|
|
--- |
|
|
extra_gated_fields: |
|
|
First Name: text |
|
|
Last Name: text |
|
|
Date of birth: date_picker |
|
|
Country: country |
|
|
Affiliation: text |
|
|
Job title: |
|
|
type: select |
|
|
options: |
|
|
- Student |
|
|
- Research Graduate |
|
|
- AI researcher |
|
|
- AI developer/engineer |
|
|
- Reporter |
|
|
- Other |
|
|
geo: ip_location |
|
|
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox |
|
|
extra_gated_description: >- |
|
|
The information you provide will be collected, stored, processed and shared in |
|
|
accordance with the [Meta Privacy |
|
|
Policy](https://www.facebook.com/privacy/policy/). |
|
|
extra_gated_button_content: Submit |
|
|
language: |
|
|
- en |
|
|
pretty_name: SA-FARI |
|
|
configs: |
|
|
- config_name: SA-FARI |
|
|
data_files: |
|
|
- split: train |
|
|
path: annotation/sa_fari_train.json |
|
|
- split: test |
|
|
path: annotation/sa_fari_test.json |
|
|
license: other |
|
|
--- |
|
|
# SA-FARI Dataset |
|
|
**License** CC-BY-NC 4.0 |
|
|
|
|
|
**SA-FARI** is a wildlife camera dataset collected through a collaboration between Meta and [CXL](https://www.conservationxlabs.com/). |
|
|
|
|
|
All videos and pre-processed JPEGImages can be found in [cxl-public-camera-trap](https://console.cloud.google.com/storage/browser/cxl-public-camera-trap), which contains the following contents: |
|
|
``` |
|
|
sa_fari/ |
|
|
├── sa_fari_test_tars/ |
|
|
│ ├── JPEGImages_6fps/ |
|
|
│ ├── videos/ |
|
|
├── sa_fari_test/ |
|
|
│ ├── JPEGImages_6fps/ |
|
|
│ ├── videos/ |
|
|
├── sa_fari_train_tars/ |
|
|
│ ├── JPEGImages_6fps/ |
|
|
│ ├── videos/ |
|
|
└── sa_fari_train/ |
|
|
├── JPEGImages_6fps/ |
|
|
└── videos/ |
|
|
``` |
|
|
* `videos`: The original full fps videos. |
|
|
* `JPEGImages_6fps`: For annotation, the videos have been downsampled to 6fps. This folder contains the downsampled frames compatible with the annotation json files below. |
|
|
|
|
|
This Hugging Face dataset repo contains the annotations: |
|
|
``` |
|
|
datasets/facebook/SA-FARI/tree/main/ |
|
|
└── annotation/ |
|
|
├── sa_fari_test.json |
|
|
├── sa_fari_test_ext.json |
|
|
├── sa_fari_train.json |
|
|
└── sa_fari_train_ext.json |
|
|
``` |
|
|
* `sa_fari_test.json` and `sa_fari_train.json` |
|
|
* Follow the same format as [SA-Co/VEval](https://huggingface.co/datasets/facebook/SACo-VEval/) |
|
|
* `sa_fari_test_ext.json` and `sa_fari_train_ext.json` |
|
|
* In additional to the [SA-Co/VEval] format, we added additional metadata to the following fields: |
|
|
* `videos`: |
|
|
* `video_num_frames`, `video_fps`, `video_creation_datetime` and `location_id` have been added as additional metadata to the `videos` field. |
|
|
* `categories`: |
|
|
* `Kingdom`, `Phylum`, `Class`, `Order`, `Family`, `Genus` and `Species` have been added when applicable as additional metadata to the `categories` field. |
|
|
|
|
|
All the SA-FARI annotation files are compatible to use the visualization notebook and offline evaluator developed in [SAM 3 Github](https://github.com/facebookresearch/sam3/tree/main/scripts/eval/veval). |
|
|
|
|
|
## Annotation Format |
|
|
A format breakdown for `sa_fari_test.json` and `sa_fari_train.json`. The format is similar to the [YTVIS](https://youtube-vos.org/dataset/vis/) format. |
|
|
|
|
|
In the annotation json, e.g. `sa_fari_test.json` there are 5 fields: |
|
|
* info: |
|
|
* A dict containing the dataset info |
|
|
* E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-FARI Test'} |
|
|
* videos |
|
|
* A list of videos that are used in the current annotation json |
|
|
* It contains {id, video_name, file_names, height, width, length} |
|
|
* annotations |
|
|
* A list of **positive** masklets and their related info |
|
|
* It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase} |
|
|
* video_id should match to the `videos - id` field above |
|
|
* category_id should match to the `categories - id` field below |
|
|
* segmentations is a list of [RLE](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py) |
|
|
* categories |
|
|
* A **globally** used noun phrase id map, which is true across all 3 domains. |
|
|
* It contains {id, name} |
|
|
* name is the noun phrase |
|
|
* video_np_pairs |
|
|
* A list of video-np pairs, including both **positive** and **negative** used in the current annotation json |
|
|
* It contains {id, video_id, category_id, noun_phrase, num_masklets} |
|
|
* video_id should match the `videos - id` above |
|
|
* category_id should match the `categories - id` above |
|
|
* when `num_masklets > 0` it is a positive video-np pair, and the presenting masklets can be found in the annotations field |
|
|
* when `num_masklets = 0` it is a negative video-np pair, meaning no masklet presenting at all |
|
|
``` |
|
|
data { |
|
|
"info": info |
|
|
"videos": [video] |
|
|
"annotations": [annotation] |
|
|
"categories": [category] |
|
|
"video_np_pairs": [video_np_pair] |
|
|
} |
|
|
video { |
|
|
"id": int |
|
|
"video_name": str # e.g. sav_000000 |
|
|
"file_names": List[str] |
|
|
"height": int |
|
|
"width": width |
|
|
"length": length |
|
|
} |
|
|
annotation { |
|
|
"id": int |
|
|
"segmentations": List[RLE] |
|
|
"bboxes": List[List[int, int, int, int]] |
|
|
"areas": List[int] |
|
|
"iscrowd": int |
|
|
"video_id": str |
|
|
"height": int |
|
|
"width": int |
|
|
"category_id": int |
|
|
"noun_phrase": str |
|
|
} |
|
|
category { |
|
|
"id": int |
|
|
"name": str |
|
|
} |
|
|
video_np_pair { |
|
|
"id": int |
|
|
"video_id": str |
|
|
"category_id": int |
|
|
"noun_phrase": str |
|
|
"num_masklets" int |
|
|
} |
|
|
``` |