id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_06100
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
advanced
Task: design Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "governance", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f5834119c8677d0f933dc5386bc31bf84885aba8
train_06101
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
intermediate
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "documentation", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f1b71de7cc98980b6bf8adcffcbe2fcc8367ba53
train_06102
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
intermediate
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6a1c5972068f78bb736596daf1569b0ccd11f38a
train_06103
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
advanced
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6f7b2f8730c8ce252fc697ff5f3aea7e498a08ea
train_06104
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
expert
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b2cff725c5c522b7abb6f9b42c044083c94faf55
train_06105
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "documentation", "ci_integration" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fd4cd14560e9e157af7ae18992e7fc78c99add4e
train_06106
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
advanced
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "tests_are_truth", "reproducibility", "security_gates" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
499415d3ad8f1f9fba2f6899a83a6277af77cd2b
train_06107
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
expert
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "ci_integration", "security_gates", "documentation" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5035575bb8fac13d795235622fda8ae6c003a4ea
train_06108
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
advanced
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "repo_scale_reasoning", "governance", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
277ce459236f361b5beb84b1c9e706ab6155580f
train_06109
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
intermediate
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "tooling", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
59531f312b0c45e45a1de03bb5da62513f495815
train_06110
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
expert
Task: code Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
685e7067faeaa2bbbb7bfe39ecebabc184372af5
train_06111
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
expert
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "security_gates", "auditability", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8538f903e427d1dee014983054cfaf2ee440c031
train_06112
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
intermediate
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3f1950202571672404226cb4b67328328074e271
train_06113
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
expert
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4432df4713420fbe525b1f0d5a89d7f2837bf63f
train_06114
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "governance", "evaluation_metrics", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fae6758a4cea977c8d3dc2de4146ab18b0a0b444
train_06115
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "reproducibility", "tests_are_truth" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
323294c469cc9ca6547d37459fd7133f54fe4ad1
train_06116
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
intermediate
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "tooling", "ci_integration", "tests_are_truth" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
20ea7fff40772c6a92415b4f9d1adb8b11afac27
train_06117
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
advanced
Task: code Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "reproducibility", "ci_integration" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e1681229f4834c232534e3fc5bd2bdee10b88a88
train_06118
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "evaluation_metrics", "tooling" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4cb3fd1a71ec7bc2a28d8a5c5fd527edae44cefd
train_06119
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "ci_integration", "tests_are_truth", "documentation" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca5e5447cbbdf790849d38141c4ff59f07e5756c
train_06120
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "ci_integration", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f257ad17bc41412e98a77de34777c7edc31b7dd
train_06121
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
intermediate
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "governance", "auditability" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
883d70c424f71b5e7839bbe22eb2b372de701caa
train_06122
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
expert
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "security_gates", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b419d10651029c143eda254019ce44c20c97ff0f
train_06123
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
intermediate
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "documentation", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5c88e18bd7a18fc654260d0dc770bef0cfc76522
train_06124
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "auditability", "ci_integration", "tooling", "reproducibility" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
12673612d6410eb70e6cb706b830bf14e0613258
train_06125
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
intermediate
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "documentation", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4319687a01d7d0888f39381fe904c365e99dd822
train_06126
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "ci_integration", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f0be724a038ae6027d267dfffad7dedd1b818b73
train_06127
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
advanced
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "ci_integration", "tooling", "security_gates" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
470bc483b88180241146e8ab4c6779094372480f
train_06128
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "reproducibility", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
284ab27e7f3883f53170f1c6d3d4753a46afca58
train_06129
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "reproducibility", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ee444e6e79708fac0690cb0a9e17300d37b5955
train_06130
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
expert
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "security_gates", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ce8ed1a8e1744af4c552b752fa2332f1b654ee9a
train_06131
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "auditability", "tooling", "documentation" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
554087d6b7bb2dc593d692054fe4cf3be1479dac
train_06132
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
expert
Task: code Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "ci_integration", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d131bb3522c1ff551a7bf3ec74d60337b8092183
train_06133
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
intermediate
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "governance", "security_gates", "auditability" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9c6e4dc7059f84c3105265d5fe7b8091cc6213a4
train_06134
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
intermediate
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "tooling", "reproducibility", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aadd17fdc36d49c4f794117dae6f3019b39df5fe
train_06135
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
expert
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "security_gates", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
42fe14bb145bbde31a33af4b3cbbed84c26a05db
train_06136
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
advanced
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Python", "developer_needs": [ "governance", "reproducibility", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b65a7215af0f4a85324fcc50c1a025f7ac63db61
train_06137
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
patch_diff
expert
Task: patch_diff Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "reproducibility", "tooling" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
62bdb40fb861a019bee08c2564234fa5e3dfdd0a
train_06138
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
expert
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "evaluation_metrics", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2374b84bec676f7428b29c648981788787251ff6
train_06139
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
intermediate
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "security_gates", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf7b38408227212f9a4bf566588e721165cf7343
train_06140
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6c8e9b6f07265c754e6050c502c55e7249c81481
train_06141
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
advanced
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "evaluation_metrics", "tooling", "security_gates" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
428cc249c77e576fe63123820478f395d3a7bb83
train_06142
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
advanced
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "documentation", "tooling" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec5bf6e59dda649e20fbe00910d19c9b1850affd
train_06143
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
intermediate
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "tests_are_truth", "auditability" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
80c9cd241f1e3e86653e5dd2f1599ecc7a47b1b2
train_06144
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
intermediate
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "tests_are_truth", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf52209e60c3052f139b5b2f9a0fec25006a4415
train_06145
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
intermediate
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "security_gates", "tooling", "tests_are_truth" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a5e1ddd4f579f827d243fce64a6f17064229b85f
train_06146
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "ci_integration", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
85036cb3a7b8b85f35e095f9a309c502e8a003f0
train_06147
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "auditability", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf31a00501e73e7f74c47028c42c4e06689b540b
train_06148
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
advanced
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "evaluation_metrics", "auditability", "tooling" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b95ef409761007533aa41308e4444e23f73d7fa8
train_06149
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
intermediate
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "security_gates", "governance", "tooling", "reproducibility" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fdb1fb1a691d698bc256fb2d75995e55ef3e9ea8
train_06150
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "tests_are_truth", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
da45109f17322c70695b6f75e3432bc5cf18b2c8
train_06151
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
advanced
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tooling", "repo_scale_reasoning", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b32c04cac2b50e850a21cb1913aa8a8fa18450f9
train_06152
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
intermediate
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "documentation", "tests_are_truth", "governance" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
299b4b81948b2db0d72b90f98c6d022a0e01240c
train_06153
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "documentation", "auditability" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
672e372d4c8bd960801cde2eaa9959ce23c0a652
train_06154
2026-01-01T00:00:00
Secure code generation and policy gates
review
advanced
Task: review Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "governance", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
597aef5cc136db30b3712ac5edb4705cea49ae78
train_06155
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
intermediate
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "documentation", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
654e23ec3772c9f2459273b4adc9ca70ebc0220f
train_06156
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
advanced
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "ci_integration", "auditability" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a77a925bb6c1e76734f285a0d975189d6548088d
train_06157
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
691dd951107cb7fc9e617ab60d67df3466e54451
train_06158
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "auditability", "security_gates", "tooling" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9de8ecc0d1bf2788663a05cd3245d6feddfd20bc
train_06159
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
expert
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "evaluation_metrics", "governance" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ebd9f83e8cdb35cf0220eb9c4d2663d43a3894aa
train_06160
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
intermediate
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "reproducibility", "ci_integration" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
af5a3f367ab8f32632d3ef367551a6bbfa8625b2
train_06161
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "documentation", "auditability", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8a269d0110434df8cf205bc58ad780d611b345f3
train_06162
2026-01-01T00:00:00
Secure code generation and policy gates
code
advanced
Task: code Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "reproducibility", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
633429ef2dd363c1b1e1887b77a52b8a25611493
train_06163
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "documentation", "security_gates", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
038c75543f531aef0538b4af74ff4e4a1d94af0f
train_06164
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
advanced
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "tooling", "tests_are_truth" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2277b9f0cd23c4d35459f7b70b0c2fa0c04e6832
train_06165
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "ci_integration", "tests_are_truth" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
365f16a31a500ba8c55b50f16019dd6e10ad3808
train_06166
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
intermediate
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "ci_integration", "tooling" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f57d4a3c37c622f45436d50c36ffc317a70ee8e1
train_06167
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
advanced
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "security_gates", "reproducibility", "auditability" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cb8fbe885dbc69761128c9bb5d088ba5a5d67647
train_06168
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
expert
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "governance", "tooling", "auditability", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
02b7ff1f4bc883f22f9599902028793e823397a3
train_06169
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "reproducibility", "documentation", "auditability" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca02dda599706606b042a79824fd1ca84ba97b11
train_06170
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
intermediate
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "evaluation_metrics", "auditability", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bbb464ee073a227d221f9a6c61b1ccff683b3343
train_06171
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
expert
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "ci_integration", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b0ad47f24e8dbfc6a8c10726d7ffa97887202f61
train_06172
2026-01-01T00:00:00
Secure code generation and policy gates
explain
advanced
Task: explain Topic: Secure code generation and policy gates Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "auditability", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
86725fd5d0b7c729f2c8ea630f0e65bc2b396d96
train_06173
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
expert
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "security_gates", "tests_are_truth", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
347e8472bf06e7a8afcfdedc18ee4492e1ed9961
train_06174
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "security_gates", "ci_integration" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8ae01491838a155f91980c42a857af540d9e840b
train_06175
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
expert
Task: eval Topic: Extended context and repo-scale understanding Difficulty: expert Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "security_gates", "tooling" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
11357d13fe65b51ab0e6670bb3a05ebf9c741f4d
train_06176
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
advanced
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "documentation", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
65f5120ce441973df1e1abda48156fdd0ffae285
train_06177
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
expert
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "reproducibility", "governance", "ci_integration" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bd092b753e1edf209bf24f0828d317ff522d7cd5
train_06178
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "tooling", "auditability", "reproducibility", "tests_are_truth" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5148af9f0bfe32d906baedb2d8693d38910fd4c0
train_06179
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "governance", "documentation" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e9ab7c4eb0392e9be9dacb8463df9f6563dd33b8
train_06180
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "auditability", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
85a5ee0191f5b4c83cc903b3209d4bcf3f9742a5
train_06181
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
intermediate
Task: code Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
065d335d6e2646c5816962daf5e8b50475b62144
train_06182
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
intermediate
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "security_gates", "repo_scale_reasoning", "governance" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ea35580e409eb99bb5a99e17254c1ea1ed9eb32
train_06183
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
expert
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "evaluation_metrics", "governance" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
58f4419d58b3045e5593a2578a96a6e67f1e1078
train_06184
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
advanced
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "reproducibility", "tooling" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
69a4e68b1202f1950042bad8a596db7a8219896d
train_06185
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "governance", "auditability" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8632cf9c0c95ad8b36eedf01d5e226d2ddaed1ec
train_06186
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
intermediate
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "auditability", "evaluation_metrics", "documentation" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3b9495478c6ec53b80cb5ce8e6d92c24e97fda8f
train_06187
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
expert
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "tests_are_truth", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a45dc7a6dab05cb3057257e781cb449e84cfb55
train_06188
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "auditability", "documentation", "reproducibility" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2d7c01474ab1910eab9082d7233859f9f3b19de8
train_06189
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "governance", "documentation", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
be293c127632777fd7726529c98d6d108a453499
train_06190
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
expert
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "auditability", "tooling", "tests_are_truth" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
03661cb3a1d0d03e48024a6f981f0f161fd026dd
train_06191
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
intermediate
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4b1abed2b79995f77a6ca18f6853612bfd63df32
train_06192
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
intermediate
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "auditability", "evaluation_metrics", "tooling" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
17270cac3b044e72cc407574133b036cea2b66a5
train_06193
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
expert
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "security_gates", "repo_scale_reasoning", "governance" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c7ed5cf9c0c084f399d7eafc9749d5de38ce321c
train_06194
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
advanced
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
56384012a60417dbf7d1e8191b3acdbecd6d6151
train_06195
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
expert
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "tests_are_truth", "governance" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5998b0a376ee36093ed8552bddd786e47302e07f
train_06196
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "auditability", "documentation", "security_gates" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1dbdee4368083d91cf2f23a6642379d5cf3f6133
train_06197
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "documentation", "auditability", "tests_are_truth", "tooling" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cbac4943760a5370dffd34418bf8d347ab427617
train_06198
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
intermediate
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d0d383da96da6fbbcc623468e3254ebc8f1e83b4
train_06199
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "auditability", "tests_are_truth", "ci_integration", "tooling" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fe8e7eacaa608d72cedf07f7fb2f9db230a25505