id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_06200
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
expert
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "ci_integration", "auditability", "reproducibility" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
325de52976c5b2345d9456b94259b97044cdaf72
train_06201
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
intermediate
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "governance", "tooling", "ci_integration", "documentation" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5a0a0215a163b0be574858bcdfd0dcbb0ac13459
train_06202
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
intermediate
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "security_gates", "reproducibility", "governance" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7cbdb8004db78d99fc3d359d45c546b3b0cc5cc1
train_06203
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
intermediate
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "documentation", "ci_integration", "governance" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ae07a5ebc590693fc860b82f569ed4a648022d75
train_06204
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "governance", "tests_are_truth", "reproducibility", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
355cc3fe6f077e6ab21eb44279144bd47b631f03
train_06205
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "security_gates", "governance", "ci_integration" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
92a37f59bbaa9cffee440d96c6712ce44a2768e0
train_06206
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "ci_integration", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6fd705d82a35bf58f21c591b03c88a0734c13576
train_06207
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
advanced
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "reproducibility", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8660afb82de5d21ddb32bcfafb31f32ccfc53111
train_06208
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
advanced
Task: review Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "security_gates", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7d1888160012f08d137d146e62ea1fc89ff12abd
train_06209
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
expert
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "ci_integration", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c494727b3ed7c1510041317ca779aeb800f4c5d2
train_06210
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
advanced
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "documentation", "tests_are_truth", "tooling" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
73d53c9590ee4deeac43dc281a4d088c8effcf82
train_06211
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
expert
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "auditability", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cbd69dff66da5c4ca3bb87beea7b45a854349276
train_06212
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
advanced
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "auditability", "governance", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ada05e749580b6e74fd2e1f70e2d6bbde5dbfc45
train_06213
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "documentation", "tooling", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9d4d214bd96dc715b26e1f4c7c98cbc69e8cd667
train_06214
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
intermediate
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "governance", "auditability", "reproducibility" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
89dc102b5de1777863106856bf3753d8502d27e3
train_06215
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
advanced
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "tooling", "security_gates" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f99659e763e465e95cd4ebed0b1078bd815e62ac
train_06216
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
intermediate
Task: code Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "tooling", "evaluation_metrics", "documentation" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
11d3e256948e6a888d14f8fc823a84ac9b073271
train_06217
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
expert
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "repo_scale_reasoning", "security_gates", "ci_integration" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
012d0a65f129eb520064a2cecf68965f16ef8f2e
train_06218
2026-01-01T00:00:00
Secure code generation and policy gates
explain
advanced
Task: explain Topic: Secure code generation and policy gates Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "ci_integration", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f87f21434e2dba7c1bd097e4e7526466ca78804a
train_06219
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
expert
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "tooling", "governance" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5993ad71f417e23d6dd64453be4236defd0de693
train_06220
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
advanced
Task: design Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "cost_latency_tradeoffs", "documentation", "tooling" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2ebf46b1d260d131f4edab8436b04855abb14c85
train_06221
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "tooling", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3c77d139717af6e8bf76035afafacc550e0d7967
train_06222
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
intermediate
Task: explain Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "documentation", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
888344fc78028f4d6d979f6b6ae16ef690ab8c84
train_06223
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
advanced
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "governance", "documentation", "auditability" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a7f536c8d99c8891b546a248bfe540e96af8a8e4
train_06224
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "documentation", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0760ff22af4c5981abcfb93c05c3624979c45a99
train_06225
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
intermediate
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "evaluation_metrics", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0bff789c9b3abbb061fb19c7efbd8f8bc7599d6d
train_06226
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "tests_are_truth", "governance", "security_gates" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
06e51241e9deaea4dbea2ccb3e53e0f9ddc3536f
train_06227
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tests_are_truth", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6027949719b1ac6293ed2a1657a0fe5a9c5aba96
train_06228
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cffca0f7e75c59824856f4aa2725a5df41ad8ba
train_06229
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "ci_integration", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f4da811513241049583322cc9cfe4e8016cc75b5
train_06230
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
expert
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0fe53fc398818e88c72a86ca11180f438aef4e22
train_06231
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
intermediate
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "security_gates", "auditability" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
59e23404751c9149fcc8af5cf103ee695e8ab37b
train_06232
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "reproducibility", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6b4fc84d4e5aa5e8a82d339d66708ab3c8f6adbd
train_06233
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
expert
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
276809749c4d6f5823d2fc164fbae6c0137585e4
train_06234
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "repo_scale_reasoning", "reproducibility", "tooling" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a53150fc9fea421c3bef73e76f9adf88d5944ca1
train_06235
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
expert
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "reproducibility", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c7f431d7ad246451e014e779fcaa963220d7c032
train_06236
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
advanced
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e34a100e64c6b2f8725e76edb255f082d211e2f6
train_06237
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "documentation", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3995765778210767e00f68632e4309d4b98141f0
train_06238
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
intermediate
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "documentation", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
254b093138b9a947809e21767e40165814e8a13c
train_06239
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
intermediate
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "tooling", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3c06a54422052f130431c8428bc3c381085a6d7f
train_06240
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
intermediate
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "tooling", "repo_scale_reasoning", "governance" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
da15d1bfd9c885e2b09e2e99b8b7e21b01e0c011
train_06241
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
expert
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "governance", "documentation", "tooling" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1551e3ea505649730115f3b1b5aeb0ba3d57a1df
train_06242
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
expert
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "auditability", "reproducibility", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c06be94d11743f2eef11ab52b763607bcba2c2c2
train_06243
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
expert
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "governance", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6a78eb017504a5016b19d707d5cc9c474f9b08af
train_06244
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
advanced
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "security_gates", "documentation", "auditability", "governance" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a0b3c11d47ee9af33513db3725f97ac11e31098
train_06245
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
advanced
Task: eval Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
42ff26ae17345ce63726ac4469edefcc9b9af93d
train_06246
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
intermediate
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "governance", "documentation" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
783bdd3bee3c3755eb85787937703227be0f8709
train_06247
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
expert
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tests_are_truth", "documentation" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cc9dd22a185119abb3d8ac3cd81f3cb481b2abb
train_06248
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
expert
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "tooling", "security_gates" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de29a1c3bc97391a7178cfd71afd255493e8f65c
train_06249
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
expert
Task: review Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "governance", "ci_integration", "documentation" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d7e79ba9d9c225f76b8cb6b6a2fa0cd7cb748f0f
train_06250
2026-01-01T00:00:00
Secure code generation and policy gates
review
advanced
Task: review Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "tooling", "ci_integration" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a822c275e3e8807f24808819aaff8c76856d43aa
train_06251
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "security_gates", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5f343ed7c97e36619a824fc266a521187ce887cd
train_06252
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "security_gates", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b98c4e644f1de83a2c1c8104fae19003cb0a94c2
train_06253
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
expert
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "documentation", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6d9fa99b5355d6bf1bb9694f2e824ac898d82f72
train_06254
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
expert
Task: review Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "governance", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d1abd9b30a5e70d95a928223501e3c18019315d6
train_06255
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "governance", "reproducibility", "tests_are_truth" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
74a929bbcc53b8ffba75e05c074ec4d56f65bc10
train_06256
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
intermediate
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "security_gates", "tooling" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7b1676a0a99ced1d138c650f52d071298d88e9e2
train_06257
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
expert
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3316b30b10750cdff4d1412a061833baac29f78a
train_06258
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "auditability", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81fa390faeb47f215ce3820566122ffbeff20d51
train_06259
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
advanced
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "governance", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a934f052b00f26ea4139e5fa72bfcb96c7e09e32
train_06260
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
expert
Task: eval Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tests_are_truth", "auditability" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c5ecebac2cab0654cf9eb6f492d4949f654ec599
train_06261
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
expert
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "documentation", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
febec1bf6802850bf844d69965fa7c9331b4fe6a
train_06262
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
intermediate
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "auditability", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
01d06444a2f2adfba849c15664418c9216c528ca
train_06263
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
intermediate
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "documentation", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
527d53a418145c76b8dab19d9776fd49f8cfde1c
train_06264
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "tooling", "reproducibility", "documentation" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cb769ad27bbf7b27b918f24072815ae69924ca63
train_06265
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
intermediate
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "auditability", "governance", "reproducibility" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2564c8fd01ea189ce128c912036ced60cc1e492e
train_06266
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
intermediate
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "ci_integration", "evaluation_metrics", "security_gates" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
52c48b33267de16d2f2648633d8bc3d5ab9dec35
train_06267
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
intermediate
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "documentation", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
908e8b638a6ac874d6852b13a24cb8cdeeaaff7c
train_06268
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
advanced
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "tooling", "evaluation_metrics", "documentation" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c087b4a067b451f249761440e9ebd7185c7354d7
train_06269
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
intermediate
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "auditability", "governance", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c664aa6c34aecce523195e770907f4f918333981
train_06270
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
expert
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "tests_are_truth", "ci_integration" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2750524268a79692ffe21dd8880276942ac8d15f
train_06271
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
intermediate
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "reproducibility", "evaluation_metrics", "tooling" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7b279a04791cbfef89823e4c18fee0af5d538159
train_06272
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
expert
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "tooling", "governance" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
044f02f93d16e8c7871f59e0dcf17a80bd76b418
train_06273
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
advanced
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "auditability", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
91b3611879f8c123faaa01d8dddd77cf042336d2
train_06274
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
advanced
Task: explain Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "tests_are_truth", "security_gates", "auditability" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c9e4e0faf7d4ec8c821f2febfe3d100e16af3b3b
train_06275
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
intermediate
Task: code Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "governance", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2c1fb858fcd83621123ecaf5098a908901eda622
train_06276
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tooling", "repo_scale_reasoning", "governance", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e8f0510fd4fc3531e1a1bb757c7b81ca251089b0
train_06277
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
advanced
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "auditability", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1cc1636e48ede569b39ae63a3ae547def791afbd
train_06278
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
intermediate
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "evaluation_metrics", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1de13f59dd31c89e3e62055eb3357c225637d4c0
train_06279
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "evaluation_metrics", "tests_are_truth", "governance" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7905d90d3d9a3b4015730555e700956044c71302
train_06280
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
intermediate
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "security_gates", "auditability", "tooling" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9c12cdfb2f91f81e9881ebab902e7f5ebb37835d
train_06281
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
intermediate
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "auditability", "reproducibility" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
92499f2746e40fd916cfd355376c9a09c0e55216
train_06282
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "evaluation_metrics", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
91722486214f4e38efe08c988f1757bae46711dc
train_06283
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
intermediate
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
369f8476612a04791f506b5300e7041e2f749506
train_06284
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
expert
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "auditability", "tests_are_truth", "ci_integration" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c63cba48739fbac651ba47f59dad4536680b3f55
train_06285
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "governance", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2bdf5f454e32fb6f10b4b58e437135d728821527
train_06286
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
advanced
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "tooling", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9c64611c81f77f9277ef7a93fafbff2fd86c23ce
train_06287
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
expert
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "reproducibility", "ci_integration", "auditability" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2014c6be3dfda01a10bf5a2c5fcbad94803d700
train_06288
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
advanced
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "security_gates", "governance" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ae3aecb9aab3a4be501ca0198cc1824f2459bc11
train_06289
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
intermediate
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "governance", "repo_scale_reasoning", "ci_integration", "security_gates" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88b785d3ea42f4f2098cad00201321b5092f43e7
train_06290
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
intermediate
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "security_gates", "evaluation_metrics", "tooling" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ee11923a4737b2c062dd2c1ef26a3a8864e2ee0b
train_06291
2026-01-01T00:00:00
Secure code generation and policy gates
eval
advanced
Task: eval Topic: Secure code generation and policy gates Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "ci_integration", "tooling", "auditability" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
66700c4cc3536ce26846c3b6f6da256d7c3096d6
train_06292
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "auditability", "governance", "security_gates" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e93b10121ffc3b515a78307aa6d8338db0bf5503
train_06293
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
intermediate
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "tests_are_truth", "governance" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
26cf12347d106443f2ef2b0d229d6dbe5350e4ba
train_06294
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "auditability", "tooling", "security_gates" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c514161a197ce05a31853cc883704cfd7d394509
train_06295
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
expert
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "security_gates", "auditability", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bd775a1d6964814cb1579740e21012492a465a1b
train_06296
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
expert
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "reproducibility", "auditability", "documentation" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b264c661a517c1635a375d608ef0b61e8e56ef4f
train_06297
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
advanced
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "security_gates", "ci_integration", "auditability", "documentation" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
548957317b48e1e6b8beaecdc438f4e7f154f63a
train_06298
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "auditability", "documentation", "tests_are_truth", "reproducibility" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
31bcd8cb4a5b67258b98b1b49311ad20dd402c7b
train_06299
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "ci_integration", "tests_are_truth" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca50b7352d18fc5cb6eb519a3b0601249894b5cb