Datasets:
task_categories:
- reinforcement-learning
- robotics
tags:
- robotics
- libero
- manipulation
- semantic-action-chunking
- vision-language
- imitation-learning
size_categories:
- 100K<n<1M
GATE-VLAP Datasets
Grounded Action Trajectory Embeddings with Vision-Language Action Planning
This repository contains preprocessed datasets from the LIBERO benchmark suite in WebDataset TAR format, specifically designed for training vision-language-action models with semantic action segmentation.
Data Format: WebDataset TAR
We provide datasets in WebDataset TAR format for optimal performance:
✅ Fast loading - Efficient streaming during training
✅ Easy downloading - Single file per subtask
✅ HuggingFace optimized - Quick browsing and file listing
✅ Inspectable - Extract locally to view individual frames
Extracting TAR Files
# Download a subtask
wget https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar
# Extract all files
tar -xf pick_up_the_black_bowl.tar
# View structure
ls
# Output: demo_0/ demo_1/ demo_2/ ...
# View demo contents
ls demo_0/
# Output: demo_0_timestep_0000.png demo_0_timestep_0000.json
# demo_0_timestep_0001.png demo_0_timestep_0001.json
# ...
Loading Raw Data (After Extraction)
from pathlib import Path
import json
from PIL import Image
import numpy as np
def load_demo(demo_dir):
"""Load a single demonstration from extracted TAR."""
frames = []
demo_path = Path(demo_dir)
for json_file in sorted(demo_path.glob("*.json")):
# Load metadata
with open(json_file) as f:
data = json.load(f)
# Load image
png_file = json_file.with_suffix(".png")
data["image"] = np.array(Image.open(png_file))
frames.append(data)
return frames
# After extracting pick_up_the_black_bowl.tar
demo = load_demo("demo_0")
print(f"Demo length: {len(demo)} frames")
print(f"Action shape: {demo[0]['action']}")
Loading with WebDataset (Direct Streaming)
import webdataset as wds
from PIL import Image
import json
# Stream data directly from HuggingFace (no download needed!)
url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar"
dataset = wds.WebDataset(url).decode("rgb")
for sample in dataset:
# sample["png"] = PIL Image (128x128 RGB)
# sample["json"] = bytes (JSON metadata)
metadata = json.loads(sample["json"])
image = sample["png"]
print(f"Action: {metadata['action']}")
print(f"Image shape: {np.array(image).shape}")
break
Training with Multiple Subtasks
import webdataset as wds
import torch
from torch.utils.data import DataLoader
# Load multiple subtasks at once
base_url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/"
subtasks = ["pick_up_the_black_bowl", "close_the_drawer", "open_the_top_drawer"]
urls = [f"{base_url}{task}.tar" for task in subtasks]
dataset = (
wds.WebDataset(urls)
.decode("rgb")
.to_tuple("png", "json")
.map(preprocess_fn) # Your preprocessing function
)
dataloader = DataLoader(dataset, batch_size=32, num_workers=4)
for images, actions in dataloader:
# Train your model
pass
Datasets Included
LIBERO-10 (Long-Horizon Tasks)
- Task Type: 10 complex, long-horizon manipulation tasks
- Segmentation Method: Semantic Action Chunking using Gemini Vision API
- Demos: 1,354 demonstrations across 29 subtasks
- Frames: 103,650 total frames
- TAR Files: 29 files (one per subtask)
Example Tasks:
pick_up_the_black_bowl.tar→ Pick and place subtasksclose_the_drawer.tar→ Approach, grasp, close subtasksput_the_bowl_in_the_drawer.tar→ Multi-step pick, open, place, close sequence
LIBERO-Object (Object Manipulation)
- Task Type: 10 object-centric manipulation tasks
- Segmentation Method: Semantic Action Chunking using Gemini Vision API
- Demos: 875 demonstrations across 20 subtasks
- Frames: 66,334 total frames
- TAR Files: 20 files (one per subtask)
Example Tasks:
pick_up_the_alphabet_soup.tar→ Approach, grasp, liftplace_the_alphabet_soup_on_the_basket.tar→ Move, position, place, release
📁 Dataset Structure
gate-institute/GATE-VLAP-datasets/
├── libero_10/ # Long-horizon tasks (29 TAR files)
│ ├── close_the_drawer.tar
│ ├── pick_up_the_black_bowl.tar
│ ├── open_the_top_drawer.tar
│ └── ... (26 more)
│
├── libero_object/ # Object manipulation (20 TAR files)
│ ├── pick_up_the_alphabet_soup.tar
│ ├── place_the_alphabet_soup_on_the_basket.tar
│ └── ... (18 more)
│
└── metadata/ # Dataset statistics & segmentation
├── libero_10_complete_stats.json
├── libero_10_all_segments.json
├── libero_object_complete_stats.json
└── libero_object_all_segments.json
Inside Each TAR File
After extracting pick_up_the_black_bowl.tar:
pick_up_the_black_bowl/
├── demo_0/
│ ├── demo_0_timestep_0000.png # RGB observation (128×128)
│ ├── demo_0_timestep_0000.json # Action + metadata
│ ├── demo_0_timestep_0001.png
│ ├── demo_0_timestep_0001.json
│ └── ...
├── demo_1/
│ └── ...
└── ... (all demos for this subtask)
Data Format
JSON Metadata (per timestep)
Each .json file contains:
{
"action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action
"robot_state": [...], // Joint state
"demo_id": "demo_0",
"timestep": 42,
"subtask": "pick_up_the_black_bowl",
"parent_task": "LIBERO_10",
"is_stop_signal": false // Segment boundary
}
Action Space
- Dimensions: 7-DOF
[0:3]: End-effector position delta (x, y, z)[3:6]: End-effector orientation delta (roll, pitch, yaw)[6]: Gripper action (0.0 = close, 1.0 = open)
- Range: Normalized to [-1, 1]
- Control: Delta actions (relative to current pose)
Image Format
- Resolution: 128×128 pixels
- Channels: RGB (3 channels)
- Format: PNG (lossless compression)
- Camera: Front-facing agentview camera
Metadata Files Explained
1. libero_10_complete_stats.json
Purpose: Overview statistics for the entire LIBERO-10 dataset
Use Cases:
- Understand dataset composition
- Plan training splits
- Check demo/frame distribution across tasks
2. libero_10_all_segments.json
Purpose: Detailed segmentation metadata for each demonstration
Contains semantic action chunks with:
- Segment boundaries (start/end frames)
- Action descriptions
- Segment types (reach, grasp, move, place, etc.)
- Gemini Vision API segmentation method
Use Cases:
- Train with semantic action chunks
- Implement hierarchical policies
- Analyze action primitives
- Filter by segment type
3. libero_object_complete_stats.json
Purpose: Statistics for LIBERO-Object dataset
4. libero_object_all_segments.json
Purpose: Segmentation for LIBERO-Object demonstrations with semantic action chunking
Citation
If you use this dataset, please cite:
@article{gateVLAP@SAC2026,
title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev},
journal={arXiv preprint arXiv:XXXX.XXXXX},
conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
year={2025}
}
@inproceedings{liu2023libero,
title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
booktitle={NeurIPS Datasets and Benchmarks Track},
year={2023}
}
Related Resources
- Model Checkpoints: gate-institute/GATE-VLAP
- Original LIBERO: https://github.com/Lifelong-Robot-Learning/LIBERO
- Paper: Coming soon
Acknowledgments
- LIBERO Benchmark: Original dataset by Liu et al. (2023)
- Segmentation: Gemini Vision API for semantic action chunking
- Institution: GATE Institute, Sofia, Bulgaria
Contact
For questions or issues, please contact the GATE Institute.
Dataset Version: 1.0
Last Updated: December 2025
Maintainer: GATE Institute