Datasets:
Formats:
webdataset
Size:
100K - 1M
| task_categories: | |
| - reinforcement-learning | |
| - robotics | |
| tags: | |
| - robotics | |
| - libero | |
| - manipulation | |
| - semantic-action-chunking | |
| - vision-language | |
| - imitation-learning | |
| size_categories: | |
| - 100K<n<1M | |
| # GATE-VLAP Datasets | |
| **Grounded Action Trajectory Embeddings with Vision-Language Action Planning** | |
| This repository contains preprocessed datasets from the LIBERO benchmark suite in WebDataset TAR format, specifically designed for training vision-language-action models with semantic action segmentation. | |
| ## Data Format: WebDataset TAR | |
| We provide datasets in **WebDataset TAR format** for optimal performance: | |
| ✅ **Fast loading** - Efficient streaming during training | |
| ✅ **Easy downloading** - Single file per subtask | |
| ✅ **HuggingFace optimized** - Quick browsing and file listing | |
| ✅ **Inspectable** - Extract locally to view individual frames | |
| ### Extracting TAR Files | |
| ```bash | |
| # Download a subtask | |
| wget https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar | |
| # Extract all files | |
| tar -xf pick_up_the_black_bowl.tar | |
| # View structure | |
| ls | |
| # Output: demo_0/ demo_1/ demo_2/ ... | |
| # View demo contents | |
| ls demo_0/ | |
| # Output: demo_0_timestep_0000.png demo_0_timestep_0000.json | |
| # demo_0_timestep_0001.png demo_0_timestep_0001.json | |
| # ... | |
| ``` | |
| ### Loading Raw Data (After Extraction) | |
| ```python | |
| from pathlib import Path | |
| import json | |
| from PIL import Image | |
| import numpy as np | |
| def load_demo(demo_dir): | |
| """Load a single demonstration from extracted TAR.""" | |
| frames = [] | |
| demo_path = Path(demo_dir) | |
| for json_file in sorted(demo_path.glob("*.json")): | |
| # Load metadata | |
| with open(json_file) as f: | |
| data = json.load(f) | |
| # Load image | |
| png_file = json_file.with_suffix(".png") | |
| data["image"] = np.array(Image.open(png_file)) | |
| frames.append(data) | |
| return frames | |
| # After extracting pick_up_the_black_bowl.tar | |
| demo = load_demo("demo_0") | |
| print(f"Demo length: {len(demo)} frames") | |
| print(f"Action shape: {demo[0]['action']}") | |
| ``` | |
| ### Loading with WebDataset (Direct Streaming) | |
| ```python | |
| import webdataset as wds | |
| from PIL import Image | |
| import json | |
| # Stream data directly from HuggingFace (no download needed!) | |
| url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar" | |
| dataset = wds.WebDataset(url).decode("rgb") | |
| for sample in dataset: | |
| # sample["png"] = PIL Image (128x128 RGB) | |
| # sample["json"] = bytes (JSON metadata) | |
| metadata = json.loads(sample["json"]) | |
| image = sample["png"] | |
| print(f"Action: {metadata['action']}") | |
| print(f"Image shape: {np.array(image).shape}") | |
| break | |
| ``` | |
| ### Training with Multiple Subtasks | |
| ```python | |
| import webdataset as wds | |
| import torch | |
| from torch.utils.data import DataLoader | |
| # Load multiple subtasks at once | |
| base_url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/" | |
| subtasks = ["pick_up_the_black_bowl", "close_the_drawer", "open_the_top_drawer"] | |
| urls = [f"{base_url}{task}.tar" for task in subtasks] | |
| dataset = ( | |
| wds.WebDataset(urls) | |
| .decode("rgb") | |
| .to_tuple("png", "json") | |
| .map(preprocess_fn) # Your preprocessing function | |
| ) | |
| dataloader = DataLoader(dataset, batch_size=32, num_workers=4) | |
| for images, actions in dataloader: | |
| # Train your model | |
| pass | |
| ``` | |
| ## Datasets Included | |
| ### LIBERO-10 (Long-Horizon Tasks) | |
| - **Task Type**: 10 complex, long-horizon manipulation tasks | |
| - **Segmentation Method**: Semantic Action Chunking using Gemini Vision API | |
| - **Demos**: 1,354 demonstrations across 29 subtasks | |
| - **Frames**: 103,650 total frames | |
| - **TAR Files**: 29 files (one per subtask) | |
| **Example Tasks**: | |
| - `pick_up_the_black_bowl.tar` → Pick and place subtasks | |
| - `close_the_drawer.tar` → Approach, grasp, close subtasks | |
| - `put_the_bowl_in_the_drawer.tar` → Multi-step pick, open, place, close sequence | |
| ### LIBERO-Object (Object Manipulation) | |
| - **Task Type**: 10 object-centric manipulation tasks | |
| - **Segmentation Method**: Semantic Action Chunking using Gemini Vision API | |
| - **Demos**: 875 demonstrations across 20 subtasks | |
| - **Frames**: 66,334 total frames | |
| - **TAR Files**: 20 files (one per subtask) | |
| **Example Tasks**: | |
| - `pick_up_the_alphabet_soup.tar` → Approach, grasp, lift | |
| - `place_the_alphabet_soup_on_the_basket.tar` → Move, position, place, release | |
| ## 📁 Dataset Structure | |
| ``` | |
| gate-institute/GATE-VLAP-datasets/ | |
| ├── libero_10/ # Long-horizon tasks (29 TAR files) | |
| │ ├── close_the_drawer.tar | |
| │ ├── pick_up_the_black_bowl.tar | |
| │ ├── open_the_top_drawer.tar | |
| │ └── ... (26 more) | |
| │ | |
| ├── libero_object/ # Object manipulation (20 TAR files) | |
| │ ├── pick_up_the_alphabet_soup.tar | |
| │ ├── place_the_alphabet_soup_on_the_basket.tar | |
| │ └── ... (18 more) | |
| │ | |
| └── metadata/ # Dataset statistics & segmentation | |
| ├── libero_10_complete_stats.json | |
| ├── libero_10_all_segments.json | |
| ├── libero_object_complete_stats.json | |
| └── libero_object_all_segments.json | |
| ``` | |
| ### Inside Each TAR File | |
| After extracting `pick_up_the_black_bowl.tar`: | |
| ``` | |
| pick_up_the_black_bowl/ | |
| ├── demo_0/ | |
| │ ├── demo_0_timestep_0000.png # RGB observation (128×128) | |
| │ ├── demo_0_timestep_0000.json # Action + metadata | |
| │ ├── demo_0_timestep_0001.png | |
| │ ├── demo_0_timestep_0001.json | |
| │ └── ... | |
| ├── demo_1/ | |
| │ └── ... | |
| └── ... (all demos for this subtask) | |
| ``` | |
| ## Data Format | |
| ### JSON Metadata (per timestep) | |
| Each `.json` file contains: | |
| ```json | |
| { | |
| "action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action | |
| "robot_state": [...], // Joint state | |
| "demo_id": "demo_0", | |
| "timestep": 42, | |
| "subtask": "pick_up_the_black_bowl", | |
| "parent_task": "LIBERO_10", | |
| "is_stop_signal": false // Segment boundary | |
| } | |
| ``` | |
| ### Action Space | |
| - **Dimensions**: 7-DOF | |
| - `[0:3]`: End-effector position delta (x, y, z) | |
| - `[3:6]`: End-effector orientation delta (roll, pitch, yaw) | |
| - `[6]`: Gripper action (0.0 = close, 1.0 = open) | |
| - **Range**: Normalized to [-1, 1] | |
| - **Control**: Delta actions (relative to current pose) | |
| ### Image Format | |
| - **Resolution**: 128×128 pixels | |
| - **Channels**: RGB (3 channels) | |
| - **Format**: PNG (lossless compression) | |
| - **Camera**: Front-facing agentview camera | |
| ## Metadata Files Explained | |
| ### 1. `libero_10_complete_stats.json` | |
| **Purpose**: Overview statistics for the entire LIBERO-10 dataset | |
| **Use Cases**: | |
| - Understand dataset composition | |
| - Plan training splits | |
| - Check demo/frame distribution across tasks | |
| ### 2. `libero_10_all_segments.json` | |
| **Purpose**: Detailed segmentation metadata for each demonstration | |
| Contains semantic action chunks with: | |
| - Segment boundaries (start/end frames) | |
| - Action descriptions | |
| - Segment types (reach, grasp, move, place, etc.) | |
| - Gemini Vision API segmentation method | |
| **Use Cases**: | |
| - Train with semantic action chunks | |
| - Implement hierarchical policies | |
| - Analyze action primitives | |
| - Filter by segment type | |
| ### 3. `libero_object_complete_stats.json` | |
| **Purpose**: Statistics for LIBERO-Object dataset | |
| ### 4. `libero_object_all_segments.json` | |
| **Purpose**: Segmentation for LIBERO-Object demonstrations with semantic action chunking | |
| ## Citation | |
| If you use this dataset, please cite: | |
| ```bibtex | |
| @article{gateVLAP@SAC2026, | |
| title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents}, | |
| author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev}, | |
| journal={arXiv preprint arXiv:XXXX.XXXXX}, | |
| conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)}, | |
| year={2025} | |
| } | |
| @inproceedings{liu2023libero, | |
| title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning}, | |
| author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter}, | |
| booktitle={NeurIPS Datasets and Benchmarks Track}, | |
| year={2023} | |
| } | |
| ``` | |
| ## Related Resources | |
| - **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP) | |
| - **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO) | |
| - **Paper**: Coming soon | |
| ## Acknowledgments | |
| - **LIBERO Benchmark**: Original dataset by Liu et al. (2023) | |
| - **Segmentation**: Gemini Vision API for semantic action chunking | |
| - **Institution**: [GATE Institute](https://www.gate-ai.eu/en/home/), Sofia, Bulgaria | |
| ## Contact | |
| For questions or issues, please contact the [GATE Institute](https://www.gate-ai.eu/en/home/). | |
| --- | |
| **Dataset Version**: 1.0 | |
| **Last Updated**: December 2025 | |
| **Maintainer**: [GATE Institute](https://www.gate-ai.eu/en/home/) |