|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from typing import List |
|
|
from torch import Tensor |
|
|
|
|
|
from .utility import chance |
|
|
from .utility import grid_coordinates |
|
|
from .noise import perlin |
|
|
|
|
|
|
|
|
def resize( |
|
|
image : Tensor, |
|
|
scale_factor : float or List[float] = None, |
|
|
shape : List[int] = None, |
|
|
nearest : bool = False) -> Tensor: |
|
|
""" |
|
|
Resize an image with the option of scaling and/or setting to a new shape. |
|
|
|
|
|
Parameters: |
|
|
----------- |
|
|
image: torch.Tensor |
|
|
An input tensor with shape (C, H, W[, D]) to resize. |
|
|
scale_factor: float or List[float], optional |
|
|
Multiplicative factor(s) for scaling the input tensor. If a float, then the same |
|
|
scale factor is applied to all spatial dimensions. If a tuple, then the scaling |
|
|
factor for each dimension should be provided. |
|
|
shape: List[int], optional |
|
|
Target shape of the output tensor. |
|
|
nearest: bool, optional |
|
|
If True, use nearest neighbor interpolation. Otherwise, use linear interpolation. |
|
|
|
|
|
Returns: |
|
|
-------- |
|
|
torch.Tensor: |
|
|
The resized tensor with the shape specified by `shape` or scaled by `scale_factor`. |
|
|
""" |
|
|
ndim = image.ndim - 1 |
|
|
|
|
|
|
|
|
if scale_factor is not None and scale_factor != 1: |
|
|
|
|
|
|
|
|
target_shape = [int(s * scale_factor + 0.5) for s in image.shape[1:]] |
|
|
|
|
|
|
|
|
|
|
|
reset_type = None |
|
|
if not torch.is_floating_point(image): |
|
|
if nearest: |
|
|
reset_type = image.dtype |
|
|
image = image.type(torch.float32) |
|
|
|
|
|
|
|
|
linear = 'trilinear' if image.ndim - 1 == 3 else 'bilinear' |
|
|
mode = 'nearest' if nearest else linear |
|
|
|
|
|
|
|
|
if nearest: |
|
|
image = torch.nn.functional.interpolate(image.unsqueeze(0), target_shape, mode=mode) |
|
|
else: |
|
|
image = torch.nn.functional.interpolate(image.unsqueeze(0), target_shape, mode=mode) |
|
|
image = image.squeeze(0) |
|
|
|
|
|
|
|
|
if reset_type is not None: |
|
|
image = image.type(reset_type) |
|
|
|
|
|
if shape is not None: |
|
|
|
|
|
|
|
|
padding = [] |
|
|
baseshape = image.shape[1:] |
|
|
for d in range(ndim): |
|
|
diff = shape[d] - baseshape[d] |
|
|
if diff > 0: |
|
|
half = diff / 2 |
|
|
a, b = int(np.floor(half)), int(np.ceil(half)) |
|
|
padding.extend([a, b]) |
|
|
else: |
|
|
padding.extend([0, 0]) |
|
|
|
|
|
|
|
|
padding.reverse() |
|
|
image = torch.nn.functional.pad(image, padding) |
|
|
|
|
|
|
|
|
slicing = [slice(0, image.shape[0])] |
|
|
baseshape = image.shape[1:] |
|
|
for d in range(ndim): |
|
|
diff = baseshape[d] - shape[d] |
|
|
if diff > 0: |
|
|
half = diff / 2 |
|
|
a, b = int(np.floor(half)), int(np.ceil(half)) |
|
|
slicing.append(slice(a, baseshape[d] - b)) |
|
|
else: |
|
|
slicing.append(slice(0, baseshape[d])) |
|
|
|
|
|
|
|
|
image = image[tuple(slicing)] |
|
|
|
|
|
return image |
|
|
|
|
|
|
|
|
def random_flip(dim : int, *args, prob : float = 0.5): |
|
|
""" |
|
|
Randomly flips an image (or set of images) along the given dimension. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
dim : int |
|
|
The dimension along which to flip. Note that the first dimension |
|
|
is the channel dimension. |
|
|
*args : torch.Tensor |
|
|
The image(s) to flip. |
|
|
prob : float |
|
|
The probability of flipping the image(s). |
|
|
|
|
|
Returns |
|
|
------- |
|
|
torch.Tensor or tuple[torch.Tensor] |
|
|
The flipped image(s). |
|
|
""" |
|
|
result = tuple([arg.flip([dim]) for arg in args]) if chance(prob) else args |
|
|
if len(args) == 1: |
|
|
return result[0] |
|
|
return result |
|
|
|
|
|
|
|
|
def compose_affine( |
|
|
ndim : int, |
|
|
translation : Tensor = None, |
|
|
rotation : Tensor = None, |
|
|
scale : Tensor = None, |
|
|
shear : Tensor = None, |
|
|
degrees : bool = True, |
|
|
device : torch.device = None) -> Tensor: |
|
|
""" |
|
|
Composes an affine matrix from a set of translation, rotation, scale, |
|
|
and shear transform components. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
ndim (int): |
|
|
The number of dimensions of the affine matrix. Must be 2 or 3. |
|
|
translation : Tensor, optional |
|
|
The translation vector. Must be a vector of size `ndim`. |
|
|
rotation : Tensor, optional |
|
|
The rotation angles. Must be a scalar value for 2D affine matrices, |
|
|
and a tensor of size 3 for 3D affine matrices. |
|
|
scale : Tensor, optional |
|
|
The scaling factor. Can be scalar or vector of size `ndim`. |
|
|
shear : Tensor, optional |
|
|
The shearing factor. Must be a scalar value for 2D affine matrices, |
|
|
and a tensor of size 3 for 3D affine matrices. |
|
|
degrees : bool, optional |
|
|
Whether to interpret the rotation angles as degrees. |
|
|
device : torch.device, optional |
|
|
The device of the returned matrix. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
The composed affine matrix, as a tensor of shape `(ndim + 1, ndim + 1)`. |
|
|
""" |
|
|
if ndim not in (2, 3): |
|
|
raise ValueError(f'affine transform must be 2D or 3D, got ndim {ndim}') |
|
|
|
|
|
|
|
|
translation = torch.zeros(ndim) if translation is None else torch.as_tensor(translation) |
|
|
if len(translation) != ndim: |
|
|
raise ValueError(f'translation must be of shape ({ndim},)') |
|
|
|
|
|
|
|
|
expected = 3 if ndim == 3 else 1 |
|
|
rotation = torch.zeros(expected) if rotation is None else torch.as_tensor(rotation) |
|
|
if rotation.ndim == 0 and ndim == 3 or rotation.ndim != 0 and rotation.shape[0] != expected: |
|
|
raise ValueError(f'rotation must be of shape ({expected},)') |
|
|
|
|
|
|
|
|
scale = torch.ones(ndim) if scale is None else torch.as_tensor(scale) |
|
|
if scale.ndim == 0: |
|
|
scale = scale.repeat(ndim) |
|
|
if scale.shape[0] != ndim: |
|
|
raise ValueError(f'scale must be of size {ndim}') |
|
|
|
|
|
|
|
|
expected = 3 if ndim == 3 else 1 |
|
|
shear = torch.zeros(expected) if shear is None else torch.as_tensor(shear) |
|
|
if shear.ndim == 0: |
|
|
shear = shear.view(1) |
|
|
if shear.shape[0] != expected: |
|
|
raise ValueError(f'shear must be of shape ({expected},)') |
|
|
|
|
|
|
|
|
T = torch.eye(ndim + 1, dtype=torch.float64) |
|
|
T[:ndim, -1] = translation |
|
|
|
|
|
|
|
|
R = torch.eye(ndim + 1, dtype=torch.float64) |
|
|
R[:ndim, :ndim] = angles_to_rotation_matrix(rotation, degrees=degrees) |
|
|
|
|
|
|
|
|
Z = torch.diag(torch.cat([scale, torch.ones(1, dtype=torch.float64)])) |
|
|
|
|
|
|
|
|
S = torch.eye(ndim + 1, dtype=torch.float64) |
|
|
S[0][1] = shear[0] |
|
|
if ndim == 3: |
|
|
S[0][2] = shear[1] |
|
|
S[1][2] = shear[2] |
|
|
|
|
|
|
|
|
matrix = T @ R @ Z @ S |
|
|
|
|
|
return torch.as_tensor(matrix, dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
|
def angles_to_rotation_matrix( |
|
|
rotation : Tensor, |
|
|
degrees : bool = True) -> Tensor: |
|
|
""" |
|
|
Compute a rotation matrix from the given rotation angles. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
rotation : Tensor |
|
|
A tensor containing the rotation angles. If `degrees` is True, the angles |
|
|
are in degrees, otherwise they are in radians. |
|
|
degrees : bool, optional |
|
|
Whether to interpret the rotation angles as degrees. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
The computed `(ndim + 1, ndim + 1)` rotation matrix. |
|
|
""" |
|
|
if degrees: |
|
|
rotation = torch.deg2rad(rotation) |
|
|
|
|
|
|
|
|
rotation = torch.as_tensor(rotation) |
|
|
if rotation.ndim == 0: |
|
|
rotation = rotation.view(1) |
|
|
num_angles = len(rotation) |
|
|
|
|
|
|
|
|
if num_angles == 1: |
|
|
c, s = torch.cos(rotation[0]), torch.sin(rotation[0]) |
|
|
matrix = torch.tensor([[c, -s], [s, c]], dtype=torch.float64) |
|
|
elif num_angles == 3: |
|
|
c, s = torch.cos(rotation[0]), torch.sin(rotation[0]) |
|
|
rx = torch.tensor([[1, 0, 0], [0, c, s], [0, -s, c]], dtype=torch.float64) |
|
|
c, s = torch.cos(rotation[1]), torch.sin(rotation[1]) |
|
|
ry = torch.tensor([[c, 0, s], [0, 1, 0], [-s, 0, c]], dtype=torch.float64) |
|
|
c, s = torch.cos(rotation[2]), torch.sin(rotation[2]) |
|
|
rz = torch.tensor([[c, s, 0], [-s, c, 0], [0, 0, 1]], dtype=torch.float64) |
|
|
matrix = rx @ ry @ rz |
|
|
else: |
|
|
raise ValueError(f'expected 1 (2D) or 3 (3D) rotation angles, got {num_angles}') |
|
|
|
|
|
return matrix.to(rotation.device) |
|
|
|
|
|
|
|
|
def random_affine( |
|
|
ndim: int, |
|
|
max_translation: float = 0, |
|
|
max_rotation: float = 0, |
|
|
max_scaling: float = 1, |
|
|
device: torch.device = None) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
|
|
|
|
|
|
translation_range = sorted([-max_translation, max_translation]) |
|
|
translation = np.random.uniform(*translation_range, size=ndim) |
|
|
|
|
|
|
|
|
rotation_range = sorted([-max_rotation, max_rotation]) |
|
|
rotation = np.random.uniform(*rotation_range, size=(1 if ndim == 2 else 3)) |
|
|
|
|
|
|
|
|
if max_scaling < 1: |
|
|
raise ValueError('max scaling to random affine cannot be less than 1, ' |
|
|
'see function doc for more info') |
|
|
inv = np.random.choice([-1, 1], size=ndim) |
|
|
scale = np.random.uniform(1, max_scaling, size=ndim) ** inv |
|
|
|
|
|
|
|
|
aff = compose_affine( |
|
|
ndim=ndim, |
|
|
translation=translation, |
|
|
rotation=rotation, |
|
|
scale=scale, |
|
|
device=device) |
|
|
return aff |
|
|
|
|
|
|
|
|
def affine_to_displacement_field( |
|
|
affine : Tensor, |
|
|
meshgrid : Tensor, |
|
|
rotate_around_center : bool = True) -> Tensor: |
|
|
""" |
|
|
Convert an affine transformation matrix to a dense displacement field. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
affine : Tensor |
|
|
Affine transformation matrix. |
|
|
meshgrid : Tensor |
|
|
The meshgrid tensor of shape `(W, H[, D], N)`, where N is the spatial dimensionality. |
|
|
rotate_around_center : bool, optional |
|
|
If True, the rotation will be around the center of the image, otherwise around the origin. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
The generated displacement field of shape `meshgrid.shape[:-1]`. |
|
|
""" |
|
|
ndim = meshgrid.shape[-1] |
|
|
shape = meshgrid.shape[:-1] |
|
|
|
|
|
|
|
|
|
|
|
grid = meshgrid.clone() if rotate_around_center else meshgrid |
|
|
if rotate_around_center: |
|
|
for d in range(ndim): |
|
|
grid[..., d] -= (shape[d] - 1) / 2 |
|
|
|
|
|
|
|
|
coords = grid.view(-1, ndim) |
|
|
ones = torch.ones((coords.shape[-2], 1), device=meshgrid.device) |
|
|
coords = torch.cat([coords, ones], dim=-1) |
|
|
|
|
|
|
|
|
shift = (affine @ coords.T)[:ndim].T |
|
|
|
|
|
|
|
|
|
|
|
shift = shift.view(*shape, ndim) - grid |
|
|
|
|
|
return shift |
|
|
|
|
|
|
|
|
def integrate_displacement_field( |
|
|
disp : Tensor, |
|
|
steps : int, |
|
|
meshgrid : Tensor = None) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
if meshgrid is None: |
|
|
meshgrid = grid_coordinates(disp.shape[:-1], device=disp.device) |
|
|
|
|
|
if steps == 0: |
|
|
return disp |
|
|
|
|
|
disp = disp / (2 ** steps) |
|
|
for _ in range(steps): |
|
|
disp += spatial_transform(disp.movedim(-1, 0), disp, meshgrid=meshgrid).movedim(0, -1) |
|
|
|
|
|
return disp |
|
|
|
|
|
|
|
|
def random_displacement_field( |
|
|
shape : List[int], |
|
|
smoothing : float = 10, |
|
|
magnitude : float = 10, |
|
|
integrations : int = 0, |
|
|
voxsize : float = 1, |
|
|
meshgrid : Tensor = None, |
|
|
device: torch.device = None) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
smoothing = smoothing / voxsize |
|
|
magnitude = magnitude / voxsize |
|
|
|
|
|
ndim = len(shape) |
|
|
disp = [perlin(shape, smoothing, magnitude, device=device) for i in range(ndim)] |
|
|
disp = torch.stack(disp, dim=-1) |
|
|
|
|
|
if integrations > 0: |
|
|
disp = integrate_displacement_field(disp, integrations, meshgrid) |
|
|
|
|
|
return disp |
|
|
|
|
|
|
|
|
def displacement_field_to_coords(disp, meshgrid=None) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
if meshgrid is None: |
|
|
meshgrid = grid_coordinates(disp.shape[:-1], device=disp.device) |
|
|
|
|
|
shape = disp.shape[:-1] |
|
|
ndim = disp.shape[-1] |
|
|
|
|
|
coords = (meshgrid + disp) |
|
|
for d in range(ndim): |
|
|
coords[..., d] *= 2 / (shape[d] - 1) |
|
|
coords[..., d] -= 1 |
|
|
|
|
|
coords = coords.flip(-1) |
|
|
|
|
|
return coords |
|
|
|
|
|
|
|
|
def coords_to_displacement_field(coords, meshgrid=None) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
if meshgrid is None: |
|
|
meshgrid = grid_coordinates(coords.shape[:-1], device=coords.device) |
|
|
|
|
|
raise NotImplementedError('coords_to_displacement_field is not yet implemented. ' |
|
|
'contact andrew if you get this... or implement it :)') |
|
|
|
|
|
|
|
|
def spatial_transform( |
|
|
image : Tensor, |
|
|
trf : Tensor, |
|
|
method : str = 'linear', |
|
|
isdisp : bool = True, |
|
|
meshgrid : Tensor = None, |
|
|
rotate_around_center : bool = True) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
if trf is None: |
|
|
return image |
|
|
|
|
|
if trf.ndim == 2: |
|
|
if meshgrid is None: |
|
|
meshgrid = grid_coordinates(image.shape[1:], device=image.device) |
|
|
trf = torch.linalg.inv(trf) |
|
|
trf = affine_to_displacement_field(trf, meshgrid, |
|
|
rotate_around_center=rotate_around_center) |
|
|
isdisp = True |
|
|
|
|
|
|
|
|
if isdisp: |
|
|
trf = displacement_field_to_coords(trf, meshgrid=meshgrid) |
|
|
|
|
|
|
|
|
method = 'bilinear' if method == 'linear' else method |
|
|
|
|
|
|
|
|
reset_type = None |
|
|
if not torch.is_floating_point(image): |
|
|
if method == 'nearest': |
|
|
reset_type = image.dtype |
|
|
image = image.type(torch.float32) |
|
|
|
|
|
|
|
|
image = image.unsqueeze(0) |
|
|
trf = trf.unsqueeze(0) |
|
|
interped = torch.nn.functional.grid_sample(image, trf, align_corners=True, mode=method) |
|
|
interped = interped.squeeze(0) |
|
|
|
|
|
|
|
|
if reset_type is not None: |
|
|
interped = interped.type(reset_type) |
|
|
|
|
|
return interped |
|
|
|
|
|
|
|
|
def random_transform( |
|
|
shape : List[int], |
|
|
affine_probability : float = 1.0, |
|
|
max_translation : float = 5.0, |
|
|
max_rotation : float = 5.0, |
|
|
max_scaling : float = 1.1, |
|
|
warp_probability : float = 1.0, |
|
|
warp_integrations : int = 5, |
|
|
warp_smoothing_range : List[int] = [10, 20], |
|
|
warp_magnitude_range : List[int] = [1, 2], |
|
|
voxsize : int = 1, |
|
|
device : torch.device = None, |
|
|
isdisp : bool = True, |
|
|
) -> Tensor: |
|
|
""" |
|
|
TODOC |
|
|
""" |
|
|
ndim = len(shape) |
|
|
trf = None |
|
|
|
|
|
|
|
|
if chance(affine_probability): |
|
|
|
|
|
|
|
|
meshgrid = grid_coordinates(shape, device=device) |
|
|
|
|
|
|
|
|
max_translation = max_translation / voxsize |
|
|
matrix = random_affine( |
|
|
ndim=ndim, |
|
|
max_translation=max_translation, |
|
|
max_rotation=max_rotation, |
|
|
max_scaling=max_scaling, |
|
|
device=device) |
|
|
trf = affine_to_displacement_field(matrix, meshgrid) |
|
|
|
|
|
|
|
|
if chance(warp_probability): |
|
|
disp = random_displacement_field( |
|
|
shape=shape, |
|
|
smoothing=np.random.uniform(*warp_smoothing_range), |
|
|
magnitude=np.random.uniform(*warp_magnitude_range), |
|
|
integrations=warp_integrations, |
|
|
voxsize=voxsize, |
|
|
device=device) |
|
|
|
|
|
|
|
|
if trf is None: |
|
|
trf = disp |
|
|
else: |
|
|
trf += spatial_transform(disp.movedim(-1, 0), trf, meshgrid=meshgrid).movedim(0, -1) |
|
|
|
|
|
|
|
|
if trf is not None and not isdisp: |
|
|
trf = displacement_field_to_coords(trf) |
|
|
|
|
|
return trf |
|
|
|