SA-FARI / README.md
hkhedr's picture
inital commit
b38cec7 verified
---
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the [Meta Privacy
Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
language:
- en
pretty_name: SA-FARI
configs:
- config_name: SA-FARI
data_files:
- split: train
path: annotation/sa_fari_train.json
- split: test
path: annotation/sa_fari_test.json
license: other
---
# SA-FARI Dataset
**License** CC-BY-NC 4.0
**SA-FARI** is a wildlife camera dataset collected through a collaboration between Meta and [CXL](https://www.conservationxlabs.com/).
All videos and pre-processed JPEGImages can be found in [cxl-public-camera-trap](https://console.cloud.google.com/storage/browser/cxl-public-camera-trap), which contains the following contents:
```
sa_fari/
├── sa_fari_test_tars/
│ ├── JPEGImages_6fps/
│ ├── videos/
├── sa_fari_test/
│ ├── JPEGImages_6fps/
│ ├── videos/
├── sa_fari_train_tars/
│ ├── JPEGImages_6fps/
│ ├── videos/
└── sa_fari_train/
├── JPEGImages_6fps/
└── videos/
```
* `videos`: The original full fps videos.
* `JPEGImages_6fps`: For annotation, the videos have been downsampled to 6fps. This folder contains the downsampled frames compatible with the annotation json files below.
This Hugging Face dataset repo contains the annotations:
```
datasets/facebook/SA-FARI/tree/main/
└── annotation/
├── sa_fari_test.json
├── sa_fari_test_ext.json
├── sa_fari_train.json
└── sa_fari_train_ext.json
```
* `sa_fari_test.json` and `sa_fari_train.json`
* Follow the same format as [SA-Co/VEval](https://huggingface.co/datasets/facebook/SACo-VEval/)
* `sa_fari_test_ext.json` and `sa_fari_train_ext.json`
* In additional to the [SA-Co/VEval] format, we added additional metadata to the following fields:
* `videos`:
* `video_num_frames`, `video_fps`, `video_creation_datetime` and `location_id` have been added as additional metadata to the `videos` field.
* `categories`:
* `Kingdom`, `Phylum`, `Class`, `Order`, `Family`, `Genus` and `Species` have been added when applicable as additional metadata to the `categories` field.
All the SA-FARI annotation files are compatible to use the visualization notebook and offline evaluator developed in [SAM 3 Github](https://github.com/facebookresearch/sam3/tree/main/scripts/eval/veval).
## Annotation Format
A format breakdown for `sa_fari_test.json` and `sa_fari_train.json`. The format is similar to the [YTVIS](https://youtube-vos.org/dataset/vis/) format.
In the annotation json, e.g. `sa_fari_test.json` there are 5 fields:
* info:
* A dict containing the dataset info
* E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-FARI Test'}
* videos
* A list of videos that are used in the current annotation json
* It contains {id, video_name, file_names, height, width, length}
* annotations
* A list of **positive** masklets and their related info
* It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase}
* video_id should match to the `videos - id` field above
* category_id should match to the `categories - id` field below
* segmentations is a list of [RLE](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py)
* categories
* A **globally** used noun phrase id map, which is true across all 3 domains.
* It contains {id, name}
* name is the noun phrase
* video_np_pairs
* A list of video-np pairs, including both **positive** and **negative** used in the current annotation json
* It contains {id, video_id, category_id, noun_phrase, num_masklets}
* video_id should match the `videos - id` above
* category_id should match the `categories - id` above
* when `num_masklets > 0` it is a positive video-np pair, and the presenting masklets can be found in the annotations field
* when `num_masklets = 0` it is a negative video-np pair, meaning no masklet presenting at all
```
data {
"info": info
"videos": [video]
"annotations": [annotation]
"categories": [category]
"video_np_pairs": [video_np_pair]
}
video {
"id": int
"video_name": str # e.g. sav_000000
"file_names": List[str]
"height": int
"width": width
"length": length
}
annotation {
"id": int
"segmentations": List[RLE]
"bboxes": List[List[int, int, int, int]]
"areas": List[int]
"iscrowd": int
"video_id": str
"height": int
"width": int
"category_id": int
"noun_phrase": str
}
category {
"id": int
"name": str
}
video_np_pair {
"id": int
"video_id": str
"category_id": int
"noun_phrase": str
"num_masklets" int
}
```