|
|
import logging |
|
|
import os |
|
|
import time |
|
|
import torch |
|
|
import shutil |
|
|
import numpy as np |
|
|
import nibabel as nib |
|
|
import pandas |
|
|
from typing import List, Tuple, Type, Union |
|
|
|
|
|
def save_checkpoint(state, is_best, checkpoint): |
|
|
filepath_last = os.path.join(checkpoint, "last.pth.tar") |
|
|
filepath_best = os.path.join(checkpoint, "best.pth.tar") |
|
|
if not os.path.exists(checkpoint): |
|
|
print("Checkpoint Directory does not exist! Masking directory {}".format(checkpoint)) |
|
|
os.mkdir(checkpoint) |
|
|
else: |
|
|
print("Checkpoint Directory exists!") |
|
|
torch.save(state, filepath_last) |
|
|
if is_best: |
|
|
if os.path.isfile(filepath_best): |
|
|
os.remove(filepath_best) |
|
|
shutil.copyfile(filepath_last, filepath_best) |
|
|
|
|
|
|
|
|
def setup_logger(logger_name, root, level=logging.INFO, screen=False, tofile=False): |
|
|
"""set up logger""" |
|
|
lg = logging.getLogger(logger_name) |
|
|
formatter = logging.Formatter("[%(asctime)s.%(msecs)03d] %(message)s", datefmt="%H:%M:%S") |
|
|
lg.setLevel(level) |
|
|
|
|
|
log_time = get_timestamp() |
|
|
if tofile: |
|
|
log_file = os.path.join(root, "{}_{}.log".format(logger_name, log_time)) |
|
|
fh = logging.FileHandler(log_file, mode="w") |
|
|
fh.setFormatter(formatter) |
|
|
lg.addHandler(fh) |
|
|
if screen: |
|
|
sh = logging.StreamHandler() |
|
|
sh.setFormatter(formatter) |
|
|
lg.addHandler(sh) |
|
|
return lg, log_time |
|
|
|
|
|
|
|
|
def get_timestamp(): |
|
|
timestampTime = time.strftime("%H%M%S") |
|
|
timestampDate = time.strftime("%Y%m%d") |
|
|
return timestampDate + "-" + timestampTime |
|
|
|
|
|
|
|
|
|
|
|
def save_csv(args, logger, patient_list, |
|
|
loss, loss_nsd, |
|
|
): |
|
|
save_predict_dir = os.path.join(args.save_base_dir, 'csv_file') |
|
|
if not os.path.exists(save_predict_dir): |
|
|
os.makedirs(save_predict_dir) |
|
|
|
|
|
df_dict = {'patient': patient_list, |
|
|
'dice': loss, |
|
|
'nsd': loss_nsd, |
|
|
} |
|
|
|
|
|
df = pandas.DataFrame(df_dict) |
|
|
df.to_csv(os.path.join(save_predict_dir, 'prompt_' + str(args.num_prompts) |
|
|
+ '_' + str(args.save_name) + '.csv'), index=False) |
|
|
logger.info("- CSV saved") |
|
|
|
|
|
|
|
|
def save_image(save_array, test_data, image_data, save_prediction_path): |
|
|
nib.save(nib.Nifti1Image(save_array[0, 0, :].permute(test_data.dataset.spatial_index).cpu().numpy(), |
|
|
image_data.affine, image_data.header), save_prediction_path) |
|
|
|
|
|
|
|
|
def _bbox_mask(mask_volume: torch.Tensor, diff=1, mode='train', dynamic=False, max_diff=10, return_extend=False) -> torch.Tensor: |
|
|
bbox_coords = [] |
|
|
for volume in mask_volume: |
|
|
i_any = volume.any(dim=2).any(dim=1) |
|
|
j_any = volume.any(dim=2).any(dim=0) |
|
|
k_any = volume.any(dim=1).any(dim=0) |
|
|
|
|
|
i_min, i_max = torch.where(i_any)[0][[0, -1]] |
|
|
j_min, j_max = torch.where(j_any)[0][[0, -1]] |
|
|
k_min, k_max = torch.where(k_any)[0][[0, -1]] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dynamic and mode == 'train': |
|
|
|
|
|
diff_ = np.random.choice(range(0, max_diff), size=6, replace=True) |
|
|
|
|
|
if max(0, i_min - diff_[0]) < min(i_max + diff_[1], 126): |
|
|
i_min, i_max = max(0, i_min - diff_[0]), min(i_max + diff_[1], 126) |
|
|
if max(0, j_min - diff_[2]) < min(j_max + diff_[3], 126): |
|
|
j_min, j_max = max(0, j_min - diff_[2]), min(j_max + diff_[3], 126) |
|
|
if max(0, k_min - diff_[4]) < min(k_max + diff_[5], 126): |
|
|
k_min, k_max = max(0, k_min - diff_[4]), min(k_max + diff_[5], 126) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bb = torch.tensor([[i_min, j_min, k_min, i_max + 1, j_max + 1, k_max + 1]]) |
|
|
|
|
|
|
|
|
|
|
|
bbox_coords.append(bb) |
|
|
|
|
|
bbox_coords = torch.stack(bbox_coords) |
|
|
return bbox_coords |
|
|
|
|
|
|