
G( IY ) = RZERO
JX = KX
IF( TRAN )THEN
DO 10 J = 1, NL
YT( IY ) = YT( IY ) + A( J, I )*X( JX )
G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) )
JX = JX + INCXL
10 CONTINUE
ELSE IF( CTRAN )THEN
DO 20 J = 1, NL
YT( IY ) = YT( IY ) + DCONJG( A( J, I ) )*X( JX )
G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) )
JX = JX + INCXL
20 CONTINUE
ELSE
DO 30 J = 1, NL
YT( IY ) = YT( IY ) + A( I, J )*X( JX )
G( IY ) = G( IY ) + ABS1( A( I, J ) )*ABS1( X( JX ) )
JX = JX + INCXL
30 CONTINUE
END IF
YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY )
G( IY ) = ABS1( ALPHA )*G( IY ) + ABS1( BETA )*ABS1( Y( IY ) )
IY = IY + INCYL
40 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 50 I = 1, ML
ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS
IF( G( I ).NE.RZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.RONE )
$ GO TO 60
50 CONTINUE
* If the loop completes, all results are at least half accurate.
GO TO 80
*
* Report fatal error.
*
60 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 70 I = 1, ML
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, YT( I ),
$ YY( 1 + ( I - 1 )*ABS( INCY ) )
ELSE
WRITE( NOUT, FMT = 9998 )I,
$ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I )
END IF
70 CONTINUE
*
80 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RE',
$ 'SULT COMPUTED RESULT' )
9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) )
*
* End of ZMVCH.
*
END
LOGICAL FUNCTION LZE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
COMPLEX*16 RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LZE = .TRUE.
GO TO 30
20 CONTINUE
LZE = .FALSE.
30 RETURN
*
* End of LZE.
*
END
LOGICAL FUNCTION LZERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE', 'HE' or 'HP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX*16 AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'HE' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LZERES = .TRUE.
GO TO 80
70 CONTINUE
LZERES = .FALSE.
80 RETURN
*
* End of LZERES.
*
END
COMPLEX*16 FUNCTION ZBEG( RESET )
*
* Generates complex numbers as pairs of random numbers uniformly
* distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, J, MI, MJ
* .. Save statement ..
SAVE I, IC, J, MI, MJ
* .. Intrinsic Functions ..
INTRINSIC DCMPLX
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
MJ = 457
I = 7
J = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I or J is bounded between 1 and 999.
* If initial I or J = 1,2,3,6,7 or 9, the period will be 50.
* If initial I or J = 4 or 8, the period will be 25.
* If initial I or J = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I or J
* in 6.
*
IC = IC + 1
10 I = I*MI
J = J*MJ
I = I - 1000*( I/1000 )
J = J - 1000*( J/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
ZBEG = DCMPLX( ( I - 500 )/1001.0D0, ( J - 500 )/1001.0D0 )
RETURN
*
* End of ZBEG.
*
END
DOUBLE PRECISION FUNCTION DDIFF( X, Y )
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
*
* .. Scalar Arguments ..
DOUBLE PRECISION X, Y
* .. Executable Statements ..
DDIFF = X - Y
RETURN
*
* End of DDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 2 BLAS
* routines.
*
* XERBLA is an error handler for the Level 2 BLAS routines.
*
* It is called by the Level 2 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/zblat1.f
|
.f
| 32,114
| 725
|
*> \brief \b ZBLAT1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM ZBLAT1
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX*16 Level 1 BLAS.
*>
*> Based upon the original BLAS test routine together with:
*> F06GAF Example Program Text
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex16_blas_testing
*
* =====================================================================
PROGRAM ZBLAT1
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SFAC
INTEGER IC
* .. External Subroutines ..
EXTERNAL CHECK1, CHECK2, HEADER
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA SFAC/9.765625D-4/
* .. Executable Statements ..
WRITE (NOUT,99999)
DO 20 IC = 1, 10
ICASE = IC
CALL HEADER
*
* Initialize PASS, INCX, INCY, and MODE for a new case.
* The value 9999 for INCX, INCY or MODE will appear in the
* detailed output, if any, for cases that do not involve
* these parameters.
*
PASS = .TRUE.
INCX = 9999
INCY = 9999
MODE = 9999
IF (ICASE.LE.5) THEN
CALL CHECK2(SFAC)
ELSE IF (ICASE.GE.6) THEN
CALL CHECK1(SFAC)
END IF
* -- Print
IF (PASS) WRITE (NOUT,99998)
20 CONTINUE
STOP
*
99999 FORMAT (' Complex BLAS Test Program Results',/1X)
99998 FORMAT (' ----- PASS -----')
END
SUBROUTINE HEADER
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Arrays ..
CHARACTER*6 L(10)
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA L(1)/'ZDOTC '/
DATA L(2)/'ZDOTU '/
DATA L(3)/'ZAXPY '/
DATA L(4)/'ZCOPY '/
DATA L(5)/'ZSWAP '/
DATA L(6)/'DZNRM2'/
DATA L(7)/'DZASUM'/
DATA L(8)/'ZSCAL '/
DATA L(9)/'ZDSCAL'/
DATA L(10)/'IZAMAX'/
* .. Executable Statements ..
WRITE (NOUT,99999) ICASE, L(ICASE)
RETURN
*
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
END
SUBROUTINE CHECK1(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
COMPLEX*16 CA
DOUBLE PRECISION SA
INTEGER I, J, LEN, NP1
* .. Local Arrays ..
COMPLEX*16 CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8),
+ MWPCS(5), MWPCT(5)
DOUBLE PRECISION STRUE2(5), STRUE4(5)
INTEGER ITRUE3(5)
* .. External Functions ..
DOUBLE PRECISION DZASUM, DZNRM2
INTEGER IZAMAX
EXTERNAL DZASUM, DZNRM2, IZAMAX
* .. External Subroutines ..
EXTERNAL ZSCAL, ZDSCAL, CTEST, ITEST1, STEST1
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA SA, CA/0.3D0, (0.4D0,-0.7D0)/
DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0),
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
+ (1.0D0,2.0D0), (0.3D0,-0.4D0), (3.0D0,4.0D0),
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
+ (0.1D0,-0.3D0), (0.5D0,-0.1D0), (5.0D0,6.0D0),
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (0.1D0,0.1D0),
+ (-0.6D0,0.1D0), (0.1D0,-0.3D0), (7.0D0,8.0D0),
+ (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
+ (7.0D0,8.0D0), (0.3D0,0.1D0), (0.5D0,0.0D0),
+ (0.0D0,0.5D0), (0.0D0,0.2D0), (2.0D0,3.0D0),
+ (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/
DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0),
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
+ (4.0D0,5.0D0), (0.3D0,-0.4D0), (6.0D0,7.0D0),
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
+ (0.1D0,-0.3D0), (8.0D0,9.0D0), (0.5D0,-0.1D0),
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (0.1D0,0.1D0),
+ (3.0D0,6.0D0), (-0.6D0,0.1D0), (4.0D0,7.0D0),
+ (0.1D0,-0.3D0), (7.0D0,2.0D0), (7.0D0,2.0D0),
+ (7.0D0,2.0D0), (0.3D0,0.1D0), (5.0D0,8.0D0),
+ (0.5D0,0.0D0), (6.0D0,9.0D0), (0.0D0,0.5D0),
+ (8.0D0,3.0D0), (0.0D0,0.2D0), (9.0D0,4.0D0)/
DATA STRUE2/0.0D0, 0.5D0, 0.6D0, 0.7D0, 0.8D0/
DATA STRUE4/0.0D0, 0.7D0, 1.0D0, 1.3D0, 1.6D0/
DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0),
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
+ (1.0D0,2.0D0), (-0.16D0,-0.37D0), (3.0D0,4.0D0),
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
+ (-0.17D0,-0.19D0), (0.13D0,-0.39D0),
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
+ (0.11D0,-0.03D0), (-0.17D0,0.46D0),
+ (-0.17D0,-0.19D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
+ (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
+ (0.19D0,-0.17D0), (0.20D0,-0.35D0),
+ (0.35D0,0.20D0), (0.14D0,0.08D0),
+ (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0),
+ (2.0D0,3.0D0)/
DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0),
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
+ (4.0D0,5.0D0), (-0.16D0,-0.37D0), (6.0D0,7.0D0),
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
+ (-0.17D0,-0.19D0), (8.0D0,9.0D0),
+ (0.13D0,-0.39D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
+ (0.11D0,-0.03D0), (3.0D0,6.0D0),
+ (-0.17D0,0.46D0), (4.0D0,7.0D0),
+ (-0.17D0,-0.19D0), (7.0D0,2.0D0), (7.0D0,2.0D0),
+ (7.0D0,2.0D0), (0.19D0,-0.17D0), (5.0D0,8.0D0),
+ (0.20D0,-0.35D0), (6.0D0,9.0D0),
+ (0.35D0,0.20D0), (8.0D0,3.0D0),
+ (0.14D0,0.08D0), (9.0D0,4.0D0)/
DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0),
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
+ (1.0D0,2.0D0), (0.09D0,-0.12D0), (3.0D0,4.0D0),
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
+ (0.03D0,-0.09D0), (0.15D0,-0.03D0),
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
+ (0.03D0,0.03D0), (-0.18D0,0.03D0),
+ (0.03D0,-0.09D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
+ (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
+ (0.09D0,0.03D0), (0.15D0,0.00D0),
+ (0.00D0,0.15D0), (0.00D0,0.06D0), (2.0D0,3.0D0),
+ (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/
DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0),
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
+ (4.0D0,5.0D0), (0.09D0,-0.12D0), (6.0D0,7.0D0),
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
+ (0.03D0,-0.09D0), (8.0D0,9.0D0),
+ (0.15D0,-0.03D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
+ (0.03D0,0.03D0), (3.0D0,6.0D0),
+ (-0.18D0,0.03D0), (4.0D0,7.0D0),
+ (0.03D0,-0.09D0), (7.0D0,2.0D0), (7.0D0,2.0D0),
+ (7.0D0,2.0D0), (0.09D0,0.03D0), (5.0D0,8.0D0),
+ (0.15D0,0.00D0), (6.0D0,9.0D0), (0.00D0,0.15D0),
+ (8.0D0,3.0D0), (0.00D0,0.06D0), (9.0D0,4.0D0)/
DATA ITRUE3/0, 1, 2, 2, 2/
* .. Executable Statements ..
DO 60 INCX = 1, 2
DO 40 NP1 = 1, 5
N = NP1 - 1
LEN = 2*MAX(N,1)
* .. Set vector arguments ..
DO 20 I = 1, LEN
CX(I) = CV(I,NP1,INCX)
20 CONTINUE
IF (ICASE.EQ.6) THEN
* .. DZNRM2 ..
CALL STEST1(DZNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1),
+ SFAC)
ELSE IF (ICASE.EQ.7) THEN
* .. DZASUM ..
CALL STEST1(DZASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1),
+ SFAC)
ELSE IF (ICASE.EQ.8) THEN
* .. ZSCAL ..
CALL ZSCAL(N,CA,CX,INCX)
CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX),
+ SFAC)
ELSE IF (ICASE.EQ.9) THEN
* .. ZDSCAL ..
CALL ZDSCAL(N,SA,CX,INCX)
CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX),
+ SFAC)
ELSE IF (ICASE.EQ.10) THEN
* .. IZAMAX ..
CALL ITEST1(IZAMAX(N,CX,INCX),ITRUE3(NP1))
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
STOP
END IF
*
40 CONTINUE
60 CONTINUE
*
INCX = 1
IF (ICASE.EQ.8) THEN
* ZSCAL
* Add a test for alpha equal to zero.
CA = (0.0D0,0.0D0)
DO 80 I = 1, 5
MWPCT(I) = (0.0D0,0.0D0)
MWPCS(I) = (1.0D0,1.0D0)
80 CONTINUE
CALL ZSCAL(5,CA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
ELSE IF (ICASE.EQ.9) THEN
* ZDSCAL
* Add a test for alpha equal to zero.
SA = 0.0D0
DO 100 I = 1, 5
MWPCT(I) = (0.0D0,0.0D0)
MWPCS(I) = (1.0D0,1.0D0)
100 CONTINUE
CALL ZDSCAL(5,SA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
* Add a test for alpha equal to one.
SA = 1.0D0
DO 120 I = 1, 5
MWPCT(I) = CX(I)
MWPCS(I) = CX(I)
120 CONTINUE
CALL ZDSCAL(5,SA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
* Add a test for alpha equal to minus one.
SA = -1.0D0
DO 140 I = 1, 5
MWPCT(I) = -CX(I)
MWPCS(I) = -CX(I)
140 CONTINUE
CALL ZDSCAL(5,SA,CX,INCX)
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
END IF
RETURN
END
SUBROUTINE CHECK2(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
COMPLEX*16 CA
INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY
* .. Local Arrays ..
COMPLEX*16 CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14),
+ CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4),
+ CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7)
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
* .. External Functions ..
COMPLEX*16 ZDOTC, ZDOTU
EXTERNAL ZDOTC, ZDOTU
* .. External Subroutines ..
EXTERNAL ZAXPY, ZCOPY, ZSWAP, CTEST
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Data statements ..
DATA CA/(0.4D0,-0.7D0)/
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA CX1/(0.7D0,-0.8D0), (-0.4D0,-0.7D0),
+ (-0.1D0,-0.9D0), (0.2D0,-0.8D0),
+ (-0.9D0,-0.4D0), (0.1D0,0.4D0), (-0.6D0,0.6D0)/
DATA CY1/(0.6D0,-0.6D0), (-0.9D0,0.5D0),
+ (0.7D0,-0.6D0), (0.1D0,-0.5D0), (-0.1D0,-0.2D0),
+ (-0.5D0,-0.3D0), (0.8D0,-0.7D0)/
DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.32D0,-1.41D0),
+ (-1.55D0,0.5D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.32D0,-1.41D0), (-1.55D0,0.5D0),
+ (0.03D0,-0.89D0), (-0.38D0,-0.96D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (-0.07D0,-0.89D0),
+ (-0.9D0,0.5D0), (0.42D0,-1.41D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.78D0,0.06D0), (-0.9D0,0.5D0),
+ (0.06D0,-0.13D0), (0.1D0,-0.5D0),
+ (-0.77D0,-0.49D0), (-0.5D0,-0.3D0),
+ (0.52D0,-1.51D0)/
DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (-0.07D0,-0.89D0),
+ (-1.18D0,-0.31D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.78D0,0.06D0), (-1.54D0,0.97D0),
+ (0.03D0,-0.89D0), (-0.18D0,-1.31D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.32D0,-1.41D0), (-0.9D0,0.5D0),
+ (0.05D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.32D0,-1.41D0),
+ (-0.9D0,0.5D0), (0.05D0,-0.6D0), (0.1D0,-0.5D0),
+ (-0.77D0,-0.49D0), (-0.5D0,-0.3D0),
+ (0.32D0,-1.16D0)/
DATA CT7/(0.0D0,0.0D0), (-0.06D0,-0.90D0),
+ (0.65D0,-0.47D0), (-0.34D0,-1.22D0),
+ (0.0D0,0.0D0), (-0.06D0,-0.90D0),
+ (-0.59D0,-1.46D0), (-1.04D0,-0.04D0),
+ (0.0D0,0.0D0), (-0.06D0,-0.90D0),
+ (-0.83D0,0.59D0), (0.07D0,-0.37D0),
+ (0.0D0,0.0D0), (-0.06D0,-0.90D0),
+ (-0.76D0,-1.15D0), (-1.33D0,-1.82D0)/
DATA CT6/(0.0D0,0.0D0), (0.90D0,0.06D0),
+ (0.91D0,-0.77D0), (1.80D0,-0.10D0),
+ (0.0D0,0.0D0), (0.90D0,0.06D0), (1.45D0,0.74D0),
+ (0.20D0,0.90D0), (0.0D0,0.0D0), (0.90D0,0.06D0),
+ (-0.55D0,0.23D0), (0.83D0,-0.39D0),
+ (0.0D0,0.0D0), (0.90D0,0.06D0), (1.04D0,0.79D0),
+ (1.95D0,1.22D0)/
DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7D0,-0.8D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.6D0,-0.6D0), (-0.9D0,0.5D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0),
+ (-0.9D0,0.5D0), (0.7D0,-0.6D0), (0.1D0,-0.5D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7D0,-0.8D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.7D0,-0.6D0), (-0.4D0,-0.7D0),
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.8D0,-0.7D0),
+ (-0.4D0,-0.7D0), (-0.1D0,-0.2D0),
+ (0.2D0,-0.8D0), (0.7D0,-0.6D0), (0.1D0,0.4D0),
+ (0.6D0,-0.6D0)/
DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7D0,-0.8D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (-0.9D0,0.5D0), (-0.4D0,-0.7D0),
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.1D0,-0.5D0),
+ (-0.4D0,-0.7D0), (0.7D0,-0.6D0), (0.2D0,-0.8D0),
+ (-0.9D0,0.5D0), (0.1D0,0.4D0), (0.6D0,-0.6D0)/
DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7D0,-0.8D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.6D0,-0.6D0), (0.7D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0),
+ (0.7D0,-0.6D0), (-0.1D0,-0.2D0), (0.8D0,-0.7D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.4D0,-0.7D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0),
+ (-0.4D0,-0.7D0), (-0.1D0,-0.9D0),
+ (0.2D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0)/
DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (-0.1D0,-0.9D0), (-0.9D0,0.5D0),
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0),
+ (-0.9D0,0.5D0), (-0.9D0,-0.4D0), (0.1D0,-0.5D0),
+ (-0.1D0,-0.9D0), (-0.5D0,-0.3D0),
+ (0.7D0,-0.8D0)/
DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (-0.1D0,-0.9D0), (0.7D0,-0.8D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0),
+ (-0.9D0,-0.4D0), (-0.1D0,-0.9D0),
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0)/
DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.9D0,0.5D0),
+ (-0.4D0,-0.7D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0),
+ (-0.9D0,0.5D0), (-0.4D0,-0.7D0), (0.1D0,-0.5D0),
+ (-0.1D0,-0.9D0), (-0.5D0,-0.3D0),
+ (0.2D0,-0.8D0)/
DATA CSIZE1/(0.0D0,0.0D0), (0.9D0,0.9D0),
+ (1.63D0,1.73D0), (2.90D0,2.78D0)/
DATA CSIZE3/(0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (1.17D0,1.17D0),
+ (1.17D0,1.17D0), (1.17D0,1.17D0),
+ (1.17D0,1.17D0), (1.17D0,1.17D0),
+ (1.17D0,1.17D0), (1.17D0,1.17D0)/
DATA CSIZE2/(0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (1.54D0,1.54D0),
+ (1.54D0,1.54D0), (1.54D0,1.54D0),
+ (1.54D0,1.54D0), (1.54D0,1.54D0),
+ (1.54D0,1.54D0), (1.54D0,1.54D0)/
* .. Executable Statements ..
DO 60 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 40 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
* .. initialize all argument arrays ..
DO 20 I = 1, 7
CX(I) = CX1(I)
CY(I) = CY1(I)
20 CONTINUE
IF (ICASE.EQ.1) THEN
* .. ZDOTC ..
CDOT(1) = ZDOTC(N,CX,INCX,CY,INCY)
CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC)
ELSE IF (ICASE.EQ.2) THEN
* .. ZDOTU ..
CDOT(1) = ZDOTU(N,CX,INCX,CY,INCY)
CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC)
ELSE IF (ICASE.EQ.3) THEN
* .. ZAXPY ..
CALL ZAXPY(N,CA,CX,INCX,CY,INCY)
CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC)
ELSE IF (ICASE.EQ.4) THEN
* .. ZCOPY ..
CALL ZCOPY(N,CX,INCX,CY,INCY)
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0)
ELSE IF (ICASE.EQ.5) THEN
* .. ZSWAP ..
CALL ZSWAP(N,CX,INCX,CY,INCY)
CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0D0)
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
STOP
END IF
*
40 CONTINUE
60 CONTINUE
RETURN
END
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
DOUBLE PRECISION ZERO
PARAMETER (NOUT=6, ZERO=0.0D0)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
INTEGER LEN
* .. Array Arguments ..
DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SD
INTEGER I
* .. External Functions ..
DOUBLE PRECISION SDIFF
EXTERNAL SDIFF
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Executable Statements ..
*
DO 40 I = 1, LEN
SD = SCOMP(I) - STRUE(I)
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I),
+ STRUE(I), SD, SSIZE(I)
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY MODE I ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,3I5,I3,2D36.8,2D12.4)
END
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
* ************************* STEST1 *****************************
*
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
DOUBLE PRECISION SCOMP1, SFAC, STRUE1
* .. Array Arguments ..
DOUBLE PRECISION SSIZE(*)
* .. Local Arrays ..
DOUBLE PRECISION SCOMP(1), STRUE(1)
* .. External Subroutines ..
EXTERNAL STEST
* .. Executable Statements ..
*
SCOMP(1) = SCOMP1
STRUE(1) = STRUE1
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
*
RETURN
END
DOUBLE PRECISION FUNCTION SDIFF(SA,SB)
* ********************************* SDIFF **************************
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
*
* .. Scalar Arguments ..
DOUBLE PRECISION SA, SB
* .. Executable Statements ..
SDIFF = SA - SB
RETURN
END
SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC)
* **************************** CTEST *****************************
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
INTEGER LEN
* .. Array Arguments ..
COMPLEX*16 CCOMP(LEN), CSIZE(LEN), CTRUE(LEN)
* .. Local Scalars ..
INTEGER I
* .. Local Arrays ..
DOUBLE PRECISION SCOMP(20), SSIZE(20), STRUE(20)
* .. External Subroutines ..
EXTERNAL STEST
* .. Intrinsic Functions ..
INTRINSIC DIMAG, DBLE
* .. Executable Statements ..
DO 20 I = 1, LEN
SCOMP(2*I-1) = DBLE(CCOMP(I))
SCOMP(2*I) = DIMAG(CCOMP(I))
STRUE(2*I-1) = DBLE(CTRUE(I))
STRUE(2*I) = DIMAG(CTRUE(I))
SSIZE(2*I-1) = DBLE(CSIZE(I))
SSIZE(2*I) = DIMAG(CSIZE(I))
20 CONTINUE
*
CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC)
RETURN
END
SUBROUTINE ITEST1(ICOMP,ITRUE)
* ********************************* ITEST1 *************************
*
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
* EQUALITY.
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
INTEGER ICOMP, ITRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER ID
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
* .. Executable Statements ..
IF (ICOMP.EQ.ITRUE) GO TO 40
*
* HERE ICOMP IS NOT EQUAL TO ITRUE.
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 ID = ICOMP - ITRUE
WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY MODE ',
+ ' COMP TRUE DIFFERENCE',
+ /1X)
99997 FORMAT (1X,I4,I3,3I5,2I36,I12)
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/sblat2.f
|
.f
| 112,251
| 3,177
|
*> \brief \b SBLAT2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM SBLAT2
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the REAL Level 2 Blas.
*>
*> The program must be driven by a short data file. The first 18 records
*> of the file are read using list-directed input, the last 16 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 34 lines:
*> 'sblat2.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'SBLAT2.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 4 NUMBER OF VALUES OF K
*> 0 1 2 4 VALUES OF K
*> 4 NUMBER OF VALUES OF INCX AND INCY
*> 1 2 -1 -2 VALUES OF INCX AND INCY
*> 3 NUMBER OF VALUES OF ALPHA
*> 0.0 1.0 0.7 VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> 0.0 1.0 0.9 VALUES OF BETA
*> SGEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> SGBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> SSYMV T PUT F FOR NO TEST. SAME COLUMNS.
*> SSBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> SSPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> STRMV T PUT F FOR NO TEST. SAME COLUMNS.
*> STBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> STPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> STRSV T PUT F FOR NO TEST. SAME COLUMNS.
*> STBSV T PUT F FOR NO TEST. SAME COLUMNS.
*> STPSV T PUT F FOR NO TEST. SAME COLUMNS.
*> SGER T PUT F FOR NO TEST. SAME COLUMNS.
*> SSYR T PUT F FOR NO TEST. SAME COLUMNS.
*> SSPR T PUT F FOR NO TEST. SAME COLUMNS.
*> SSYR2 T PUT F FOR NO TEST. SAME COLUMNS.
*> SSPR2 T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J..
*> An extended set of Fortran Basic Linear Algebra Subprograms.
*>
*> Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics
*> and Computer Science Division, Argonne National Laboratory,
*> 9700 South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> Or
*>
*> NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms
*> Group Ltd., NAG Central Office, 256 Banbury Road, Oxford
*> OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st
*> Street, Suite 100, Downers Grove, Illinois 60515-1263, USA.
*>
*>
*> -- Written on 10-August-1987.
*> Richard Hanson, Sandia National Labs.
*> Jeremy Du Croz, NAG Central Office.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup single_blas_testing
*
* =====================================================================
PROGRAM SBLAT2
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 16 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
INTEGER NMAX, INCMAX
PARAMETER ( NMAX = 65, INCMAX = 2 )
INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX
PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7,
$ NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
REAL EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB,
$ NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANS
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ),
$ G( NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( 2*NMAX )
INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
REAL SDIFF
LOGICAL LSE
EXTERNAL SDIFF, LSE
* .. External Subroutines ..
EXTERNAL SCHK1, SCHK2, SCHK3, SCHK4, SCHK5, SCHK6,
$ SCHKE, SMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'SGEMV ', 'SGBMV ', 'SSYMV ', 'SSBMV ',
$ 'SSPMV ', 'STRMV ', 'STBMV ', 'STPMV ',
$ 'STRSV ', 'STBSV ', 'STPSV ', 'SGER ',
$ 'SSYR ', 'SSPR ', 'SSYR2 ', 'SSPR2 '/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 230
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 230
END IF
10 CONTINUE
* Values of K
READ( NIN, FMT = * )NKB
IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN
WRITE( NOUT, FMT = 9997 )'K', NKBMAX
GO TO 230
END IF
READ( NIN, FMT = * )( KB( I ), I = 1, NKB )
DO 20 I = 1, NKB
IF( KB( I ).LT.0 )THEN
WRITE( NOUT, FMT = 9995 )
GO TO 230
END IF
20 CONTINUE
* Values of INCX and INCY
READ( NIN, FMT = * )NINC
IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN
WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX
GO TO 230
END IF
READ( NIN, FMT = * )( INC( I ), I = 1, NINC )
DO 30 I = 1, NINC
IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN
WRITE( NOUT, FMT = 9994 )INCMAX
GO TO 230
END IF
30 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 230
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 230
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9993 )
WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB )
WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC )
WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9980 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 40 I = 1, NSUBS
LTEST( I ) = .FALSE.
40 CONTINUE
50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT
DO 60 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 70
60 CONTINUE
WRITE( NOUT, FMT = 9986 )SNAMET
STOP
70 LTEST( I ) = LTESTT
GO TO 50
*
80 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(ZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of SMVCH using exact data.
*
N = MIN( 32, NMAX )
DO 120 J = 1, N
DO 110 I = 1, N
A( I, J ) = MAX( I - J + 1, 0 )
110 CONTINUE
X( J ) = J
Y( J ) = ZERO
120 CONTINUE
DO 130 J = 1, N
YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
* YY holds the exact result. On exit from SMVCH YT holds
* the result computed by SMVCH.
TRANS = 'N'
CALL SMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LSE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
TRANS = 'T'
CALL SMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LSE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 210 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL SCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 140, 150, 150, 150, 160, 160,
$ 160, 160, 160, 160, 170, 180, 180,
$ 190, 190 )ISNUM
* Test SGEMV, 01, and SGBMV, 02.
140 CALL SCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test SSYMV, 03, SSBMV, 04, and SSPMV, 05.
150 CALL SCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test STRMV, 06, STBMV, 07, STPMV, 08,
* STRSV, 09, STBSV, 10, and STPSV, 11.
160 CALL SCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z )
GO TO 200
* Test SGER, 12.
170 CALL SCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test SSYR, 13, and SSPR, 14.
180 CALL SCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test SSYR2, 15, and SSPR2, 16.
190 CALL SCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
*
200 IF( FATAL.AND.SFATAL )
$ GO TO 220
END IF
210 CONTINUE
WRITE( NOUT, FMT = 9982 )
GO TO 240
*
220 CONTINUE
WRITE( NOUT, FMT = 9981 )
GO TO 240
*
230 CONTINUE
WRITE( NOUT, FMT = 9987 )
*
240 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' VALUE OF K IS LESS THAN 0' )
9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ',
$ I2 )
9993 FORMAT( ' TESTS OF THE REAL LEVEL 2 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9992 FORMAT( ' FOR N ', 9I6 )
9991 FORMAT( ' FOR K ', 7I6 )
9990 FORMAT( ' FOR INCX AND INCY ', 7I6 )
9989 FORMAT( ' FOR ALPHA ', 7F6.1 )
9988 FORMAT( ' FOR BETA ', 7F6.1 )
9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9985 FORMAT( ' ERROR IN SMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' SMVCH WAS CALLED WITH TRANS = ', A1,
$ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', /
$ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.'
$ , /' ******* TESTS ABANDONED *******' )
9984 FORMAT( A6, L2 )
9983 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9982 FORMAT( /' END OF TESTS' )
9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of SBLAT2.
*
END
SUBROUTINE SCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests SGEMV and SGBMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, HALF
PARAMETER ( ZERO = 0.0, HALF = 0.5 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA,
$ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK,
$ NL, NS
LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN
CHARACTER*1 TRANS, TRANSS
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SGBMV, SGEMV, SMAKE, SMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 11
ELSE IF( BANDED )THEN
NARGS = 13
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IKU = 1, NK
IF( BANDED )THEN
KU = KB( IKU )
KL = MAX( KU - 1, 0 )
ELSE
KU = N - 1
KL = M - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = KL + KU + 1
ELSE
LDA = M
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL SMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA,
$ LDA, KL, KU, RESET, TRANSL )
*
DO 90 IC = 1, 3
TRANS = ICH( IC: IC )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
*
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*NL
*
* Generate the vector X.
*
TRANSL = HALF
CALL SMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX,
$ ABS( INCX ), 0, NL - 1, RESET, TRANSL )
IF( NL.GT.1 )THEN
X( NL/2 ) = ZERO
XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*ML
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL SMAKE( 'GE', ' ', ' ', 1, ML, Y, 1,
$ YY, ABS( INCY ), 0, ML - 1,
$ RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANSS = TRANS
MS = M
NS = N
KLS = KL
KUS = KU
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ TRANS, M, N, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL SGEMV( TRANS, M, N, ALPHA, AA,
$ LDA, XX, INCX, BETA, YY,
$ INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANS, M, N, KL, KU, ALPHA, LDA,
$ INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL SGBMV( TRANS, M, N, KL, KU, ALPHA,
$ AA, LDA, XX, INCX, BETA,
$ YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 130
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANS.EQ.TRANSS
ISAME( 2 ) = MS.EQ.M
ISAME( 3 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LSE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LSE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LSE( YS, YY, LY )
ELSE
ISAME( 10 ) = LSERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 4 ) = KLS.EQ.KL
ISAME( 5 ) = KUS.EQ.KU
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LSE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LSE( XS, XX, LX )
ISAME( 10 ) = INCXS.EQ.INCX
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LSE( YS, YY, LY )
ELSE
ISAME( 12 ) = LSERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 13 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 130
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL SMVCH( TRANS, M, N, ALPHA, A,
$ NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 130
ELSE
* Avoid repeating tests with M.le.0 or
* N.le.0.
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 140
*
130 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU,
$ ALPHA, LDA, INCX, BETA, INCY
END IF
*
140 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), F4.1,
$ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1,
$ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2,
$ ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK1.
*
END
SUBROUTINE SCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests SSYMV, SSBMV and SSPMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, HALF
PARAMETER ( ZERO = 0.0, HALF = 0.5 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY,
$ N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMVCH, SSBMV, SSPMV, SSYMV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'Y'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 10
ELSE IF( BANDED )THEN
NARGS = 11
ELSE IF( PACKED )THEN
NARGS = 9
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL SMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA,
$ LDA, K, K, RESET, TRANSL )
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL SMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
UPLOS = UPLO
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, N, ALPHA, LDA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL SSYMV( UPLO, N, ALPHA, AA, LDA, XX,
$ INCX, BETA, YY, INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, N, K, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL SSBMV( UPLO, N, K, ALPHA, AA, LDA,
$ XX, INCX, BETA, YY, INCY )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, N, ALPHA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL SSPMV( UPLO, N, ALPHA, AA, XX, INCX,
$ BETA, YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LSE( AS, AA, LAA )
ISAME( 5 ) = LDAS.EQ.LDA
ISAME( 6 ) = LSE( XS, XX, LX )
ISAME( 7 ) = INCXS.EQ.INCX
ISAME( 8 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LSE( YS, YY, LY )
ELSE
ISAME( 9 ) = LSERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 10 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 3 ) = KS.EQ.K
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LSE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LSE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LSE( YS, YY, LY )
ELSE
ISAME( 10 ) = LSERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( PACKED )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LSE( AS, AA, LAA )
ISAME( 5 ) = LSE( XS, XX, LX )
ISAME( 6 ) = INCXS.EQ.INCX
ISAME( 7 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 8 ) = LSE( YS, YY, LY )
ELSE
ISAME( 8 ) = LSERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 9 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL SMVCH( 'N', N, N, ALPHA, A, NMAX, X,
$ INCX, BETA, Y, INCY, YT, G,
$ YY, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX,
$ BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ BETA, INCY
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', AP',
$ ', X,', I2, ',', F4.1, ', Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1,
$ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2,
$ ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', A,',
$ I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK2.
*
END
SUBROUTINE SCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z )
*
* Tests STRMV, STBMV, STPMV, STRSV, STBSV and STPSV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XT( NMAX ),
$ XX( NMAX*INCMAX ), Z( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
REAL ERR, ERRMAX, TRANSL
INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K,
$ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHD, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMVCH, STBMV, STBSV, STPMV, STPSV,
$ STRMV, STRSV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'R'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 8
ELSE IF( BANDED )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 7
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
* Set up zero vector for SMVCH.
DO 10 I = 1, NMAX
Z( I ) = ZERO
10 CONTINUE
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
*
DO 70 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL SMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A,
$ NMAX, AA, LDA, K, K, RESET, TRANSL )
*
DO 60 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET,
$ TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
DIAGS = DIAG
NS = N
KS = K
DO 20 I = 1, LAA
AS( I ) = AA( I )
20 CONTINUE
LDAS = LDA
DO 30 I = 1, LX
XS( I ) = XX( I )
30 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL STRMV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL STBMV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL STPMV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL STRSV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL STBSV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL STPSV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = TRANS.EQ.TRANSS
ISAME( 3 ) = DIAG.EQ.DIAGS
ISAME( 4 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 5 ) = LSE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 7 ) = LSE( XS, XX, LX )
ELSE
ISAME( 7 ) = LSERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 8 ) = INCXS.EQ.INCX
ELSE IF( BANDED )THEN
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = LSE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 8 ) = LSE( XS, XX, LX )
ELSE
ISAME( 8 ) = LSERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 9 ) = INCXS.EQ.INCX
ELSE IF( PACKED )THEN
ISAME( 5 ) = LSE( AS, AA, LAA )
IF( NULL )THEN
ISAME( 6 ) = LSE( XS, XX, LX )
ELSE
ISAME( 6 ) = LSERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 7 ) = INCXS.EQ.INCX
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
*
* Check the result.
*
CALL SMVCH( TRANS, N, N, ONE, A, NMAX, X,
$ INCX, ZERO, Z, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
*
* Compute approximation to original vector.
*
DO 50 I = 1, N
Z( I ) = XX( 1 + ( I - 1 )*
$ ABS( INCX ) )
XX( 1 + ( I - 1 )*ABS( INCX ) )
$ = X( I )
50 CONTINUE
CALL SMVCH( TRANS, N, N, ONE, A, NMAX, Z,
$ INCX, ZERO, X, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .FALSE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0.
GO TO 110
END IF
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA,
$ INCX
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K,
$ LDA, INCX
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ',
$ 'X,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ),
$ ' A,', I3, ', X,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,',
$ I3, ', X,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK3.
*
END
SUBROUTINE SCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests SGER.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
REAL ALPHA, ALS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS,
$ NC, ND, NS
LOGICAL NULL, RESET, SAME
* .. Local Arrays ..
REAL W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SGER, SMAKE, SMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* Define the number of arguments.
NARGS = 9
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
* Set LDA to 1 more than minimum value if room.
LDA = M
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
DO 100 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*M
*
* Generate the vector X.
*
TRANSL = HALF
CALL SMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ),
$ 0, M - 1, RESET, TRANSL )
IF( M.GT.1 )THEN
X( M/2 ) = ZERO
XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO
END IF
*
DO 90 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL SMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL SMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX,
$ AA, LDA, M - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL SGER( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 140
END IF
*
* See what data changed inside subroutine.
*
ISAME( 1 ) = MS.EQ.M
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LSE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LSE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LSE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LSERES( 'GE', ' ', M, N, AS, AA,
$ LDA )
END IF
ISAME( 9 ) = LDAS.EQ.LDA
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 140
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, M
Z( I ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, M
Z( I ) = X( M - I + 1 )
60 CONTINUE
END IF
DO 70 J = 1, N
IF( INCY.GT.0 )THEN
W( 1 ) = Y( J )
ELSE
W( 1 ) = Y( N - J + 1 )
END IF
CALL SMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1,
$ ONE, A( 1, J ), 1, YT, G,
$ AA( 1 + ( J - 1 )*LDA ), EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 130
70 CONTINUE
ELSE
* Avoid repeating tests with M.le.0 or N.le.0.
GO TO 110
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 150
*
130 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
140 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), F4.1, ', X,', I2,
$ ', Y,', I2, ', A,', I3, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK4.
*
END
SUBROUTINE SCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests SSYR and SSPR.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
REAL ALPHA, ALS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA,
$ LDA, LDAS, LJ, LX, N, NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
REAL W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMVCH, SSPR, SSYR
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'Y'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 7
ELSE IF( PACKED )THEN
NARGS = 6
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL SMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX,
$ AA, LDA, N - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, LDA
IF( REWI )
$ REWIND NTRA
CALL SSYR( UPLO, N, ALPHA, XX, INCX, AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX
IF( REWI )
$ REWIND NTRA
CALL SSPR( UPLO, N, ALPHA, XX, INCX, AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LSE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
IF( NULL )THEN
ISAME( 6 ) = LSE( AS, AA, LAA )
ELSE
ISAME( 6 ) = LSERES( SNAME( 2: 3 ), UPLO, N, N, AS,
$ AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 7 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 40 I = 1, N
Z( I ) = X( I )
40 CONTINUE
ELSE
DO 50 I = 1, N
Z( I ) = X( N - I + 1 )
50 CONTINUE
END IF
JA = 1
DO 60 J = 1, N
W( 1 ) = Z( J )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL SMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W,
$ 1, ONE, A( JJ, J ), 1, YT, G,
$ AA( JA ), EPS, ERR, FATAL, NOUT,
$ .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 110
60 CONTINUE
ELSE
* Avoid repeating tests if N.le.0.
IF( N.LE.0 )
$ GO TO 100
END IF
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK5.
*
END
SUBROUTINE SCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests SSYR2 and SSPR2.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX, 2 )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
REAL ALPHA, ALS, ERR, ERRMAX, TRANSL
INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N,
$ NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
REAL W( 2 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LSE, LSERES
EXTERNAL LSE, LSERES
* .. External Subroutines ..
EXTERNAL SMAKE, SMVCH, SSPR2, SSYR2
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'Y'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 8
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = ZERO
*
DO 140 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 140
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 130 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 120 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 110 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL SMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 100 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL SMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A,
$ NMAX, AA, LDA, N - 1, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL SSYR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY
IF( REWI )
$ REWIND NTRA
CALL SSPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 160
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LSE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LSE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LSE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LSERES( SNAME( 2: 3 ), UPLO, N, N,
$ AS, AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 9 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 160
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, N
Z( I, 1 ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, N
Z( I, 1 ) = X( N - I + 1 )
60 CONTINUE
END IF
IF( INCY.GT.0 )THEN
DO 70 I = 1, N
Z( I, 2 ) = Y( I )
70 CONTINUE
ELSE
DO 80 I = 1, N
Z( I, 2 ) = Y( N - I + 1 )
80 CONTINUE
END IF
JA = 1
DO 90 J = 1, N
W( 1 ) = Z( J, 2 )
W( 2 ) = Z( J, 1 )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL SMVCH( 'N', LJ, 2, ALPHA, Z( JJ, 1 ),
$ NMAX, W, 1, ONE, A( JJ, J ), 1,
$ YT, G, AA( JA ), EPS, ERR, FATAL,
$ NOUT, .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 150
90 CONTINUE
ELSE
* Avoid repeating tests with N.le.0.
IF( N.LE.0 )
$ GO TO 140
END IF
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 170
*
150 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
160 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ INCY, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY
END IF
*
170 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', Y,', I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', Y,', I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of SCHK6.
*
END
SUBROUTINE SCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 2 Blas.
* Requires a special version of the error-handling routine XERBLA.
* ALPHA, BETA, A, X and Y should not need to be defined.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Local Scalars ..
REAL ALPHA, BETA
* .. Local Arrays ..
REAL A( 1, 1 ), X( 1 ), Y( 1 )
* .. External Subroutines ..
EXTERNAL CHKXER, SGBMV, SGEMV, SGER, SSBMV, SSPMV, SSPR,
$ SSPR2, SSYMV, SSYR, SSYR2, STBMV, STBSV, STPMV,
$ STPSV, STRMV, STRSV
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90, 100, 110, 120, 130, 140, 150,
$ 160 )ISNUM
10 INFOT = 1
CALL SGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL SGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
20 INFOT = 1
CALL SGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL SGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
30 INFOT = 1
CALL SSYMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
40 INFOT = 1
CALL SSBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SSBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL SSBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
50 INFOT = 1
CALL SSPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SSPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
60 INFOT = 1
CALL STRMV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STRMV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STRMV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STRMV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRMV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL STRMV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
70 INFOT = 1
CALL STBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL STBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
80 INFOT = 1
CALL STPMV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STPMV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STPMV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STPMV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL STPMV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
90 INFOT = 1
CALL STRSV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STRSV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STRSV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STRSV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL STRSV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL STRSV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
100 INFOT = 1
CALL STBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL STBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL STBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL STBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
110 INFOT = 1
CALL STPSV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL STPSV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL STPSV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL STPSV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL STPSV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
120 INFOT = 1
CALL SGER( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGER( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SGER( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SGER( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SGER( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
130 INFOT = 1
CALL SSYR( '/', 0, ALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYR( 'U', -1, ALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYR( 'U', 0, ALPHA, X, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYR( 'U', 2, ALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
140 INFOT = 1
CALL SSPR( '/', 0, ALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPR( 'U', -1, ALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSPR( 'U', 0, ALPHA, X, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
150 INFOT = 1
CALL SSYR2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYR2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYR2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYR2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYR2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 170
160 INFOT = 1
CALL SSPR2( '/', 0, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPR2( 'U', -1, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSPR2( 'U', 0, ALPHA, X, 0, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSPR2( 'U', 0, ALPHA, X, 1, Y, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
170 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of SCHKE.
*
END
SUBROUTINE SMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL,
$ KU, RESET, TRANSL )
*
* Generates values for an M by N matrix A within the bandwidth
* defined by KL and KU.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'GB', 'SY', 'SB', 'SP', 'TR', 'TB' OR 'TP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
REAL ROGUE
PARAMETER ( ROGUE = -1.0E10 )
* .. Scalar Arguments ..
REAL TRANSL
INTEGER KL, KU, LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
REAL A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, KK
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
REAL SBEG
EXTERNAL SBEG
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
GEN = TYPE( 1: 1 ).EQ.'G'
SYM = TYPE( 1: 1 ).EQ.'S'
TRI = TYPE( 1: 1 ).EQ.'T'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
IF( ( I.LE.J.AND.J - I.LE.KU ).OR.
$ ( I.GE.J.AND.I - J.LE.KL ) )THEN
A( I, J ) = SBEG( RESET ) + TRANSL
ELSE
A( I, J ) = ZERO
END IF
IF( I.NE.J )THEN
IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'GB' )THEN
DO 90 J = 1, N
DO 60 I1 = 1, KU + 1 - J
AA( I1 + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J )
AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J )
70 CONTINUE
DO 80 I3 = I2, LDA
AA( I3 + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN
DO 130 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 100 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
100 CONTINUE
DO 110 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
110 CONTINUE
DO 120 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
120 CONTINUE
130 CONTINUE
ELSE IF( TYPE.EQ.'SB'.OR.TYPE.EQ.'TB' )THEN
DO 170 J = 1, N
IF( UPPER )THEN
KK = KL + 1
IBEG = MAX( 1, KL + 2 - J )
IF( UNIT )THEN
IEND = KL
ELSE
IEND = KL + 1
END IF
ELSE
KK = 1
IF( UNIT )THEN
IBEG = 2
ELSE
IBEG = 1
END IF
IEND = MIN( KL + 1, 1 + M - J )
END IF
DO 140 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
140 CONTINUE
DO 150 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J )
150 CONTINUE
DO 160 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
160 CONTINUE
170 CONTINUE
ELSE IF( TYPE.EQ.'SP'.OR.TYPE.EQ.'TP' )THEN
IOFF = 0
DO 190 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 180 I = IBEG, IEND
IOFF = IOFF + 1
AA( IOFF ) = A( I, J )
IF( I.EQ.J )THEN
IF( UNIT )
$ AA( IOFF ) = ROGUE
END IF
180 CONTINUE
190 CONTINUE
END IF
RETURN
*
* End of SMAKE.
*
END
SUBROUTINE SMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
* .. Scalar Arguments ..
REAL ALPHA, BETA, EPS, ERR
INTEGER INCX, INCY, M, N, NMAX, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANS
* .. Array Arguments ..
REAL A( NMAX, * ), G( * ), X( * ), Y( * ), YT( * ),
$ YY( * )
* .. Local Scalars ..
REAL ERRI
INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL
LOGICAL TRAN
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* .. Executable Statements ..
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
IF( INCX.LT.0 )THEN
KX = NL
INCXL = -1
ELSE
KX = 1
INCXL = 1
END IF
IF( INCY.LT.0 )THEN
KY = ML
INCYL = -1
ELSE
KY = 1
INCYL = 1
END IF
*
* Compute expected result in YT using data in A, X and Y.
* Compute gauges in G.
*
IY = KY
DO 30 I = 1, ML
YT( IY ) = ZERO
G( IY ) = ZERO
JX = KX
IF( TRAN )THEN
DO 10 J = 1, NL
YT( IY ) = YT( IY ) + A( J, I )*X( JX )
G( IY ) = G( IY ) + ABS( A( J, I )*X( JX ) )
JX = JX + INCXL
10 CONTINUE
ELSE
DO 20 J = 1, NL
YT( IY ) = YT( IY ) + A( I, J )*X( JX )
G( IY ) = G( IY ) + ABS( A( I, J )*X( JX ) )
JX = JX + INCXL
20 CONTINUE
END IF
YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY )
G( IY ) = ABS( ALPHA )*G( IY ) + ABS( BETA*Y( IY ) )
IY = IY + INCYL
30 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 40 I = 1, ML
ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS
IF( G( I ).NE.ZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.ONE )
$ GO TO 50
40 CONTINUE
* If the loop completes, all results are at least half accurate.
GO TO 70
*
* Report fatal error.
*
50 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 60 I = 1, ML
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, YT( I ),
$ YY( 1 + ( I - 1 )*ABS( INCY ) )
ELSE
WRITE( NOUT, FMT = 9998 )I,
$ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT(I)
END IF
60 CONTINUE
*
70 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RESULT COMPU',
$ 'TED RESULT' )
9998 FORMAT( 1X, I7, 2G18.6 )
*
* End of SMVCH.
*
END
LOGICAL FUNCTION LSE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
REAL RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LSE = .TRUE.
GO TO 30
20 CONTINUE
LSE = .FALSE.
30 RETURN
*
* End of LSE.
*
END
LOGICAL FUNCTION LSERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE', 'SY' or 'SP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
REAL AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'SY' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LSERES = .TRUE.
GO TO 80
70 CONTINUE
LSERES = .FALSE.
80 RETURN
*
* End of LSERES.
*
END
REAL FUNCTION SBEG( RESET )
*
* Generates random numbers uniformly distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, MI
* .. Save statement ..
SAVE I, IC, MI
* .. Intrinsic Functions ..
INTRINSIC REAL
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
I = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I is bounded between 1 and 999.
* If initial I = 1,2,3,6,7 or 9, the period will be 50.
* If initial I = 4 or 8, the period will be 25.
* If initial I = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I in 6.
*
IC = IC + 1
10 I = I*MI
I = I - 1000*( I/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
SBEG = REAL( I - 500 )/1001.0
RETURN
*
* End of SBEG.
*
END
REAL FUNCTION SDIFF( X, Y )
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
*
* .. Scalar Arguments ..
REAL X, Y
* .. Executable Statements ..
SDIFF = X - Y
RETURN
*
* End of SDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 2 BLAS
* routines.
*
* XERBLA is an error handler for the Level 2 BLAS routines.
*
* It is called by the Level 2 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/testing/dblat1.f
|
.f
| 44,819
| 1,066
|
*> \brief \b DBLAT1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM DBLAT1
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the DOUBLE PRECISION Level 1 BLAS.
*>
*> Based upon the original BLAS test routine together with:
*> F06EAF Example Program Text
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup double_blas_testing
*
* =====================================================================
PROGRAM DBLAT1
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SFAC
INTEGER IC
* .. External Subroutines ..
EXTERNAL CHECK0, CHECK1, CHECK2, CHECK3, HEADER
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA SFAC/9.765625D-4/
* .. Executable Statements ..
WRITE (NOUT,99999)
DO 20 IC = 1, 13
ICASE = IC
CALL HEADER
*
* .. Initialize PASS, INCX, and INCY for a new case. ..
* .. the value 9999 for INCX or INCY will appear in the ..
* .. detailed output, if any, for cases that do not involve ..
* .. these parameters ..
*
PASS = .TRUE.
INCX = 9999
INCY = 9999
IF (ICASE.EQ.3 .OR. ICASE.EQ.11) THEN
CALL CHECK0(SFAC)
ELSE IF (ICASE.EQ.7 .OR. ICASE.EQ.8 .OR. ICASE.EQ.9 .OR.
+ ICASE.EQ.10) THEN
CALL CHECK1(SFAC)
ELSE IF (ICASE.EQ.1 .OR. ICASE.EQ.2 .OR. ICASE.EQ.5 .OR.
+ ICASE.EQ.6 .OR. ICASE.EQ.12 .OR. ICASE.EQ.13) THEN
CALL CHECK2(SFAC)
ELSE IF (ICASE.EQ.4) THEN
CALL CHECK3(SFAC)
END IF
* -- Print
IF (PASS) WRITE (NOUT,99998)
20 CONTINUE
STOP
*
99999 FORMAT (' Real BLAS Test Program Results',/1X)
99998 FORMAT (' ----- PASS -----')
END
SUBROUTINE HEADER
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Arrays ..
CHARACTER*6 L(13)
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA L(1)/' DDOT '/
DATA L(2)/'DAXPY '/
DATA L(3)/'DROTG '/
DATA L(4)/' DROT '/
DATA L(5)/'DCOPY '/
DATA L(6)/'DSWAP '/
DATA L(7)/'DNRM2 '/
DATA L(8)/'DASUM '/
DATA L(9)/'DSCAL '/
DATA L(10)/'IDAMAX'/
DATA L(11)/'DROTMG'/
DATA L(12)/'DROTM '/
DATA L(13)/'DSDOT '/
* .. Executable Statements ..
WRITE (NOUT,99999) ICASE, L(ICASE)
RETURN
*
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
END
SUBROUTINE CHECK0(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SA, SB, SC, SS, D12
INTEGER I, K
* .. Local Arrays ..
DOUBLE PRECISION DA1(8), DATRUE(8), DB1(8), DBTRUE(8), DC1(8),
$ DS1(8), DAB(4,9), DTEMP(9), DTRUE(9,9)
* .. External Subroutines ..
EXTERNAL DROTG, DROTMG, STEST1
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA DA1/0.3D0, 0.4D0, -0.3D0, -0.4D0, -0.3D0, 0.0D0,
+ 0.0D0, 1.0D0/
DATA DB1/0.4D0, 0.3D0, 0.4D0, 0.3D0, -0.4D0, 0.0D0,
+ 1.0D0, 0.0D0/
DATA DC1/0.6D0, 0.8D0, -0.6D0, 0.8D0, 0.6D0, 1.0D0,
+ 0.0D0, 1.0D0/
DATA DS1/0.8D0, 0.6D0, 0.8D0, -0.6D0, 0.8D0, 0.0D0,
+ 1.0D0, 0.0D0/
DATA DATRUE/0.5D0, 0.5D0, 0.5D0, -0.5D0, -0.5D0,
+ 0.0D0, 1.0D0, 1.0D0/
DATA DBTRUE/0.0D0, 0.6D0, 0.0D0, -0.6D0, 0.0D0,
+ 0.0D0, 1.0D0, 0.0D0/
* INPUT FOR MODIFIED GIVENS
DATA DAB/ .1D0,.3D0,1.2D0,.2D0,
A .7D0, .2D0, .6D0, 4.2D0,
B 0.D0,0.D0,0.D0,0.D0,
C 4.D0, -1.D0, 2.D0, 4.D0,
D 6.D-10, 2.D-2, 1.D5, 10.D0,
E 4.D10, 2.D-2, 1.D-5, 10.D0,
F 2.D-10, 4.D-2, 1.D5, 10.D0,
G 2.D10, 4.D-2, 1.D-5, 10.D0,
H 4.D0, -2.D0, 8.D0, 4.D0 /
* TRUE RESULTS FOR MODIFIED GIVENS
DATA DTRUE/0.D0,0.D0, 1.3D0, .2D0, 0.D0,0.D0,0.D0, .5D0, 0.D0,
A 0.D0,0.D0, 4.5D0, 4.2D0, 1.D0, .5D0, 0.D0,0.D0,0.D0,
B 0.D0,0.D0,0.D0,0.D0, -2.D0, 0.D0,0.D0,0.D0,0.D0,
C 0.D0,0.D0,0.D0, 4.D0, -1.D0, 0.D0,0.D0,0.D0,0.D0,
D 0.D0, 15.D-3, 0.D0, 10.D0, -1.D0, 0.D0, -1.D-4,
E 0.D0, 1.D0,
F 0.D0,0.D0, 6144.D-5, 10.D0, -1.D0, 4096.D0, -1.D6,
G 0.D0, 1.D0,
H 0.D0,0.D0,15.D0,10.D0,-1.D0, 5.D-5, 0.D0,1.D0,0.D0,
I 0.D0,0.D0, 15.D0, 10.D0, -1. D0, 5.D5, -4096.D0,
J 1.D0, 4096.D-6,
K 0.D0,0.D0, 7.D0, 4.D0, 0.D0,0.D0, -.5D0, -.25D0, 0.D0/
* 4096 = 2 ** 12
DATA D12 /4096.D0/
DTRUE(1,1) = 12.D0 / 130.D0
DTRUE(2,1) = 36.D0 / 130.D0
DTRUE(7,1) = -1.D0 / 6.D0
DTRUE(1,2) = 14.D0 / 75.D0
DTRUE(2,2) = 49.D0 / 75.D0
DTRUE(9,2) = 1.D0 / 7.D0
DTRUE(1,5) = 45.D-11 * (D12 * D12)
DTRUE(3,5) = 4.D5 / (3.D0 * D12)
DTRUE(6,5) = 1.D0 / D12
DTRUE(8,5) = 1.D4 / (3.D0 * D12)
DTRUE(1,6) = 4.D10 / (1.5D0 * D12 * D12)
DTRUE(2,6) = 2.D-2 / 1.5D0
DTRUE(8,6) = 5.D-7 * D12
DTRUE(1,7) = 4.D0 / 150.D0
DTRUE(2,7) = (2.D-10 / 1.5D0) * (D12 * D12)
DTRUE(7,7) = -DTRUE(6,5)
DTRUE(9,7) = 1.D4 / D12
DTRUE(1,8) = DTRUE(1,7)
DTRUE(2,8) = 2.D10 / (1.5D0 * D12 * D12)
DTRUE(1,9) = 32.D0 / 7.D0
DTRUE(2,9) = -16.D0 / 7.D0
* .. Executable Statements ..
*
* Compute true values which cannot be prestored
* in decimal notation
*
DBTRUE(1) = 1.0D0/0.6D0
DBTRUE(3) = -1.0D0/0.6D0
DBTRUE(5) = 1.0D0/0.6D0
*
DO 20 K = 1, 8
* .. Set N=K for identification in output if any ..
N = K
IF (ICASE.EQ.3) THEN
* .. DROTG ..
IF (K.GT.8) GO TO 40
SA = DA1(K)
SB = DB1(K)
CALL DROTG(SA,SB,SC,SS)
CALL STEST1(SA,DATRUE(K),DATRUE(K),SFAC)
CALL STEST1(SB,DBTRUE(K),DBTRUE(K),SFAC)
CALL STEST1(SC,DC1(K),DC1(K),SFAC)
CALL STEST1(SS,DS1(K),DS1(K),SFAC)
ELSEIF (ICASE.EQ.11) THEN
* .. DROTMG ..
DO I=1,4
DTEMP(I)= DAB(I,K)
DTEMP(I+4) = 0.0
END DO
DTEMP(9) = 0.0
CALL DROTMG(DTEMP(1),DTEMP(2),DTEMP(3),DTEMP(4),DTEMP(5))
CALL STEST(9,DTEMP,DTRUE(1,K),DTRUE(1,K),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK0'
STOP
END IF
20 CONTINUE
40 RETURN
END
SUBROUTINE CHECK1(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER I, LEN, NP1
* .. Local Arrays ..
DOUBLE PRECISION DTRUE1(5), DTRUE3(5), DTRUE5(8,5,2), DV(8,5,2),
+ SA(10), STEMP(1), STRUE(8), SX(8)
INTEGER ITRUE2(5)
* .. External Functions ..
DOUBLE PRECISION DASUM, DNRM2
INTEGER IDAMAX
EXTERNAL DASUM, DNRM2, IDAMAX
* .. External Subroutines ..
EXTERNAL ITEST1, DSCAL, STEST, STEST1
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA SA/0.3D0, -1.0D0, 0.0D0, 1.0D0, 0.3D0, 0.3D0,
+ 0.3D0, 0.3D0, 0.3D0, 0.3D0/
DATA DV/0.1D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0,
+ 2.0D0, 2.0D0, 0.3D0, 3.0D0, 3.0D0, 3.0D0, 3.0D0,
+ 3.0D0, 3.0D0, 3.0D0, 0.3D0, -0.4D0, 4.0D0,
+ 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, 0.2D0,
+ -0.6D0, 0.3D0, 5.0D0, 5.0D0, 5.0D0, 5.0D0,
+ 5.0D0, 0.1D0, -0.3D0, 0.5D0, -0.1D0, 6.0D0,
+ 6.0D0, 6.0D0, 6.0D0, 0.1D0, 8.0D0, 8.0D0, 8.0D0,
+ 8.0D0, 8.0D0, 8.0D0, 8.0D0, 0.3D0, 9.0D0, 9.0D0,
+ 9.0D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, 0.3D0, 2.0D0,
+ -0.4D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0,
+ 0.2D0, 3.0D0, -0.6D0, 5.0D0, 0.3D0, 2.0D0,
+ 2.0D0, 2.0D0, 0.1D0, 4.0D0, -0.3D0, 6.0D0,
+ -0.5D0, 7.0D0, -0.1D0, 3.0D0/
DATA DTRUE1/0.0D0, 0.3D0, 0.5D0, 0.7D0, 0.6D0/
DATA DTRUE3/0.0D0, 0.3D0, 0.7D0, 1.1D0, 1.0D0/
DATA DTRUE5/0.10D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0,
+ 2.0D0, 2.0D0, 2.0D0, -0.3D0, 3.0D0, 3.0D0,
+ 3.0D0, 3.0D0, 3.0D0, 3.0D0, 3.0D0, 0.0D0, 0.0D0,
+ 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0,
+ 0.20D0, -0.60D0, 0.30D0, 5.0D0, 5.0D0, 5.0D0,
+ 5.0D0, 5.0D0, 0.03D0, -0.09D0, 0.15D0, -0.03D0,
+ 6.0D0, 6.0D0, 6.0D0, 6.0D0, 0.10D0, 8.0D0,
+ 8.0D0, 8.0D0, 8.0D0, 8.0D0, 8.0D0, 8.0D0,
+ 0.09D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0,
+ 9.0D0, 9.0D0, 0.09D0, 2.0D0, -0.12D0, 2.0D0,
+ 2.0D0, 2.0D0, 2.0D0, 2.0D0, 0.06D0, 3.0D0,
+ -0.18D0, 5.0D0, 0.09D0, 2.0D0, 2.0D0, 2.0D0,
+ 0.03D0, 4.0D0, -0.09D0, 6.0D0, -0.15D0, 7.0D0,
+ -0.03D0, 3.0D0/
DATA ITRUE2/0, 1, 2, 2, 3/
* .. Executable Statements ..
DO 80 INCX = 1, 2
DO 60 NP1 = 1, 5
N = NP1 - 1
LEN = 2*MAX(N,1)
* .. Set vector arguments ..
DO 20 I = 1, LEN
SX(I) = DV(I,NP1,INCX)
20 CONTINUE
*
IF (ICASE.EQ.7) THEN
* .. DNRM2 ..
STEMP(1) = DTRUE1(NP1)
CALL STEST1(DNRM2(N,SX,INCX),STEMP(1),STEMP,SFAC)
ELSE IF (ICASE.EQ.8) THEN
* .. DASUM ..
STEMP(1) = DTRUE3(NP1)
CALL STEST1(DASUM(N,SX,INCX),STEMP(1),STEMP,SFAC)
ELSE IF (ICASE.EQ.9) THEN
* .. DSCAL ..
CALL DSCAL(N,SA((INCX-1)*5+NP1),SX,INCX)
DO 40 I = 1, LEN
STRUE(I) = DTRUE5(I,NP1,INCX)
40 CONTINUE
CALL STEST(LEN,SX,STRUE,STRUE,SFAC)
ELSE IF (ICASE.EQ.10) THEN
* .. IDAMAX ..
CALL ITEST1(IDAMAX(N,SX,INCX),ITRUE2(NP1))
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
STOP
END IF
60 CONTINUE
80 CONTINUE
RETURN
END
SUBROUTINE CHECK2(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SA
INTEGER I, J, KI, KN, KNI, KPAR, KSIZE, LENX, LENY,
$ MX, MY
* .. Local Arrays ..
DOUBLE PRECISION DT10X(7,4,4), DT10Y(7,4,4), DT7(4,4),
$ DT8(7,4,4), DX1(7),
$ DY1(7), SSIZE1(4), SSIZE2(14,2), SSIZE(7),
$ STX(7), STY(7), SX(7), SY(7),
$ DPAR(5,4), DT19X(7,4,16),DT19XA(7,4,4),
$ DT19XB(7,4,4), DT19XC(7,4,4),DT19XD(7,4,4),
$ DT19Y(7,4,16), DT19YA(7,4,4),DT19YB(7,4,4),
$ DT19YC(7,4,4), DT19YD(7,4,4), DTEMP(5)
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
* .. External Functions ..
DOUBLE PRECISION DDOT, DSDOT
EXTERNAL DDOT, DSDOT
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DROTM, DSWAP, STEST, STEST1
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
EQUIVALENCE (DT19X(1,1,1),DT19XA(1,1,1)),(DT19X(1,1,5),
A DT19XB(1,1,1)),(DT19X(1,1,9),DT19XC(1,1,1)),
B (DT19X(1,1,13),DT19XD(1,1,1))
EQUIVALENCE (DT19Y(1,1,1),DT19YA(1,1,1)),(DT19Y(1,1,5),
A DT19YB(1,1,1)),(DT19Y(1,1,9),DT19YC(1,1,1)),
B (DT19Y(1,1,13),DT19YD(1,1,1))
DATA SA/0.3D0/
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA DX1/0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.9D0, -0.3D0,
+ -0.4D0/
DATA DY1/0.5D0, -0.9D0, 0.3D0, 0.7D0, -0.6D0, 0.2D0,
+ 0.8D0/
DATA DT7/0.0D0, 0.30D0, 0.21D0, 0.62D0, 0.0D0,
+ 0.30D0, -0.07D0, 0.85D0, 0.0D0, 0.30D0, -0.79D0,
+ -0.74D0, 0.0D0, 0.30D0, 0.33D0, 1.27D0/
DATA DT8/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.68D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.68D0, -0.87D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.68D0, -0.87D0, 0.15D0,
+ 0.94D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.68D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.35D0, -0.9D0, 0.48D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.38D0, -0.9D0, 0.57D0, 0.7D0, -0.75D0,
+ 0.2D0, 0.98D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.68D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.35D0, -0.72D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.38D0,
+ -0.63D0, 0.15D0, 0.88D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.68D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.68D0, -0.9D0, 0.33D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.68D0, -0.9D0, 0.33D0, 0.7D0,
+ -0.75D0, 0.2D0, 1.04D0/
DATA DT10X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.5D0, -0.9D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.5D0, -0.9D0, 0.3D0, 0.7D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.3D0, 0.1D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.8D0, 0.1D0, -0.6D0,
+ 0.8D0, 0.3D0, -0.3D0, 0.5D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.9D0,
+ 0.1D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0,
+ 0.1D0, 0.3D0, 0.8D0, -0.9D0, -0.3D0, 0.5D0,
+ 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.3D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.3D0, -0.6D0, 0.8D0, 0.0D0, 0.0D0,
+ 0.0D0/
DATA DT10Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, -0.5D0, -0.9D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, -0.4D0, -0.9D0, 0.9D0,
+ 0.7D0, -0.5D0, 0.2D0, 0.6D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.5D0,
+ 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ -0.4D0, 0.9D0, -0.5D0, 0.6D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, -0.9D0, 0.1D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.6D0, -0.9D0, 0.1D0, 0.7D0,
+ -0.5D0, 0.2D0, 0.8D0/
DATA SSIZE1/0.0D0, 0.3D0, 1.6D0, 3.2D0/
DATA SSIZE2/0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0/
*
* FOR DROTM
*
DATA DPAR/-2.D0, 0.D0,0.D0,0.D0,0.D0,
A -1.D0, 2.D0, -3.D0, -4.D0, 5.D0,
B 0.D0, 0.D0, 2.D0, -3.D0, 0.D0,
C 1.D0, 5.D0, 2.D0, 0.D0, -4.D0/
* TRUE X RESULTS F0R ROTATIONS DROTM
DATA DT19XA/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I -.8D0, 3.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J -.9D0, 2.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K 3.5D0, -.4D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, 0.D0,0.D0,0.D0,
M -.8D0, 3.8D0, -2.2D0, -1.2D0, 0.D0,0.D0,0.D0,
N -.9D0, 2.8D0, -1.4D0, -1.3D0, 0.D0,0.D0,0.D0,
O 3.5D0, -.4D0, -2.2D0, 4.7D0, 0.D0,0.D0,0.D0/
*
DATA DT19XB/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, -.5D0, 0.D0,0.D0,0.D0,0.D0,
I 0.D0, .1D0, -3.0D0, 0.D0,0.D0,0.D0,0.D0,
J -.3D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
K 3.3D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, .9D0, -.3D0, -.4D0,
M -2.0D0, .1D0, 1.4D0, .8D0, .6D0, -.3D0, -2.8D0,
N -1.8D0, .1D0, 1.3D0, .8D0, 0.D0, -.3D0, -1.9D0,
O 3.8D0, .1D0, -3.1D0, .8D0, 4.8D0, -.3D0, -1.5D0 /
*
DATA DT19XC/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, -.5D0, 0.D0,0.D0,0.D0,0.D0,
I 4.8D0, .1D0, -3.0D0, 0.D0,0.D0,0.D0,0.D0,
J 3.3D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
K 2.1D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, .9D0, -.3D0, -.4D0,
M -1.6D0, .1D0, -2.2D0, .8D0, 5.4D0, -.3D0, -2.8D0,
N -1.5D0, .1D0, -1.4D0, .8D0, 3.6D0, -.3D0, -1.9D0,
O 3.7D0, .1D0, -2.2D0, .8D0, 3.6D0, -.3D0, -1.5D0 /
*
DATA DT19XD/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I -.8D0, -1.0D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J -.9D0, -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K 3.5D0, .8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, 0.D0,0.D0,0.D0,
M -.8D0, -1.0D0, 1.4D0, -1.6D0, 0.D0,0.D0,0.D0,
N -.9D0, -.8D0, 1.3D0, -1.6D0, 0.D0,0.D0,0.D0,
O 3.5D0, .8D0, -3.1D0, 4.8D0, 0.D0,0.D0,0.D0/
* TRUE Y RESULTS FOR ROTATIONS DROTM
DATA DT19YA/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I .7D0, -4.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J 1.7D0, -.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K -2.6D0, 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, 0.D0,0.D0,0.D0,
M .7D0, -4.8D0, 3.0D0, 1.1D0, 0.D0,0.D0,0.D0,
N 1.7D0, -.7D0, -.7D0, 2.3D0, 0.D0,0.D0,0.D0,
O -2.6D0, 3.5D0, -.7D0, -3.6D0, 0.D0,0.D0,0.D0/
*
DATA DT19YB/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, .3D0, 0.D0,0.D0,0.D0,0.D0,
I 4.0D0, -.9D0, -.3D0, 0.D0,0.D0,0.D0,0.D0,
J -.5D0, -.9D0, 1.5D0, 0.D0,0.D0,0.D0,0.D0,
K -1.5D0, -.9D0, -1.8D0, 0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, -.6D0, .2D0, .8D0,
M 3.7D0, -.9D0, -1.2D0, .7D0, -1.5D0, .2D0, 2.2D0,
N -.3D0, -.9D0, 2.1D0, .7D0, -1.6D0, .2D0, 2.0D0,
O -1.6D0, -.9D0, -2.1D0, .7D0, 2.9D0, .2D0, -3.8D0 /
*
DATA DT19YC/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I 4.0D0, -6.3D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J -.5D0, .3D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K -1.5D0, 3.0D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, 0.D0,0.D0,0.D0,
M 3.7D0, -7.2D0, 3.0D0, 1.7D0, 0.D0,0.D0,0.D0,
N -.3D0, .9D0, -.7D0, 1.9D0, 0.D0,0.D0,0.D0,
O -1.6D0, 2.7D0, -.7D0, -3.4D0, 0.D0,0.D0,0.D0/
*
DATA DT19YD/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, .3D0, 0.D0,0.D0,0.D0,0.D0,
I .7D0, -.9D0, 1.2D0, 0.D0,0.D0,0.D0,0.D0,
J 1.7D0, -.9D0, .5D0, 0.D0,0.D0,0.D0,0.D0,
K -2.6D0, -.9D0, -1.3D0, 0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, -.6D0, .2D0, .8D0,
M .7D0, -.9D0, 1.2D0, .7D0, -1.5D0, .2D0, 1.6D0,
N 1.7D0, -.9D0, .5D0, .7D0, -1.6D0, .2D0, 2.4D0,
O -2.6D0, -.9D0, -1.3D0, .7D0, 2.9D0, .2D0, -4.0D0 /
*
* .. Executable Statements ..
*
DO 120 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 100 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
* .. Initialize all argument arrays ..
DO 20 I = 1, 7
SX(I) = DX1(I)
SY(I) = DY1(I)
20 CONTINUE
*
IF (ICASE.EQ.1) THEN
* .. DDOT ..
CALL STEST1(DDOT(N,SX,INCX,SY,INCY),DT7(KN,KI),SSIZE1(KN)
+ ,SFAC)
ELSE IF (ICASE.EQ.2) THEN
* .. DAXPY ..
CALL DAXPY(N,SA,SX,INCX,SY,INCY)
DO 40 J = 1, LENY
STY(J) = DT8(J,KN,KI)
40 CONTINUE
CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC)
ELSE IF (ICASE.EQ.5) THEN
* .. DCOPY ..
DO 60 I = 1, 7
STY(I) = DT10Y(I,KN,KI)
60 CONTINUE
CALL DCOPY(N,SX,INCX,SY,INCY)
CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0D0)
ELSE IF (ICASE.EQ.6) THEN
* .. DSWAP ..
CALL DSWAP(N,SX,INCX,SY,INCY)
DO 80 I = 1, 7
STX(I) = DT10X(I,KN,KI)
STY(I) = DT10Y(I,KN,KI)
80 CONTINUE
CALL STEST(LENX,SX,STX,SSIZE2(1,1),1.0D0)
CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0D0)
ELSE IF (ICASE.EQ.12) THEN
* .. DROTM ..
KNI=KN+4*(KI-1)
DO KPAR=1,4
DO I=1,7
SX(I) = DX1(I)
SY(I) = DY1(I)
STX(I)= DT19X(I,KPAR,KNI)
STY(I)= DT19Y(I,KPAR,KNI)
END DO
*
DO I=1,5
DTEMP(I) = DPAR(I,KPAR)
END DO
*
DO I=1,LENX
SSIZE(I)=STX(I)
END DO
* SEE REMARK ABOVE ABOUT DT11X(1,2,7)
* AND DT11X(5,3,8).
IF ((KPAR .EQ. 2) .AND. (KNI .EQ. 7))
$ SSIZE(1) = 2.4D0
IF ((KPAR .EQ. 3) .AND. (KNI .EQ. 8))
$ SSIZE(5) = 1.8D0
*
CALL DROTM(N,SX,INCX,SY,INCY,DTEMP)
CALL STEST(LENX,SX,STX,SSIZE,SFAC)
CALL STEST(LENY,SY,STY,STY,SFAC)
END DO
ELSE IF (ICASE.EQ.13) THEN
* .. DSDOT ..
CALL TESTDSDOT(REAL(DSDOT(N,REAL(SX),INCX,REAL(SY),INCY)),
$ REAL(DT7(KN,KI)),REAL(SSIZE1(KN)), .3125E-1)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
STOP
END IF
100 CONTINUE
120 CONTINUE
RETURN
END
SUBROUTINE CHECK3(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SC, SS
INTEGER I, K, KI, KN, KSIZE, LENX, LENY, MX, MY
* .. Local Arrays ..
DOUBLE PRECISION COPYX(5), COPYY(5), DT9X(7,4,4), DT9Y(7,4,4),
+ DX1(7), DY1(7), MWPC(11), MWPS(11), MWPSTX(5),
+ MWPSTY(5), MWPTX(11,5), MWPTY(11,5), MWPX(5),
+ MWPY(5), SSIZE2(14,2), STX(7), STY(7), SX(7),
+ SY(7)
INTEGER INCXS(4), INCYS(4), LENS(4,2), MWPINX(11),
+ MWPINY(11), MWPN(11), NS(4)
* .. External Subroutines ..
EXTERNAL DROT, STEST
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA DX1/0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.9D0, -0.3D0,
+ -0.4D0/
DATA DY1/0.5D0, -0.9D0, 0.3D0, 0.7D0, -0.6D0, 0.2D0,
+ 0.8D0/
DATA SC, SS/0.8D0, 0.6D0/
DATA DT9X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.78D0, -0.46D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.78D0, -0.46D0, -0.22D0,
+ 1.06D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.78D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.66D0, 0.1D0, -0.1D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.96D0, 0.1D0, -0.76D0, 0.8D0, 0.90D0,
+ -0.3D0, -0.02D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.78D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.06D0, 0.1D0,
+ -0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.90D0,
+ 0.1D0, -0.22D0, 0.8D0, 0.18D0, -0.3D0, -0.02D0,
+ 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.78D0, 0.26D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.78D0, 0.26D0, -0.76D0, 1.12D0,
+ 0.0D0, 0.0D0, 0.0D0/
DATA DT9Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.54D0,
+ 0.08D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.04D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0,
+ -0.9D0, -0.12D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.64D0, -0.9D0, -0.30D0, 0.7D0, -0.18D0, 0.2D0,
+ 0.28D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.7D0, -1.08D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.64D0, -1.26D0,
+ 0.54D0, 0.20D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.7D0,
+ -0.18D0, 0.2D0, 0.16D0/
DATA SSIZE2/0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0/
* .. Executable Statements ..
*
DO 60 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 40 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
*
IF (ICASE.EQ.4) THEN
* .. DROT ..
DO 20 I = 1, 7
SX(I) = DX1(I)
SY(I) = DY1(I)
STX(I) = DT9X(I,KN,KI)
STY(I) = DT9Y(I,KN,KI)
20 CONTINUE
CALL DROT(N,SX,INCX,SY,INCY,SC,SS)
CALL STEST(LENX,SX,STX,SSIZE2(1,KSIZE),SFAC)
CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK3'
STOP
END IF
40 CONTINUE
60 CONTINUE
*
MWPC(1) = 1
DO 80 I = 2, 11
MWPC(I) = 0
80 CONTINUE
MWPS(1) = 0
DO 100 I = 2, 6
MWPS(I) = 1
100 CONTINUE
DO 120 I = 7, 11
MWPS(I) = -1
120 CONTINUE
MWPINX(1) = 1
MWPINX(2) = 1
MWPINX(3) = 1
MWPINX(4) = -1
MWPINX(5) = 1
MWPINX(6) = -1
MWPINX(7) = 1
MWPINX(8) = 1
MWPINX(9) = -1
MWPINX(10) = 1
MWPINX(11) = -1
MWPINY(1) = 1
MWPINY(2) = 1
MWPINY(3) = -1
MWPINY(4) = -1
MWPINY(5) = 2
MWPINY(6) = 1
MWPINY(7) = 1
MWPINY(8) = -1
MWPINY(9) = -1
MWPINY(10) = 2
MWPINY(11) = 1
DO 140 I = 1, 11
MWPN(I) = 5
140 CONTINUE
MWPN(5) = 3
MWPN(10) = 3
DO 160 I = 1, 5
MWPX(I) = I
MWPY(I) = I
MWPTX(1,I) = I
MWPTY(1,I) = I
MWPTX(2,I) = I
MWPTY(2,I) = -I
MWPTX(3,I) = 6 - I
MWPTY(3,I) = I - 6
MWPTX(4,I) = I
MWPTY(4,I) = -I
MWPTX(6,I) = 6 - I
MWPTY(6,I) = I - 6
MWPTX(7,I) = -I
MWPTY(7,I) = I
MWPTX(8,I) = I - 6
MWPTY(8,I) = 6 - I
MWPTX(9,I) = -I
MWPTY(9,I) = I
MWPTX(11,I) = I - 6
MWPTY(11,I) = 6 - I
160 CONTINUE
MWPTX(5,1) = 1
MWPTX(5,2) = 3
MWPTX(5,3) = 5
MWPTX(5,4) = 4
MWPTX(5,5) = 5
MWPTY(5,1) = -1
MWPTY(5,2) = 2
MWPTY(5,3) = -2
MWPTY(5,4) = 4
MWPTY(5,5) = -3
MWPTX(10,1) = -1
MWPTX(10,2) = -3
MWPTX(10,3) = -5
MWPTX(10,4) = 4
MWPTX(10,5) = 5
MWPTY(10,1) = 1
MWPTY(10,2) = 2
MWPTY(10,3) = 2
MWPTY(10,4) = 4
MWPTY(10,5) = 3
DO 200 I = 1, 11
INCX = MWPINX(I)
INCY = MWPINY(I)
DO 180 K = 1, 5
COPYX(K) = MWPX(K)
COPYY(K) = MWPY(K)
MWPSTX(K) = MWPTX(I,K)
MWPSTY(K) = MWPTY(I,K)
180 CONTINUE
CALL DROT(MWPN(I),COPYX,INCX,COPYY,INCY,MWPC(I),MWPS(I))
CALL STEST(5,COPYX,MWPSTX,MWPSTX,SFAC)
CALL STEST(5,COPYY,MWPSTY,MWPSTY,SFAC)
200 CONTINUE
RETURN
END
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
DOUBLE PRECISION ZERO
PARAMETER (NOUT=6, ZERO=0.0D0)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
INTEGER LEN
* .. Array Arguments ..
DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SD
INTEGER I
* .. External Functions ..
DOUBLE PRECISION SDIFF
EXTERNAL SDIFF
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
DO 40 I = 1, LEN
SD = SCOMP(I) - STRUE(I)
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, I, SCOMP(I),
+ STRUE(I), SD, SSIZE(I)
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY I ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,2I5,I3,2D36.8,2D12.4)
END
SUBROUTINE TESTDSDOT(SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
REAL ZERO
PARAMETER (NOUT=6, ZERO=0.0E0)
* .. Scalar Arguments ..
REAL SFAC, SCOMP, SSIZE, STRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL SD
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
SD = SCOMP - STRUE
IF (ABS(SFAC*SD) .LE. ABS(SSIZE) * EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, SCOMP,
+ STRUE, SD, SSIZE
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,1I5,I3,2E36.8,2E12.4)
END
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
* ************************* STEST1 *****************************
*
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
DOUBLE PRECISION SCOMP1, SFAC, STRUE1
* .. Array Arguments ..
DOUBLE PRECISION SSIZE(*)
* .. Local Arrays ..
DOUBLE PRECISION SCOMP(1), STRUE(1)
* .. External Subroutines ..
EXTERNAL STEST
* .. Executable Statements ..
*
SCOMP(1) = SCOMP1
STRUE(1) = STRUE1
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
*
RETURN
END
DOUBLE PRECISION FUNCTION SDIFF(SA,SB)
* ********************************* SDIFF **************************
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
*
* .. Scalar Arguments ..
DOUBLE PRECISION SA, SB
* .. Executable Statements ..
SDIFF = SA - SB
RETURN
END
SUBROUTINE ITEST1(ICOMP,ITRUE)
* ********************************* ITEST1 *************************
*
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
* EQUALITY.
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
INTEGER ICOMP, ITRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER ID
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
IF (ICOMP.EQ.ITRUE) GO TO 40
*
* HERE ICOMP IS NOT EQUAL TO ITRUE.
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 ID = ICOMP - ITRUE
WRITE (NOUT,99997) ICASE, N, INCX, INCY, ICOMP, ITRUE, ID
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY ',
+ ' COMP TRUE DIFFERENCE',
+ /1X)
99997 FORMAT (1X,I4,I3,2I5,2I36,I12)
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/fortran/complexdots.f
|
.f
| 979
| 44
|
COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
INTEGER INCX,INCY,N
COMPLEX CX(*),CY(*)
COMPLEX RES
EXTERNAL CDOTCW
CALL CDOTCW(N,CX,INCX,CY,INCY,RES)
CDOTC = RES
RETURN
END
COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
INTEGER INCX,INCY,N
COMPLEX CX(*),CY(*)
COMPLEX RES
EXTERNAL CDOTUW
CALL CDOTUW(N,CX,INCX,CY,INCY,RES)
CDOTU = RES
RETURN
END
DOUBLE COMPLEX FUNCTION ZDOTC(N,CX,INCX,CY,INCY)
INTEGER INCX,INCY,N
DOUBLE COMPLEX CX(*),CY(*)
DOUBLE COMPLEX RES
EXTERNAL ZDOTCW
CALL ZDOTCW(N,CX,INCX,CY,INCY,RES)
ZDOTC = RES
RETURN
END
DOUBLE COMPLEX FUNCTION ZDOTU(N,CX,INCX,CY,INCY)
INTEGER INCX,INCY,N
DOUBLE COMPLEX CX(*),CY(*)
DOUBLE COMPLEX RES
EXTERNAL ZDOTUW
CALL ZDOTUW(N,CX,INCX,CY,INCY,RES)
ZDOTU = RES
RETURN
END
|
Fortran
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/r_cnjg.c
|
.c
| 105
| 7
|
#include "datatypes.h"
void r_cnjg(complex *r, complex *z) {
r->r = z->r;
r->i = -(z->i);
}
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/drotm.c
|
.c
| 4,968
| 216
|
/* drotm.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int drotm_(integer *n, doublereal *dx, integer *incx,
doublereal *dy, integer *incy, doublereal *dparam)
{
/* Initialized data */
static doublereal zero = 0.;
static doublereal two = 2.;
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__;
doublereal w, z__;
integer kx, ky;
doublereal dh11, dh12, dh21, dh22, dflag;
integer nsteps;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
/* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN */
/* (DY**T) */
/* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. */
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
/* H=( ) ( ) ( ) ( ) */
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
/* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* number of elements in input vector(s) */
/* DX (input/output) DOUBLE PRECISION array, dimension N */
/* double precision vector with N elements */
/* INCX (input) INTEGER */
/* storage spacing between elements of DX */
/* DY (input/output) DOUBLE PRECISION array, dimension N */
/* double precision vector with N elements */
/* INCY (input) INTEGER */
/* storage spacing between elements of DY */
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
/* DPARAM(1)=DFLAG */
/* DPARAM(2)=DH11 */
/* DPARAM(3)=DH21 */
/* DPARAM(4)=DH12 */
/* DPARAM(5)=DH22 */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Data statements .. */
/* Parameter adjustments */
--dparam;
--dy;
--dx;
/* Function Body */
/* .. */
dflag = dparam[1];
if (*n <= 0 || dflag + two == zero) {
goto L140;
}
if (! (*incx == *incy && *incx > 0)) {
goto L70;
}
nsteps = *n * *incx;
if (dflag < 0.) {
goto L50;
} else if (dflag == 0) {
goto L10;
} else {
goto L30;
}
L10:
dh12 = dparam[4];
dh21 = dparam[3];
i__1 = nsteps;
i__2 = *incx;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
w = dx[i__];
z__ = dy[i__];
dx[i__] = w + z__ * dh12;
dy[i__] = w * dh21 + z__;
/* L20: */
}
goto L140;
L30:
dh11 = dparam[2];
dh22 = dparam[5];
i__2 = nsteps;
i__1 = *incx;
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
w = dx[i__];
z__ = dy[i__];
dx[i__] = w * dh11 + z__;
dy[i__] = -w + dh22 * z__;
/* L40: */
}
goto L140;
L50:
dh11 = dparam[2];
dh12 = dparam[4];
dh21 = dparam[3];
dh22 = dparam[5];
i__1 = nsteps;
i__2 = *incx;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
w = dx[i__];
z__ = dy[i__];
dx[i__] = w * dh11 + z__ * dh12;
dy[i__] = w * dh21 + z__ * dh22;
/* L60: */
}
goto L140;
L70:
kx = 1;
ky = 1;
if (*incx < 0) {
kx = (1 - *n) * *incx + 1;
}
if (*incy < 0) {
ky = (1 - *n) * *incy + 1;
}
if (dflag < 0.) {
goto L120;
} else if (dflag == 0) {
goto L80;
} else {
goto L100;
}
L80:
dh12 = dparam[4];
dh21 = dparam[3];
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
w = dx[kx];
z__ = dy[ky];
dx[kx] = w + z__ * dh12;
dy[ky] = w * dh21 + z__;
kx += *incx;
ky += *incy;
/* L90: */
}
goto L140;
L100:
dh11 = dparam[2];
dh22 = dparam[5];
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
w = dx[kx];
z__ = dy[ky];
dx[kx] = w * dh11 + z__;
dy[ky] = -w + dh22 * z__;
kx += *incx;
ky += *incy;
/* L110: */
}
goto L140;
L120:
dh11 = dparam[2];
dh12 = dparam[4];
dh21 = dparam[3];
dh22 = dparam[5];
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
w = dx[kx];
z__ = dy[ky];
dx[kx] = w * dh11 + z__ * dh12;
dy[ky] = w * dh21 + z__ * dh22;
kx += *incx;
ky += *incy;
/* L130: */
}
L140:
return 0;
} /* drotm_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/dspmv.c
|
.c
| 8,075
| 317
|
/* dspmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha,
doublereal *ap, doublereal *x, integer *incx, doublereal *beta,
doublereal *y, integer *incy, ftnlen uplo_len)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
doublereal temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSPMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n symmetric matrix, supplied in packed form. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* AP - DOUBLE PRECISION array of DIMENSION at least */
/* ( ( n*( n + 1 ) )/2 ). */
/* Before entry with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. */
/* Before entry with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. */
/* Unchanged on exit. */
/* X - DOUBLE PRECISION array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - DOUBLE PRECISION. */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then Y need not be set on input. */
/* Unchanged on exit. */
/* Y - DOUBLE PRECISION array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the n */
/* element vector y. On exit, Y is overwritten by the updated */
/* vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
--y;
--x;
--ap;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 6;
} else if (*incy == 0) {
info = 9;
}
if (info != 0) {
xerbla_("DSPMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
/* First form y := beta*y. */
if (*beta != 1.) {
if (*incy == 1) {
if (*beta == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = 0.;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = *beta * y[i__];
/* L20: */
}
}
} else {
iy = ky;
if (*beta == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = 0.;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = *beta * y[iy];
iy += *incy;
/* L40: */
}
}
}
}
if (*alpha == 0.) {
return 0;
}
kk = 1;
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when AP contains the upper triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.;
k = kk;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
y[i__] += temp1 * ap[k];
temp2 += ap[k] * x[i__];
++k;
/* L50: */
}
y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
kk += j;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.;
ix = kx;
iy = ky;
i__2 = kk + j - 2;
for (k = kk; k <= i__2; ++k) {
y[iy] += temp1 * ap[k];
temp2 += ap[k] * x[ix];
ix += *incx;
iy += *incy;
/* L70: */
}
y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
jx += *incx;
jy += *incy;
kk += j;
/* L80: */
}
}
} else {
/* Form y when AP contains the lower triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.;
y[j] += temp1 * ap[kk];
k = kk + 1;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
y[i__] += temp1 * ap[k];
temp2 += ap[k] * x[i__];
++k;
/* L90: */
}
y[j] += *alpha * temp2;
kk += *n - j + 1;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.;
y[jy] += temp1 * ap[kk];
ix = jx;
iy = jy;
i__2 = kk + *n - j;
for (k = kk + 1; k <= i__2; ++k) {
ix += *incx;
iy += *incy;
y[iy] += temp1 * ap[k];
temp2 += ap[k] * x[ix];
/* L110: */
}
y[jy] += *alpha * temp2;
jx += *incx;
jy += *incy;
kk += *n - j + 1;
/* L120: */
}
}
}
return 0;
/* End of DSPMV . */
} /* dspmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/ssbmv.c
|
.c
| 10,210
| 369
|
/* ssbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
integer *incy, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
real temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSBMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n symmetric band matrix, with k super-diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the band matrix A is being supplied as */
/* follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* being supplied. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* being supplied. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of super-diagonals of the */
/* matrix A. K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* ALPHA - REAL . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - REAL array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the symmetric matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer the upper */
/* triangular part of a symmetric band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the symmetric matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer the lower */
/* triangular part of a symmetric band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - REAL array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the */
/* vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - REAL . */
/* On entry, BETA specifies the scalar beta. */
/* Unchanged on exit. */
/* Y - REAL array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the */
/* vector y. On exit, Y is overwritten by the updated vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--y;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*k < 0) {
info = 3;
} else if (*lda < *k + 1) {
info = 6;
} else if (*incx == 0) {
info = 8;
} else if (*incy == 0) {
info = 11;
}
if (info != 0) {
xerbla_("SSBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array A */
/* are accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if (*beta != 1.f) {
if (*incy == 1) {
if (*beta == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = 0.f;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = *beta * y[i__];
/* L20: */
}
}
} else {
iy = ky;
if (*beta == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = 0.f;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = *beta * y[iy];
iy += *incy;
/* L40: */
}
}
}
}
if (*alpha == 0.f) {
return 0;
}
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when upper triangle of A is stored. */
kplus1 = *k + 1;
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.f;
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
y[i__] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[i__];
/* L50: */
}
y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.f;
ix = kx;
iy = ky;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
y[iy] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[ix];
ix += *incx;
iy += *incy;
/* L70: */
}
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
temp2;
jx += *incx;
jy += *incy;
if (j > *k) {
kx += *incx;
ky += *incy;
}
/* L80: */
}
}
} else {
/* Form y when lower triangle of A is stored. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.f;
y[j] += temp1 * a[j * a_dim1 + 1];
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
y[i__] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[i__];
/* L90: */
}
y[j] += *alpha * temp2;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.f;
y[jy] += temp1 * a[j * a_dim1 + 1];
l = 1 - j;
ix = jx;
iy = jy;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
ix += *incx;
iy += *incy;
y[iy] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[ix];
/* L110: */
}
y[jy] += *alpha * temp2;
jx += *incx;
jy += *incy;
/* L120: */
}
}
}
return 0;
/* End of SSBMV . */
} /* ssbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/sspmv.c
|
.c
| 8,051
| 317
|
/* sspmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap,
real *x, integer *incx, real *beta, real *y, integer *incy, ftnlen
uplo_len)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
real temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSPMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n symmetric matrix, supplied in packed form. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - REAL . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* AP - REAL array of DIMENSION at least */
/* ( ( n*( n + 1 ) )/2 ). */
/* Before entry with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. */
/* Before entry with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. */
/* Unchanged on exit. */
/* X - REAL array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - REAL . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then Y need not be set on input. */
/* Unchanged on exit. */
/* Y - REAL array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the n */
/* element vector y. On exit, Y is overwritten by the updated */
/* vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
--y;
--x;
--ap;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 6;
} else if (*incy == 0) {
info = 9;
}
if (info != 0) {
xerbla_("SSPMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
/* First form y := beta*y. */
if (*beta != 1.f) {
if (*incy == 1) {
if (*beta == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = 0.f;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = *beta * y[i__];
/* L20: */
}
}
} else {
iy = ky;
if (*beta == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = 0.f;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = *beta * y[iy];
iy += *incy;
/* L40: */
}
}
}
}
if (*alpha == 0.f) {
return 0;
}
kk = 1;
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when AP contains the upper triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.f;
k = kk;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
y[i__] += temp1 * ap[k];
temp2 += ap[k] * x[i__];
++k;
/* L50: */
}
y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
kk += j;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.f;
ix = kx;
iy = ky;
i__2 = kk + j - 2;
for (k = kk; k <= i__2; ++k) {
y[iy] += temp1 * ap[k];
temp2 += ap[k] * x[ix];
ix += *incx;
iy += *incy;
/* L70: */
}
y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
jx += *incx;
jy += *incy;
kk += j;
/* L80: */
}
}
} else {
/* Form y when AP contains the lower triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.f;
y[j] += temp1 * ap[kk];
k = kk + 1;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
y[i__] += temp1 * ap[k];
temp2 += ap[k] * x[i__];
++k;
/* L90: */
}
y[j] += *alpha * temp2;
kk += *n - j + 1;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.f;
y[jy] += temp1 * ap[kk];
ix = jx;
iy = jy;
i__2 = kk + *n - j;
for (k = kk + 1; k <= i__2; ++k) {
ix += *incx;
iy += *incy;
y[iy] += temp1 * ap[k];
temp2 += ap[k] * x[ix];
/* L110: */
}
y[jy] += *alpha * temp2;
jx += *incx;
jy += *incy;
kk += *n - j + 1;
/* L120: */
}
}
}
return 0;
/* End of SSPMV . */
} /* sspmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/drotmg.c
|
.c
| 6,193
| 294
|
/* drotmg.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int drotmg_(doublereal *dd1, doublereal *dd2, doublereal *
dx1, doublereal *dy1, doublereal *dparam)
{
/* Initialized data */
static doublereal zero = 0.;
static doublereal one = 1.;
static doublereal two = 2.;
static doublereal gam = 4096.;
static doublereal gamsq = 16777216.;
static doublereal rgamsq = 5.9604645e-8;
/* Format strings */
static char fmt_120[] = "";
static char fmt_150[] = "";
static char fmt_180[] = "";
static char fmt_210[] = "";
/* System generated locals */
doublereal d__1;
/* Local variables */
doublereal du, dp1, dp2, dq1, dq2, dh11, dh12, dh21, dh22;
integer igo;
doublereal dflag, dtemp;
/* Assigned format variables */
static char *igo_fmt;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
/* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* */
/* DY2)**T. */
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
/* H=( ) ( ) ( ) ( ) */
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
/* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 */
/* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE */
/* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) */
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
/* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
/* Arguments */
/* ========= */
/* DD1 (input/output) DOUBLE PRECISION */
/* DD2 (input/output) DOUBLE PRECISION */
/* DX1 (input/output) DOUBLE PRECISION */
/* DY1 (input) DOUBLE PRECISION */
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
/* DPARAM(1)=DFLAG */
/* DPARAM(2)=DH11 */
/* DPARAM(3)=DH21 */
/* DPARAM(4)=DH12 */
/* DPARAM(5)=DH22 */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Data statements .. */
/* Parameter adjustments */
--dparam;
/* Function Body */
/* .. */
if (! (*dd1 < zero)) {
goto L10;
}
/* GO ZERO-H-D-AND-DX1.. */
goto L60;
L10:
/* CASE-DD1-NONNEGATIVE */
dp2 = *dd2 * *dy1;
if (! (dp2 == zero)) {
goto L20;
}
dflag = -two;
goto L260;
/* REGULAR-CASE.. */
L20:
dp1 = *dd1 * *dx1;
dq2 = dp2 * *dy1;
dq1 = dp1 * *dx1;
if (! (abs(dq1) > abs(dq2))) {
goto L40;
}
dh21 = -(*dy1) / *dx1;
dh12 = dp2 / dp1;
du = one - dh12 * dh21;
if (! (du <= zero)) {
goto L30;
}
/* GO ZERO-H-D-AND-DX1.. */
goto L60;
L30:
dflag = zero;
*dd1 /= du;
*dd2 /= du;
*dx1 *= du;
/* GO SCALE-CHECK.. */
goto L100;
L40:
if (! (dq2 < zero)) {
goto L50;
}
/* GO ZERO-H-D-AND-DX1.. */
goto L60;
L50:
dflag = one;
dh11 = dp1 / dp2;
dh22 = *dx1 / *dy1;
du = one + dh11 * dh22;
dtemp = *dd2 / du;
*dd2 = *dd1 / du;
*dd1 = dtemp;
*dx1 = *dy1 * du;
/* GO SCALE-CHECK */
goto L100;
/* PROCEDURE..ZERO-H-D-AND-DX1.. */
L60:
dflag = -one;
dh11 = zero;
dh12 = zero;
dh21 = zero;
dh22 = zero;
*dd1 = zero;
*dd2 = zero;
*dx1 = zero;
/* RETURN.. */
goto L220;
/* PROCEDURE..FIX-H.. */
L70:
if (! (dflag >= zero)) {
goto L90;
}
if (! (dflag == zero)) {
goto L80;
}
dh11 = one;
dh22 = one;
dflag = -one;
goto L90;
L80:
dh21 = -one;
dh12 = one;
dflag = -one;
L90:
switch (igo) {
case 0: goto L120;
case 1: goto L150;
case 2: goto L180;
case 3: goto L210;
}
/* PROCEDURE..SCALE-CHECK */
L100:
L110:
if (! (*dd1 <= rgamsq)) {
goto L130;
}
if (*dd1 == zero) {
goto L160;
}
igo = 0;
igo_fmt = fmt_120;
/* FIX-H.. */
goto L70;
L120:
/* Computing 2nd power */
d__1 = gam;
*dd1 *= d__1 * d__1;
*dx1 /= gam;
dh11 /= gam;
dh12 /= gam;
goto L110;
L130:
L140:
if (! (*dd1 >= gamsq)) {
goto L160;
}
igo = 1;
igo_fmt = fmt_150;
/* FIX-H.. */
goto L70;
L150:
/* Computing 2nd power */
d__1 = gam;
*dd1 /= d__1 * d__1;
*dx1 *= gam;
dh11 *= gam;
dh12 *= gam;
goto L140;
L160:
L170:
if (! (abs(*dd2) <= rgamsq)) {
goto L190;
}
if (*dd2 == zero) {
goto L220;
}
igo = 2;
igo_fmt = fmt_180;
/* FIX-H.. */
goto L70;
L180:
/* Computing 2nd power */
d__1 = gam;
*dd2 *= d__1 * d__1;
dh21 /= gam;
dh22 /= gam;
goto L170;
L190:
L200:
if (! (abs(*dd2) >= gamsq)) {
goto L220;
}
igo = 3;
igo_fmt = fmt_210;
/* FIX-H.. */
goto L70;
L210:
/* Computing 2nd power */
d__1 = gam;
*dd2 /= d__1 * d__1;
dh21 *= gam;
dh22 *= gam;
goto L200;
L220:
if (dflag < 0.) {
goto L250;
} else if (dflag == 0) {
goto L230;
} else {
goto L240;
}
L230:
dparam[3] = dh21;
dparam[4] = dh12;
goto L260;
L240:
dparam[2] = dh11;
dparam[5] = dh22;
goto L260;
L250:
dparam[2] = dh11;
dparam[3] = dh21;
dparam[4] = dh12;
dparam[5] = dh22;
L260:
dparam[1] = dflag;
return 0;
} /* drotmg_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/dtbmv.c
|
.c
| 11,656
| 429
|
/* dtbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n,
integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx,
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, l, ix, jx, kx, info;
doublereal temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nounit;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DTBMV performs one of the matrix-vector operations */
/* x := A*x, or x := A'*x, */
/* where x is an n element vector and A is an n by n unit, or non-unit, */
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANS - CHARACTER*1. */
/* On entry, TRANS specifies the operation to be performed as */
/* follows: */
/* TRANS = 'N' or 'n' x := A*x. */
/* TRANS = 'T' or 't' x := A'*x. */
/* TRANS = 'C' or 'c' x := A'*x. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit */
/* triangular as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
/* super-diagonals of the matrix A. */
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
/* sub-diagonals of the matrix A. */
/* K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer an upper */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer a lower */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
/* corresponding to the diagonal elements of the matrix are not */
/* referenced, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - DOUBLE PRECISION array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. On exit, X is overwritten with the */
/* tranformed vector x. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
ftnlen)1)) {
info = 2;
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < *k + 1) {
info = 7;
} else if (*incx == 0) {
info = 9;
}
if (info != 0) {
xerbla_("DTBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/* Form x := A*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[j] != 0.) {
temp = x[j];
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
x[i__] += temp * a[l + i__ + j * a_dim1];
/* L10: */
}
if (nounit) {
x[j] *= a[kplus1 + j * a_dim1];
}
}
/* L20: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[jx] != 0.) {
temp = x[jx];
ix = kx;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
x[ix] += temp * a[l + i__ + j * a_dim1];
ix += *incx;
/* L30: */
}
if (nounit) {
x[jx] *= a[kplus1 + j * a_dim1];
}
}
jx += *incx;
if (j > *k) {
kx += *incx;
}
/* L40: */
}
}
} else {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
if (x[j] != 0.) {
temp = x[j];
l = 1 - j;
/* Computing MIN */
i__1 = *n, i__3 = j + *k;
i__4 = j + 1;
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
x[i__] += temp * a[l + i__ + j * a_dim1];
/* L50: */
}
if (nounit) {
x[j] *= a[j * a_dim1 + 1];
}
}
/* L60: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
if (x[jx] != 0.) {
temp = x[jx];
ix = kx;
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__1 = j + *k;
i__3 = j + 1;
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
x[ix] += temp * a[l + i__ + j * a_dim1];
ix -= *incx;
/* L70: */
}
if (nounit) {
x[jx] *= a[j * a_dim1 + 1];
}
}
jx -= *incx;
if (*n - j >= *k) {
kx -= *incx;
}
/* L80: */
}
}
}
} else {
/* Form x := A'*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
temp = x[j];
l = kplus1 - j;
if (nounit) {
temp *= a[kplus1 + j * a_dim1];
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
temp += a[l + i__ + j * a_dim1] * x[i__];
/* L90: */
}
x[j] = temp;
/* L100: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
temp = x[jx];
kx -= *incx;
ix = kx;
l = kplus1 - j;
if (nounit) {
temp *= a[kplus1 + j * a_dim1];
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
temp += a[l + i__ + j * a_dim1] * x[ix];
ix -= *incx;
/* L110: */
}
x[jx] = temp;
jx -= *incx;
/* L120: */
}
}
} else {
if (*incx == 1) {
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
temp = x[j];
l = 1 - j;
if (nounit) {
temp *= a[j * a_dim1 + 1];
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
temp += a[l + i__ + j * a_dim1] * x[i__];
/* L130: */
}
x[j] = temp;
/* L140: */
}
} else {
jx = kx;
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
temp = x[jx];
kx += *incx;
ix = kx;
l = 1 - j;
if (nounit) {
temp *= a[j * a_dim1 + 1];
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
temp += a[l + i__ + j * a_dim1] * x[ix];
ix += *incx;
/* L150: */
}
x[jx] = temp;
jx += *incx;
/* L160: */
}
}
}
}
return 0;
/* End of DTBMV . */
} /* dtbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/datatypes.h
|
.h
| 657
| 25
|
/* This contains a limited subset of the typedefs exposed by f2c
for use by the Eigen BLAS C-only implementation.
*/
#ifndef __EIGEN_DATATYPES_H__
#define __EIGEN_DATATYPES_H__
typedef int integer;
typedef unsigned int uinteger;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
typedef int ftnlen;
typedef int logical;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (doublereal)abs(x)
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (doublereal)min(a,b)
#define dmax(a,b) (doublereal)max(a,b)
#endif
|
Unknown
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/lsame.c
|
.c
| 2,976
| 118
|
/* lsame.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
{
/* System generated locals */
logical ret_val;
/* Local variables */
integer inta, intb, zcode;
/* -- LAPACK auxiliary routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
/* case. */
/* Arguments */
/* ========= */
/* CA (input) CHARACTER*1 */
/* CB (input) CHARACTER*1 */
/* CA and CB specify the single characters to be compared. */
/* ===================================================================== */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* Test if the characters are equal */
ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
if (ret_val) {
return ret_val;
}
/* Now test for equivalence if both characters are alphabetic. */
zcode = 'Z';
/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
/* machines, on which ICHAR returns a value with bit 8 set. */
/* ICHAR('A') on Prime machines returns 193 which is the same as */
/* ICHAR('A') on an EBCDIC machine. */
inta = *(unsigned char *)ca;
intb = *(unsigned char *)cb;
if (zcode == 90 || zcode == 122) {
/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
/* upper case 'Z'. */
if (inta >= 97 && inta <= 122) {
inta += -32;
}
if (intb >= 97 && intb <= 122) {
intb += -32;
}
} else if (zcode == 233 || zcode == 169) {
/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
/* upper case 'Z'. */
if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) ||
(inta >= 162 && inta <= 169)) {
inta += 64;
}
if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) ||
(intb >= 162 && intb <= 169)) {
intb += 64;
}
} else if (zcode == 218 || zcode == 250) {
/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
/* plus 128 of either lower or upper case 'Z'. */
if (inta >= 225 && inta <= 250) {
inta += -32;
}
if (intb >= 225 && intb <= 250) {
intb += -32;
}
}
ret_val = inta == intb;
/* RETURN */
/* End of LSAME */
return ret_val;
} /* lsame_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/ctbmv.c
|
.c
| 18,944
| 648
|
/* ctbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
integer *k, complex *a, integer *lda, complex *x, integer *incx,
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
complex q__1, q__2, q__3;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, l, ix, jx, kx, info;
complex temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical noconj, nounit;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CTBMV performs one of the matrix-vector operations */
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
/* where x is an n element vector and A is an n by n unit, or non-unit, */
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANS - CHARACTER*1. */
/* On entry, TRANS specifies the operation to be performed as */
/* follows: */
/* TRANS = 'N' or 'n' x := A*x. */
/* TRANS = 'T' or 't' x := A'*x. */
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit */
/* triangular as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
/* super-diagonals of the matrix A. */
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
/* sub-diagonals of the matrix A. */
/* K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer an upper */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer a lower */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
/* corresponding to the diagonal elements of the matrix are not */
/* referenced, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - COMPLEX array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. On exit, X is overwritten with the */
/* tranformed vector x. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
ftnlen)1)) {
info = 2;
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < *k + 1) {
info = 7;
} else if (*incx == 0) {
info = 9;
}
if (info != 0) {
xerbla_("CTBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/* Form x := A*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
i__2 = j;
temp.r = x[i__2].r, temp.i = x[i__2].i;
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
i__2 = i__;
i__3 = i__;
i__5 = l + i__ + j * a_dim1;
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
q__2.i = temp.r * a[i__5].i + temp.i * a[
i__5].r;
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
q__2.i;
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
/* L10: */
}
if (nounit) {
i__4 = j;
i__2 = j;
i__3 = kplus1 + j * a_dim1;
q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
i__3].i, q__1.i = x[i__2].r * a[i__3].i +
x[i__2].i * a[i__3].r;
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
}
}
/* L20: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__4 = jx;
if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
i__4 = jx;
temp.r = x[i__4].r, temp.i = x[i__4].i;
ix = kx;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
i__4 = ix;
i__2 = ix;
i__5 = l + i__ + j * a_dim1;
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
q__2.i = temp.r * a[i__5].i + temp.i * a[
i__5].r;
q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
q__2.i;
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
ix += *incx;
/* L30: */
}
if (nounit) {
i__3 = jx;
i__4 = jx;
i__2 = kplus1 + j * a_dim1;
q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
i__2].i, q__1.i = x[i__4].r * a[i__2].i +
x[i__4].i * a[i__2].r;
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
}
}
jx += *incx;
if (j > *k) {
kx += *incx;
}
/* L40: */
}
}
} else {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
i__1 = j;
if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
i__1 = j;
temp.r = x[i__1].r, temp.i = x[i__1].i;
l = 1 - j;
/* Computing MIN */
i__1 = *n, i__3 = j + *k;
i__4 = j + 1;
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
i__1 = i__;
i__3 = i__;
i__2 = l + i__ + j * a_dim1;
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
q__2.i = temp.r * a[i__2].i + temp.i * a[
i__2].r;
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
q__2.i;
x[i__1].r = q__1.r, x[i__1].i = q__1.i;
/* L50: */
}
if (nounit) {
i__4 = j;
i__1 = j;
i__3 = j * a_dim1 + 1;
q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
i__3].i, q__1.i = x[i__1].r * a[i__3].i +
x[i__1].i * a[i__3].r;
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
}
}
/* L60: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
i__4 = jx;
if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
i__4 = jx;
temp.r = x[i__4].r, temp.i = x[i__4].i;
ix = kx;
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__1 = j + *k;
i__3 = j + 1;
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
i__4 = ix;
i__1 = ix;
i__2 = l + i__ + j * a_dim1;
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
q__2.i = temp.r * a[i__2].i + temp.i * a[
i__2].r;
q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
q__2.i;
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
ix -= *incx;
/* L70: */
}
if (nounit) {
i__3 = jx;
i__4 = jx;
i__1 = j * a_dim1 + 1;
q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
i__1].i, q__1.i = x[i__4].r * a[i__1].i +
x[i__4].i * a[i__1].r;
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
}
}
jx -= *incx;
if (*n - j >= *k) {
kx -= *incx;
}
/* L80: */
}
}
}
} else {
/* Form x := A'*x or x := conjg( A' )*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
i__3 = j;
temp.r = x[i__3].r, temp.i = x[i__3].i;
l = kplus1 - j;
if (noconj) {
if (nounit) {
i__3 = kplus1 + j * a_dim1;
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
q__1.i = temp.r * a[i__3].i + temp.i * a[
i__3].r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
i__4 = l + i__ + j * a_dim1;
i__1 = i__;
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
i__1].i, q__2.i = a[i__4].r * x[i__1].i +
a[i__4].i * x[i__1].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
/* L90: */
}
} else {
if (nounit) {
r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
q__1.i = temp.r * q__2.i + temp.i *
q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__4 = i__;
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
q__2.i = q__3.r * x[i__4].i + q__3.i * x[
i__4].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
/* L100: */
}
}
i__3 = j;
x[i__3].r = temp.r, x[i__3].i = temp.i;
/* L110: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
i__3 = jx;
temp.r = x[i__3].r, temp.i = x[i__3].i;
kx -= *incx;
ix = kx;
l = kplus1 - j;
if (noconj) {
if (nounit) {
i__3 = kplus1 + j * a_dim1;
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
q__1.i = temp.r * a[i__3].i + temp.i * a[
i__3].r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
i__4 = l + i__ + j * a_dim1;
i__1 = ix;
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
i__1].i, q__2.i = a[i__4].r * x[i__1].i +
a[i__4].i * x[i__1].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
ix -= *incx;
/* L120: */
}
} else {
if (nounit) {
r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
q__1.i = temp.r * q__2.i + temp.i *
q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__4 = ix;
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
q__2.i = q__3.r * x[i__4].i + q__3.i * x[
i__4].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
ix -= *incx;
/* L130: */
}
}
i__3 = jx;
x[i__3].r = temp.r, x[i__3].i = temp.i;
jx -= *incx;
/* L140: */
}
}
} else {
if (*incx == 1) {
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
i__4 = j;
temp.r = x[i__4].r, temp.i = x[i__4].i;
l = 1 - j;
if (noconj) {
if (nounit) {
i__4 = j * a_dim1 + 1;
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
q__1.i = temp.r * a[i__4].i + temp.i * a[
i__4].r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
i__1 = l + i__ + j * a_dim1;
i__2 = i__;
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
i__2].i, q__2.i = a[i__1].r * x[i__2].i +
a[i__1].i * x[i__2].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
/* L150: */
}
} else {
if (nounit) {
r_cnjg(&q__2, &a[j * a_dim1 + 1]);
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
q__1.i = temp.r * q__2.i + temp.i *
q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__1 = i__;
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
q__2.i = q__3.r * x[i__1].i + q__3.i * x[
i__1].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
/* L160: */
}
}
i__4 = j;
x[i__4].r = temp.r, x[i__4].i = temp.i;
/* L170: */
}
} else {
jx = kx;
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
i__4 = jx;
temp.r = x[i__4].r, temp.i = x[i__4].i;
kx += *incx;
ix = kx;
l = 1 - j;
if (noconj) {
if (nounit) {
i__4 = j * a_dim1 + 1;
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
q__1.i = temp.r * a[i__4].i + temp.i * a[
i__4].r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
i__1 = l + i__ + j * a_dim1;
i__2 = ix;
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
i__2].i, q__2.i = a[i__1].r * x[i__2].i +
a[i__1].i * x[i__2].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
ix += *incx;
/* L180: */
}
} else {
if (nounit) {
r_cnjg(&q__2, &a[j * a_dim1 + 1]);
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
q__1.i = temp.r * q__2.i + temp.i *
q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__1 = ix;
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
q__2.i = q__3.r * x[i__1].i + q__3.i * x[
i__1].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
ix += *incx;
/* L190: */
}
}
i__4 = jx;
x[i__4].r = temp.r, x[i__4].i = temp.i;
jx += *incx;
/* L200: */
}
}
}
}
return 0;
/* End of CTBMV . */
} /* ctbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/ztbmv.c
|
.c
| 18,972
| 648
|
/* ztbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n,
integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
*incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, ix, jx, kx, info;
doublecomplex temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical noconj, nounit;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZTBMV performs one of the matrix-vector operations */
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
/* where x is an n element vector and A is an n by n unit, or non-unit, */
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANS - CHARACTER*1. */
/* On entry, TRANS specifies the operation to be performed as */
/* follows: */
/* TRANS = 'N' or 'n' x := A*x. */
/* TRANS = 'T' or 't' x := A'*x. */
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit */
/* triangular as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
/* super-diagonals of the matrix A. */
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
/* sub-diagonals of the matrix A. */
/* K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer an upper */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer a lower */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
/* corresponding to the diagonal elements of the matrix are not */
/* referenced, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - COMPLEX*16 array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. On exit, X is overwritten with the */
/* tranformed vector x. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
ftnlen)1)) {
info = 2;
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < *k + 1) {
info = 7;
} else if (*incx == 0) {
info = 9;
}
if (info != 0) {
xerbla_("ZTBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/* Form x := A*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
if (x[i__2].r != 0. || x[i__2].i != 0.) {
i__2 = j;
temp.r = x[i__2].r, temp.i = x[i__2].i;
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
i__2 = i__;
i__3 = i__;
i__5 = l + i__ + j * a_dim1;
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
z__2.i = temp.r * a[i__5].i + temp.i * a[
i__5].r;
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
z__2.i;
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
/* L10: */
}
if (nounit) {
i__4 = j;
i__2 = j;
i__3 = kplus1 + j * a_dim1;
z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
i__3].i, z__1.i = x[i__2].r * a[i__3].i +
x[i__2].i * a[i__3].r;
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
}
}
/* L20: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__4 = jx;
if (x[i__4].r != 0. || x[i__4].i != 0.) {
i__4 = jx;
temp.r = x[i__4].r, temp.i = x[i__4].i;
ix = kx;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
i__4 = ix;
i__2 = ix;
i__5 = l + i__ + j * a_dim1;
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
z__2.i = temp.r * a[i__5].i + temp.i * a[
i__5].r;
z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i +
z__2.i;
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
ix += *incx;
/* L30: */
}
if (nounit) {
i__3 = jx;
i__4 = jx;
i__2 = kplus1 + j * a_dim1;
z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
i__2].i, z__1.i = x[i__4].r * a[i__2].i +
x[i__4].i * a[i__2].r;
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
}
}
jx += *incx;
if (j > *k) {
kx += *incx;
}
/* L40: */
}
}
} else {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
i__1 = j;
if (x[i__1].r != 0. || x[i__1].i != 0.) {
i__1 = j;
temp.r = x[i__1].r, temp.i = x[i__1].i;
l = 1 - j;
/* Computing MIN */
i__1 = *n, i__3 = j + *k;
i__4 = j + 1;
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
i__1 = i__;
i__3 = i__;
i__2 = l + i__ + j * a_dim1;
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
z__2.i = temp.r * a[i__2].i + temp.i * a[
i__2].r;
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
z__2.i;
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
/* L50: */
}
if (nounit) {
i__4 = j;
i__1 = j;
i__3 = j * a_dim1 + 1;
z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
i__3].i, z__1.i = x[i__1].r * a[i__3].i +
x[i__1].i * a[i__3].r;
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
}
}
/* L60: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
i__4 = jx;
if (x[i__4].r != 0. || x[i__4].i != 0.) {
i__4 = jx;
temp.r = x[i__4].r, temp.i = x[i__4].i;
ix = kx;
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__1 = j + *k;
i__3 = j + 1;
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
i__4 = ix;
i__1 = ix;
i__2 = l + i__ + j * a_dim1;
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
z__2.i = temp.r * a[i__2].i + temp.i * a[
i__2].r;
z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i +
z__2.i;
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
ix -= *incx;
/* L70: */
}
if (nounit) {
i__3 = jx;
i__4 = jx;
i__1 = j * a_dim1 + 1;
z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
i__1].i, z__1.i = x[i__4].r * a[i__1].i +
x[i__4].i * a[i__1].r;
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
}
}
jx -= *incx;
if (*n - j >= *k) {
kx -= *incx;
}
/* L80: */
}
}
}
} else {
/* Form x := A'*x or x := conjg( A' )*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
i__3 = j;
temp.r = x[i__3].r, temp.i = x[i__3].i;
l = kplus1 - j;
if (noconj) {
if (nounit) {
i__3 = kplus1 + j * a_dim1;
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
z__1.i = temp.r * a[i__3].i + temp.i * a[
i__3].r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
i__4 = l + i__ + j * a_dim1;
i__1 = i__;
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
i__1].i, z__2.i = a[i__4].r * x[i__1].i +
a[i__4].i * x[i__1].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L90: */
}
} else {
if (nounit) {
d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
z__1.i = temp.r * z__2.i + temp.i *
z__2.r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__4 = i__;
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
z__2.i = z__3.r * x[i__4].i + z__3.i * x[
i__4].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L100: */
}
}
i__3 = j;
x[i__3].r = temp.r, x[i__3].i = temp.i;
/* L110: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
i__3 = jx;
temp.r = x[i__3].r, temp.i = x[i__3].i;
kx -= *incx;
ix = kx;
l = kplus1 - j;
if (noconj) {
if (nounit) {
i__3 = kplus1 + j * a_dim1;
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
z__1.i = temp.r * a[i__3].i + temp.i * a[
i__3].r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
i__4 = l + i__ + j * a_dim1;
i__1 = ix;
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
i__1].i, z__2.i = a[i__4].r * x[i__1].i +
a[i__4].i * x[i__1].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
ix -= *incx;
/* L120: */
}
} else {
if (nounit) {
d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
z__1.i = temp.r * z__2.i + temp.i *
z__2.r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__4 = ix;
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
z__2.i = z__3.r * x[i__4].i + z__3.i * x[
i__4].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
ix -= *incx;
/* L130: */
}
}
i__3 = jx;
x[i__3].r = temp.r, x[i__3].i = temp.i;
jx -= *incx;
/* L140: */
}
}
} else {
if (*incx == 1) {
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
i__4 = j;
temp.r = x[i__4].r, temp.i = x[i__4].i;
l = 1 - j;
if (noconj) {
if (nounit) {
i__4 = j * a_dim1 + 1;
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
z__1.i = temp.r * a[i__4].i + temp.i * a[
i__4].r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
i__1 = l + i__ + j * a_dim1;
i__2 = i__;
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
i__2].i, z__2.i = a[i__1].r * x[i__2].i +
a[i__1].i * x[i__2].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L150: */
}
} else {
if (nounit) {
d_cnjg(&z__2, &a[j * a_dim1 + 1]);
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
z__1.i = temp.r * z__2.i + temp.i *
z__2.r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__1 = i__;
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
z__2.i = z__3.r * x[i__1].i + z__3.i * x[
i__1].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L160: */
}
}
i__4 = j;
x[i__4].r = temp.r, x[i__4].i = temp.i;
/* L170: */
}
} else {
jx = kx;
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
i__4 = jx;
temp.r = x[i__4].r, temp.i = x[i__4].i;
kx += *incx;
ix = kx;
l = 1 - j;
if (noconj) {
if (nounit) {
i__4 = j * a_dim1 + 1;
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
z__1.i = temp.r * a[i__4].i + temp.i * a[
i__4].r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
i__1 = l + i__ + j * a_dim1;
i__2 = ix;
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
i__2].i, z__2.i = a[i__1].r * x[i__2].i +
a[i__1].i * x[i__2].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
ix += *incx;
/* L180: */
}
} else {
if (nounit) {
d_cnjg(&z__2, &a[j * a_dim1 + 1]);
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
z__1.i = temp.r * z__2.i + temp.i *
z__2.r;
temp.r = z__1.r, temp.i = z__1.i;
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__1 = ix;
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
z__2.i = z__3.r * x[i__1].i + z__3.i * x[
i__1].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
ix += *incx;
/* L190: */
}
}
i__4 = jx;
x[i__4].r = temp.r, x[i__4].i = temp.i;
jx += *incx;
/* L200: */
}
}
}
}
return 0;
/* End of ZTBMV . */
} /* ztbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/stbmv.c
|
.c
| 11,642
| 429
|
/* stbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n,
integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen
uplo_len, ftnlen trans_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, l, ix, jx, kx, info;
real temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nounit;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* STBMV performs one of the matrix-vector operations */
/* x := A*x, or x := A'*x, */
/* where x is an n element vector and A is an n by n unit, or non-unit, */
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANS - CHARACTER*1. */
/* On entry, TRANS specifies the operation to be performed as */
/* follows: */
/* TRANS = 'N' or 'n' x := A*x. */
/* TRANS = 'T' or 't' x := A'*x. */
/* TRANS = 'C' or 'c' x := A'*x. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit */
/* triangular as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
/* super-diagonals of the matrix A. */
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
/* sub-diagonals of the matrix A. */
/* K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* A - REAL array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer an upper */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the matrix of coefficients, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer a lower */
/* triangular band matrix from conventional full matrix storage */
/* to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
/* corresponding to the diagonal elements of the matrix are not */
/* referenced, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - REAL array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. On exit, X is overwritten with the */
/* tranformed vector x. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
ftnlen)1)) {
info = 2;
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < *k + 1) {
info = 7;
} else if (*incx == 0) {
info = 9;
}
if (info != 0) {
xerbla_("STBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/* Form x := A*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[j] != 0.f) {
temp = x[j];
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
x[i__] += temp * a[l + i__ + j * a_dim1];
/* L10: */
}
if (nounit) {
x[j] *= a[kplus1 + j * a_dim1];
}
}
/* L20: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[jx] != 0.f) {
temp = x[jx];
ix = kx;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
x[ix] += temp * a[l + i__ + j * a_dim1];
ix += *incx;
/* L30: */
}
if (nounit) {
x[jx] *= a[kplus1 + j * a_dim1];
}
}
jx += *incx;
if (j > *k) {
kx += *incx;
}
/* L40: */
}
}
} else {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
if (x[j] != 0.f) {
temp = x[j];
l = 1 - j;
/* Computing MIN */
i__1 = *n, i__3 = j + *k;
i__4 = j + 1;
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
x[i__] += temp * a[l + i__ + j * a_dim1];
/* L50: */
}
if (nounit) {
x[j] *= a[j * a_dim1 + 1];
}
}
/* L60: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
if (x[jx] != 0.f) {
temp = x[jx];
ix = kx;
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__1 = j + *k;
i__3 = j + 1;
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
x[ix] += temp * a[l + i__ + j * a_dim1];
ix -= *incx;
/* L70: */
}
if (nounit) {
x[jx] *= a[j * a_dim1 + 1];
}
}
jx -= *incx;
if (*n - j >= *k) {
kx -= *incx;
}
/* L80: */
}
}
}
} else {
/* Form x := A'*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
kplus1 = *k + 1;
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
temp = x[j];
l = kplus1 - j;
if (nounit) {
temp *= a[kplus1 + j * a_dim1];
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
temp += a[l + i__ + j * a_dim1] * x[i__];
/* L90: */
}
x[j] = temp;
/* L100: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
temp = x[jx];
kx -= *incx;
ix = kx;
l = kplus1 - j;
if (nounit) {
temp *= a[kplus1 + j * a_dim1];
}
/* Computing MAX */
i__4 = 1, i__1 = j - *k;
i__3 = max(i__4,i__1);
for (i__ = j - 1; i__ >= i__3; --i__) {
temp += a[l + i__ + j * a_dim1] * x[ix];
ix -= *incx;
/* L110: */
}
x[jx] = temp;
jx -= *incx;
/* L120: */
}
}
} else {
if (*incx == 1) {
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
temp = x[j];
l = 1 - j;
if (nounit) {
temp *= a[j * a_dim1 + 1];
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
temp += a[l + i__ + j * a_dim1] * x[i__];
/* L130: */
}
x[j] = temp;
/* L140: */
}
} else {
jx = kx;
i__3 = *n;
for (j = 1; j <= i__3; ++j) {
temp = x[jx];
kx += *incx;
ix = kx;
l = 1 - j;
if (nounit) {
temp *= a[j * a_dim1 + 1];
}
/* Computing MIN */
i__1 = *n, i__2 = j + *k;
i__4 = min(i__1,i__2);
for (i__ = j + 1; i__ <= i__4; ++i__) {
temp += a[l + i__ + j * a_dim1] * x[ix];
ix += *incx;
/* L150: */
}
x[jx] = temp;
jx += *incx;
/* L160: */
}
}
}
}
return 0;
/* End of STBMV . */
} /* stbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/complexdots.c
|
.c
| 2,310
| 85
|
/* This file has been modified to use the standard gfortran calling
convention, rather than the f2c calling convention.
It does not require -ff2c when compiled with gfortran.
*/
/* complexdots.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
complex cdotc_(integer *n, complex *cx, integer
*incx, complex *cy, integer *incy)
{
complex res;
extern /* Subroutine */ int cdotcw_(integer *, complex *, integer *,
complex *, integer *, complex *);
/* Parameter adjustments */
--cy;
--cx;
/* Function Body */
cdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
return res;
} /* cdotc_ */
complex cdotu_(integer *n, complex *cx, integer
*incx, complex *cy, integer *incy)
{
complex res;
extern /* Subroutine */ int cdotuw_(integer *, complex *, integer *,
complex *, integer *, complex *);
/* Parameter adjustments */
--cy;
--cx;
/* Function Body */
cdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
return res;
} /* cdotu_ */
doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx,
doublecomplex *cy, integer *incy)
{
doublecomplex res;
extern /* Subroutine */ int zdotcw_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *);
/* Parameter adjustments */
--cy;
--cx;
/* Function Body */
zdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
return res;
} /* zdotc_ */
doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx,
doublecomplex *cy, integer *incy)
{
doublecomplex res;
extern /* Subroutine */ int zdotuw_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *);
/* Parameter adjustments */
--cy;
--cx;
/* Function Body */
zdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
return res;
} /* zdotu_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/dsbmv.c
|
.c
| 10,188
| 367
|
/* dsbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *
alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
doublereal temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSBMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n symmetric band matrix, with k super-diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the band matrix A is being supplied as */
/* follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* being supplied. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* being supplied. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of super-diagonals of the */
/* matrix A. K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the symmetric matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer the upper */
/* triangular part of a symmetric band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the symmetric matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer the lower */
/* triangular part of a symmetric band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - DOUBLE PRECISION array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the */
/* vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - DOUBLE PRECISION. */
/* On entry, BETA specifies the scalar beta. */
/* Unchanged on exit. */
/* Y - DOUBLE PRECISION array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the */
/* vector y. On exit, Y is overwritten by the updated vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--y;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*k < 0) {
info = 3;
} else if (*lda < *k + 1) {
info = 6;
} else if (*incx == 0) {
info = 8;
} else if (*incy == 0) {
info = 11;
}
if (info != 0) {
xerbla_("DSBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array A */
/* are accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if (*beta != 1.) {
if (*incy == 1) {
if (*beta == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = 0.;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = *beta * y[i__];
/* L20: */
}
}
} else {
iy = ky;
if (*beta == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = 0.;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = *beta * y[iy];
iy += *incy;
/* L40: */
}
}
}
}
if (*alpha == 0.) {
return 0;
}
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when upper triangle of A is stored. */
kplus1 = *k + 1;
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.;
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
y[i__] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[i__];
/* L50: */
}
y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.;
ix = kx;
iy = ky;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
y[iy] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[ix];
ix += *incx;
iy += *incy;
/* L70: */
}
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
temp2;
jx += *incx;
jy += *incy;
if (j > *k) {
kx += *incx;
ky += *incy;
}
/* L80: */
}
}
} else {
/* Form y when lower triangle of A is stored. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.;
y[j] += temp1 * a[j * a_dim1 + 1];
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
y[i__] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[i__];
/* L90: */
}
y[j] += *alpha * temp2;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.;
y[jy] += temp1 * a[j * a_dim1 + 1];
l = 1 - j;
ix = jx;
iy = jy;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
ix += *incx;
iy += *incy;
y[iy] += temp1 * a[l + i__ + j * a_dim1];
temp2 += a[l + i__ + j * a_dim1] * x[ix];
/* L110: */
}
y[jy] += *alpha * temp2;
jx += *incx;
jy += *incy;
/* L120: */
}
}
}
return 0;
/* End of DSBMV . */
} /* dsbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/d_cnjg.c
|
.c
| 117
| 7
|
#include "datatypes.h"
void d_cnjg(doublecomplex *r, doublecomplex *z) {
r->r = z->r;
r->i = -(z->i);
}
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/srotm.c
|
.c
| 4,902
| 217
|
/* srotm.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int srotm_(integer *n, real *sx, integer *incx, real *sy,
integer *incy, real *sparam)
{
/* Initialized data */
static real zero = 0.f;
static real two = 2.f;
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__;
real w, z__;
integer kx, ky;
real sh11, sh12, sh21, sh22, sflag;
integer nsteps;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
/* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN */
/* (DX**T) */
/* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. */
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
/* H=( ) ( ) ( ) ( ) */
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
/* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* number of elements in input vector(s) */
/* SX (input/output) REAL array, dimension N */
/* double precision vector with N elements */
/* INCX (input) INTEGER */
/* storage spacing between elements of SX */
/* SY (input/output) REAL array, dimension N */
/* double precision vector with N elements */
/* INCY (input) INTEGER */
/* storage spacing between elements of SY */
/* SPARAM (input/output) REAL array, dimension 5 */
/* SPARAM(1)=SFLAG */
/* SPARAM(2)=SH11 */
/* SPARAM(3)=SH21 */
/* SPARAM(4)=SH12 */
/* SPARAM(5)=SH22 */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Data statements .. */
/* Parameter adjustments */
--sparam;
--sy;
--sx;
/* Function Body */
/* .. */
sflag = sparam[1];
if (*n <= 0 || sflag + two == zero) {
goto L140;
}
if (! (*incx == *incy && *incx > 0)) {
goto L70;
}
nsteps = *n * *incx;
if (sflag < 0.f) {
goto L50;
} else if (sflag == 0) {
goto L10;
} else {
goto L30;
}
L10:
sh12 = sparam[4];
sh21 = sparam[3];
i__1 = nsteps;
i__2 = *incx;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
w = sx[i__];
z__ = sy[i__];
sx[i__] = w + z__ * sh12;
sy[i__] = w * sh21 + z__;
/* L20: */
}
goto L140;
L30:
sh11 = sparam[2];
sh22 = sparam[5];
i__2 = nsteps;
i__1 = *incx;
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
w = sx[i__];
z__ = sy[i__];
sx[i__] = w * sh11 + z__;
sy[i__] = -w + sh22 * z__;
/* L40: */
}
goto L140;
L50:
sh11 = sparam[2];
sh12 = sparam[4];
sh21 = sparam[3];
sh22 = sparam[5];
i__1 = nsteps;
i__2 = *incx;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
w = sx[i__];
z__ = sy[i__];
sx[i__] = w * sh11 + z__ * sh12;
sy[i__] = w * sh21 + z__ * sh22;
/* L60: */
}
goto L140;
L70:
kx = 1;
ky = 1;
if (*incx < 0) {
kx = (1 - *n) * *incx + 1;
}
if (*incy < 0) {
ky = (1 - *n) * *incy + 1;
}
if (sflag < 0.f) {
goto L120;
} else if (sflag == 0) {
goto L80;
} else {
goto L100;
}
L80:
sh12 = sparam[4];
sh21 = sparam[3];
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
w = sx[kx];
z__ = sy[ky];
sx[kx] = w + z__ * sh12;
sy[ky] = w * sh21 + z__;
kx += *incx;
ky += *incy;
/* L90: */
}
goto L140;
L100:
sh11 = sparam[2];
sh22 = sparam[5];
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
w = sx[kx];
z__ = sy[ky];
sx[kx] = w * sh11 + z__;
sy[ky] = -w + sh22 * z__;
kx += *incx;
ky += *incy;
/* L110: */
}
goto L140;
L120:
sh11 = sparam[2];
sh12 = sparam[4];
sh21 = sparam[3];
sh22 = sparam[5];
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
w = sx[kx];
z__ = sy[ky];
sx[kx] = w * sh11 + z__ * sh12;
sy[ky] = w * sh21 + z__ * sh22;
kx += *incx;
ky += *incy;
/* L130: */
}
L140:
return 0;
} /* srotm_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/chbmv.c
|
.c
| 15,108
| 488
|
/* chbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *
alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
beta, complex *y, integer *incy, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
real r__1;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
complex temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHBMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n hermitian band matrix, with k super-diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the band matrix A is being supplied as */
/* follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* being supplied. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* being supplied. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of super-diagonals of the */
/* matrix A. K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the hermitian matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer the upper */
/* triangular part of a hermitian band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the hermitian matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer the lower */
/* triangular part of a hermitian band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Note that the imaginary parts of the diagonal elements need */
/* not be set and are assumed to be zero. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - COMPLEX array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the */
/* vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - COMPLEX . */
/* On entry, BETA specifies the scalar beta. */
/* Unchanged on exit. */
/* Y - COMPLEX array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the */
/* vector y. On exit, Y is overwritten by the updated vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--y;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*k < 0) {
info = 3;
} else if (*lda < *k + 1) {
info = 6;
} else if (*incx == 0) {
info = 8;
} else if (*incy == 0) {
info = 11;
}
if (info != 0) {
xerbla_("CHBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
beta->i == 0.f))) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array A */
/* are accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if (beta->r != 1.f || beta->i != 0.f) {
if (*incy == 1) {
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
y[i__2].r = 0.f, y[i__2].i = 0.f;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
i__3 = i__;
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
/* L20: */
}
}
} else {
iy = ky;
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
y[i__2].r = 0.f, y[i__2].i = 0.f;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
i__3 = iy;
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
iy += *incy;
/* L40: */
}
}
}
}
if (alpha->r == 0.f && alpha->i == 0.f) {
return 0;
}
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when upper triangle of A is stored. */
kplus1 = *k + 1;
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
i__2 = i__;
i__3 = i__;
i__5 = l + i__ + j * a_dim1;
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__2 = i__;
q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i =
q__3.r * x[i__2].i + q__3.i * x[i__2].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
/* L50: */
}
i__4 = j;
i__2 = j;
i__3 = kplus1 + j * a_dim1;
r__1 = a[i__3].r;
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i;
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__4 = jx;
q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i =
alpha->r * x[i__4].i + alpha->i * x[i__4].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
ix = kx;
iy = ky;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
i__4 = iy;
i__2 = iy;
i__5 = l + i__ + j * a_dim1;
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__4 = ix;
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
ix += *incx;
iy += *incy;
/* L70: */
}
i__3 = jy;
i__4 = jy;
i__2 = kplus1 + j * a_dim1;
r__1 = a[i__2].r;
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i;
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
jx += *incx;
jy += *incy;
if (j > *k) {
kx += *incx;
ky += *incy;
}
/* L80: */
}
}
} else {
/* Form y when lower triangle of A is stored. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__3 = j;
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
i__3 = j;
i__4 = j;
i__2 = j * a_dim1 + 1;
r__1 = a[i__2].r;
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
i__4 = i__;
i__2 = i__;
i__5 = l + i__ + j * a_dim1;
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__4 = i__;
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
/* L90: */
}
i__3 = j;
i__4 = j;
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__3 = jx;
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
i__3 = jy;
i__4 = jy;
i__2 = j * a_dim1 + 1;
r__1 = a[i__2].r;
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
l = 1 - j;
ix = jx;
iy = jy;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
ix += *incx;
iy += *incy;
i__4 = iy;
i__2 = iy;
i__5 = l + i__ + j * a_dim1;
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
i__4 = ix;
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
/* L110: */
}
i__3 = jy;
i__4 = jy;
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
jx += *incx;
jy += *incy;
/* L120: */
}
}
}
return 0;
/* End of CHBMV . */
} /* chbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/zhbmv.c
|
.c
| 15,144
| 489
|
/* zhbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
*alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
doublecomplex temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer kplus1;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZHBMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n hermitian band matrix, with k super-diagonals. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the band matrix A is being supplied as */
/* follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* being supplied. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* being supplied. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of super-diagonals of the */
/* matrix A. K must satisfy 0 .le. K. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX*16 . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/* by n part of the array A must contain the upper triangular */
/* band part of the hermitian matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row */
/* ( k + 1 ) of the array, the first super-diagonal starting at */
/* position 2 in row k, and so on. The top left k by k triangle */
/* of the array A is not referenced. */
/* The following program segment will transfer the upper */
/* triangular part of a hermitian band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = K + 1 - J */
/* DO 10, I = MAX( 1, J - K ), J */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/* by n part of the array A must contain the lower triangular */
/* band part of the hermitian matrix, supplied column by */
/* column, with the leading diagonal of the matrix in row 1 of */
/* the array, the first sub-diagonal starting at position 1 in */
/* row 2, and so on. The bottom right k by k triangle of the */
/* array A is not referenced. */
/* The following program segment will transfer the lower */
/* triangular part of a hermitian band matrix from conventional */
/* full matrix storage to band storage: */
/* DO 20, J = 1, N */
/* M = 1 - J */
/* DO 10, I = J, MIN( N, J + K ) */
/* A( M + I, J ) = matrix( I, J ) */
/* 10 CONTINUE */
/* 20 CONTINUE */
/* Note that the imaginary parts of the diagonal elements need */
/* not be set and are assumed to be zero. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* ( k + 1 ). */
/* Unchanged on exit. */
/* X - COMPLEX*16 array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the */
/* vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - COMPLEX*16 . */
/* On entry, BETA specifies the scalar beta. */
/* Unchanged on exit. */
/* Y - COMPLEX*16 array of DIMENSION at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the */
/* vector y. On exit, Y is overwritten by the updated vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--y;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*k < 0) {
info = 3;
} else if (*lda < *k + 1) {
info = 6;
} else if (*incx == 0) {
info = 8;
} else if (*incy == 0) {
info = 11;
}
if (info != 0) {
xerbla_("ZHBMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
beta->i == 0.))) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array A */
/* are accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if (beta->r != 1. || beta->i != 0.) {
if (*incy == 1) {
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
y[i__2].r = 0., y[i__2].i = 0.;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
i__3 = i__;
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
/* L20: */
}
}
} else {
iy = ky;
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
y[i__2].r = 0., y[i__2].i = 0.;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
i__3 = iy;
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
iy += *incy;
/* L40: */
}
}
}
}
if (alpha->r == 0. && alpha->i == 0.) {
return 0;
}
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when upper triangle of A is stored. */
kplus1 = *k + 1;
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
l = kplus1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *k;
i__4 = j - 1;
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
i__2 = i__;
i__3 = i__;
i__5 = l + i__ + j * a_dim1;
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__2 = i__;
z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
z__3.r * x[i__2].i + z__3.i * x[i__2].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L50: */
}
i__4 = j;
i__2 = j;
i__3 = kplus1 + j * a_dim1;
d__1 = a[i__3].r;
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__4 = jx;
z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
alpha->r * x[i__4].i + alpha->i * x[i__4].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
ix = kx;
iy = ky;
l = kplus1 - j;
/* Computing MAX */
i__4 = 1, i__2 = j - *k;
i__3 = j - 1;
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
i__4 = iy;
i__2 = iy;
i__5 = l + i__ + j * a_dim1;
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__4 = ix;
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
ix += *incx;
iy += *incy;
/* L70: */
}
i__3 = jy;
i__4 = jy;
i__2 = kplus1 + j * a_dim1;
d__1 = a[i__2].r;
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
jx += *incx;
jy += *incy;
if (j > *k) {
kx += *incx;
ky += *incy;
}
/* L80: */
}
}
} else {
/* Form y when lower triangle of A is stored. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__3 = j;
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
i__3 = j;
i__4 = j;
i__2 = j * a_dim1 + 1;
d__1 = a[i__2].r;
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
l = 1 - j;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
i__4 = i__;
i__2 = i__;
i__5 = l + i__ + j * a_dim1;
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__4 = i__;
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L90: */
}
i__3 = j;
i__4 = j;
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__3 = jx;
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
i__3 = jy;
i__4 = jy;
i__2 = j * a_dim1 + 1;
d__1 = a[i__2].r;
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
l = 1 - j;
ix = jx;
iy = jy;
/* Computing MIN */
i__4 = *n, i__2 = j + *k;
i__3 = min(i__4,i__2);
for (i__ = j + 1; i__ <= i__3; ++i__) {
ix += *incx;
iy += *incy;
i__4 = iy;
i__2 = iy;
i__5 = l + i__ + j * a_dim1;
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
.r;
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
i__4 = ix;
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L110: */
}
i__3 = jy;
i__4 = jy;
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
jx += *incx;
jy += *incy;
/* L120: */
}
}
}
return 0;
/* End of ZHBMV . */
} /* zhbmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/zhpmv.c
|
.c
| 13,060
| 439
|
/* zhpmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha,
doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
beta, doublecomplex *y, integer *incy, ftnlen uplo_len)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4, i__5;
doublereal d__1;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
doublecomplex temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZHPMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n hermitian matrix, supplied in packed form. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX*16 . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* AP - COMPLEX*16 array of DIMENSION at least */
/* ( ( n*( n + 1 ) )/2 ). */
/* Before entry with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the hermitian matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. */
/* Before entry with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the hermitian matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. */
/* Note that the imaginary parts of the diagonal elements need */
/* not be set and are assumed to be zero. */
/* Unchanged on exit. */
/* X - COMPLEX*16 array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - COMPLEX*16 . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then Y need not be set on input. */
/* Unchanged on exit. */
/* Y - COMPLEX*16 array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the n */
/* element vector y. On exit, Y is overwritten by the updated */
/* vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
--y;
--x;
--ap;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 6;
} else if (*incy == 0) {
info = 9;
}
if (info != 0) {
xerbla_("ZHPMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
beta->i == 0.))) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
/* First form y := beta*y. */
if (beta->r != 1. || beta->i != 0.) {
if (*incy == 1) {
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
y[i__2].r = 0., y[i__2].i = 0.;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
i__3 = i__;
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
/* L20: */
}
}
} else {
iy = ky;
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
y[i__2].r = 0., y[i__2].i = 0.;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
i__3 = iy;
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
iy += *incy;
/* L40: */
}
}
}
}
if (alpha->r == 0. && alpha->i == 0.) {
return 0;
}
kk = 1;
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when AP contains the upper triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
k = kk;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__;
i__4 = i__;
i__5 = k;
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
d_cnjg(&z__3, &ap[k]);
i__3 = i__;
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
++k;
/* L50: */
}
i__2 = j;
i__3 = j;
i__4 = kk + j - 1;
d__1 = ap[i__4].r;
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
kk += j;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
ix = kx;
iy = ky;
i__2 = kk + j - 2;
for (k = kk; k <= i__2; ++k) {
i__3 = iy;
i__4 = iy;
i__5 = k;
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
d_cnjg(&z__3, &ap[k]);
i__3 = ix;
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
ix += *incx;
iy += *incy;
/* L70: */
}
i__2 = jy;
i__3 = jy;
i__4 = kk + j - 1;
d__1 = ap[i__4].r;
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
jx += *incx;
jy += *incy;
kk += j;
/* L80: */
}
}
} else {
/* Form y when AP contains the lower triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
i__2 = j;
i__3 = j;
i__4 = kk;
d__1 = ap[i__4].r;
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
k = kk + 1;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = i__;
i__4 = i__;
i__5 = k;
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
d_cnjg(&z__3, &ap[k]);
i__3 = i__;
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
++k;
/* L90: */
}
i__2 = j;
i__3 = j;
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
kk += *n - j + 1;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
i__2 = jy;
i__3 = jy;
i__4 = kk;
d__1 = ap[i__4].r;
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
ix = jx;
iy = jy;
i__2 = kk + *n - j;
for (k = kk + 1; k <= i__2; ++k) {
ix += *incx;
iy += *incy;
i__3 = iy;
i__4 = iy;
i__5 = k;
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
d_cnjg(&z__3, &ap[k]);
i__3 = ix;
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L110: */
}
i__2 = jy;
i__3 = jy;
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
jx += *incx;
jy += *incy;
kk += *n - j + 1;
/* L120: */
}
}
}
return 0;
/* End of ZHPMV . */
} /* zhpmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/srotmg.c
|
.c
| 6,056
| 296
|
/* srotmg.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int srotmg_(real *sd1, real *sd2, real *sx1, real *sy1, real
*sparam)
{
/* Initialized data */
static real zero = 0.f;
static real one = 1.f;
static real two = 2.f;
static real gam = 4096.f;
static real gamsq = 16777200.f;
static real rgamsq = 5.96046e-8f;
/* Format strings */
static char fmt_120[] = "";
static char fmt_150[] = "";
static char fmt_180[] = "";
static char fmt_210[] = "";
/* System generated locals */
real r__1;
/* Local variables */
real su, sp1, sp2, sq1, sq2, sh11, sh12, sh21, sh22;
integer igo;
real sflag, stemp;
/* Assigned format variables */
static char *igo_fmt;
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
/* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* */
/* SY2)**T. */
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
/* H=( ) ( ) ( ) ( ) */
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
/* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 */
/* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE */
/* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) */
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
/* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
/* Arguments */
/* ========= */
/* SD1 (input/output) REAL */
/* SD2 (input/output) REAL */
/* SX1 (input/output) REAL */
/* SY1 (input) REAL */
/* SPARAM (input/output) REAL array, dimension 5 */
/* SPARAM(1)=SFLAG */
/* SPARAM(2)=SH11 */
/* SPARAM(3)=SH21 */
/* SPARAM(4)=SH12 */
/* SPARAM(5)=SH22 */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Data statements .. */
/* Parameter adjustments */
--sparam;
/* Function Body */
/* .. */
if (! (*sd1 < zero)) {
goto L10;
}
/* GO ZERO-H-D-AND-SX1.. */
goto L60;
L10:
/* CASE-SD1-NONNEGATIVE */
sp2 = *sd2 * *sy1;
if (! (sp2 == zero)) {
goto L20;
}
sflag = -two;
goto L260;
/* REGULAR-CASE.. */
L20:
sp1 = *sd1 * *sx1;
sq2 = sp2 * *sy1;
sq1 = sp1 * *sx1;
if (! (dabs(sq1) > dabs(sq2))) {
goto L40;
}
sh21 = -(*sy1) / *sx1;
sh12 = sp2 / sp1;
su = one - sh12 * sh21;
if (! (su <= zero)) {
goto L30;
}
/* GO ZERO-H-D-AND-SX1.. */
goto L60;
L30:
sflag = zero;
*sd1 /= su;
*sd2 /= su;
*sx1 *= su;
/* GO SCALE-CHECK.. */
goto L100;
L40:
if (! (sq2 < zero)) {
goto L50;
}
/* GO ZERO-H-D-AND-SX1.. */
goto L60;
L50:
sflag = one;
sh11 = sp1 / sp2;
sh22 = *sx1 / *sy1;
su = one + sh11 * sh22;
stemp = *sd2 / su;
*sd2 = *sd1 / su;
*sd1 = stemp;
*sx1 = *sy1 * su;
/* GO SCALE-CHECK */
goto L100;
/* PROCEDURE..ZERO-H-D-AND-SX1.. */
L60:
sflag = -one;
sh11 = zero;
sh12 = zero;
sh21 = zero;
sh22 = zero;
*sd1 = zero;
*sd2 = zero;
*sx1 = zero;
/* RETURN.. */
goto L220;
/* PROCEDURE..FIX-H.. */
L70:
if (! (sflag >= zero)) {
goto L90;
}
if (! (sflag == zero)) {
goto L80;
}
sh11 = one;
sh22 = one;
sflag = -one;
goto L90;
L80:
sh21 = -one;
sh12 = one;
sflag = -one;
L90:
switch (igo) {
case 0: goto L120;
case 1: goto L150;
case 2: goto L180;
case 3: goto L210;
}
/* PROCEDURE..SCALE-CHECK */
L100:
L110:
if (! (*sd1 <= rgamsq)) {
goto L130;
}
if (*sd1 == zero) {
goto L160;
}
igo = 0;
igo_fmt = fmt_120;
/* FIX-H.. */
goto L70;
L120:
/* Computing 2nd power */
r__1 = gam;
*sd1 *= r__1 * r__1;
*sx1 /= gam;
sh11 /= gam;
sh12 /= gam;
goto L110;
L130:
L140:
if (! (*sd1 >= gamsq)) {
goto L160;
}
igo = 1;
igo_fmt = fmt_150;
/* FIX-H.. */
goto L70;
L150:
/* Computing 2nd power */
r__1 = gam;
*sd1 /= r__1 * r__1;
*sx1 *= gam;
sh11 *= gam;
sh12 *= gam;
goto L140;
L160:
L170:
if (! (dabs(*sd2) <= rgamsq)) {
goto L190;
}
if (*sd2 == zero) {
goto L220;
}
igo = 2;
igo_fmt = fmt_180;
/* FIX-H.. */
goto L70;
L180:
/* Computing 2nd power */
r__1 = gam;
*sd2 *= r__1 * r__1;
sh21 /= gam;
sh22 /= gam;
goto L170;
L190:
L200:
if (! (dabs(*sd2) >= gamsq)) {
goto L220;
}
igo = 3;
igo_fmt = fmt_210;
/* FIX-H.. */
goto L70;
L210:
/* Computing 2nd power */
r__1 = gam;
*sd2 /= r__1 * r__1;
sh21 *= gam;
sh22 *= gam;
goto L200;
L220:
if (sflag < 0.f) {
goto L250;
} else if (sflag == 0) {
goto L230;
} else {
goto L240;
}
L230:
sparam[3] = sh21;
sparam[4] = sh12;
goto L260;
L240:
sparam[2] = sh11;
sparam[5] = sh22;
goto L260;
L250:
sparam[2] = sh11;
sparam[3] = sh21;
sparam[4] = sh12;
sparam[5] = sh22;
L260:
sparam[1] = sflag;
return 0;
} /* srotmg_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/blas/f2c/chpmv.c
|
.c
| 13,026
| 439
|
/* chpmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
ap, complex *x, integer *incx, complex *beta, complex *y, integer *
incy, ftnlen uplo_len)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4, i__5;
real r__1;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
complex temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHPMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */
/* A is an n by n hermitian matrix, supplied in packed form. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* AP - COMPLEX array of DIMENSION at least */
/* ( ( n*( n + 1 ) )/2 ). */
/* Before entry with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the hermitian matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. */
/* Before entry with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the hermitian matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. */
/* Note that the imaginary parts of the diagonal elements need */
/* not be set and are assumed to be zero. */
/* Unchanged on exit. */
/* X - COMPLEX array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* BETA - COMPLEX . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then Y need not be set on input. */
/* Unchanged on exit. */
/* Y - COMPLEX array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the n */
/* element vector y. On exit, Y is overwritten by the updated */
/* vector y. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* Further Details */
/* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
--y;
--x;
--ap;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 6;
} else if (*incy == 0) {
info = 9;
}
if (info != 0) {
xerbla_("CHPMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
beta->i == 0.f))) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
/* First form y := beta*y. */
if (beta->r != 1.f || beta->i != 0.f) {
if (*incy == 1) {
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
y[i__2].r = 0.f, y[i__2].i = 0.f;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
i__3 = i__;
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
/* L20: */
}
}
} else {
iy = ky;
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
y[i__2].r = 0.f, y[i__2].i = 0.f;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = iy;
i__3 = iy;
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
.r;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
iy += *incy;
/* L40: */
}
}
}
}
if (alpha->r == 0.f && alpha->i == 0.f) {
return 0;
}
kk = 1;
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when AP contains the upper triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
k = kk;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__;
i__4 = i__;
i__5 = k;
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
r_cnjg(&q__3, &ap[k]);
i__3 = i__;
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
++k;
/* L50: */
}
i__2 = j;
i__3 = j;
i__4 = kk + j - 1;
r__1 = ap[i__4].r;
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
kk += j;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
ix = kx;
iy = ky;
i__2 = kk + j - 2;
for (k = kk; k <= i__2; ++k) {
i__3 = iy;
i__4 = iy;
i__5 = k;
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
r_cnjg(&q__3, &ap[k]);
i__3 = ix;
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
ix += *incx;
iy += *incy;
/* L70: */
}
i__2 = jy;
i__3 = jy;
i__4 = kk + j - 1;
r__1 = ap[i__4].r;
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
jx += *incx;
jy += *incy;
kk += j;
/* L80: */
}
}
} else {
/* Form y when AP contains the lower triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
i__2 = j;
i__3 = j;
i__4 = kk;
r__1 = ap[i__4].r;
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
k = kk + 1;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = i__;
i__4 = i__;
i__5 = k;
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
r_cnjg(&q__3, &ap[k]);
i__3 = i__;
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
++k;
/* L90: */
}
i__2 = j;
i__3 = j;
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
kk += *n - j + 1;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
temp1.r = q__1.r, temp1.i = q__1.i;
temp2.r = 0.f, temp2.i = 0.f;
i__2 = jy;
i__3 = jy;
i__4 = kk;
r__1 = ap[i__4].r;
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
ix = jx;
iy = jy;
i__2 = kk + *n - j;
for (k = kk + 1; k <= i__2; ++k) {
ix += *incx;
iy += *incy;
i__3 = iy;
i__4 = iy;
i__5 = k;
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
.r;
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
r_cnjg(&q__3, &ap[k]);
i__3 = ix;
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
temp2.r = q__1.r, temp2.i = q__1.i;
/* L110: */
}
i__2 = jy;
i__3 = jy;
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
alpha->r * temp2.i + alpha->i * temp2.r;
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
jx += *incx;
jy += *incy;
kk += *n - j + 1;
/* L120: */
}
}
}
return 0;
/* End of CHPMV . */
} /* chpmv_ */
|
C
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/tutorial.cpp
|
.cpp
| 2,544
| 63
|
#include <Eigen/Array>
int main(int argc, char *argv[])
{
std::cout.precision(2);
// demo static functions
Eigen::Matrix3f m3 = Eigen::Matrix3f::Random();
Eigen::Matrix4f m4 = Eigen::Matrix4f::Identity();
std::cout << "*** Step 1 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
// demo non-static set... functions
m4.setZero();
m3.diagonal().setOnes();
std::cout << "*** Step 2 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
// demo fixed-size block() expression as lvalue and as rvalue
m4.block<3,3>(0,1) = m3;
m3.row(2) = m4.block<1,3>(2,0);
std::cout << "*** Step 3 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
// demo dynamic-size block()
{
int rows = 3, cols = 3;
m4.block(0,1,3,3).setIdentity();
std::cout << "*** Step 4 ***\nm4:\n" << m4 << std::endl;
}
// demo vector blocks
m4.diagonal().block(1,2).setOnes();
std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl;
std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl;
// demo coeff-wise operations
m4 = m4.cwise()*m4;
m3 = m3.cwise().cos();
std::cout << "*** Step 6 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
// sums of coefficients
std::cout << "*** Step 7 ***\n m4.sum(): " << m4.sum() << std::endl;
std::cout << "m4.col(2).sum(): " << m4.col(2).sum() << std::endl;
std::cout << "m4.colwise().sum():\n" << m4.colwise().sum() << std::endl;
std::cout << "m4.rowwise().sum():\n" << m4.rowwise().sum() << std::endl;
// demo intelligent auto-evaluation
m4 = m4 * m4; // auto-evaluates so no aliasing problem (performance penalty is low)
Eigen::Matrix4f other = (m4 * m4).lazy(); // forces lazy evaluation
m4 = m4 + m4; // here Eigen goes for lazy evaluation, as with most expressions
m4 = -m4 + m4 + 5 * m4; // same here, Eigen chooses lazy evaluation for all that.
m4 = m4 * (m4 + m4); // here Eigen chooses to first evaluate m4 + m4 into a temporary.
// indeed, here it is an optimization to cache this intermediate result.
m3 = m3 * m4.block<3,3>(1,1); // here Eigen chooses NOT to evaluate block() into a temporary
// because accessing coefficients of that block expression is not more costly than accessing
// coefficients of a plain matrix.
m4 = m4 * m4.transpose(); // same here, lazy evaluation of the transpose.
m4 = m4 * m4.transpose().eval(); // forces immediate evaluation of the transpose
std::cout << "*** Step 8 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
}
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/special_examples/Tutorial_sparse_example.cpp
|
.cpp
| 1,183
| 39
|
#include <Eigen/Sparse>
#include <vector>
#include <iostream>
typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
typedef Eigen::Triplet<double> T;
void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n);
void saveAsBitmap(const Eigen::VectorXd& x, int n, const char* filename);
int main(int argc, char** argv)
{
if(argc!=2) {
std::cerr << "Error: expected one and only one argument.\n";
return -1;
}
int n = 300; // size of the image
int m = n*n; // number of unknows (=number of pixels)
// Assembly:
std::vector<T> coefficients; // list of non-zeros coefficients
Eigen::VectorXd b(m); // the right hand side-vector resulting from the constraints
buildProblem(coefficients, b, n);
SpMat A(m,m);
A.setFromTriplets(coefficients.begin(), coefficients.end());
// Solving:
Eigen::SimplicialCholesky<SpMat> chol(A); // performs a Cholesky factorization of A
Eigen::VectorXd x = chol.solve(b); // use the factorization to solve for the given right hand side
// Export the result to a file:
saveAsBitmap(x, n, argv[1]);
return 0;
}
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/special_examples/random_cpp11.cpp
|
.cpp
| 336
| 15
|
#include <Eigen/Core>
#include <iostream>
#include <random>
using namespace Eigen;
int main() {
std::default_random_engine generator;
std::poisson_distribution<int> distribution(4.1);
auto poisson = [&] () {return distribution(generator);};
RowVectorXi v = RowVectorXi::NullaryExpr(10, poisson );
std::cout << v << "\n";
}
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/special_examples/Tutorial_sparse_example_details.cpp
|
.cpp
| 1,576
| 45
|
#include <Eigen/Sparse>
#include <vector>
#include <QImage>
typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
typedef Eigen::Triplet<double> T;
void insertCoefficient(int id, int i, int j, double w, std::vector<T>& coeffs,
Eigen::VectorXd& b, const Eigen::VectorXd& boundary)
{
int n = int(boundary.size());
int id1 = i+j*n;
if(i==-1 || i==n) b(id) -= w * boundary(j); // constrained coefficient
else if(j==-1 || j==n) b(id) -= w * boundary(i); // constrained coefficient
else coeffs.push_back(T(id,id1,w)); // unknown coefficient
}
void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n)
{
b.setZero();
Eigen::ArrayXd boundary = Eigen::ArrayXd::LinSpaced(n, 0,M_PI).sin().pow(2);
for(int j=0; j<n; ++j)
{
for(int i=0; i<n; ++i)
{
int id = i+j*n;
insertCoefficient(id, i-1,j, -1, coefficients, b, boundary);
insertCoefficient(id, i+1,j, -1, coefficients, b, boundary);
insertCoefficient(id, i,j-1, -1, coefficients, b, boundary);
insertCoefficient(id, i,j+1, -1, coefficients, b, boundary);
insertCoefficient(id, i,j, 4, coefficients, b, boundary);
}
}
}
void saveAsBitmap(const Eigen::VectorXd& x, int n, const char* filename)
{
Eigen::Array<unsigned char,Eigen::Dynamic,Eigen::Dynamic> bits = (x*255).cast<unsigned char>();
QImage img(bits.data(), n,n,QImage::Format_Indexed8);
img.setColorCount(256);
for(int i=0;i<256;i++) img.setColor(i,qRgb(i,i,i));
img.save(filename);
}
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/GeneralizedEigenSolver.cpp
|
.cpp
| 456
| 8
|
GeneralizedEigenSolver<MatrixXf> ges;
MatrixXf A = MatrixXf::Random(4,4);
MatrixXf B = MatrixXf::Random(4,4);
ges.compute(A, B);
cout << "The (complex) numerators of the generalzied eigenvalues are: " << ges.alphas().transpose() << endl;
cout << "The (real) denominatore of the generalzied eigenvalues are: " << ges.betas().transpose() << endl;
cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/PartialRedux_norm.cpp
|
.cpp
| 169
| 4
|
Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the norm of each column:" << endl << m.colwise().norm() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_tanh.cpp
|
.cpp
| 64
| 3
|
ArrayXd v = ArrayXd::LinSpaced(5,0,1);
cout << tanh(v) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/LLT_example.cpp
|
.cpp
| 519
| 13
|
MatrixXd A(3,3);
A << 4,-1,2, -1,6,0, 2,0,5;
cout << "The matrix A is" << endl << A << endl;
LLT<MatrixXd> lltOfA(A); // compute the Cholesky decomposition of A
MatrixXd L = lltOfA.matrixL(); // retrieve factor L in the decomposition
// The previous two lines can also be written as "L = A.llt().matrixL()"
cout << "The Cholesky factor L is" << endl << L << endl;
cout << "To check this, let us compute L * L.transpose()" << endl;
cout << L * L.transpose() << endl;
cout << "This should equal the matrix A" << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_reverse.cpp
|
.cpp
| 407
| 9
|
MatrixXi m = MatrixXi::Random(3,4);
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the reverse of m:" << endl << m.reverse() << endl;
cout << "Here is the coefficient (1,0) in the reverse of m:" << endl
<< m.reverse()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 4." << endl;
m.reverse()(1,0) = 4;
cout << "Now the matrix m is:" << endl << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseAbs2.cpp
|
.cpp
| 81
| 5
|
MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/tut_arithmetic_transpose_conjugate.cpp
|
.cpp
| 277
| 13
|
MatrixXcf a = MatrixXcf::Random(2,2);
cout << "Here is the matrix a\n" << a << endl;
cout << "Here is the matrix a^T\n" << a.transpose() << endl;
cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
cout << "Here is the matrix a^*\n" << a.adjoint() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_block_int_int_int_int.cpp
|
.cpp
| 250
| 6
|
Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/FullPivHouseholderQR_solve.cpp
|
.cpp
| 325
| 9
|
Matrix3f m = Matrix3f::Random();
Matrix3f y = Matrix3f::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the matrix y:" << endl << y << endl;
Matrix3f x;
x = m.fullPivHouseholderQr().solve(y);
assert(y.isApprox(m*x));
cout << "Here is a solution x to the equation mx=y:" << endl << x << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_int_topRightCorner.cpp
|
.cpp
| 268
| 7
|
Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/RealSchur_RealSchur_MatrixType.cpp
|
.cpp
| 429
| 11
|
MatrixXd A = MatrixXd::Random(6,6);
cout << "Here is a random 6x6 matrix, A:" << endl << A << endl << endl;
RealSchur<MatrixXd> schur(A);
cout << "The orthogonal matrix U is:" << endl << schur.matrixU() << endl;
cout << "The quasi-triangular matrix T is:" << endl << schur.matrixT() << endl << endl;
MatrixXd U = schur.matrixU();
MatrixXd T = schur.matrixT();
cout << "U * T * U^T = " << endl << U * T * U.transpose() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/DenseBase_LinSpaced_seq.cpp
|
.cpp
| 139
| 3
|
cout << VectorXi::LinSpaced(Sequential,4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(Sequential,5,0.0,1.0).transpose() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/DirectionWise_hnormalized.cpp
|
.cpp
| 411
| 7
|
typedef Matrix<double,4,Dynamic> Matrix4Xd;
Matrix4Xd M = Matrix4Xd::Random(4,5);
Projective3d P(Matrix4d::Random());
cout << "The matrix M is:" << endl << M << endl << endl;
cout << "M.colwise().hnormalized():" << endl << M.colwise().hnormalized() << endl << endl;
cout << "P*M:" << endl << P*M << endl << endl;
cout << "(P*M).colwise().hnormalized():" << endl << (P*M).colwise().hnormalized() << endl << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_inverse.cpp
|
.cpp
| 47
| 3
|
Array3d v(2,3,4);
cout << v.inverse() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_end.cpp
|
.cpp
| 230
| 6
|
RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/DirectionWise_replicate.cpp
|
.cpp
| 186
| 5
|
MatrixXi m = MatrixXi::Random(2,3);
cout << "Here is the matrix m:" << endl << m << endl;
cout << "m.colwise().replicate<3>() = ..." << endl;
cout << m.colwise().replicate<3>() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/HessenbergDecomposition_packedMatrix.cpp
|
.cpp
| 482
| 10
|
Matrix4d A = Matrix4d::Random(4,4);
cout << "Here is a random 4x4 matrix:" << endl << A << endl;
HessenbergDecomposition<Matrix4d> hessOfA(A);
Matrix4d pm = hessOfA.packedMatrix();
cout << "The packed matrix M is:" << endl << pm << endl;
cout << "The upper Hessenberg part corresponds to the matrix H, which is:"
<< endl << hessOfA.matrixH() << endl;
Vector3d hc = hessOfA.householderCoefficients();
cout << "The vector of Householder coefficients is:" << endl << hc << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_zero.cpp
|
.cpp
| 71
| 3
|
cout << Matrix2d::Zero() << endl;
cout << RowVector4i::Zero() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_segment.cpp
|
.cpp
| 244
| 6
|
RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_computeInverseAndDetWithCheck.cpp
|
.cpp
| 410
| 14
|
Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
Matrix3d inverse;
bool invertible;
double determinant;
m.computeInverseAndDetWithCheck(inverse,determinant,invertible);
cout << "Its determinant is " << determinant << endl;
if(invertible) {
cout << "It is invertible, and its inverse is:" << endl << inverse << endl;
}
else {
cout << "It is not invertible." << endl;
}
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Map_outer_stride.cpp
|
.cpp
| 138
| 4
|
int array[12];
for(int i = 0; i < 12; ++i) array[i] = i;
cout << Map<MatrixXi, 0, OuterStride<> >(array, 3, 3, OuterStride<>(4)) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_bottomRows.cpp
|
.cpp
| 248
| 7
|
Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_int_bottomRightCorner_int_int.cpp
|
.cpp
| 304
| 7
|
Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl;
m.bottomRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_ones_int_int.cpp
|
.cpp
| 37
| 2
|
cout << MatrixXi::Ones(2,3) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tridiagonalization_compute.cpp
|
.cpp
| 392
| 10
|
Tridiagonalization<MatrixXf> tri;
MatrixXf X = MatrixXf::Random(4,4);
MatrixXf A = X + X.transpose();
tri.compute(A);
cout << "The matrix T in the tridiagonal decomposition of A is: " << endl;
cout << tri.matrixT() << endl;
tri.compute(2*A); // re-use tri to compute eigenvalues of 2A
cout << "The matrix T in the tridiagonal decomposition of 2A is: " << endl;
cout << tri.matrixT() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_boolean_not.cpp
|
.cpp
| 105
| 6
|
Array3d v(1,2,3);
v(1) *= 0.0/0.0;
v(2) /= 0.0;
cout << v << endl << endl;
cout << !isfinite(v) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/ComplexEigenSolver_eigenvectors.cpp
|
.cpp
| 194
| 5
|
MatrixXcf ones = MatrixXcf::Ones(3,3);
ComplexEigenSolver<MatrixXcf> ces(ones);
cout << "The first eigenvector of the 3x3 matrix of ones is:"
<< endl << ces.eigenvectors().col(1) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tutorial_solve_matrix_inverse.cpp
|
.cpp
| 146
| 7
|
Matrix3f A;
Vector3f b;
A << 1,2,3, 4,5,6, 7,8,10;
b << 3, 3, 4;
Vector3f x = A.inverse() * b;
cout << "The solution is:" << endl << x << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Triangular_solve.cpp
|
.cpp
| 520
| 12
|
Matrix3d m = Matrix3d::Zero();
m.triangularView<Eigen::Upper>().setOnes();
cout << "Here is the matrix m:\n" << m << endl;
Matrix3d n = Matrix3d::Ones();
n.triangularView<Eigen::Lower>() *= 2;
cout << "Here is the matrix n:\n" << n << endl;
cout << "And now here is m.inverse()*n, taking advantage of the fact that"
" m is upper-triangular:\n"
<< m.triangularView<Eigen::Upper>().solve(n) << endl;
cout << "And this is n*m.inverse():\n"
<< m.triangularView<Eigen::Upper>().solve<Eigen::OnTheRight>(n);
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_operatorNorm.cpp
|
.cpp
| 132
| 4
|
MatrixXd ones = MatrixXd::Ones(3,3);
cout << "The operator norm of the 3x3 matrix of ones is "
<< ones.operatorNorm() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/AngleAxis_mimic_euler.cpp
|
.cpp
| 210
| 6
|
Matrix3f m;
m = AngleAxisf(0.25*M_PI, Vector3f::UnitX())
* AngleAxisf(0.5*M_PI, Vector3f::UnitY())
* AngleAxisf(0.33*M_PI, Vector3f::UnitZ());
cout << m << endl << "is unitary: " << m.isUnitary() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tutorial_AdvancedInitialization_LinSpaced.cpp
|
.cpp
| 272
| 8
|
ArrayXXf table(10, 4);
table.col(0) = ArrayXf::LinSpaced(10, 0, 90);
table.col(1) = M_PI / 180 * table.col(0);
table.col(2) = table.col(1).sin();
table.col(3) = table.col(1).cos();
std::cout << " Degrees Radians Sine Cosine\n";
std::cout << table << std::endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Matrix_setConstant_int_int.cpp
|
.cpp
| 55
| 4
|
MatrixXf m;
m.setConstant(3, 3, 5);
cout << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_applyOnTheLeft.cpp
|
.cpp
| 207
| 8
|
Matrix3f A = Matrix3f::Random(3,3), B;
B << 0,1,0,
0,0,1,
1,0,0;
cout << "At start, A = " << endl << A << endl;
A.applyOnTheLeft(B);
cout << "After applyOnTheLeft, A = " << endl << A << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseInverse.cpp
|
.cpp
| 87
| 5
|
MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_setOnes.cpp
|
.cpp
| 72
| 4
|
Matrix4i m = Matrix4i::Random();
m.row(1).setOnes();
cout << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_acos.cpp
|
.cpp
| 55
| 3
|
Array3d v(0, sqrt(2.)/2, 1);
cout << v.acos() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/DenseBase_LinSpacedInt.cpp
|
.cpp
| 420
| 9
|
cout << "Even spacing inputs:" << endl;
cout << VectorXi::LinSpaced(8,1,4).transpose() << endl;
cout << VectorXi::LinSpaced(8,1,8).transpose() << endl;
cout << VectorXi::LinSpaced(8,1,15).transpose() << endl;
cout << "Uneven spacing inputs:" << endl;
cout << VectorXi::LinSpaced(8,1,7).transpose() << endl;
cout << VectorXi::LinSpaced(8,1,9).transpose() << endl;
cout << VectorXi::LinSpaced(8,1,16).transpose() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_pow.cpp
|
.cpp
| 53
| 3
|
Array3d v(8,27,64);
cout << v.pow(0.333333) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_isIdentity.cpp
|
.cpp
| 235
| 6
|
Matrix3d m = Matrix3d::Identity();
m(0,2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isIdentity() returns: " << m.isIdentity() << endl;
cout << "m.isIdentity(1e-3) returns: " << m.isIdentity(1e-3) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tutorial_solve_triangular_inplace.cpp
|
.cpp
| 159
| 7
|
Matrix3f A;
Vector3f b;
A << 1,2,3, 0,5,6, 0,0,10;
b << 3, 3, 4;
A.triangularView<Upper>().solveInPlace(b);
cout << "The solution is:" << endl << b << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/class_FullPivLU.cpp
|
.cpp
| 732
| 17
|
typedef Matrix<double, 5, 3> Matrix5x3;
typedef Matrix<double, 5, 5> Matrix5x5;
Matrix5x3 m = Matrix5x3::Random();
cout << "Here is the matrix m:" << endl << m << endl;
Eigen::FullPivLU<Matrix5x3> lu(m);
cout << "Here is, up to permutations, its LU decomposition matrix:"
<< endl << lu.matrixLU() << endl;
cout << "Here is the L part:" << endl;
Matrix5x5 l = Matrix5x5::Identity();
l.block<5,3>(0,0).triangularView<StrictlyLower>() = lu.matrixLU();
cout << l << endl;
cout << "Here is the U part:" << endl;
Matrix5x3 u = lu.matrixLU().triangularView<Upper>();
cout << u << endl;
cout << "Let us now reconstruct the original matrix m:" << endl;
cout << lu.permutationP().inverse() * l * u * lu.permutationQ().inverse() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_abs2.cpp
|
.cpp
| 46
| 3
|
Array3d v(1,-2,-3);
cout << v.abs2() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tutorial_Map_using.cpp
|
.cpp
| 896
| 22
|
typedef Matrix<float,1,Dynamic> MatrixType;
typedef Map<MatrixType> MapType;
typedef Map<const MatrixType> MapTypeConst; // a read-only map
const int n_dims = 5;
MatrixType m1(n_dims), m2(n_dims);
m1.setRandom();
m2.setRandom();
float *p = &m2(0); // get the address storing the data for m2
MapType m2map(p,m2.size()); // m2map shares data with m2
MapTypeConst m2mapconst(p,m2.size()); // a read-only accessor for m2
cout << "m1: " << m1 << endl;
cout << "m2: " << m2 << endl;
cout << "Squared euclidean distance: " << (m1-m2).squaredNorm() << endl;
cout << "Squared euclidean distance, using map: " <<
(m1-m2map).squaredNorm() << endl;
m2map(3) = 7; // this will change m2, since they share the same array
cout << "Updated m2: " << m2 << endl;
cout << "m2 coefficient 2, constant accessor: " << m2mapconst(2) << endl;
/* m2mapconst(2) = 5; */ // this yields a compile-time error
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tridiagonalization_packedMatrix.cpp
|
.cpp
| 394
| 9
|
Matrix4d X = Matrix4d::Random(4,4);
Matrix4d A = X + X.transpose();
cout << "Here is a random symmetric 4x4 matrix:" << endl << A << endl;
Tridiagonalization<Matrix4d> triOfA(A);
Matrix4d pm = triOfA.packedMatrix();
cout << "The packed matrix M is:" << endl << pm << endl;
cout << "The diagonal and subdiagonal corresponds to the matrix T, which is:"
<< endl << triOfA.matrixT() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Matrix_setIdentity_int_int.cpp
|
.cpp
| 52
| 4
|
MatrixXf m;
m.setIdentity(3, 3);
cout << m << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tutorial_AdvancedInitialization_CommaTemporary.cpp
|
.cpp
| 168
| 5
|
MatrixXf mat = MatrixXf::Random(2, 3);
std::cout << mat << std::endl << std::endl;
mat = (MatrixXf(2,2) << 0, 1, 1, 0).finished() * mat;
std::cout << mat << std::endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/FullPivLU_kernel.cpp
|
.cpp
| 317
| 8
|
MatrixXf m = MatrixXf::Random(3,5);
cout << "Here is the matrix m:" << endl << m << endl;
MatrixXf ker = m.fullPivLu().kernel();
cout << "Here is a matrix whose columns form a basis of the kernel of m:"
<< endl << ker << endl;
cout << "By definition of the kernel, m*ker is zero:"
<< endl << m*ker << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Tutorial_solve_singular.cpp
|
.cpp
| 256
| 10
|
Matrix3f A;
Vector3f b;
A << 1,2,3, 4,5,6, 7,8,9;
b << 3, 3, 4;
cout << "Here is the matrix A:" << endl << A << endl;
cout << "Here is the vector b:" << endl << b << endl;
Vector3f x;
x = A.lu().solve(b);
cout << "The solution is:" << endl << x << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_array_const.cpp
|
.cpp
| 234
| 5
|
Vector3d v(-1,2,-3);
cout << "the absolute values:" << endl << v.array().abs() << endl;
cout << "the absolute values plus one:" << endl << v.array().abs()+1 << endl;
cout << "sum of the squares: " << v.array().square().sum() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/SparseMatrix_coeffs.cpp
|
.cpp
| 411
| 10
|
SparseMatrix<double> A(3,3);
A.insert(1,2) = 0;
A.insert(0,1) = 1;
A.insert(2,0) = 2;
A.makeCompressed();
cout << "The matrix A is:" << endl << MatrixXd(A) << endl;
cout << "it has " << A.nonZeros() << " stored non zero coefficients that are: " << A.coeffs().transpose() << endl;
A.coeffs() += 10;
cout << "After adding 10 to every stored non zero coefficient, the matrix A is:" << endl << MatrixXd(A) << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/TopicAliasing_mult4.cpp
|
.cpp
| 101
| 5
|
MatrixXf A(2,2), B(3,2);
B << 2, 0, 0, 3, 1, 1;
A << 2, 0, 0, -2;
A = (B * A).cwiseAbs();
cout << A;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/Cwise_minus_equal.cpp
|
.cpp
| 45
| 4
|
Array3d v(1,2,3);
v -= 5;
cout << v << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/SelfAdjointEigenSolver_eigenvalues.cpp
|
.cpp
| 180
| 5
|
MatrixXd ones = MatrixXd::Ones(3,3);
SelfAdjointEigenSolver<MatrixXd> es(ones);
cout << "The eigenvalues of the 3x3 matrix of ones are:"
<< endl << es.eigenvalues() << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_leftCols_int.cpp
|
.cpp
| 236
| 7
|
Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;
|
C++
|
2D
|
JaeHyunLee94/mpm2d
|
external/eigen-3.3.9/doc/snippets/MatrixBase_topRightCorner_int_int.cpp
|
.cpp
| 265
| 7
|
Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
|
C++
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.