metadata
dataset_info:
features:
- name: age
dtype: int64
- name: job
dtype:
class_label:
names:
'0': admin.
'1': blue-collar
'2': entrepreneur
'3': housemaid
'4': management
'5': retired
'6': self-employed
'7': services
'8': student
'9': technician
'10': unemployed
'11': unknown
- name: marital
dtype:
class_label:
names:
'0': divorced
'1': married
'2': single
'3': unknown
- name: education
dtype:
class_label:
names:
'0': primary
'1': secondary
'2': tertiary
'3': unknown
'4': basic.4y
'5': basic.6y
'6': basic.9y
'7': high.school
'8': illiterate
'9': professional.course
'10': university.degree
- name: default
dtype:
class_label:
names:
'0': 'no'
'1': 'yes'
'2': unknown
- name: housing
dtype:
class_label:
names:
'0': 'no'
'1': 'yes'
'2': unknown
- name: loan
dtype:
class_label:
names:
'0': 'no'
'1': 'yes'
'2': unknown
- name: contact
dtype:
class_label:
names:
'0': cellular
'1': telephone
'2': unknown
- name: month
dtype:
class_label:
names:
'0': jan
'1': feb
'2': mar
'3': apr
'4': may
'5': jun
'6': jul
'7': aug
'8': sep
'9': oct
'10': nov
'11': dec
- name: day_of_week
dtype:
class_label:
names:
'0': mon
'1': tue
'2': wed
'3': thu
'4': fri
- name: duration
dtype: int64
- name: campaign
dtype: int64
- name: pdays
dtype: int64
- name: previous
dtype: int64
- name: poutcome
dtype:
class_label:
names:
'0': failure
'1': other
'2': success
'3': unknown
'4': nonexistent
- name: emp.var.rate
dtype: float32
- name: cons.price.idx
dtype: float32
- name: cons.conf.idx
dtype: float32
- name: euribor3m
dtype: float32
- name: nr.employed
dtype: float32
- name: 'y'
dtype:
class_label:
names:
'0': 'no'
'1': 'yes'
splits:
- name: train
num_bytes: 6095824
num_examples: 41188
download_size: 469576
dataset_size: 6095824
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Dataset Card for Bank Marketing (additional)
This dataset is a precise version of UCI Bank Marketing
We first created the default bank marketing dataset, as seen here. Then we further run the following Python script to create this additional portion.
# Define feature types
continuous_columns = ["age", "duration", "campaign", "pdays", "previous",
"emp.var.rate", "cons.price.idx", "cons.conf.idx",
"euribor3m", "nr.employed"]
categorical_columns = ["job", "marital", "education", "default", "housing", "loan",
"contact", "month", "day_of_week", "poutcome", "y"]
# Extract category mappings from the reference dataset (bank-additional)
category_mappings_additional = {col: reference_categories[col] for col in categorical_columns}
hf_features_additional = Features({
"age": Value("int64"),
"job": ClassLabel(names=category_mappings_additional["job"]),
"marital": ClassLabel(names=category_mappings_additional["marital"]),
"education": ClassLabel(names=category_mappings_additional["education"]),
"default": ClassLabel(names=category_mappings_additional["default"]),
"housing": ClassLabel(names=category_mappings_additional["housing"]),
"loan": ClassLabel(names=category_mappings_additional["loan"]),
"contact": ClassLabel(names=category_mappings_additional["contact"]),
"month": ClassLabel(names=category_mappings_additional["month"]),
"day_of_week": ClassLabel(names=category_mappings_additional["day_of_week"]),
"duration": Value("int64"),
"campaign": Value("int64"),
"pdays": Value("int64"),
"previous": Value("int64"),
"poutcome": ClassLabel(names=category_mappings_additional["poutcome"]),
"emp.var.rate": Value("float32"),
"cons.price.idx": Value("float32"),
"cons.conf.idx": Value("float32"),
"euribor3m": Value("float32"),
"nr.employed": Value("float32"),
"y": ClassLabel(names=category_mappings_additional["y"]) # Target column
})
# Convert pandas DataFrame to Hugging Face Dataset
hf_dataset_additional = Dataset.from_pandas(df_additional, features=hf_features_additional)
# Print dataset structure
print(hf_dataset_additional)
The printed output could look like
Dataset({
features: ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
num_rows: 41188
})