Datasets:

ArXiv:
PRISM / src /utils /util.py
emad2001's picture
Upload folder using huggingface_hub
36fdbcf verified
import logging
import os
import time
import torch
import shutil
import numpy as np
import nibabel as nib
import pandas
from typing import List, Tuple, Type, Union
def save_checkpoint(state, is_best, checkpoint):
filepath_last = os.path.join(checkpoint, "last.pth.tar")
filepath_best = os.path.join(checkpoint, "best.pth.tar")
if not os.path.exists(checkpoint):
print("Checkpoint Directory does not exist! Masking directory {}".format(checkpoint))
os.mkdir(checkpoint)
else:
print("Checkpoint Directory exists!")
torch.save(state, filepath_last)
if is_best:
if os.path.isfile(filepath_best):
os.remove(filepath_best)
shutil.copyfile(filepath_last, filepath_best)
def setup_logger(logger_name, root, level=logging.INFO, screen=False, tofile=False):
"""set up logger"""
lg = logging.getLogger(logger_name)
formatter = logging.Formatter("[%(asctime)s.%(msecs)03d] %(message)s", datefmt="%H:%M:%S")
lg.setLevel(level)
log_time = get_timestamp()
if tofile:
log_file = os.path.join(root, "{}_{}.log".format(logger_name, log_time))
fh = logging.FileHandler(log_file, mode="w")
fh.setFormatter(formatter)
lg.addHandler(fh)
if screen:
sh = logging.StreamHandler()
sh.setFormatter(formatter)
lg.addHandler(sh)
return lg, log_time
def get_timestamp():
timestampTime = time.strftime("%H%M%S")
timestampDate = time.strftime("%Y%m%d")
return timestampDate + "-" + timestampTime
def save_csv(args, logger, patient_list,
loss, loss_nsd,
):
save_predict_dir = os.path.join(args.save_base_dir, 'csv_file')
if not os.path.exists(save_predict_dir):
os.makedirs(save_predict_dir)
df_dict = {'patient': patient_list,
'dice': loss,
'nsd': loss_nsd,
}
df = pandas.DataFrame(df_dict)
df.to_csv(os.path.join(save_predict_dir, 'prompt_' + str(args.num_prompts)
+ '_' + str(args.save_name) + '.csv'), index=False)
logger.info("- CSV saved")
def save_image(save_array, test_data, image_data, save_prediction_path):
nib.save(nib.Nifti1Image(save_array[0, 0, :].permute(test_data.dataset.spatial_index).cpu().numpy(),
image_data.affine, image_data.header), save_prediction_path)
def _bbox_mask(mask_volume: torch.Tensor, diff=1, mode='train', dynamic=False, max_diff=10, return_extend=False) -> torch.Tensor:
bbox_coords = []
for volume in mask_volume:
i_any = volume.any(dim=2).any(dim=1)
j_any = volume.any(dim=2).any(dim=0)
k_any = volume.any(dim=1).any(dim=0)
i_min, i_max = torch.where(i_any)[0][[0, -1]]
j_min, j_max = torch.where(j_any)[0][[0, -1]]
k_min, k_max = torch.where(k_any)[0][[0, -1]]
# i_max, j_max, k_max = i_max + diff, j_max + diff, k_max + diff
# bb = torch.tensor([[i_min, j_min, k_min, i_max, j_max, k_max]])
if dynamic and mode == 'train':
# diff_ = np.random.choice(range(-max_diff, max_diff), size=6, replace=True)
diff_ = np.random.choice(range(0, max_diff), size=6, replace=True)
if max(0, i_min - diff_[0]) < min(i_max + diff_[1], 126):
i_min, i_max = max(0, i_min - diff_[0]), min(i_max + diff_[1], 126)
if max(0, j_min - diff_[2]) < min(j_max + diff_[3], 126):
j_min, j_max = max(0, j_min - diff_[2]), min(j_max + diff_[3], 126)
if max(0, k_min - diff_[4]) < min(k_max + diff_[5], 126):
k_min, k_max = max(0, k_min - diff_[4]), min(k_max + diff_[5], 126)
# delta_i = i_max - i_min + diff
# delta_j = j_max - j_min + diff
# delta_k = k_max - k_min + diff
# diff_value = -5
# i_min, i_max = max(0, i_min - diff_value), min(i_max + diff_value, 126)
# j_min, j_max = max(0, j_min - diff_value), min(j_max + diff_value, 126)
# k_min, k_max = max(0, k_min - diff_value), min(k_max + diff_value, 126)
bb = torch.tensor([[i_min, j_min, k_min, i_max + 1, j_max + 1, k_max + 1]])
# print(i_min, i_max + 1, j_min, j_max + 1, k_min, k_max + 1) # check dynamic box
# bb = torch.tensor([[i_min, j_min, k_min, delta_i, delta_j, delta_k]])
bbox_coords.append(bb)
# print(torch.sum(volume), torch.sum(volume[i_min:i_max + 1, j_min:j_max + 1, k_min:k_max + 1]))
bbox_coords = torch.stack(bbox_coords)
return bbox_coords