id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_06100
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
advanced
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"governance",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f5834119c8677d0f933dc5386bc31bf84885aba8
|
|
train_06101
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"documentation",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f1b71de7cc98980b6bf8adcffcbe2fcc8367ba53
|
|
train_06102
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
intermediate
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"cost_latency_tradeoffs",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6a1c5972068f78bb736596daf1569b0ccd11f38a
|
|
train_06103
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
advanced
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6f7b2f8730c8ce252fc697ff5f3aea7e498a08ea
|
|
train_06104
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
expert
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b2cff725c5c522b7abb6f9b42c044083c94faf55
|
|
train_06105
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
intermediate
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"documentation",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fd4cd14560e9e157af7ae18992e7fc78c99add4e
|
|
train_06106
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
advanced
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"tests_are_truth",
"reproducibility",
"security_gates"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
499415d3ad8f1f9fba2f6899a83a6277af77cd2b
|
|
train_06107
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"ci_integration",
"security_gates",
"documentation"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5035575bb8fac13d795235622fda8ae6c003a4ea
|
|
train_06108
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
advanced
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"governance",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
277ce459236f361b5beb84b1c9e706ab6155580f
|
|
train_06109
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"tooling",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
59531f312b0c45e45a1de03bb5da62513f495815
|
|
train_06110
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
expert
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
685e7067faeaa2bbbb7bfe39ecebabc184372af5
|
|
train_06111
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
expert
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"auditability",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8538f903e427d1dee014983054cfaf2ee440c031
|
|
train_06112
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
intermediate
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3f1950202571672404226cb4b67328328074e271
|
|
train_06113
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
design
|
expert
|
Task: design
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4432df4713420fbe525b1f0d5a89d7f2837bf63f
|
|
train_06114
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"evaluation_metrics",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fae6758a4cea977c8d3dc2de4146ab18b0a0b444
|
|
train_06115
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
review
|
expert
|
Task: review
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
323294c469cc9ca6547d37459fd7133f54fe4ad1
|
|
train_06116
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"tooling",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
20ea7fff40772c6a92415b4f9d1adb8b11afac27
|
|
train_06117
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
advanced
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e1681229f4834c232534e3fc5bd2bdee10b88a88
|
|
train_06118
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4cb3fd1a71ec7bc2a28d8a5c5fd527edae44cefd
|
|
train_06119
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"ci_integration",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ca5e5447cbbdf790849d38141c4ff59f07e5756c
|
|
train_06120
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
intermediate
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"ci_integration",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8f257ad17bc41412e98a77de34777c7edc31b7dd
|
|
train_06121
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
intermediate
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"governance",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
883d70c424f71b5e7839bbe22eb2b372de701caa
|
|
train_06122
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
expert
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"security_gates",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b419d10651029c143eda254019ce44c20c97ff0f
|
|
train_06123
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"documentation",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5c88e18bd7a18fc654260d0dc770bef0cfc76522
|
|
train_06124
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
review
|
intermediate
|
Task: review
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"ci_integration",
"tooling",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
12673612d6410eb70e6cb706b830bf14e0613258
|
|
train_06125
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"documentation",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4319687a01d7d0888f39381fe904c365e99dd822
|
|
train_06126
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
expert
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"ci_integration",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f0be724a038ae6027d267dfffad7dedd1b818b73
|
|
train_06127
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
advanced
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"tooling",
"security_gates"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
470bc483b88180241146e8ab4c6779094372480f
|
|
train_06128
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"reproducibility",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
284ab27e7f3883f53170f1c6d3d4753a46afca58
|
|
train_06129
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4ee444e6e79708fac0690cb0a9e17300d37b5955
|
|
train_06130
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"security_gates",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ce8ed1a8e1744af4c552b752fa2332f1b654ee9a
|
|
train_06131
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
expert
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"auditability",
"tooling",
"documentation"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
554087d6b7bb2dc593d692054fe4cf3be1479dac
|
|
train_06132
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
expert
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"ci_integration",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d131bb3522c1ff551a7bf3ec74d60337b8092183
|
|
train_06133
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
design
|
intermediate
|
Task: design
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"governance",
"security_gates",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9c6e4dc7059f84c3105265d5fe7b8091cc6213a4
|
|
train_06134
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"tooling",
"reproducibility",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aadd17fdc36d49c4f794117dae6f3019b39df5fe
|
|
train_06135
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
explain
|
expert
|
Task: explain
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
42fe14bb145bbde31a33af4b3cbbed84c26a05db
|
|
train_06136
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
advanced
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"reproducibility",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b65a7215af0f4a85324fcc50c1a025f7ac63db61
|
|
train_06137
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"reproducibility",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
62bdb40fb861a019bee08c2564234fa5e3dfdd0a
|
|
train_06138
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"evaluation_metrics",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2374b84bec676f7428b29c648981788787251ff6
|
|
train_06139
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"security_gates",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf7b38408227212f9a4bf566588e721165cf7343
|
|
train_06140
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"tooling",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6c8e9b6f07265c754e6050c502c55e7249c81481
|
|
train_06141
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
advanced
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"tooling",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
428cc249c77e576fe63123820478f395d3a7bb83
|
|
train_06142
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"documentation",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ec5bf6e59dda649e20fbe00910d19c9b1850affd
|
|
train_06143
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
80c9cd241f1e3e86653e5dd2f1599ecc7a47b1b2
|
|
train_06144
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"tests_are_truth",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf52209e60c3052f139b5b2f9a0fec25006a4415
|
|
train_06145
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"security_gates",
"tooling",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a5e1ddd4f579f827d243fce64a6f17064229b85f
|
|
train_06146
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
review
|
intermediate
|
Task: review
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"ci_integration",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
85036cb3a7b8b85f35e095f9a309c502e8a003f0
|
|
train_06147
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"auditability",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf31a00501e73e7f74c47028c42c4e06689b540b
|
|
train_06148
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
review
|
advanced
|
Task: review
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"evaluation_metrics",
"auditability",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b95ef409761007533aa41308e4444e23f73d7fa8
|
|
train_06149
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
intermediate
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"governance",
"tooling",
"reproducibility"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fdb1fb1a691d698bc256fb2d75995e55ef3e9ea8
|
|
train_06150
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
advanced
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"tests_are_truth",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
da45109f17322c70695b6f75e3432bc5cf18b2c8
|
|
train_06151
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
advanced
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b32c04cac2b50e850a21cb1913aa8a8fa18450f9
|
|
train_06152
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
intermediate
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"documentation",
"tests_are_truth",
"governance"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
299b4b81948b2db0d72b90f98c6d022a0e01240c
|
|
train_06153
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
advanced
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"documentation",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
672e372d4c8bd960801cde2eaa9959ce23c0a652
|
|
train_06154
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
review
|
advanced
|
Task: review
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"governance",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
597aef5cc136db30b3712ac5edb4705cea49ae78
|
|
train_06155
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"documentation",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
654e23ec3772c9f2459273b4adc9ca70ebc0220f
|
|
train_06156
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
advanced
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"ci_integration",
"auditability"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a77a925bb6c1e76734f285a0d975189d6548088d
|
|
train_06157
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
expert
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"documentation",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
691dd951107cb7fc9e617ab60d67df3466e54451
|
|
train_06158
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
intermediate
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"auditability",
"security_gates",
"tooling"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9de8ecc0d1bf2788663a05cd3245d6feddfd20bc
|
|
train_06159
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ebd9f83e8cdb35cf0220eb9c4d2663d43a3894aa
|
|
train_06160
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
intermediate
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af5a3f367ab8f32632d3ef367551a6bbfa8625b2
|
|
train_06161
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
expert
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"documentation",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8a269d0110434df8cf205bc58ad780d611b345f3
|
|
train_06162
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
advanced
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"reproducibility",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
633429ef2dd363c1b1e1887b77a52b8a25611493
|
|
train_06163
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"security_gates",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
038c75543f531aef0538b4af74ff4e4a1d94af0f
|
|
train_06164
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"tooling",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2277b9f0cd23c4d35459f7b70b0c2fa0c04e6832
|
|
train_06165
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
expert
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
365f16a31a500ba8c55b50f16019dd6e10ad3808
|
|
train_06166
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"ci_integration",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f57d4a3c37c622f45436d50c36ffc317a70ee8e1
|
|
train_06167
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"documentation",
"security_gates",
"reproducibility",
"auditability"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cb8fbe885dbc69761128c9bb5d088ba5a5d67647
|
|
train_06168
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"tooling",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
02b7ff1f4bc883f22f9599902028793e823397a3
|
|
train_06169
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"documentation",
"auditability"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ca02dda599706606b042a79824fd1ca84ba97b11
|
|
train_06170
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"evaluation_metrics",
"auditability",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bbb464ee073a227d221f9a6c61b1ccff683b3343
|
|
train_06171
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"ci_integration",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b0ad47f24e8dbfc6a8c10726d7ffa97887202f61
|
|
train_06172
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
explain
|
advanced
|
Task: explain
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
86725fd5d0b7c729f2c8ea630f0e65bc2b396d96
|
|
train_06173
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
expert
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"tests_are_truth",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
347e8472bf06e7a8afcfdedc18ee4492e1ed9961
|
|
train_06174
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
advanced
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"security_gates",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8ae01491838a155f91980c42a857af540d9e840b
|
|
train_06175
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
expert
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"cost_latency_tradeoffs",
"security_gates",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
11357d13fe65b51ab0e6670bb3a05ebf9c741f4d
|
|
train_06176
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
advanced
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"documentation",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
65f5120ce441973df1e1abda48156fdd0ffae285
|
|
train_06177
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"reproducibility",
"governance",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bd092b753e1edf209bf24f0828d317ff522d7cd5
|
|
train_06178
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
review
|
intermediate
|
Task: review
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"auditability",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5148af9f0bfe32d906baedb2d8693d38910fd4c0
|
|
train_06179
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"governance",
"documentation"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e9ab7c4eb0392e9be9dacb8463df9f6563dd33b8
|
|
train_06180
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"auditability",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
85a5ee0191f5b4c83cc903b3209d4bcf3f9742a5
|
|
train_06181
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
intermediate
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
065d335d6e2646c5816962daf5e8b50475b62144
|
|
train_06182
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
intermediate
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4ea35580e409eb99bb5a99e17254c1ea1ed9eb32
|
|
train_06183
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
expert
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
58f4419d58b3045e5593a2578a96a6e67f1e1078
|
|
train_06184
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"reproducibility",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
69a4e68b1202f1950042bad8a596db7a8219896d
|
|
train_06185
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
intermediate
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"governance",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8632cf9c0c95ad8b36eedf01d5e226d2ddaed1ec
|
|
train_06186
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
intermediate
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"auditability",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3b9495478c6ec53b80cb5ce8e6d92c24e97fda8f
|
|
train_06187
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"tests_are_truth",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2a45dc7a6dab05cb3057257e781cb449e84cfb55
|
|
train_06188
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
expert
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"auditability",
"documentation",
"reproducibility"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2d7c01474ab1910eab9082d7233859f9f3b19de8
|
|
train_06189
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"governance",
"documentation",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
be293c127632777fd7726529c98d6d108a453499
|
|
train_06190
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
expert
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"auditability",
"tooling",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
03661cb3a1d0d03e48024a6f981f0f161fd026dd
|
|
train_06191
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
intermediate
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"tests_are_truth",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4b1abed2b79995f77a6ca18f6853612bfd63df32
|
|
train_06192
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
code
|
intermediate
|
Task: code
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"auditability",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
17270cac3b044e72cc407574133b036cea2b66a5
|
|
train_06193
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
expert
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"security_gates",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c7ed5cf9c0c084f399d7eafc9749d5de38ce321c
|
|
train_06194
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
advanced
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"cost_latency_tradeoffs",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
56384012a60417dbf7d1e8191b3acdbecd6d6151
|
|
train_06195
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"tests_are_truth",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5998b0a376ee36093ed8552bddd786e47302e07f
|
|
train_06196
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
intermediate
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"auditability",
"documentation",
"security_gates"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1dbdee4368083d91cf2f23a6642379d5cf3f6133
|
|
train_06197
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
design
|
expert
|
Task: design
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"auditability",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cbac4943760a5370dffd34418bf8d347ab427617
|
|
train_06198
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d0d383da96da6fbbcc623468e3254ebc8f1e83b4
|
|
train_06199
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
expert
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"tests_are_truth",
"ci_integration",
"tooling"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fe8e7eacaa608d72cedf07f7fb2f9db230a25505
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.