metadata
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the [Meta Privacy
Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
language:
- en
pretty_name: SA-FARI
configs:
- config_name: SA-FARI
data_files:
- split: train
path: annotation/sa_fari_train.json
- split: test
path: annotation/sa_fari_test.json
license: other
SA-FARI Dataset
License CC-BY-NC 4.0
SA-FARI is a wildlife camera dataset collected through a collaboration between Meta and CXL.
All videos and pre-processed JPEGImages can be found in cxl-public-camera-trap, which contains the following contents:
sa_fari/
├── sa_fari_test_tars/
│ ├── JPEGImages_6fps/
│ ├── videos/
├── sa_fari_test/
│ ├── JPEGImages_6fps/
│ ├── videos/
├── sa_fari_train_tars/
│ ├── JPEGImages_6fps/
│ ├── videos/
└── sa_fari_train/
├── JPEGImages_6fps/
└── videos/
videos: The original full fps videos.JPEGImages_6fps: For annotation, the videos have been downsampled to 6fps. This folder contains the downsampled frames compatible with the annotation json files below.
This Hugging Face dataset repo contains the annotations:
datasets/facebook/SA-FARI/tree/main/
└── annotation/
├── sa_fari_test.json
├── sa_fari_test_ext.json
├── sa_fari_train.json
└── sa_fari_train_ext.json
sa_fari_test.jsonandsa_fari_train.json- Follow the same format as SA-Co/VEval
sa_fari_test_ext.jsonandsa_fari_train_ext.json- In additional to the [SA-Co/VEval] format, we added additional metadata to the following fields:
videos:video_num_frames,video_fps,video_creation_datetimeandlocation_idhave been added as additional metadata to thevideosfield.
categories:Kingdom,Phylum,Class,Order,Family,GenusandSpecieshave been added when applicable as additional metadata to thecategoriesfield.
- In additional to the [SA-Co/VEval] format, we added additional metadata to the following fields:
All the SA-FARI annotation files are compatible to use the visualization notebook and offline evaluator developed in SAM 3 Github.
Annotation Format
A format breakdown for sa_fari_test.json and sa_fari_train.json. The format is similar to the YTVIS format.
In the annotation json, e.g. sa_fari_test.json there are 5 fields:
- info:
- A dict containing the dataset info
- E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-FARI Test'}
- videos
- A list of videos that are used in the current annotation json
- It contains {id, video_name, file_names, height, width, length}
- annotations
- A list of positive masklets and their related info
- It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase}
- video_id should match to the
videos - idfield above - category_id should match to the
categories - idfield below - segmentations is a list of RLE
- video_id should match to the
- categories
- A globally used noun phrase id map, which is true across all 3 domains.
- It contains {id, name}
- name is the noun phrase
- video_np_pairs
- A list of video-np pairs, including both positive and negative used in the current annotation json
- It contains {id, video_id, category_id, noun_phrase, num_masklets}
- video_id should match the
videos - idabove - category_id should match the
categories - idabove - when
num_masklets > 0it is a positive video-np pair, and the presenting masklets can be found in the annotations field - when
num_masklets = 0it is a negative video-np pair, meaning no masklet presenting at all
- video_id should match the
data {
"info": info
"videos": [video]
"annotations": [annotation]
"categories": [category]
"video_np_pairs": [video_np_pair]
}
video {
"id": int
"video_name": str # e.g. sav_000000
"file_names": List[str]
"height": int
"width": width
"length": length
}
annotation {
"id": int
"segmentations": List[RLE]
"bboxes": List[List[int, int, int, int]]
"areas": List[int]
"iscrowd": int
"video_id": str
"height": int
"width": int
"category_id": int
"noun_phrase": str
}
category {
"id": int
"name": str
}
video_np_pair {
"id": int
"video_id": str
"category_id": int
"noun_phrase": str
"num_masklets" int
}