|
|
from typing import Union, Tuple, List, Optional |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
import kornia |
|
|
import cv2 |
|
|
import src.voxynth.noise as v_noise |
|
|
import src.voxynth.transform as v_transform |
|
|
|
|
|
import os |
|
|
|
|
|
|
|
|
os.environ['NEURITE_BACKEND'] = 'pytorch' |
|
|
|
|
|
def _thin_mask(mask_np: np.ndarray) -> np.ndarray: |
|
|
if hasattr(cv2, "ximgproc") and hasattr(cv2.ximgproc, "thinning"): |
|
|
return cv2.ximgproc.thinning(mask_np) |
|
|
try: |
|
|
from skimage.morphology import skeletonize |
|
|
except Exception as exc: |
|
|
raise AttributeError( |
|
|
"cv2.ximgproc.thinning is unavailable and scikit-image is missing; " |
|
|
"install opencv-contrib-python or scikit-image." |
|
|
) from exc |
|
|
return (skeletonize(mask_np.astype(bool)).astype(np.uint8) * 255) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WarpScribble: |
|
|
""" |
|
|
Parent scribble class with shared functions for generating noise masks (useful for breaking up scribbles) and applying deformation fields (to warp scribbles) |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
warp: bool = True, |
|
|
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), |
|
|
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
): |
|
|
if isinstance(warp_smoothing, int): |
|
|
warp_smoothing = [warp_smoothing, warp_smoothing] |
|
|
if isinstance(warp_magnitude, int): |
|
|
warp_magnitude = [warp_magnitude, warp_magnitude] |
|
|
|
|
|
self.warp = warp |
|
|
self.warp_smoothing = list(warp_smoothing) |
|
|
self.warp_magnitude = list(warp_magnitude) |
|
|
|
|
|
self.mask_smoothing = mask_smoothing |
|
|
|
|
|
def noise_mask(self, shape: Union[Tuple[int], List[int]] = (8, 128, 128), device=None): |
|
|
""" |
|
|
Get a random binary mask by thresholding smoothed noise. The mask is used to break up the scribbles |
|
|
""" |
|
|
if isinstance(self.mask_smoothing, tuple): |
|
|
get_smoothing = lambda: np.random.uniform(*self.mask_smoothing) |
|
|
else: |
|
|
get_smoothing = lambda: self.mask_smoothing |
|
|
|
|
|
noise = torch.stack([ |
|
|
v_noise.perlin(shape=shape[-2:], smoothing=get_smoothing(), magnitude=1, device=device) for _ in |
|
|
range(shape[0]) |
|
|
]) |
|
|
noise_mask = (noise > 0.0).int().unsqueeze(1) |
|
|
|
|
|
return noise_mask |
|
|
|
|
|
def apply_warp(self, x: torch.Tensor): |
|
|
""" |
|
|
Warp a given mask x using a random deformation field |
|
|
""" |
|
|
if x.sum() > 0: |
|
|
|
|
|
deformation_field = v_transform.random_transform( |
|
|
shape=x.shape[-2:], |
|
|
affine_probability=0.0, |
|
|
warp_probability=1.0, |
|
|
warp_integrations=0, |
|
|
warp_smoothing_range=self.warp_smoothing, |
|
|
warp_magnitude_range=self.warp_magnitude, |
|
|
voxsize=1, |
|
|
device=x.device, |
|
|
isdisp=False |
|
|
) |
|
|
|
|
|
warped = v_transform.spatial_transform(x, trf=deformation_field, isdisp=False) |
|
|
if warped.sum() == 0: |
|
|
return x |
|
|
else: |
|
|
return (warped - warped.min()) / (warped.max() - warped.min()) |
|
|
else: |
|
|
|
|
|
return x |
|
|
|
|
|
def batch_scribble(self, mask: torch.Tensor, n_scribbles: int = 1): |
|
|
""" |
|
|
Simulate scribbles for a batch of examples (mask). |
|
|
""" |
|
|
raise NotImplementedError |
|
|
|
|
|
def __call__(self, mask: torch.Tensor, n_scribbles: int = 1) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
mask: (b,1,H,W) or (1,H,W) mask in [0,1] to sample scribbles from |
|
|
Returns: |
|
|
scribble_mask: (b,1,H,W) or (1,H,W) mask(s) of scribbles on [0,1] |
|
|
""" |
|
|
assert len(mask.shape) in [3, 4], f"mask must be b x 1 x h x w or 1 x h x w. currently {mask.shape}" |
|
|
|
|
|
if len(mask.shape) == 3: |
|
|
|
|
|
return self.batch_scribble(mask[None, ...], n_scribbles=n_scribbles)[0, ...] |
|
|
else: |
|
|
|
|
|
return self.batch_scribble(mask, n_scribbles=n_scribbles) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LineScribble(WarpScribble): |
|
|
""" |
|
|
Generates scribbles by |
|
|
1) drawing lines connecting random points on the mask |
|
|
2) warping with a random deformation field |
|
|
3) then correcting any scribbles outside the mask |
|
|
5) optionally, limiting the max area of scribbles to k pixels |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
|
|
|
warp: bool = True, |
|
|
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), |
|
|
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
|
|
|
thickness: int = 1, |
|
|
preserve_scribble: bool = True, |
|
|
max_pixels: Optional[int] = None, |
|
|
max_pixels_smooth: Optional[int] = 42, |
|
|
|
|
|
show: bool = False |
|
|
): |
|
|
|
|
|
super().__init__( |
|
|
warp=warp, |
|
|
warp_smoothing=warp_smoothing, |
|
|
warp_magnitude=warp_magnitude, |
|
|
mask_smoothing=mask_smoothing, |
|
|
) |
|
|
self.thickness = thickness |
|
|
self.preserve_scribble = preserve_scribble |
|
|
self.max_pixels = max_pixels |
|
|
self.max_pixels_smooth = max_pixels_smooth |
|
|
self.show = show |
|
|
|
|
|
def batch_scribble(self, mask: torch.Tensor, n_scribbles: int = 1) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
mask: (b,1,H,W) mask in [0,1] to sample scribbles from |
|
|
n_scribbles: number of line scribbles to sample initially |
|
|
Returns: |
|
|
scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1] |
|
|
""" |
|
|
bs = mask.shape[0] |
|
|
|
|
|
|
|
|
points = torch.nonzero(mask[:, 0, ...]) |
|
|
|
|
|
def sample_lines(indices): |
|
|
|
|
|
image = np.zeros(mask.shape[-2:] + (1,)) |
|
|
|
|
|
if len(indices) > 0: |
|
|
|
|
|
idx = np.random.randint(low=0, high=len(indices), size=2 * n_scribbles) |
|
|
endpoints = points[indices, 1:][idx, 0, ...] |
|
|
|
|
|
endpoints = torch.flip(endpoints, dims=(1,)).cpu().numpy() |
|
|
|
|
|
for i in range(n_scribbles): |
|
|
|
|
|
image = cv2.line(image, tuple(endpoints[i * 2]), tuple(endpoints[i * 2 + 1]), color=1, |
|
|
thickness=1) |
|
|
|
|
|
return torch.from_numpy(image) |
|
|
|
|
|
scribbles = torch.stack([ |
|
|
sample_lines(torch.argwhere(points[:, 0] == i)) for i in range(bs) |
|
|
]).to(mask.device).moveaxis(-1, 1).float() |
|
|
|
|
|
if self.warp: |
|
|
warped_scribbles = torch.stack( |
|
|
[self.apply_warp(scribbles[b, ...]) for b in range(bs)]) |
|
|
else: |
|
|
warped_scribbles = scribbles |
|
|
|
|
|
|
|
|
corrected_warped_scribbles = mask * warped_scribbles |
|
|
|
|
|
if self.preserve_scribble: |
|
|
|
|
|
idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0) |
|
|
corrected_warped_scribbles[idx] = mask[idx] * scribbles[idx] |
|
|
|
|
|
if self.max_pixels is not None: |
|
|
|
|
|
noise = torch.stack([ |
|
|
v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1, |
|
|
device=mask.device) for _ in range(bs) |
|
|
]).unsqueeze(1) |
|
|
|
|
|
|
|
|
if noise.min() < 0: |
|
|
noise = noise - noise.min() |
|
|
|
|
|
|
|
|
flat_mask = (noise * corrected_warped_scribbles).view(bs, -1) |
|
|
vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1) |
|
|
|
|
|
binary_mask = torch.zeros_like(flat_mask) |
|
|
binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask)) |
|
|
|
|
|
corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles |
|
|
|
|
|
if self.show: |
|
|
|
|
|
import neurite as ne |
|
|
import matplotlib.pyplot as plt |
|
|
from .plot import show_scribbles |
|
|
|
|
|
if self.max_pixels is not None: |
|
|
binary_mask = binary_mask.reshape(*mask.shape) |
|
|
tensors = [mask, scribbles, warped_scribbles, noise, binary_mask, corrected_warped_scribbles, mask] |
|
|
titles = ["Mask", "Lines", "Warped Lines", 'Smooth Noise', 'Top k Pixels', 'Corrected Scribbles', |
|
|
'Corrected Scribbles'] |
|
|
else: |
|
|
tensors = [mask, scribbles, warped_scribbles, corrected_warped_scribbles, mask] |
|
|
titles = ["Mask", "Lines", "Warped Lines", 'Corrected Scribbles', 'Corrected Scribbles'] |
|
|
|
|
|
fig, axes = ne.plot.slices( |
|
|
sum([[x[i, 0, ...].cpu() for x in tensors] for i in range(bs)], []), |
|
|
sum([titles for _ in range(bs)], []), |
|
|
show=False, grid=(bs, len(titles)), width=3 * len(titles), do_colorbars=False |
|
|
) |
|
|
|
|
|
if bs > 1: |
|
|
for i in range(bs): |
|
|
show_scribbles(corrected_warped_scribbles[i, 0, ...].cpu(), axes[i, -1]) |
|
|
else: |
|
|
show_scribbles(corrected_warped_scribbles[0, 0, ...].cpu(), axes[-1]) |
|
|
plt.show() |
|
|
|
|
|
return corrected_warped_scribbles |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CenterlineScribble(WarpScribble): |
|
|
""" |
|
|
Generates scribbles by |
|
|
1) skeletonizing the mask |
|
|
2) chopping up with a random noise mask |
|
|
3) warping with a random deformation field |
|
|
4) then correcting any scribbles that fall outside the mask |
|
|
5) optionally, limiting the max area of scribbles to k pixels |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
|
|
|
warp: bool = True, |
|
|
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), |
|
|
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
|
|
|
dilate_kernel_size: Optional[int] = None, |
|
|
preserve_scribble: bool = True, |
|
|
max_pixels: Optional[int] = None, |
|
|
max_pixels_smooth: int = 42, |
|
|
|
|
|
show: bool = False |
|
|
): |
|
|
|
|
|
super().__init__( |
|
|
warp=warp, |
|
|
warp_smoothing=warp_smoothing, |
|
|
warp_magnitude=warp_magnitude, |
|
|
mask_smoothing=mask_smoothing, |
|
|
) |
|
|
self.dilate_kernel_size = dilate_kernel_size |
|
|
self.preserve_scribble = preserve_scribble |
|
|
self.max_pixels = max_pixels |
|
|
self.max_pixels_smooth = max_pixels_smooth |
|
|
self.show = show |
|
|
|
|
|
def batch_scribble(self, mask: torch.Tensor, n_scribbles: Optional[int] = 1): |
|
|
""" |
|
|
Simulate scribbles for a batch of examples. |
|
|
Args: |
|
|
mask: (b,1,H,W) mask in [0,1] to sample scribbles from. torch.int32 |
|
|
n_scribbles: (int) only used when max_pixels is set as a multiplier for total area of the scribbles |
|
|
currently, this argument does not control the number of components in the scribble mask |
|
|
Returns: |
|
|
scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1] |
|
|
""" |
|
|
assert len(mask.shape) == 4, f"mask must be b x 1 x h x w. currently {mask.shape}" |
|
|
bs = mask.shape[0] |
|
|
|
|
|
mask_w_border = 255 * mask.clone().moveaxis(1, -1) |
|
|
mask_w_border[:, :, 0, :] = 0 |
|
|
mask_w_border[:, :, -1, :] = 0 |
|
|
mask_w_border[:, 0, :, :] = 0 |
|
|
mask_w_border[:, -1, :, :] = 0 |
|
|
|
|
|
|
|
|
skeleton = torch.from_numpy( |
|
|
np.stack([ |
|
|
_thin_mask(mask_w_border[i, ...].cpu().numpy().astype(np.uint8)) / 255 for i in range(bs) |
|
|
]) |
|
|
).squeeze(-1).unsqueeze(1).to(mask.device).float() |
|
|
|
|
|
if self.dilate_kernel_size is not None: |
|
|
|
|
|
|
|
|
k = 3 |
|
|
if k > 0: |
|
|
kernel = torch.ones((k, k), device=mask.device) |
|
|
dilated_skeleton = kornia.morphology.dilation(skeleton, kernel=kernel, engine='convolution') |
|
|
else: |
|
|
dilated_skeleton = skeleton |
|
|
|
|
|
noise_mask = self.noise_mask(shape=mask.shape, device=mask.device) |
|
|
|
|
|
|
|
|
scribbles = (dilated_skeleton * noise_mask) |
|
|
|
|
|
if self.preserve_scribble: |
|
|
|
|
|
idx = torch.where(torch.sum(scribbles, dim=(1, 2, 3)) == 0) |
|
|
scribbles[idx] = skeleton[idx] |
|
|
|
|
|
if self.warp: |
|
|
warped_scribbles = torch.stack([self.apply_warp(scribbles[b, ...]) for b in range(bs)]) |
|
|
else: |
|
|
warped_scribbles = scribbles |
|
|
|
|
|
corrected_warped_scribbles = mask * warped_scribbles |
|
|
|
|
|
if self.preserve_scribble: |
|
|
|
|
|
idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0) |
|
|
corrected_warped_scribbles[idx] = mask[idx] * scribbles[idx] |
|
|
|
|
|
if self.max_pixels is not None: |
|
|
|
|
|
noise = torch.stack([ |
|
|
v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1, |
|
|
device=mask.device) for _ in range(bs) |
|
|
]).unsqueeze(1) |
|
|
|
|
|
|
|
|
if noise.min() < 0: |
|
|
noise = noise - noise.min() |
|
|
|
|
|
flat_mask = (noise * corrected_warped_scribbles).view(bs, -1) |
|
|
vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1) |
|
|
|
|
|
binary_mask = torch.zeros_like(flat_mask) |
|
|
binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask)) |
|
|
|
|
|
corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles |
|
|
|
|
|
if self.show: |
|
|
|
|
|
import neurite as ne |
|
|
from .plot import show_scribbles |
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
tensors = [mask, skeleton] |
|
|
titles = ["Input Mask", "Skeleton"] |
|
|
|
|
|
if self.dilate_kernel_size is not None: |
|
|
tensors.append(dilated_skeleton) |
|
|
titles.append('Dilated Skeleton') |
|
|
|
|
|
if self.max_pixels is not None: |
|
|
tensors += [noise_mask, scribbles, warped_scribbles, noise, binary_mask.reshape(*mask.shape), |
|
|
corrected_warped_scribbles, mask] |
|
|
titles += ["Noise Mask", 'Broken Skeleton', 'Warped Scribbles', 'Smooth Noise', 'Top k Pixels', |
|
|
'Corrected Scribbles', 'Corrected Scribbles'] |
|
|
else: |
|
|
tensors += [noise_mask, scribbles, warped_scribbles, corrected_warped_scribbles, mask] |
|
|
titles += ["Noise Mask", 'Broken Skeleton', 'Warped Scribbles', 'Corrected Scribbles', |
|
|
'Corrected Scribbles'] |
|
|
|
|
|
fig, axes = ne.plot.slices( |
|
|
sum([[x[i, ...].squeeze().cpu() for x in tensors] for i in range(bs)], []), |
|
|
sum([titles for _ in range(bs)], []), |
|
|
show=False, grid=(bs, len(titles)), width=3 * len(titles) |
|
|
) |
|
|
|
|
|
if bs > 1: |
|
|
for i in range(bs): |
|
|
show_scribbles(corrected_warped_scribbles[i, 0, ...].cpu(), axes[i, -1]) |
|
|
else: |
|
|
show_scribbles(corrected_warped_scribbles[0, 0, ...].cpu(), axes[-1]) |
|
|
|
|
|
plt.show() |
|
|
|
|
|
return corrected_warped_scribbles |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ContourScribble(WarpScribble): |
|
|
""" |
|
|
Generates scribbles by |
|
|
1) blurring and thresholding the mask, then getting the contours |
|
|
2) chopping up the contour scribbles with a random noise mask |
|
|
3) warping with a random deformation field |
|
|
4) then correcting any scribbles that fall outside the mask |
|
|
5) optionally, limiting the max area of scribbles to k pixels |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
|
|
|
warp: bool = True, |
|
|
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6), |
|
|
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16), |
|
|
|
|
|
blur_kernel_size: int = 33, |
|
|
blur_sigma: Union[float, Tuple[float], List[float]] = (5.0, 20.0), |
|
|
|
|
|
dilate_kernel_size: Optional[Union[int, Tuple[int]]] = None, |
|
|
preserve_scribble: bool = True, |
|
|
max_pixels: Optional[int] = None, |
|
|
max_pixels_smooth: Optional[int] = 42, |
|
|
|
|
|
show: bool = False |
|
|
): |
|
|
|
|
|
super().__init__( |
|
|
warp=warp, |
|
|
warp_smoothing=warp_smoothing, |
|
|
warp_magnitude=warp_magnitude, |
|
|
mask_smoothing=mask_smoothing, |
|
|
) |
|
|
|
|
|
|
|
|
if isinstance(blur_sigma, float) or isinstance(blur_sigma, int): |
|
|
blur_sigma = (blur_sigma, blur_sigma + 1e-7) |
|
|
|
|
|
self.blur_fn = kornia.augmentation.RandomGaussianBlur( |
|
|
kernel_size=(blur_kernel_size, blur_kernel_size), sigma=blur_sigma, p=1. |
|
|
) |
|
|
|
|
|
self.dilate_kernel_size = dilate_kernel_size |
|
|
|
|
|
self.preserve_scribble = preserve_scribble |
|
|
self.max_pixels = max_pixels |
|
|
self.max_pixels_smooth = max_pixels_smooth |
|
|
|
|
|
self.show = show |
|
|
|
|
|
def batch_scribble(self, mask: torch.Tensor, n_scribbles: Optional[int] = 1): |
|
|
""" |
|
|
Args: |
|
|
mask: (b,1,H,W) mask in [0,1] to sample scribbles from |
|
|
n_scribbles: (int) only used when max_pixels is set as a multiplier for total area of the scribbles |
|
|
currently, this argument does not control the number of components in the scribble mask |
|
|
Returns: |
|
|
scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1] |
|
|
""" |
|
|
assert len(mask.shape) == 4, f"mask must be b x 1 x h x w. currently {mask.shape}" |
|
|
bs = mask.shape[0] |
|
|
|
|
|
rev_mask = (1 - mask) |
|
|
blur_mask = self.blur_fn(rev_mask) |
|
|
corrected_blur_mask = torch.reshape(torch.maximum(blur_mask, rev_mask), (bs, -1)) |
|
|
|
|
|
|
|
|
min_bs = corrected_blur_mask.min(1)[0].cpu().numpy() |
|
|
binary_mask = (torch.reshape(mask, (bs, -1)) > 0) * corrected_blur_mask |
|
|
max_bs = torch.reshape(binary_mask, (bs, -1)).max(1)[0].cpu().numpy() |
|
|
thresh = torch.from_numpy(np.random.uniform(min_bs, max_bs, size=bs)).to(mask.device) |
|
|
|
|
|
|
|
|
thresh = thresh[..., None].repeat(1, mask.shape[-2] * mask.shape[-1]) |
|
|
binary_blur_mask = (corrected_blur_mask <= thresh).view(mask.shape).float() |
|
|
|
|
|
|
|
|
_, boundary = kornia.filters.canny(binary_blur_mask, hysteresis=False) |
|
|
|
|
|
if self.dilate_kernel_size is not None: |
|
|
|
|
|
|
|
|
k = 0 |
|
|
if k > 0: |
|
|
kernel = torch.ones((k, k), device=boundary.device) |
|
|
dilated_boundary = kornia.morphology.dilation(boundary, kernel=kernel, engine='convolution') |
|
|
else: |
|
|
dilated_boundary = boundary |
|
|
else: |
|
|
dilated_boundary = boundary |
|
|
|
|
|
|
|
|
noise_mask = self.noise_mask(shape=mask.shape, device=mask.device) |
|
|
|
|
|
|
|
|
scribbles = dilated_boundary * noise_mask |
|
|
|
|
|
if self.preserve_scribble: |
|
|
|
|
|
idx = torch.where(torch.sum(scribbles, dim=(1, 2, 3)) == 0)[0] |
|
|
scribbles[idx, ...] = dilated_boundary[idx, ...] |
|
|
|
|
|
if self.warp: |
|
|
warped_scribbles = torch.stack([self.apply_warp(scribbles[b, ...]) for b in range(bs)]) |
|
|
else: |
|
|
warped_scribbles = scribbles |
|
|
|
|
|
|
|
|
corrected_warped_scribbles = mask * warped_scribbles |
|
|
|
|
|
if self.preserve_scribble: |
|
|
|
|
|
idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0)[0] |
|
|
corrected_warped_scribbles[idx, ...] = mask[idx, ...] * scribbles[idx, ...] |
|
|
|
|
|
if self.max_pixels is not None: |
|
|
|
|
|
noise = torch.stack([ |
|
|
v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1, |
|
|
device=mask.device) for _ in range(bs) |
|
|
]).unsqueeze(1) |
|
|
|
|
|
|
|
|
if noise.min() < 0: |
|
|
noise = noise - noise.min() |
|
|
|
|
|
flat_mask = (noise * corrected_warped_scribbles).view(bs, -1) |
|
|
vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1) |
|
|
|
|
|
binary_mask = torch.zeros_like(flat_mask) |
|
|
binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask)) |
|
|
|
|
|
corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles |
|
|
|
|
|
return corrected_warped_scribbles |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
import numpy as np |
|
|
import random |
|
|
from torch.backends import cudnn |
|
|
|
|
|
|
|
|
def init_seeds(seed=0, cuda_deterministic=True): |
|
|
random.seed(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed(seed) |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
if cuda_deterministic: |
|
|
cudnn.deterministic = True |
|
|
cudnn.benchmark = False |
|
|
else: |
|
|
cudnn.deterministic = False |
|
|
cudnn.benchmark = True |
|
|
|
|
|
import SimpleITK as sitk |
|
|
import torchio as tio |
|
|
|
|
|
init_seeds() |
|
|
mask_path = '/home/hao/Hao/data/0SAM_data/Task10_colon/labelsTr/colon_001.nii.gz' |
|
|
sitk_label = sitk.ReadImage(mask_path) |
|
|
subject = tio.Subject( |
|
|
image=tio.ScalarImage.from_sitk(sitk_label), |
|
|
label=tio.LabelMap.from_sitk(sitk_label), |
|
|
) |
|
|
transforms_list = [ |
|
|
tio.Resample(1), ] |
|
|
transforms_list.append(tio.CropOrPad(mask_name='label', target_shape=(128,64,96))) |
|
|
transforms = tio.Compose(transforms_list) |
|
|
subject = transforms(subject) |
|
|
mask = subject.label.data.clone().detach() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sitk_label_new = mask.squeeze(0) |
|
|
result_image = sitk.GetImageFromArray(sitk_label_new) |
|
|
sitk.WriteImage(result_image, './maskresult.nii.gz') |
|
|
|
|
|
|
|
|
mask = mask.permute(3, 0, 1, 2) |
|
|
|
|
|
import time |
|
|
a = time.time() |
|
|
|
|
|
|
|
|
ContourScribble_mask = LineScribble().batch_scribble(mask) |
|
|
print(time.time() - a ) |
|
|
|
|
|
|
|
|
sitk_label_new = ContourScribble_mask.permute(1, 2, 3, 0).squeeze(0) |
|
|
sitk_label_new[sitk_label_new > 0] = 1 |
|
|
result_image = sitk.GetImageFromArray(sitk_label_new) |
|
|
sitk.WriteImage(result_image, './result.nii.gz') |
|
|
print(1) |
|
|
|