keyword
stringclasses
7 values
repo_name
stringlengths
8
98
file_path
stringlengths
4
244
file_extension
stringclasses
29 values
file_size
int64
0
84.1M
line_count
int64
0
1.6M
content
stringlengths
1
84.1M
language
stringclasses
14 values
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_square.cpp
.cpp
46
3
Array3d v(2,3,4); cout << v.square() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_log10.cpp
.cpp
47
3
Array4d v(-1,0,1,2); cout << log10(v) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_less_equal.cpp
.cpp
52
3
Array3d v(1,2,3), w(3,2,1); cout << (v<=w) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseSqrt.cpp
.cpp
50
3
Vector3d v(1,2,4); cout << v.cwiseSqrt() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_isNaN.cpp
.cpp
101
6
Array3d v(1,2,3); v(1) *= 0.0/0.0; v(2) /= 0.0; cout << v << endl << endl; cout << isnan(v) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_zero_int_int.cpp
.cpp
37
2
cout << MatrixXi::Zero(2,3) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tutorial_solve_reuse_decomposition.cpp
.cpp
368
14
Matrix3f A(3,3); A << 1,2,3, 4,5,6, 7,8,10; PartialPivLU<Matrix3f> luOfA(A); // compute LU decomposition of A Vector3f b; b << 3,3,4; Vector3f x; x = luOfA.solve(b); cout << "The solution with right-hand side (3,3,4) is:" << endl; cout << x << endl; b << 1,1,1; x = luOfA.solve(b); cout << "The solution with right-hand side (1,1,1) is:" << endl; cout << x << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_adjoint.cpp
.cpp
169
4
Matrix2cf m = Matrix2cf::Random(); cout << "Here is the 2x2 complex matrix m:" << endl << m << endl; cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_eigenvalues.cpp
.cpp
160
4
MatrixXd ones = MatrixXd::Ones(3,3); VectorXcd eivals = ones.eigenvalues(); cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Matrix_resize_int.cpp
.cpp
235
7
VectorXd v(10); v.resize(3); RowVector3d w; w.resize(3); // this is legal, but has no effect cout << "v: " << v.rows() << " rows, " << v.cols() << " cols" << endl; cout << "w: " << w.rows() << " rows, " << w.cols() << " cols" << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Jacobi_makeGivens.cpp
.cpp
235
6
Vector2f v = Vector2f::Random(); JacobiRotation<float> G; G.makeGivens(v.x(), v.y()); cout << "Here is the vector v:" << endl << v << endl; v.applyOnTheLeft(0, 1, G.adjoint()); cout << "Here is the vector J' * v:" << endl << v << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/SelfAdjointView_eigenvalues.cpp
.cpp
184
4
MatrixXd ones = MatrixXd::Ones(3,3); VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues(); cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseSign.cpp
.cpp
80
5
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseSign() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_random_int.cpp
.cpp
37
2
cout << VectorXi::Random(2) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/TopicAliasing_mult5.cpp
.cpp
109
6
MatrixXf A(2,2), B(3,2); B << 2, 0, 0, 3, 1, 1; A << 2, 0, 0, -2; A = (B * A).eval().cwiseAbs(); cout << A;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tutorial_commainit_01b.cpp
.cpp
113
6
Matrix3f m; m.row(0) << 1, 2, 3; m.block(1,0,2,2) << 4, 5, 7, 8; m.col(2).tail(2) << 6, 9; std::cout << m;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Map_general_stride.cpp
.cpp
164
6
int array[24]; for(int i = 0; i < 24; ++i) array[i] = i; cout << Map<MatrixXi, 0, Stride<Dynamic,2> > (array, 3, 3, Stride<Dynamic,2>(8, 2)) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_rowwise.cpp
.cpp
281
6
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the sum of each row:" << endl << m.rowwise().sum() << endl; cout << "Here is the maximum absolute value of each row:" << endl << m.cwiseAbs().rowwise().maxCoeff() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/SelfAdjointEigenSolver_operatorSqrt.cpp
.cpp
363
9
MatrixXd X = MatrixXd::Random(4,4); MatrixXd A = X * X.transpose(); cout << "Here is a random positive-definite matrix, A:" << endl << A << endl << endl; SelfAdjointEigenSolver<MatrixXd> es(A); MatrixXd sqrtA = es.operatorSqrt(); cout << "The square root of A is: " << endl << sqrtA << endl; cout << "If we square this, we get: " << endl << sqrtA*sqrtA << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_slash_equal.cpp
.cpp
55
4
Array3d v(3,2,4), w(5,4,2); v /= w; cout << v << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tutorial_AdvancedInitialization_ThreeWays.cpp
.cpp
878
21
const int size = 6; MatrixXd mat1(size, size); mat1.topLeftCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2); mat1.topRightCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2); mat1.bottomLeftCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2); mat1.bottomRightCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2); std::cout << mat1 << std::endl << std::endl; MatrixXd mat2(size, size); mat2.topLeftCorner(size/2, size/2).setZero(); mat2.topRightCorner(size/2, size/2).setIdentity(); mat2.bottomLeftCorner(size/2, size/2).setIdentity(); mat2.bottomRightCorner(size/2, size/2).setZero(); std::cout << mat2 << std::endl << std::endl; MatrixXd mat3(size, size); mat3 << MatrixXd::Zero(size/2, size/2), MatrixXd::Identity(size/2, size/2), MatrixXd::Identity(size/2, size/2), MatrixXd::Zero(size/2, size/2); std::cout << mat3 << std::endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/PartialRedux_maxCoeff.cpp
.cpp
176
4
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the maximum of each column:" << endl << m.colwise().maxCoeff() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_identity_int_int.cpp
.cpp
42
2
cout << MatrixXd::Identity(4, 3) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/TopicAliasing_block.cpp
.cpp
267
8
MatrixXi mat(3,3); mat << 1, 2, 3, 4, 5, 6, 7, 8, 9; cout << "Here is the matrix mat:\n" << mat << endl; // This assignment shows the aliasing problem mat.bottomRightCorner(2,2) = mat.topLeftCorner(2,2); cout << "After the assignment, mat = \n" << mat << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_fixedBlock_int_int.cpp
.cpp
274
6
Matrix4d m = Vector4d(1,2,3,4).asDiagonal(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.fixed<2, 2>(2, 2):" << endl << m.block<2, 2>(2, 2) << endl; m.block<2, 2>(2, 0) = m.block<2, 2>(2, 2); cout << "Now the matrix m is:" << endl << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_all.cpp
.cpp
523
8
Vector3f boxMin(Vector3f::Zero()), boxMax(Vector3f::Ones()); Vector3f p0 = Vector3f::Random(), p1 = Vector3f::Random().cwiseAbs(); // let's check if p0 and p1 are inside the axis aligned box defined by the corners boxMin,boxMax: cout << "Is (" << p0.transpose() << ") inside the box: " << ((boxMin.array()<p0.array()).all() && (boxMax.array()>p0.array()).all()) << endl; cout << "Is (" << p1.transpose() << ") inside the box: " << ((boxMin.array()<p1.array()).all() && (boxMax.array()>p1.array()).all()) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/PartialRedux_minCoeff.cpp
.cpp
176
4
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the minimum of each column:" << endl << m.colwise().minCoeff() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_rightCols.cpp
.cpp
245
7
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.rightCols<2>():" << endl; cout << a.rightCols<2>() << endl; a.rightCols<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/BiCGSTAB_step_by_step.cpp
.cpp
406
14
int n = 10000; VectorXd x(n), b(n); SparseMatrix<double> A(n,n); /* ... fill A and b ... */ BiCGSTAB<SparseMatrix<double> > solver(A); // start from a random solution x = VectorXd::Random(n); solver.setMaxIterations(1); int i = 0; do { x = solver.solveWithGuess(b,x); std::cout << i << " : " << solver.error() << std::endl; ++i; } while (solver.info()!=Success && i<100);
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_diagonal_int.cpp
.cpp
270
6
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl << m.diagonal(1).transpose() << endl << m.diagonal(-2).transpose() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_isInf.cpp
.cpp
101
6
Array3d v(1,2,3); v(1) *= 0.0/0.0; v(2) /= 0.0; cout << v << endl << endl; cout << isinf(v) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Matrix_resize_int_NoChange.cpp
.cpp
111
4
MatrixXd m(3,4); m.resize(5, NoChange); cout << "m: " << m.rows() << " rows, " << m.cols() << " cols" << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_sin.cpp
.cpp
58
3
Array3d v(M_PI, M_PI/2, M_PI/3); cout << v.sin() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/EigenSolver_eigenvectors.cpp
.cpp
181
5
MatrixXd ones = MatrixXd::Ones(3,3); EigenSolver<MatrixXd> es(ones); cout << "The first eigenvector of the 3x3 matrix of ones is:" << endl << es.eigenvectors().col(0) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Map_inner_stride.cpp
.cpp
199
6
int array[12]; for(int i = 0; i < 12; ++i) array[i] = i; cout << Map<VectorXi, 0, InnerStride<2> > (array, 6) // the inner stride has already been passed as template parameter << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_min.cpp
.cpp
54
3
Array3d v(2,3,4), w(4,2,3); cout << v.min(w) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_array.cpp
.cpp
70
5
Vector3d v(1,2,3); v.array() += 3; v.array() -= 2; cout << v << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_transpose.cpp
.cpp
414
9
Matrix2i m = Matrix2i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the transpose of m:" << endl << m.transpose() << endl; cout << "Here is the coefficient (1,0) in the transpose of m:" << endl << m.transpose()(1,0) << endl; cout << "Let us overwrite this coefficient with the value 0." << endl; m.transpose()(1,0) = 0; cout << "Now the matrix m is:" << endl << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_isOrthogonal.cpp
.cpp
293
7
Vector3d v(1,0,0); Vector3d w(1e-4,0,1); cout << "Here's the vector v:" << endl << v << endl; cout << "Here's the vector w:" << endl << w << endl; cout << "v.isOrthogonal(w) returns: " << v.isOrthogonal(w) << endl; cout << "v.isOrthogonal(w,1e-3) returns: " << v.isOrthogonal(w,1e-3) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/tut_arithmetic_transpose_aliasing.cpp
.cpp
187
5
Matrix2i a; a << 1, 2, 3, 4; cout << "Here is the matrix a:\n" << a << endl; a = a.transpose(); // !!! do NOT do this !!! cout << "and the result of the aliasing effect:\n" << a << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseQuotient.cpp
.cpp
65
3
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseQuotient(w) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/HouseholderQR_householderQ.cpp
.cpp
300
8
MatrixXf A(MatrixXf::Random(5,3)), thinQ(MatrixXf::Identity(5,3)), Q; A.setRandom(); HouseholderQR<MatrixXf> qr(A); Q = qr.householderQ(); thinQ = qr.householderQ() * thinQ; std::cout << "The complete unitary matrix Q is:\n" << Q << "\n\n"; std::cout << "The thin matrix Q is:\n" << thinQ << "\n\n";
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseNotEqual.cpp
.cpp
286
8
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl; Index count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are not equal: " << count << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Map_simple.cpp
.cpp
93
4
int array[9]; for(int i = 0; i < 9; ++i) array[i] = i; cout << Map<Matrix3i>(array) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_floor.cpp
.cpp
93
4
ArrayXd v = ArrayXd::LinSpaced(7,-2,2); cout << v << endl << endl; cout << floor(v) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_setIdentity.cpp
.cpp
83
4
Matrix4i m = Matrix4i::Zero(); m.block<3,3>(1,0).setIdentity(); cout << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Jacobi_makeJacobi.cpp
.cpp
292
8
Matrix2f m = Matrix2f::Random(); m = (m + m.adjoint()).eval(); JacobiRotation<float> J; J.makeJacobi(m, 0, 1); cout << "Here is the matrix m:" << endl << m << endl; m.applyOnTheLeft(0, 1, J.adjoint()); m.applyOnTheRight(0, 1, J); cout << "Here is the matrix J' * m * J:" << endl << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tutorial_AdvancedInitialization_Block.cpp
.cpp
132
6
MatrixXf matA(2, 2); matA << 1, 2, 3, 4; MatrixXf matB(4, 4); matB << matA, matA/10, matA/10, matA; std::cout << matB << std::endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/tut_arithmetic_transpose_inplace.cpp
.cpp
173
6
MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6; cout << "Here is the initial matrix a:\n" << a << endl; a.transposeInPlace(); cout << "and after being transposed:\n" << a << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tridiagonalization_diagonal.cpp
.cpp
552
14
MatrixXcd X = MatrixXcd::Random(4,4); MatrixXcd A = X + X.adjoint(); cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl; Tridiagonalization<MatrixXcd> triOfA(A); MatrixXd T = triOfA.matrixT(); cout << "The tridiagonal matrix T is:" << endl << T << endl << endl; cout << "We can also extract the diagonals of T directly ..." << endl; VectorXd diag = triOfA.diagonal(); cout << "The diagonal is:" << endl << diag << endl; VectorXd subdiag = triOfA.subDiagonal(); cout << "The subdiagonal is:" << endl << subdiag << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_prod.cpp
.cpp
171
4
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the product of all the coefficients:" << endl << m.prod() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_bottomLeftCorner_int_int.cpp
.cpp
271
7
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner(2, 2):" << endl; cout << m.bottomLeftCorner(2, 2) << endl; m.bottomLeftCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tutorial_AdvancedInitialization_Join.cpp
.cpp
266
12
RowVectorXd vec1(3); vec1 << 1, 2, 3; std::cout << "vec1 = " << vec1 << std::endl; RowVectorXd vec2(4); vec2 << 1, 4, 9, 16; std::cout << "vec2 = " << vec2 << std::endl; RowVectorXd joined(7); joined << vec1, vec2; std::cout << "joined = " << joined << std::endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/FullPivLU_image.cpp
.cpp
369
10
Matrix3d m; m << 1,1,0, 1,3,2, 0,1,1; cout << "Here is the matrix m:" << endl << m << endl; cout << "Notice that the middle column is the sum of the two others, so the " << "columns are linearly dependent." << endl; cout << "Here is a matrix whose columns have the same span but are linearly independent:" << endl << m.fullPivLu().image(m) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_boolean_xor.cpp
.cpp
63
3
Array3d v(-1,2,1), w(-3,2,3); cout << ((v<w) ^ (v<0)) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_inverse.cpp
.cpp
145
4
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Its inverse is:" << endl << m.inverse() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/TopicAliasing_mult2.cpp
.cpp
230
11
MatrixXf matA(2,2), matB(2,2); matA << 2, 0, 0, 2; // Simple but not quite as efficient matB = matA * matA; cout << matB << endl << endl; // More complicated but also more efficient matB.noalias() = matA * matA; cout << matB;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/LLT_solve.cpp
.cpp
456
9
typedef Matrix<float,Dynamic,2> DataMatrix; // let's generate some samples on the 3D plane of equation z = 2x+3y (with some noise) DataMatrix samples = DataMatrix::Random(12,2); VectorXf elevations = 2*samples.col(0) + 3*samples.col(1) + VectorXf::Random(12)*0.1; // and let's solve samples * [x y]^T = elevations in least square sense: Matrix<float,2,1> xy = (samples.adjoint() * samples).llt().solve((samples.adjoint()*elevations)); cout << xy << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/tut_arithmetic_redux_minmax.cpp
.cpp
468
13
Matrix3f m = Matrix3f::Random(); std::ptrdiff_t i, j; float minOfM = m.minCoeff(&i,&j); cout << "Here is the matrix m:\n" << m << endl; cout << "Its minimum coefficient (" << minOfM << ") is at position (" << i << "," << j << ")\n\n"; RowVector4i v = RowVector4i::Random(); int maxOfV = v.maxCoeff(&i); cout << "Here is the vector v: " << v << endl; cout << "Its maximum coefficient (" << maxOfV << ") is at position " << i << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/SelfAdjointEigenSolver_eigenvectors.cpp
.cpp
193
5
MatrixXd ones = MatrixXd::Ones(3,3); SelfAdjointEigenSolver<MatrixXd> es(ones); cout << "The first eigenvector of the 3x3 matrix of ones is:" << endl << es.eigenvectors().col(1) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_row.cpp
.cpp
82
4
Matrix3d m = Matrix3d::Identity(); m.row(1) = Vector3d(4,5,6); cout << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_scalar_power_array.cpp
.cpp
85
3
Array<double,1,3> e(2,-3,1./3.); cout << "10^[" << e << "] = " << pow(10,e) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_isOnes.cpp
.cpp
216
6
Matrix3d m = Matrix3d::Ones(); m(0,2) += 1e-4; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isOnes() returns: " << m.isOnes() << endl; cout << "m.isOnes(1e-3) returns: " << m.isOnes(1e-3) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_hnormalized.cpp
.cpp
376
6
Vector4d v = Vector4d::Random(); Projective3d P(Matrix4d::Random()); cout << "v = " << v.transpose() << "]^T" << endl; cout << "v.hnormalized() = " << v.hnormalized().transpose() << "]^T" << endl; cout << "P*v = " << (P*v).transpose() << "]^T" << endl; cout << "(P*v).hnormalized() = " << (P*v).hnormalized().transpose() << "]^T" << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_atan.cpp
.cpp
65
3
ArrayXd v = ArrayXd::LinSpaced(5,0,1); cout << v.atan() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/RealQZ_compute.cpp
.cpp
819
18
MatrixXf A = MatrixXf::Random(4,4); MatrixXf B = MatrixXf::Random(4,4); RealQZ<MatrixXf> qz(4); // preallocate space for 4x4 matrices qz.compute(A,B); // A = Q S Z, B = Q T Z // print original matrices and result of decomposition cout << "A:\n" << A << "\n" << "B:\n" << B << "\n"; cout << "S:\n" << qz.matrixS() << "\n" << "T:\n" << qz.matrixT() << "\n"; cout << "Q:\n" << qz.matrixQ() << "\n" << "Z:\n" << qz.matrixZ() << "\n"; // verify precision cout << "\nErrors:" << "\n|A-QSZ|: " << (A-qz.matrixQ()*qz.matrixS()*qz.matrixZ()).norm() << ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm() << "\n|QQ* - I|: " << (qz.matrixQ()*qz.matrixQ().adjoint() - MatrixXf::Identity(4,4)).norm() << ", |ZZ* - I|: " << (qz.matrixZ()*qz.matrixZ().adjoint() - MatrixXf::Identity(4,4)).norm() << "\n";
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_less.cpp
.cpp
51
3
Array3d v(1,2,3), w(3,2,1); cout << (v<w) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_cwiseAbs.cpp
.cpp
80
5
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_diagonal.cpp
.cpp
188
5
Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the main diagonal of m:" << endl << m.diagonal() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/EigenSolver_eigenvalues.cpp
.cpp
176
5
MatrixXd ones = MatrixXd::Ones(3,3); EigenSolver<MatrixXd> es(ones, false); cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << es.eigenvalues() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/ColPivHouseholderQR_solve.cpp
.cpp
324
9
Matrix3f m = Matrix3f::Random(); Matrix3f y = Matrix3f::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the matrix y:" << endl << y << endl; Matrix3f x; x = m.colPivHouseholderQr().solve(y); assert(y.isApprox(m*x)); cout << "Here is a solution x to the equation mx=y:" << endl << x << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Matrix_Map_stride.cpp
.cpp
157
8
Matrix4i A; A << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16; std::cout << Matrix2i::Map(&A(1,1),Stride<8,2>()) << std::endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tutorial_ReshapeMat2Mat.cpp
.cpp
170
6
MatrixXf M1(2,6); // Column-major storage M1 << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; Map<MatrixXf> M2(M1.data(), 6,2); cout << "M2:" << endl << M2 << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_max.cpp
.cpp
54
3
Array3d v(2,3,4), w(4,2,3); cout << v.max(w) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/TopicAliasing_mult1.cpp
.cpp
76
5
MatrixXf matA(2,2); matA << 2, 0, 0, 2; matA = matA * matA; cout << matA;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_random_int_int.cpp
.cpp
39
2
cout << MatrixXi::Random(2,3) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_triangularView.cpp
.cpp
573
10
Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the upper-triangular matrix extracted from m:" << endl << Matrix3i(m.triangularView<Eigen::Upper>()) << endl; cout << "Here is the strictly-upper-triangular matrix extracted from m:" << endl << Matrix3i(m.triangularView<Eigen::StrictlyUpper>()) << endl; cout << "Here is the unit-lower-triangular matrix extracted from m:" << endl << Matrix3i(m.triangularView<Eigen::UnitLower>()) << endl; // FIXME need to implement output for triangularViews (Bug 885)
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_ones.cpp
.cpp
75
3
cout << Matrix2d::Ones() << endl; cout << 6 * RowVector4i::Ones() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_plus.cpp
.cpp
39
3
Array3d v(1,2,3); cout << v+5 << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Tridiagonalization_Tridiagonalization_MatrixType.cpp
.cpp
445
10
MatrixXd X = MatrixXd::Random(5,5); MatrixXd A = X + X.transpose(); cout << "Here is a random symmetric 5x5 matrix:" << endl << A << endl << endl; Tridiagonalization<MatrixXd> triOfA(A); MatrixXd Q = triOfA.matrixQ(); cout << "The orthogonal matrix Q is:" << endl << Q << endl; MatrixXd T = triOfA.matrixT(); cout << "The tridiagonal matrix T is:" << endl << T << endl << endl; cout << "Q * T * Q^T = " << endl << Q * T * Q.transpose() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/SelfAdjointEigenSolver_operatorInverseSqrt.cpp
.cpp
426
10
MatrixXd X = MatrixXd::Random(4,4); MatrixXd A = X * X.transpose(); cout << "Here is a random positive-definite matrix, A:" << endl << A << endl << endl; SelfAdjointEigenSolver<MatrixXd> es(A); cout << "The inverse square root of A is: " << endl; cout << es.operatorInverseSqrt() << endl; cout << "We can also compute it with operatorSqrt() and inverse(). That yields: " << endl; cout << es.operatorSqrt().inverse() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Matrix_resize_NoChange_int.cpp
.cpp
111
4
MatrixXd m(3,4); m.resize(NoChange, 5); cout << "m: " << m.rows() << " rows, " << m.cols() << " cols" << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_setZero.cpp
.cpp
72
4
Matrix4i m = Matrix4i::Random(); m.row(1).setZero(); cout << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/PartialPivLU_solve.cpp
.cpp
372
8
MatrixXd A = MatrixXd::Random(3,3); MatrixXd B = MatrixXd::Random(3,2); cout << "Here is the invertible matrix A:" << endl << A << endl; cout << "Here is the matrix B:" << endl << B << endl; MatrixXd X = A.lu().solve(B); cout << "Here is the (unique) solution X to the equation AX=B:" << endl << X << endl; cout << "Relative error: " << (A*X-B).norm() / B.norm() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/VectorwiseOp_homogeneous.cpp
.cpp
504
7
typedef Matrix<double,3,Dynamic> Matrix3Xd; Matrix3Xd M = Matrix3Xd::Random(3,5); Projective3d P(Matrix4d::Random()); cout << "The matrix M is:" << endl << M << endl << endl; cout << "M.colwise().homogeneous():" << endl << M.colwise().homogeneous() << endl << endl; cout << "P * M.colwise().homogeneous():" << endl << P * M.colwise().homogeneous() << endl << endl; cout << "P * M.colwise().homogeneous().hnormalized(): " << endl << (P * M.colwise().homogeneous()).colwise().hnormalized() << endl << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Matrix_setOnes_int.cpp
.cpp
45
4
VectorXf v; v.setOnes(3); cout << v << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_template_int_int_bottomRightCorner.cpp
.cpp
277
7
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner<2,2>():" << endl; cout << m.bottomRightCorner<2,2>() << endl; m.bottomRightCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_array_power_array.cpp
.cpp
232
5
Array<double,1,3> x(8,25,3), e(1./3.,0.5,2.); cout << "[" << x << "]^[" << e << "] = " << x.pow(e) << endl; // using ArrayBase::pow cout << "[" << x << "]^[" << e << "] = " << pow(x,e) << endl; // using Eigen::pow
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/EigenSolver_EigenSolver_MatrixType.cpp
.cpp
800
17
MatrixXd A = MatrixXd::Random(6,6); cout << "Here is a random 6x6 matrix, A:" << endl << A << endl << endl; EigenSolver<MatrixXd> es(A); cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; complex<double> lambda = es.eigenvalues()[0]; cout << "Consider the first eigenvalue, lambda = " << lambda << endl; VectorXcd v = es.eigenvectors().col(0); cout << "If v is the corresponding eigenvector, then lambda * v = " << endl << lambda * v << endl; cout << "... and A * v = " << endl << A.cast<complex<double> >() * v << endl << endl; MatrixXcd D = es.eigenvalues().asDiagonal(); MatrixXcd V = es.eigenvectors(); cout << "Finally, V * D * V^(-1) = " << endl << V * D * V.inverse() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Matrix_setRandom_int.cpp
.cpp
47
4
VectorXf v; v.setRandom(3); cout << v << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_boolean_and.cpp
.cpp
64
3
Array3d v(-1,2,1), w(-3,2,3); cout << ((v<w) && (v<0)) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/MatrixBase_topLeftCorner_int_int.cpp
.cpp
262
7
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner(2, 2):" << endl; cout << m.topLeftCorner(2, 2) << endl; m.topLeftCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_not_equal.cpp
.cpp
52
3
Array3d v(1,2,3), w(3,2,1); cout << (v!=w) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/PartialRedux_count.cpp
.cpp
263
6
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; Matrix<ptrdiff_t, 3, 1> res = (m.array() >= 0.5).rowwise().count(); cout << "Here is the count of elements larger or equal than 0.5 of each row:" << endl; cout << res << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/TopicAliasing_cwise.cpp
.cpp
591
21
MatrixXf mat(2,2); mat << 1, 2, 4, 7; cout << "Here is the matrix mat:\n" << mat << endl << endl; mat = 2 * mat; cout << "After 'mat = 2 * mat', mat = \n" << mat << endl << endl; mat = mat - MatrixXf::Identity(2,2); cout << "After the subtraction, it becomes\n" << mat << endl << endl; ArrayXXf arr = mat; arr = arr.square(); cout << "After squaring, it becomes\n" << arr << endl << endl; // Combining all operations in one statement: mat << 1, 2, 4, 7; mat = (2 * mat - MatrixXf::Identity(2,2)).array().square(); cout << "Doing everything at once yields\n" << mat << endl << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/BiCGSTAB_simple.cpp
.cpp
393
11
int n = 10000; VectorXd x(n), b(n); SparseMatrix<double> A(n,n); /* ... fill A and b ... */ BiCGSTAB<SparseMatrix<double> > solver; solver.compute(A); x = solver.solve(b); std::cout << "#iterations: " << solver.iterations() << std::endl; std::cout << "estimated error: " << solver.error() << std::endl; /* ... update b ... */ x = solver.solve(b); // solve again
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/Cwise_plus_equal.cpp
.cpp
45
4
Array3d v(1,2,3); v += 5; cout << v << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/LeastSquaresQR.cpp
.cpp
177
5
MatrixXf A = MatrixXf::Random(3, 2); VectorXf b = VectorXf::Random(3); cout << "The solution using the QR decomposition is:\n" << A.colPivHouseholderQr().solve(b) << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/PartialRedux_sum.cpp
.cpp
164
4
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the sum of each row:" << endl << m.rowwise().sum() << endl;
C++
2D
JaeHyunLee94/mpm2d
external/eigen-3.3.9/doc/snippets/tut_matrix_assignment_resizing.cpp
.cpp
193
6
MatrixXf a(2,2); std::cout << "a is of size " << a.rows() << "x" << a.cols() << std::endl; MatrixXf b(3,3); a = b; std::cout << "a is now of size " << a.rows() << "x" << a.cols() << std::endl;
C++