id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_00400
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
expert
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"evaluation_metrics",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
820e4362c5d9055d23e33a90f1a10b48dc13a7f0
|
|
train_00401
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"tests_are_truth",
"evaluation_metrics",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
62c7371b96b1848ed5a1ec428a499d98500b03c4
|
|
train_00402
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
09d65e331e02f647b74923a927893382fe191844
|
|
train_00403
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
advanced
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"ci_integration",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2e6c8d148825a2112f57b6361f510ebcc290817d
|
|
train_00404
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bdeefee183582262f88206a4e347b27d69f2e5d8
|
|
train_00405
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
advanced
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"governance",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
878262de79e63483f1042f3c3f22bf6135970fa2
|
|
train_00406
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"governance",
"evaluation_metrics",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
742bc4b3237368787e7c126d55ac9268aeacfa60
|
|
train_00407
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
intermediate
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"documentation",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d60373d57b0de5d0020de27aca020e388f1b1f7a
|
|
train_00408
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"reproducibility",
"documentation",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c6e8aacc123f4327e86a31cda802dd137045d268
|
|
train_00409
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"governance",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
72753a954306959d054cf9885bc04924fd6b7f0b
|
|
train_00410
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"governance",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
05d613806cd34d6044848ead5c626c5dd88ae747
|
|
train_00411
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"tooling",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1fe6f1d3b8aabff8ce08df096edd63c808bbc1e4
|
|
train_00412
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
expert
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"auditability",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ee8bcd3fc93b3126407086afac6931611a66d631
|
|
train_00413
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"tests_are_truth",
"security_gates",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ad91405fb04cfc82058f6f620d2dd8923f5efaa5
|
|
train_00414
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
expert
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"documentation",
"security_gates",
"reproducibility"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
64d74421348daa09cf2fb34d3b36960f6080a9b0
|
|
train_00415
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"security_gates",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
42fdff52ed6c870ece44d16c5adb3ff801e95d10
|
|
train_00416
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"auditability",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a25b2d90a439a019960817fc070ec91346603b3f
|
|
train_00417
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
advanced
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af465ffdafa86a596384ffb9bb23374b947a1628
|
|
train_00418
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"ci_integration",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5ea155024e26b1c85c7b4e35bd7459575c2735b7
|
|
train_00419
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
advanced
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a9184371a7bd185286025c0c8fe1ed4f4ed9beba
|
|
train_00420
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"auditability",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
685c27f81bf4670125e4bb87d5c92484b0ebb24f
|
|
train_00421
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cfef453119f831d60eb685c6e4f14104b0e48286
|
|
train_00422
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
review
|
intermediate
|
Task: review
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"documentation",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c60a044fa4bbd720e897a0644dee29baf1e9b6c9
|
|
train_00423
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"security_gates",
"evaluation_metrics",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3992c05159b4143e942dc2a6b08a03a6a7fa58cc
|
|
train_00424
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"evaluation_metrics",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
76cebfb22f6a892c0bb630e393e65bbdcf3df80a
|
|
train_00425
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
advanced
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"auditability",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
72016308604279e3516d2f2edc71dd5a82fc4bfa
|
|
train_00426
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"governance",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b6d5556eb89ab379fa0609b3f06f181c73b71edb
|
|
train_00427
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
advanced
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"auditability",
"tooling",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
017443ac2c4fb4f985d633e763c6ff4514c8079c
|
|
train_00428
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
expert
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"reproducibility",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
84f8e574645afb7b4d092971a626059be9ca8924
|
|
train_00429
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
95fd30521df15e7afda295a6a19451847c5f4d00
|
|
train_00430
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"governance",
"documentation",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
16d040084b72b37b8ef8346d68f13ab7ba27fffe
|
|
train_00431
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
advanced
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"evaluation_metrics",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ab097a3965e04dfb6b53d0f42f66ca747fc9c932
|
|
train_00432
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
expert
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8d86371123a908b994e09d0ef113daa71c0b6c6a
|
|
train_00433
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
intermediate
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"ci_integration",
"tooling"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d5e3668e02ea243df5d9214fbe4d782fcd6064f2
|
|
train_00434
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
expert
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a950f23d0f83417dc4e4a040877e9c99b34f86d3
|
|
train_00435
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"security_gates",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
259f31a334945e8207be0440dc91b8d56356654c
|
|
train_00436
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
review
|
advanced
|
Task: review
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6221f43a55a77ae8f9a9554ee8801e98d21a9a3c
|
|
train_00437
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
advanced
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"security_gates",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
53ffa6626e17e03b933bab0f6a0c328d7055c975
|
|
train_00438
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
expert
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"tooling",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf42c5c69d0e33b7884b3cd7de631753d99e995f
|
|
train_00439
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"security_gates",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ff183c6f18297c8447db2d973b68a4ee004c25c6
|
|
train_00440
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"governance",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ff36a36ebc7fcf51cdbf35fee3e2a9ca72664948
|
|
train_00441
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"documentation",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0248fc13998be46892713ac977c1dc3975dea636
|
|
train_00442
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
expert
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"governance",
"security_gates",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5861c44ae0af941b68f3e713b5ea7576a7a60210
|
|
train_00443
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6eb5e336e4a75724fcdc33e27cbd6f1904423045
|
|
train_00444
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
eval
|
expert
|
Task: eval
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"tests_are_truth",
"ci_integration",
"tooling"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bdb9a50a304db8029ba335bd7b18afa0ffe4acc4
|
|
train_00445
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aa8d4782003955cf5f8042fddcce272553473bb1
|
|
train_00446
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"documentation",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c0daa611fe62243d8d2daf4693d282d048282bd1
|
|
train_00447
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
expert
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"ci_integration",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
33cab22622ea64e6e23d49cbd53f428cbc3e17d0
|
|
train_00448
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"governance",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bfaa2112e3f424f675169f7990f35e9a327a7149
|
|
train_00449
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
intermediate
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"documentation",
"governance",
"reproducibility"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ee43ccaac1fbc6f6ccd119aed628638306a37703
|
|
train_00450
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
intermediate
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6607b67e6964cc1e3980f764917cc7cd39868419
|
|
train_00451
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
expert
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bb1c47120cd8c91927a4bfb6c3ce4d20da3586b6
|
|
train_00452
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
94db57e0ab68d5727dac33b2e6c6735e6038963e
|
|
train_00453
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
eval
|
intermediate
|
Task: eval
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"tooling",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
75c074f404d0981f39eea5fc923f0d6ea3c53a64
|
|
train_00454
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
intermediate
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"documentation",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
465f56f983c325a357db8c82121bdb2843382352
|
|
train_00455
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"auditability",
"tooling"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bba29bcdfde2553444371523af9a613be09589fb
|
|
train_00456
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
explain
|
expert
|
Task: explain
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fb2520742dd4fbf181de9788214994050bce844b
|
|
train_00457
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
advanced
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"ci_integration",
"governance"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8de8da2c1aba7e888d8a1de797bbf561fc155ed9
|
|
train_00458
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
expert
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
691e3f51693564664f1dce49db364981383e48bf
|
|
train_00459
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"reproducibility",
"tooling"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a3927c7555c417d77e89f5e1353a1c8cabb90dab
|
|
train_00460
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
00343df9a20ad867108a384968529d1cba7a81d2
|
|
train_00461
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"security_gates",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e04c4e3042c851f1f11eb4f2aa1b1c974799982a
|
|
train_00462
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"security_gates",
"evaluation_metrics",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
55d4179a74620a2ec5a0f08cffc279f01c76188a
|
|
train_00463
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
advanced
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6c6ec3645230000dd76dd3d3215030990e88a73d
|
|
train_00464
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
expert
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"security_gates",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ac7c94740920cd2959f435945b7f13ff1d0c804a
|
|
train_00465
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"documentation",
"ci_integration",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cc1943f4f0020339fe9fc6b7caa014c0da3591e2
|
|
train_00466
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"reproducibility",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b89fbda72d9db542f47ea54d4832b1e7f078a56e
|
|
train_00467
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"ci_integration",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ee9207fa1b693313b0aedba57ad1ad4e001ee9bd
|
|
train_00468
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"tooling",
"documentation"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3da39b6fbc03e3de3e49d0745809551f39b1c113
|
|
train_00469
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f7cdb14a348e63ea72def56d9352a4dfe9039a83
|
|
train_00470
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"auditability",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6a7179006df354193319986e3a49e288cb7e6391
|
|
train_00471
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
advanced
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
827c1d7f7e5609cfcb2d792a8bd0b524fe360969
|
|
train_00472
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
intermediate
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
78ebad9e95b2498b4852eb017b703732616f9545
|
|
train_00473
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"documentation",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9f707c4950b379f868243e39921c5c7aef9e2a89
|
|
train_00474
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
advanced
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e04e2c29adc8813ca28cfc01220e7850d5bc83df
|
|
train_00475
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"tests_are_truth",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
77e26797cfec94f1415690be8a0c29680f6b33ed
|
|
train_00476
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"auditability",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b3ddff665f1d5bcaa3940172518c0e636bd5bc27
|
|
train_00477
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
84218be8befabb0881644a0642764a609b2224d9
|
|
train_00478
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
advanced
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"tests_are_truth",
"documentation",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ff99bad3f45a21f23ff3fe2b7703bf9bd37065c5
|
|
train_00479
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aeac8e982f9737db89781ef1fe36cdc0afacc692
|
|
train_00480
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
expert
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e3554b25225410faceffe0a9cd53db5cbd931fa8
|
|
train_00481
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"ci_integration",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e1281ebca6e1491753bc604e3c57d45108830afc
|
|
train_00482
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
code
|
expert
|
Task: code
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af581c4fd37c5353943d43c3f25a2aac25b07b0e
|
|
train_00483
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"tooling",
"reproducibility",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5712a21ec9f76150dc6c79b673984f4f794b2f80
|
|
train_00484
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
intermediate
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"governance",
"security_gates",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5810b4baf86072dd48807c7c97d87b3c451bc5fa
|
|
train_00485
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
intermediate
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bea64b5e993e39f61db006500a9b8a037ab129be
|
|
train_00486
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
review
|
expert
|
Task: review
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"governance",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ff3ce0b291ff3c20f4cd117349aa22a45ce14a8b
|
|
train_00487
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
intermediate
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"governance",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
10485de161ed7183af99737129cea22e6ac81f79
|
|
train_00488
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
expert
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"security_gates",
"documentation"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f9c4d3862ce07b80abe53e25855ab27a34effd32
|
|
train_00489
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
advanced
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
54f90d9ff562a8071946763fde64d042fc0fac87
|
|
train_00490
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
eval
|
advanced
|
Task: eval
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"auditability",
"ci_integration"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5dfa7fb1f7c184edff2ed0a492734ca0d1e5bf34
|
|
train_00491
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"documentation",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af8a8e03577041cf6ef0c1359f0a13a3b35051eb
|
|
train_00492
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"auditability",
"governance",
"documentation"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
53dbb932fcff126220cd972bc3d4e5026bf25e6b
|
|
train_00493
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"reproducibility",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
746eb2d078f7771305dd018c56642c9c8adfab45
|
|
train_00494
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
expert
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
afe9d66f55feb6c1dbd4ca62199155dc07be4d40
|
|
train_00495
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
advanced
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"auditability",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b0cca1f995efcd6694e0a1ceb22c16e071e64e7f
|
|
train_00496
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
intermediate
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"documentation",
"governance",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
72357dd750fbb90ce1ecbba802a1cad1665a2dfa
|
|
train_00497
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
code
|
advanced
|
Task: code
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aa80581c6a84ad2da7f2256cb7cd99990822d2c5
|
|
train_00498
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
expert
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"tooling",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
febb7ef05b611dcd8a7d3a9ea535b4295254b402
|
|
train_00499
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"governance",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
517cd278b78b0e8dc12bd08826ba16625f20c64c
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.