id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_46200
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
advanced
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics", "governance" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9d008e18e21e62705d8398da94f47dad02bd5705
train_46201
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
intermediate
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "documentation", "tooling" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aaa959ad798b512bbcc47e8f22c4db27ff206b79
train_46202
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "reproducibility", "governance", "auditability" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
37677db34224740be552276e556b95c6f39a4972
train_46203
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
advanced
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "tests_are_truth", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
535e1430a648b7e7e42bbc7c1eb057f66e0b8d54
train_46204
2026-01-01T00:00:00
Secure code generation and policy gates
compare
intermediate
Task: compare Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "auditability", "ci_integration", "documentation" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6b4b8dc4e94bcd9b09f60040e20c1ca6b7129644
train_46205
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e47e3c8b282b6bbfcd3d8368d3b1326629421fc0
train_46206
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
advanced
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "ci_integration", "governance", "auditability" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c3be35998aa1177c74ed0ca3ba3834c2c18a45e4
train_46207
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
expert
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "documentation", "auditability", "tooling" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c702830f27a0f4b564406364989b9fb9e201ae83
train_46208
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "evaluation_metrics", "tooling" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2c64f1dfddd4f4aafe06154e45af5c855dc6fcb3
train_46209
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2878dd91d5796bc9b1a17ef72e6b5e963ee21754
train_46210
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
intermediate
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "tooling", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bb61456e5266a7d285539fe9d2196c690c142a18
train_46211
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
advanced
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "documentation", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e87e5c2c62e6da63c25efaee820308eeca338342
train_46212
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bc15de94fe3b7c29ab193d75a2d10b7e79e3974c
train_46213
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
intermediate
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "security_gates", "tests_are_truth", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6259155f769d9ac7330b5fffc72c1b254ec9bbe5
train_46214
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
intermediate
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "governance", "reproducibility", "security_gates" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
398b79fca1d43396f8b7169869c483e0c8449f8f
train_46215
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
expert
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "ci_integration", "governance" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dfdc02ca850dad0c269e6c96386fef74c3c02404
train_46216
2026-01-01T00:00:00
Secure code generation and policy gates
explain
advanced
Task: explain Topic: Secure code generation and policy gates Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "ci_integration", "tooling", "governance" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cb50ef30768ec9a3c3032d2d1ea5e4f92b336e5f
train_46217
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "evaluation_metrics", "security_gates", "documentation" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
76aee81f85de901dee74a7c6ceb7e5bee00f910c
train_46218
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
advanced
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "auditability", "tests_are_truth", "tooling" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3410bdf4813ccd73c3a15fd3fa499faec3640ef4
train_46219
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tooling", "documentation", "auditability" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fd7c8c753efd7360856465252e9dac6eaa950753
train_46220
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "evaluation_metrics", "tooling", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3e41738627729729a37441c013bde4ac182d0778
train_46221
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
intermediate
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "tooling", "evaluation_metrics", "security_gates" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8b485a1ae5a641ff37f6ce4cc386f07468ff6cac
train_46222
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
expert
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "reproducibility", "documentation" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8bdd6a277ce236a8659e585f0364815b194e4d71
train_46223
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
expert
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "repo_scale_reasoning", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
63667a6a749b967300c96f5e2b905536fa8a977b
train_46224
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
expert
Task: code Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "ci_integration", "governance", "documentation" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f12e288c8a4e4eb9a57690527f7f1fe993fba301
train_46225
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
expert
Task: code Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98076009faa296a81c64ab62e7b7412151c71c64
train_46226
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
intermediate
Task: code Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "ci_integration", "tests_are_truth", "auditability" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
385f86c0a51dbac2b9ce9245a62e640e3cc528d5
train_46227
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "auditability", "documentation", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
01935252c47e813c99458b96a97698bc2b95debf
train_46228
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
intermediate
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "documentation", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
87c6a2b977b8c8173193b735032dd35e3f240c7b
train_46229
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "ci_integration", "tests_are_truth", "security_gates" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
00a8041795e2cac337bd80fa667df27b1a678134
train_46230
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
intermediate
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "evaluation_metrics", "tests_are_truth", "security_gates" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b658a01f35ab93c6756adda5bcfb5ae2bbf1f34f
train_46231
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
advanced
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "governance", "reproducibility", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e7aa0c33a53b0fa105e5813f851aa0007a7d198e
train_46232
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
expert
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "security_gates", "governance", "tooling" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6cf2e1c12578e20d306aba5139d63cdd7119de36
train_46233
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "repo_scale_reasoning", "security_gates", "ci_integration" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6577ac2b2fb6e979befc579b5b9b7159b7f3da61
train_46234
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
intermediate
Task: explain Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "tests_are_truth", "tooling", "auditability" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
96da1556bdc4f2a234c4a1c2d0beb5595c71112c
train_46235
2026-01-01T00:00:00
Secure code generation and policy gates
explain
expert
Task: explain Topic: Secure code generation and policy gates Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "security_gates", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f104700d81732069f945b8a9e01f460e8818b609
train_46236
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "evaluation_metrics", "reproducibility", "ci_integration" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de1416fb3aaecb5f3e631a30c513e2f45bfbafd1
train_46237
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
advanced
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "evaluation_metrics", "security_gates" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9a9b236a7f47ce78277b375f8643fc5add5956f4
train_46238
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
patch_diff
advanced
Task: patch_diff Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "governance", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
77fc10250ec5a135cef29768a6fbad4658e031f4
train_46239
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
advanced
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "governance", "tests_are_truth", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d2ad0b7e57391a5a4b42a912fc61563ce3aeecac
train_46240
2026-01-01T00:00:00
Secure code generation and policy gates
eval
expert
Task: eval Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "auditability", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d36d17606321f4b601195ffe150df8001d382da0
train_46241
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
intermediate
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "tests_are_truth", "tooling", "governance" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7be01492e1356b2e941a3af6552916ab855a86b9
train_46242
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
expert
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "documentation", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bea23bd133244b16b8899bb89e01b7b02cc84366
train_46243
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
expert
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "documentation", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9d17620bd6b26264d245333eac2c78541f64c400
train_46244
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
advanced
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "ci_integration", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9d5b19930f3c6fd9d6a6b0f283e8e96567d081a9
train_46245
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
intermediate
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "evaluation_metrics", "auditability", "documentation" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16272ec565096873c55fb3bfa0f2a78cc4d34ccb
train_46246
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "reproducibility", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cfb5e82064d9c11b1be22d575debf2cb7cf8a61c
train_46247
2026-01-01T00:00:00
Secure code generation and policy gates
explain
intermediate
Task: explain Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "reproducibility", "ci_integration", "documentation" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
013aa2d425fe150eaee87392003867553f97356e
train_46248
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
advanced
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "security_gates", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ea365c375ca654d01bc28d6d58bcca426089005e
train_46249
2026-01-01T00:00:00
Secure code generation and policy gates
compare
advanced
Task: compare Topic: Secure code generation and policy gates Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "evaluation_metrics", "tooling", "security_gates" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
600f35a9d938a785358459ae24839e935936ecc8
train_46250
2026-01-01T00:00:00
Secure code generation and policy gates
eval
advanced
Task: eval Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "tooling", "security_gates", "governance" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf29c4ccc637e23d65bd0cc0a1b5fe7ba9f1cb64
train_46251
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "documentation", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a0b4f921a6ea118f115b2e795e874a3a47921d0c
train_46252
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
advanced
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "evaluation_metrics", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a5c39deaecc079508783c49808fd91fd28624975
train_46253
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "tooling", "auditability" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
08d21b3e5456356cf04fd4e3527700eea5d55af3
train_46254
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "security_gates", "ci_integration", "auditability" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
250f06c6bf91e9f25e0d926d9f40b82fe57a74fd
train_46255
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
advanced
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "security_gates", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4be4f33ff40b8faa16bbcbb218cb3f117a5698fa
train_46256
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
expert
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a75f131a765458de23d2faf35884085ea4dfa57b
train_46257
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
expert
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
731a295a8a178fe203abb59800e92c3bdaa43174
train_46258
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
intermediate
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "evaluation_metrics", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6148203ce3af2e729317175744ecd3726eb664f7
train_46259
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
advanced
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "governance", "tooling", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e64f74928db65a124cf00640ea9ee30b46f1df3b
train_46260
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
intermediate
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "evaluation_metrics", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
da93adc0e65c1328dda5803e7e453171d4b9e468
train_46261
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
advanced
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "documentation", "tests_are_truth", "reproducibility" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ae5877110e6c9df710ae022e1a460b797ed607f8
train_46262
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "reproducibility", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5085baaeb6cffde71d0bb39d2c7bf36d8f8f9948
train_46263
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
advanced
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "tooling", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
40b04e9798db879e7aec7933c1dc09fc712b4b6a
train_46264
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
expert
Task: design Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "governance", "tooling", "security_gates" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c0aae23422740a5ce0bfd505a95aa7ccf2e5f6b9
train_46265
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "security_gates", "tooling", "auditability" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c0144fc461c195804c603cc8811b0d21fcf1fe3d
train_46266
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "tooling", "documentation", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98afd21e4da187e5eba8ecf280279a403274d38a
train_46267
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
intermediate
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "auditability", "reproducibility" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
40d3fa3909133a961c3caeea0ee28af14019e672
train_46268
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tooling", "governance" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6eb7be461c02fd3688039c8c8ae5b9740a8ecdf2
train_46269
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
advanced
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "reproducibility", "security_gates" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
34f1400640ed7bff47fa0bed98f468a6d9d1964c
train_46270
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
advanced
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "tooling", "governance", "ci_integration" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fcf8a20f9ce11900c02f2fd606cf85fe0ae6eaab
train_46271
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "tooling", "evaluation_metrics", "auditability" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
02b2ee6a73873f6079cf1c50af66efbbca72c3fe
train_46272
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0d4cb85cabe58bd8c179b0c45c4e91e9914086c0
train_46273
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "tests_are_truth", "auditability" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
33ae5fb881442bf95cc381258153e2379128014d
train_46274
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
advanced
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "documentation", "ci_integration", "tests_are_truth" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dd6c4a5f3c497ca129c904060ea61a7ef9a5d9ea
train_46275
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
advanced
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "security_gates", "documentation", "tests_are_truth", "governance" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6219950162418951b7aa8033705cbf8855baf72e
train_46276
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "ci_integration", "documentation" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1399b2101ee1ebada92e5a99a23acd83b4c746ea
train_46277
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "reproducibility", "documentation" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4e57d2f2b459c32d7f2994a3c12021c7421490a2
train_46278
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "tooling", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8aa72b8db1d2abca8e1db8e2203bfc0801f15ebf
train_46279
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
advanced
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "ci_integration", "tests_are_truth" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
515a842f56eee0769575e9351b201dd7a8110ea3
train_46280
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
expert
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "tooling", "documentation", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
39f85ead6ff16bb3772f87d3c3d66c2a3f7b5fe9
train_46281
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
advanced
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "tooling", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
18ec966f1b2ed31e86bb49ac56dd92101a05ef12
train_46282
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
expert
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning", "governance" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fd2855ea41c3d4c22b2348d0a39e3bb13f2b4242
train_46283
2026-01-01T00:00:00
Latency, cost, and reliability optimization
failure_analysis
advanced
Task: failure_analysis Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "tests_are_truth", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf4b210aec8b18fe47c086888b42808caa39b818
train_46284
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
advanced
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "auditability", "reproducibility", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
728970725c8e28ad64b3289a8fbea63d26c66b51
train_46285
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
expert
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "ci_integration", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cbc14cd93f18b2e2034f15c7a301baf4f2864808
train_46286
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
expert
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a5fdbed797bc051134daaf3254bcef9e137a2731
train_46287
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
intermediate
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a9bfcd7675aad532cc4175b5a791fd88cdd83028
train_46288
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
intermediate
Task: explain Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "tooling", "security_gates", "tests_are_truth", "documentation" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
198dd560bda3e99b971716f20c5e4eaef7a406d0
train_46289
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
advanced
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "documentation", "tooling", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
873c174b40a5cfe5bfc0c930c8dde9a1c6dbb405
train_46290
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
advanced
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "documentation", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3a654abbc531f0c2bf5f4117d72b38fd5b5bbb66
train_46291
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
expert
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6a9a21e3c98faa030eacbf1104e13cad187b2e26
train_46292
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
advanced
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "tests_are_truth", "documentation", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7cd81a5b60b59ddc08cc99e2cd9778e8a9ea8442
train_46293
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
expert
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "governance", "auditability", "ci_integration" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
78e7debc9fc71d98859ac74ca7daac9f56dedec3
train_46294
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
advanced
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "ci_integration", "documentation", "tests_are_truth" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4e240484c94609a8bfba9abf411c01eb263c0271
train_46295
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
intermediate
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "tests_are_truth", "governance", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
31717dde7d7dbcdc0c2d2d6013c4fbfab9159d83
train_46296
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
expert
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "reproducibility", "documentation" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b4e5510362efcb7b042b42d1db4818e0745c345a
train_46297
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
expert
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "governance", "auditability", "security_gates" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4510cefbcded174946a44533b33e21635eb275d3
train_46298
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
advanced
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "tooling", "evaluation_metrics", "security_gates" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
27b64f9d96c50a81e7ac05fa0bb9b8e5810e3545
train_46299
2026-01-01T00:00:00
Secure code generation and policy gates
compare
advanced
Task: compare Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "evaluation_metrics", "security_gates", "tooling" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
72bfb6f57bf2df0701e45b84e32a4f61f227348f