id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_00500
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f8ee4bb00c3fceade8c5e19f63c1ccdcb8c4a51c
|
|
train_00501
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
expert
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"evaluation_metrics",
"tooling",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3e44c8cdf9dbf638d9de5131683f9a92d4fa88d7
|
|
train_00502
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
eval
|
intermediate
|
Task: eval
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"security_gates",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f3957bb5b7d6e87446bdb70bdba8427c0343fbaf
|
|
train_00503
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
advanced
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"reproducibility",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
65a90dbc3d71b89d8bb82c34e2508cc2b48e4552
|
|
train_00504
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
advanced
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"documentation",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
78ebf1895ff2e7cdcf48fc91649fc946c3e3b6e1
|
|
train_00505
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"auditability",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c4f32b1d42669aab3fb1d8792c2db86d64367a10
|
|
train_00506
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
intermediate
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"tests_are_truth",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3bf5420631afca8bc8af271165b6b1fb0cfb6c52
|
|
train_00507
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
expert
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"evaluation_metrics",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d92b018372c50cfd38870238b89906dd219992a2
|
|
train_00508
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"documentation",
"tooling",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7d59b4fabaf78dfd076fe37f741c275468390972
|
|
train_00509
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"security_gates",
"auditability"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
28c2f6075eef5c93b2409b17b5efd60ad1d525e1
|
|
train_00510
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"auditability",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b2614f6e3e42a1653399729213f2db826a9161d3
|
|
train_00511
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"governance",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c69aa89445bb579e874faf3878d428aa1dee9e88
|
|
train_00512
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
intermediate
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"evaluation_metrics",
"security_gates",
"documentation"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4173460e45a444d22d4de72a547f586097d82a35
|
|
train_00513
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
intermediate
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"auditability",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f5cd521284c498dce77f6b49f132e6489a1b1604
|
|
train_00514
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
explain
|
advanced
|
Task: explain
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a4e4c852428f688db3c8100c09cf100bfe4aea47
|
|
train_00515
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
expert
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e6e5061201c8494720d142ce117da609e36bd196
|
|
train_00516
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"documentation",
"governance",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7b2b2445896f6fa5a6eef512d965162c3c235322
|
|
train_00517
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
intermediate
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5e5da117f8390220839069629c37076445641ac3
|
|
train_00518
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
advanced
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"cost_latency_tradeoffs",
"security_gates",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5b148079bf0c8d2146b981072d7ca906e173cf81
|
|
train_00519
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"tests_are_truth",
"governance"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b62281b08eb134714b09f0c7a52ab9f956994734
|
|
train_00520
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"security_gates",
"governance"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2f1a9fad4f0566053acdc5bf5d715ebe40e086e8
|
|
train_00521
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
intermediate
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"tests_are_truth",
"evaluation_metrics",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f50accf8b7edc0fd9e507b605ee048bcb3554750
|
|
train_00522
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
intermediate
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"tooling",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7e86364c0b25ce7dcf5f49eb523154450a5e2c2d
|
|
train_00523
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"reproducibility",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6ad15cc3eeb3cda2c220530a8634429eaa0a2d13
|
|
train_00524
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
compare
|
expert
|
Task: compare
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"evaluation_metrics",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1f7045bf682ac24f190b147e052e1e9542e7e0da
|
|
train_00525
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"evaluation_metrics",
"documentation",
"tooling"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d615f811619b45e741bf28f39c77d1812fd49541
|
|
train_00526
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
design
|
expert
|
Task: design
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"security_gates",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8141f1296350a81883261ecccd48afd27253bac2
|
|
train_00527
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
expert
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"reproducibility",
"governance"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b84a6c1e8b547934f673378ad12974c7100bb3e2
|
|
train_00528
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
intermediate
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
df8c22acfd3ff5b991156c3360857f1e191d2314
|
|
train_00529
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
intermediate
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
23fb4ff56c0a3a26d106ed230ecdb3feb284ce3a
|
|
train_00530
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
expert
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"auditability",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
77f77286eda2f94493a718cb35026d37e239ad70
|
|
train_00531
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"evaluation_metrics",
"documentation",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f7cdb14a348e63ea72def56d9352a4dfe9039a83
|
|
train_00532
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"documentation",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
abf8caff00ef9339ab0d1975b0d71472a2ac3e57
|
|
train_00533
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"auditability",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ceaea7dca75451790b9d650109ed26ddce17c153
|
|
train_00534
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
expert
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c7a2a63f744ab62df956211ba9dbaa7d1d7ddb86
|
|
train_00535
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"ci_integration",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b161cf7d9915cb773b5f0e40b5f2e38a0607c12d
|
|
train_00536
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"auditability",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fb57016ea219d7eded6ba98a3d8c6558f0750f89
|
|
train_00537
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4317206211ec00d236e7a5b81c12393a59206c89
|
|
train_00538
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"security_gates",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
55b39708e3f7996a7f7a4b299f8d935dcd5129b4
|
|
train_00539
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"tooling",
"governance",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f413e73d7821a0d3e2557a3e4d8b029e21a7224e
|
|
train_00540
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
intermediate
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"cost_latency_tradeoffs",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f8a5526c1ed8705f1deeacaf17f0275390adc804
|
|
train_00541
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
code
|
advanced
|
Task: code
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"tests_are_truth",
"documentation",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b4e98a1555660e03fe2c8aca2dba5809b13e90b4
|
|
train_00542
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
intermediate
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"reproducibility",
"governance"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f702bd30c57bd1ba7f1d834f3b074eca57e0c564
|
|
train_00543
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
advanced
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c80790b8d538ebbe537a83e65f2df01df4a4dec0
|
|
train_00544
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
advanced
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"documentation",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0748da530f25c1bd70021467f74f19070e520e17
|
|
train_00545
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
expert
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"tooling",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
171e505407c5afed592eff06dfcdf1019ebecb86
|
|
train_00546
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
expert
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"tooling",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
075e3e09737b09e6fd4d076111d954d29938f5d4
|
|
train_00547
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f973a22c3a0e9e95fc817f9a1d748237114c5da2
|
|
train_00548
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"auditability",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
afc9946ba38105fbf9d571ab24ef8831bd28ac05
|
|
train_00549
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"tests_are_truth",
"tooling",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9f54586d30b50f9361545d06e2ee1d9101830575
|
|
train_00550
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"reproducibility",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9cebff8542de10913e60e85b148459a72430de49
|
|
train_00551
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
advanced
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"security_gates",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
abb54f1662211aebbbdd3ee1240d41408712374e
|
|
train_00552
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f171040221edc5cc584ef9a066c3ccb4cb5395da
|
|
train_00553
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
expert
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"auditability",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b146572cd26ea0f7cc87bee24a14b20f513ecbbb
|
|
train_00554
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"security_gates",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1d9517708950cb874f507937c737418eaa167a4b
|
|
train_00555
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"governance",
"security_gates",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
677a43f6b7842941d715f4a2ff995ca7e04c557e
|
|
train_00556
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
expert
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"governance",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
29799bc652d55ecd05a883e5bfdb6220eb864b4a
|
|
train_00557
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"auditability",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5798c3bef9cc2c131327ae6e1e870397aa439d58
|
|
train_00558
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
advanced
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"governance",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9bda24daf4db06bc08a5b983491ec4f51d2c6379
|
|
train_00559
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
design
|
advanced
|
Task: design
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"tooling",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4444e8356dbb20c48683458e92d3143465c889fd
|
|
train_00560
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"reproducibility",
"auditability"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8acc777972f3e61189ede900d63126b49e92c98a
|
|
train_00561
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
expert
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"tooling",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4bc059eee9c9eb49d5bde36f2718b950a0a7fe14
|
|
train_00562
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
expert
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"governance",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6c5e7ba70394951afd8a1e86d824a520f4d2dc80
|
|
train_00563
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
advanced
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"auditability",
"security_gates"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e8750b697a845315552380f221b7ae1cb0b6bf63
|
|
train_00564
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"security_gates",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
684fc16b2fd9ff7f06289a5c804b693715db12bf
|
|
train_00565
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
expert
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"security_gates",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
04b34b362a6d6b93c9ae6513a155d8253fc5dc80
|
|
train_00566
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
expert
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"documentation",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
48ada8ca3d38ded7d5d5f73f00894e41ee9e7cf6
|
|
train_00567
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
expert
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c0413a264900a05a879c131a72f642c359451d5f
|
|
train_00568
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
advanced
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
94d3984eaf1ea9c1125b835e1f2e068c60a92729
|
|
train_00569
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6aecb1d7174b088f8e96d7719934b6287b2f62be
|
|
train_00570
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
advanced
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"documentation",
"tooling"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c48f8250326cb8ddf4af95491be28a0bbcad33a8
|
|
train_00571
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
eb8c841e3d25d559d2897c48f4adcfe372108999
|
|
train_00572
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
expert
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a2537134fcdd164ac33c038ea896758ae1ddec66
|
|
train_00573
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"governance",
"reproducibility"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
00cee4ff4c151901cd8c733e2856605627e93d58
|
|
train_00574
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
expert
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"auditability",
"governance"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b5b0b42dcab747dc82933526883a23cec2b805e1
|
|
train_00575
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
expert
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"reproducibility",
"security_gates",
"documentation"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bd2a7d54895639a8782da3f59c094d1aac9077de
|
|
train_00576
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"tooling",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1df8fecd705631b03dbefb5c1d400f23862b9bd2
|
|
train_00577
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
intermediate
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"tooling",
"security_gates"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0c5754dde2990d0731ebca4402236b444ca0aaa7
|
|
train_00578
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
explain
|
expert
|
Task: explain
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"auditability",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d32174f8157aabdbbe515c9f387a31960a156516
|
|
train_00579
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"tooling",
"auditability"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8154a4b2611db3a9cddf0b462a225f703beaf704
|
|
train_00580
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
review
|
advanced
|
Task: review
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"reproducibility",
"auditability",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aa7f4e6cef1e5bdcffb87e7f42760b06d17cf5fa
|
|
train_00581
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
expert
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"tooling",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
41495c9711b3ae16ffbab71fd8573df437e1822c
|
|
train_00582
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"reproducibility",
"tooling",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6b4fc84d4e5aa5e8a82d339d66708ab3c8f6adbd
|
|
train_00583
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"cost_latency_tradeoffs",
"governance",
"auditability"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bcdc9f134df909aab28d9bdfe5e3dba63d56ac83
|
|
train_00584
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
expert
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"auditability",
"security_gates",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
83800bb23da56c842c9034e4182927dbafccb922
|
|
train_00585
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0d6b3943427a791f7dbdd3fc91e7522a6f9dd726
|
|
train_00586
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
intermediate
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"evaluation_metrics",
"governance",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
523dc54ca7ef62f68cee44de97200832dfc2cd03
|
|
train_00587
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
intermediate
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
10e5743ae72b83a433b4efe991538212db6f2294
|
|
train_00588
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
expert
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"documentation",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a80dbd7e32ccde49fb97a605fbd4e8926f4eb1d6
|
|
train_00589
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"auditability",
"security_gates"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f2bd519b60c0afa8e1de002ba5fd748a622e1765
|
|
train_00590
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
intermediate
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"ci_integration",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7fd159152d9005b16ad4405b762570fd5241fb84
|
|
train_00591
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"auditability",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dfe6dad3aa3d4ed2dccae6c0e408f0111a08eef8
|
|
train_00592
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0d8d2bb26b229a5cb669c1e604b5dc59e095f8ba
|
|
train_00593
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
intermediate
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"documentation",
"reproducibility"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
489b4210a05cf21177fb343ba05b038c1aabec7c
|
|
train_00594
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
intermediate
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
577e5821ed7887e279fd616751826872fc409f9b
|
|
train_00595
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"tooling",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fad6e1caf392386fcaeddf1531e121b427046937
|
|
train_00596
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"governance",
"ci_integration",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4c5e78562a933fd454f233747963f5cafacb6092
|
|
train_00597
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
intermediate
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"security_gates",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2b007d3f744ed4c83f0f8fba87b734e27981444f
|
|
train_00598
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"tooling",
"governance",
"security_gates"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e82f016b2c93351b5d76b0416384e8692ce13211
|
|
train_00599
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
advanced
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ad423ad68f8aeb9024f9b29cca764fc6689d7e25
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.