| from light_training.preprocessing.preprocessors.preprocessor_mri import MultiModalityPreprocessor | |
| import numpy as np | |
| import pickle | |
| import json | |
| data_filename = ["t2w.nii.gz", | |
| "t2f.nii.gz", | |
| "t1n.nii.gz", | |
| "t1c.nii.gz"] | |
| seg_filename = "seg.nii.gz" | |
| base_dir = "./data/raw_data/BraTS2023/" | |
| image_dir = "ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData" | |
| def process_train(): | |
| preprocessor = MultiModalityPreprocessor(base_dir=base_dir, | |
| image_dir=image_dir, | |
| data_filenames=data_filename, | |
| seg_filename=seg_filename | |
| ) | |
| out_spacing = [1.0, 1.0, 1.0] | |
| output_dir = "./data/fullres/train/" | |
| preprocessor.run(output_spacing=out_spacing, | |
| output_dir=output_dir, | |
| all_labels=[1, 2, 3], | |
| ) | |
| def plan(): | |
| preprocessor = MultiModalityPreprocessor(base_dir=base_dir, | |
| image_dir=image_dir, | |
| data_filenames=data_filename, | |
| seg_filename=seg_filename | |
| ) | |
| preprocessor.run_plan() | |
| if __name__ == "__main__": | |
| plan() | |
| process_train() | |