id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_46400
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
expert
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"documentation",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c4e76ee168185313eb639c94ae45ef50dfafa798
|
|
train_46401
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"documentation",
"tooling",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ed1aa7f501d57db81279566c861d697023bf3cbd
|
|
train_46402
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"security_gates",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
23f150093184637cf60f4de287b50e8501c4f051
|
|
train_46403
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"documentation",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
196ef74efb445ba7d1b526b7328e0f5e82ab99ed
|
|
train_46404
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
eval
|
advanced
|
Task: eval
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"governance",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7203cc3cef03f179953ce5762232fac758da566c
|
|
train_46405
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
expert
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"reproducibility",
"ci_integration",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
941c2aac652783ca05ae1e8de5d437513532cf4e
|
|
train_46406
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"auditability",
"reproducibility",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
31b2bae43143e686aea1c2ca0409d3723e103b87
|
|
train_46407
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
expert
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fc407cfdb23e61f29468f0192a2397b01059dd95
|
|
train_46408
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
advanced
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"documentation",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
50f449d6f9eb41588c6afeca595d36e98735a6ee
|
|
train_46409
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
intermediate
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
648230042ff698ded340c930140a9d7025774b6f
|
|
train_46410
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
review
|
expert
|
Task: review
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f2dcc32d3defbe8d98f118d74360172068ba61b1
|
|
train_46411
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"governance",
"auditability"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ff9011851087891713931bb00b9ab426b96422b1
|
|
train_46412
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"evaluation_metrics",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
262b351f86dab7ef01a823c62f9958a97f479b28
|
|
train_46413
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"evaluation_metrics",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1c165027dae0f0b7a8ee27bb379cb49cb9ebe132
|
|
train_46414
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1a1c47f5942f6bc61f2b1d1b4943d1aea62a46ff
|
|
train_46415
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
expert
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"tooling",
"security_gates",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
704bb005731101e7369696ba87f47553af503f7e
|
|
train_46416
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e2902daa1b4dcc91436e83a8fbb3afb5e9de4866
|
|
train_46417
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"governance",
"tooling"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0d8fe929e9d185977c6671a8c8687f5313e0a369
|
|
train_46418
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
code
|
intermediate
|
Task: code
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"reproducibility",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ee11923a4737b2c062dd2c1ef26a3a8864e2ee0b
|
|
train_46419
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
expert
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fd6a9259fb897eddceb362d34f6efcedcbd0646d
|
|
train_46420
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"tests_are_truth",
"ci_integration",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6a712f43dd1a65061cddd123a2865769f40b8346
|
|
train_46421
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
design
|
advanced
|
Task: design
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"evaluation_metrics",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0d7b8335485eaf4a36ad53df86a3253aaa624794
|
|
train_46422
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
eval
|
expert
|
Task: eval
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"documentation",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3b8ca3694f100ec11ad7ab964f74cc3b94fd30d8
|
|
train_46423
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
advanced
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"reproducibility",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
738e59870d9cec94390676c2fc93e1a423b97622
|
|
train_46424
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
028587454e1e70fc03f16ebd05c31f831bede196
|
|
train_46425
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"security_gates",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
42ad6bba4f2414071248bae9c8a0e8a3ee64b180
|
|
train_46426
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
expert
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"evaluation_metrics",
"documentation",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f911eb2fb55cb04c3c7caf7af5ba9fa031d2d3ff
|
|
train_46427
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"ci_integration",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4c75496836e82413bbb0edae9888a6f99c499ba3
|
|
train_46428
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
expert
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"tests_are_truth",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0c57f739f3c0a7c357e43b0afc06b9831f8e2306
|
|
train_46429
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
advanced
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"auditability",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e73f1618ed7561e8d53af404bf4785dfdb4db797
|
|
train_46430
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
expert
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"evaluation_metrics",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
61066ebeeaf48860a9b36159f1a8329be22e0d21
|
|
train_46431
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
intermediate
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"governance",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1f8a1dbbaba54dddbad007bb2466ee34536c6d2e
|
|
train_46432
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
advanced
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"tests_are_truth",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b4ab948815c9d6e152a8f15319849ea126035e9d
|
|
train_46433
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
expert
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"auditability",
"reproducibility",
"tooling"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
41b92495c66e5021d19fa6fb15f9a226017bec42
|
|
train_46434
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
intermediate
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"documentation",
"governance",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b2cacd75e20657e429ee4dec3bb6638ba7a5bbe2
|
|
train_46435
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
expert
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2d079af68b948c24f7d283cb3e5bab4e2946d24e
|
|
train_46436
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
advanced
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c6e65d8391f361c5556d501bbfe96dd42c763750
|
|
train_46437
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"documentation",
"governance"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c78897e1f0014015e0213b46182bd7ca759bd7f3
|
|
train_46438
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"governance",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1792a90830716f1873cf0297874af708ce6d93de
|
|
train_46439
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
intermediate
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"governance",
"auditability"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ee280604651a9d250d4c6249396a957814215a59
|
|
train_46440
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"governance",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6d84587e58f206bb969094dce3afed5bd5acdfe9
|
|
train_46441
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"security_gates",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
edbb0e1ef7481088d67c065d8557e2f11b7b249e
|
|
train_46442
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
expert
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"tooling",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
92a6b00788a1988bd778236ff39a45ad5ec52557
|
|
train_46443
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"documentation",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e678393b446d6979b1dce6f3a05f7051f5db3cb6
|
|
train_46444
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"tooling",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
35c3f258213264d0fb9a8e22d9e1ab5f0efc419e
|
|
train_46445
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cfae7e09df4e92acf2f6c1b6e1a034ad7514fc25
|
|
train_46446
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
intermediate
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c98c1443db7fdaae2956f01687510bd09354de42
|
|
train_46447
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
advanced
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"auditability",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
68085678c5dc3be9b15d5276a28963e3c79f67c2
|
|
train_46448
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
advanced
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"auditability",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
73cf9767179918833811b6390e15a92ac85fcd26
|
|
train_46449
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"evaluation_metrics",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5ea155024e26b1c85c7b4e35bd7459575c2735b7
|
|
train_46450
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4c6625fc857f18e99e1d6c178acd7311d0f4d8ca
|
|
train_46451
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
intermediate
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"governance",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
270bb1d3976f9e31589497e5dce1dd8751a82818
|
|
train_46452
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
explain
|
intermediate
|
Task: explain
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bb411324b0d265e5780e540c79c8ff41f0cc6ec9
|
|
train_46453
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"governance",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
77d4ff7be59b38e1d883411227fc1f19cd574ed1
|
|
train_46454
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
intermediate
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"governance",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cd393c150e7d04de8d4318787d478aee5fc068d3
|
|
train_46455
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
expert
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ba3299fdfa840d59556ea10ecf02bcc0345f0625
|
|
train_46456
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"tooling",
"governance",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
66d48c0f064a6f81ffd4e1896acaba4db619469a
|
|
train_46457
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"security_gates",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7b97a24b4266586e8b5d032c89485350fa332783
|
|
train_46458
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
intermediate
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"governance",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
661de9065f792bcf0509468650f163f62eba53b7
|
|
train_46459
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"auditability",
"documentation",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aedcc472a66373e528806de6810cce5b74d77965
|
|
train_46460
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ed1c7c0d8e9a60a59114aeaa7097e6fce4d8ccb1
|
|
train_46461
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
expert
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"documentation",
"security_gates",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6af4c52dd12b9f64e34b5e67599b2c8906879791
|
|
train_46462
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
689f6e288216779816983d7ed9a291783ba35d7b
|
|
train_46463
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
advanced
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"tests_are_truth",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9fe8bd4c0b2fd3a82dc1f1a2d0bbc59b3e321222
|
|
train_46464
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"auditability",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5aba9c280f2a3fad0d7266b70a5eac977d5b0004
|
|
train_46465
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
expert
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"evaluation_metrics",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4a4e204dab9c46764c20349862d20a119d5ef347
|
|
train_46466
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"auditability",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f9b47b9af42f23688097c83c8cee5831480e3d55
|
|
train_46467
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
expert
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b264c661a517c1635a375d608ef0b61e8e56ef4f
|
|
train_46468
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"reproducibility",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19dd3677ab80704a8b7ea56a8c56c7bbbaa435ef
|
|
train_46469
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2e8332d245b1dd046fb9333dd6106ce099b6e087
|
|
train_46470
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
intermediate
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"governance",
"auditability"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
28a03a9fbb18acb3b0aace8eaeda3ddbe1bfb186
|
|
train_46471
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
advanced
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"tooling",
"security_gates",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3fab3f21cf7eac765b84bdcfa3fbc934032729cb
|
|
train_46472
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"governance",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
25f983f0e5a4093b86735811f60ae0e7484c422d
|
|
train_46473
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
intermediate
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"tooling",
"auditability"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ea11daaec00571dd191b656a1b4555ce1782d2f8
|
|
train_46474
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dc69c5fd5cfe84a83c134ee18fea0975846f0b07
|
|
train_46475
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"auditability",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e58b2c47d19dccf02ebe98992994c44f342121f3
|
|
train_46476
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
expert
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"security_gates",
"governance"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b994cedd70e0b935ae58528ee4a141014f88309b
|
|
train_46477
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2a107e456f1c10908be529b2b4a68c8ca85432a2
|
|
train_46478
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"auditability",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e9492808c8825ff19f183cfffa2af785b37185ec
|
|
train_46479
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
intermediate
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"documentation",
"governance",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4ac8a8df5aa8659606bcd94700d25400c1a290f2
|
|
train_46480
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
intermediate
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"security_gates",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
144ed43f4dfb22253303006022df3144c5c05a77
|
|
train_46481
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1323900fd0d2d5ab37ab2b80eff46d315d6ded76
|
|
train_46482
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
advanced
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"reproducibility",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e3fb5189fe3ccf266b0a665423cac84eab509797
|
|
train_46483
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
advanced
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
94bd31124501164e37273230d8a45851f6b60c46
|
|
train_46484
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"security_gates",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2c36e46e8398d28df87da9343d8964bfb9090158
|
|
train_46485
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
expert
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"governance",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c1d1e10ef17e57ae88f7297b3cbcbf8cac7d35bb
|
|
train_46486
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
255b185fc9f3720c7e950f719c173740a940ce70
|
|
train_46487
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"security_gates",
"documentation",
"tooling"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
016a8df867549d7005d299c033ea5409b45c8de6
|
|
train_46488
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
advanced
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"tests_are_truth",
"governance"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e3bd48be3ec349ab7ccdd68a532bbd2aa75b9bcd
|
|
train_46489
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"documentation",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fcd7a6a2991d14aa21e5bd3fd430a6636447dd7a
|
|
train_46490
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"reproducibility",
"security_gates"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9e4103bfc0585fb48f26c1e95ddefd37129b6b6c
|
|
train_46491
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"tooling",
"governance"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
250d6e03e2f97a7f18b115dacfe54e93b6420cce
|
|
train_46492
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e2c8184320c871ba452fcda115e328ea942bef36
|
|
train_46493
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
intermediate
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
215b0a8e0393adbbda41529b4f09ce711862686a
|
|
train_46494
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"governance",
"security_gates",
"auditability"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
62b6a5e234c205b287efbd58a80390f4373d7bf9
|
|
train_46495
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
intermediate
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2c61d2f6b64992bb03c322b3dd618818164ed25c
|
|
train_46496
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
intermediate
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"tooling",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
001df8d625420b32aaba69ce9b2248774ebe543d
|
|
train_46497
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
advanced
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"security_gates",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dc60306c05c2612a794766eaf7356a95ea7717a1
|
|
train_46498
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
intermediate
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"auditability",
"tests_are_truth",
"governance"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d7076693ac4530d82345cdfece7cd2c7ca7965c3
|
|
train_46499
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
expert
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"tooling",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f1cd3297e9de2e0a13bb0a2a4d93e14b5190e4ae
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.