GATE-VLAP-datasets / README.md
asenppopov's picture
Update README.md
b111519 verified
---
task_categories:
- reinforcement-learning
- robotics
tags:
- robotics
- libero
- manipulation
- semantic-action-chunking
- vision-language
- imitation-learning
size_categories:
- 100K<n<1M
---
# GATE-VLAP Datasets
**Grounded Action Trajectory Embeddings with Vision-Language Action Planning**
This repository contains preprocessed datasets from the LIBERO benchmark suite in WebDataset TAR format, specifically designed for training vision-language-action models with semantic action segmentation.
## Data Format: WebDataset TAR
We provide datasets in **WebDataset TAR format** for optimal performance:
**Fast loading** - Efficient streaming during training
**Easy downloading** - Single file per subtask
**HuggingFace optimized** - Quick browsing and file listing
**Inspectable** - Extract locally to view individual frames
### Extracting TAR Files
```bash
# Download a subtask
wget https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar
# Extract all files
tar -xf pick_up_the_black_bowl.tar
# View structure
ls
# Output: demo_0/ demo_1/ demo_2/ ...
# View demo contents
ls demo_0/
# Output: demo_0_timestep_0000.png demo_0_timestep_0000.json
# demo_0_timestep_0001.png demo_0_timestep_0001.json
# ...
```
### Loading Raw Data (After Extraction)
```python
from pathlib import Path
import json
from PIL import Image
import numpy as np
def load_demo(demo_dir):
"""Load a single demonstration from extracted TAR."""
frames = []
demo_path = Path(demo_dir)
for json_file in sorted(demo_path.glob("*.json")):
# Load metadata
with open(json_file) as f:
data = json.load(f)
# Load image
png_file = json_file.with_suffix(".png")
data["image"] = np.array(Image.open(png_file))
frames.append(data)
return frames
# After extracting pick_up_the_black_bowl.tar
demo = load_demo("demo_0")
print(f"Demo length: {len(demo)} frames")
print(f"Action shape: {demo[0]['action']}")
```
### Loading with WebDataset (Direct Streaming)
```python
import webdataset as wds
from PIL import Image
import json
# Stream data directly from HuggingFace (no download needed!)
url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar"
dataset = wds.WebDataset(url).decode("rgb")
for sample in dataset:
# sample["png"] = PIL Image (128x128 RGB)
# sample["json"] = bytes (JSON metadata)
metadata = json.loads(sample["json"])
image = sample["png"]
print(f"Action: {metadata['action']}")
print(f"Image shape: {np.array(image).shape}")
break
```
### Training with Multiple Subtasks
```python
import webdataset as wds
import torch
from torch.utils.data import DataLoader
# Load multiple subtasks at once
base_url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/"
subtasks = ["pick_up_the_black_bowl", "close_the_drawer", "open_the_top_drawer"]
urls = [f"{base_url}{task}.tar" for task in subtasks]
dataset = (
wds.WebDataset(urls)
.decode("rgb")
.to_tuple("png", "json")
.map(preprocess_fn) # Your preprocessing function
)
dataloader = DataLoader(dataset, batch_size=32, num_workers=4)
for images, actions in dataloader:
# Train your model
pass
```
## Datasets Included
### LIBERO-10 (Long-Horizon Tasks)
- **Task Type**: 10 complex, long-horizon manipulation tasks
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
- **Demos**: 1,354 demonstrations across 29 subtasks
- **Frames**: 103,650 total frames
- **TAR Files**: 29 files (one per subtask)
**Example Tasks**:
- `pick_up_the_black_bowl.tar` → Pick and place subtasks
- `close_the_drawer.tar` → Approach, grasp, close subtasks
- `put_the_bowl_in_the_drawer.tar` → Multi-step pick, open, place, close sequence
### LIBERO-Object (Object Manipulation)
- **Task Type**: 10 object-centric manipulation tasks
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
- **Demos**: 875 demonstrations across 20 subtasks
- **Frames**: 66,334 total frames
- **TAR Files**: 20 files (one per subtask)
**Example Tasks**:
- `pick_up_the_alphabet_soup.tar` → Approach, grasp, lift
- `place_the_alphabet_soup_on_the_basket.tar` → Move, position, place, release
## 📁 Dataset Structure
```
gate-institute/GATE-VLAP-datasets/
├── libero_10/ # Long-horizon tasks (29 TAR files)
│ ├── close_the_drawer.tar
│ ├── pick_up_the_black_bowl.tar
│ ├── open_the_top_drawer.tar
│ └── ... (26 more)
├── libero_object/ # Object manipulation (20 TAR files)
│ ├── pick_up_the_alphabet_soup.tar
│ ├── place_the_alphabet_soup_on_the_basket.tar
│ └── ... (18 more)
└── metadata/ # Dataset statistics & segmentation
├── libero_10_complete_stats.json
├── libero_10_all_segments.json
├── libero_object_complete_stats.json
└── libero_object_all_segments.json
```
### Inside Each TAR File
After extracting `pick_up_the_black_bowl.tar`:
```
pick_up_the_black_bowl/
├── demo_0/
│ ├── demo_0_timestep_0000.png # RGB observation (128×128)
│ ├── demo_0_timestep_0000.json # Action + metadata
│ ├── demo_0_timestep_0001.png
│ ├── demo_0_timestep_0001.json
│ └── ...
├── demo_1/
│ └── ...
└── ... (all demos for this subtask)
```
## Data Format
### JSON Metadata (per timestep)
Each `.json` file contains:
```json
{
"action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action
"robot_state": [...], // Joint state
"demo_id": "demo_0",
"timestep": 42,
"subtask": "pick_up_the_black_bowl",
"parent_task": "LIBERO_10",
"is_stop_signal": false // Segment boundary
}
```
### Action Space
- **Dimensions**: 7-DOF
- `[0:3]`: End-effector position delta (x, y, z)
- `[3:6]`: End-effector orientation delta (roll, pitch, yaw)
- `[6]`: Gripper action (0.0 = close, 1.0 = open)
- **Range**: Normalized to [-1, 1]
- **Control**: Delta actions (relative to current pose)
### Image Format
- **Resolution**: 128×128 pixels
- **Channels**: RGB (3 channels)
- **Format**: PNG (lossless compression)
- **Camera**: Front-facing agentview camera
## Metadata Files Explained
### 1. `libero_10_complete_stats.json`
**Purpose**: Overview statistics for the entire LIBERO-10 dataset
**Use Cases**:
- Understand dataset composition
- Plan training splits
- Check demo/frame distribution across tasks
### 2. `libero_10_all_segments.json`
**Purpose**: Detailed segmentation metadata for each demonstration
Contains semantic action chunks with:
- Segment boundaries (start/end frames)
- Action descriptions
- Segment types (reach, grasp, move, place, etc.)
- Gemini Vision API segmentation method
**Use Cases**:
- Train with semantic action chunks
- Implement hierarchical policies
- Analyze action primitives
- Filter by segment type
### 3. `libero_object_complete_stats.json`
**Purpose**: Statistics for LIBERO-Object dataset
### 4. `libero_object_all_segments.json`
**Purpose**: Segmentation for LIBERO-Object demonstrations with semantic action chunking
## Citation
If you use this dataset, please cite:
```bibtex
@article{gateVLAP@SAC2026,
title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev},
journal={arXiv preprint arXiv:XXXX.XXXXX},
conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
year={2025}
}
@inproceedings{liu2023libero,
title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
booktitle={NeurIPS Datasets and Benchmarks Track},
year={2023}
}
```
## Related Resources
- **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP)
- **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO)
- **Paper**: Coming soon
## Acknowledgments
- **LIBERO Benchmark**: Original dataset by Liu et al. (2023)
- **Segmentation**: Gemini Vision API for semantic action chunking
- **Institution**: [GATE Institute](https://www.gate-ai.eu/en/home/), Sofia, Bulgaria
## Contact
For questions or issues, please contact the [GATE Institute](https://www.gate-ai.eu/en/home/).
---
**Dataset Version**: 1.0
**Last Updated**: December 2025
**Maintainer**: [GATE Institute](https://www.gate-ai.eu/en/home/)