code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Optional[Any]=3_2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : List[Any]=1_0 , UpperCamelCase__ : int=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase__ : str=[1, 1, 2, 1] , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]="relu" , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Tuple=None , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = parent __lowerCAmelCase: List[Any] = batch_size __lowerCAmelCase: int = image_size __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Any = embeddings_size __lowerCAmelCase: List[Any] = hidden_sizes __lowerCAmelCase: int = depths __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: str = use_labels __lowerCAmelCase: int = hidden_act __lowerCAmelCase: str = num_labels __lowerCAmelCase: Optional[int] = scope __lowerCAmelCase: Union[str, Any] = len(UpperCAmelCase__) def lowercase_ ( self : Union[str, Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.num_labels) __lowerCAmelCase: Any = self.get_config() return config, pixel_values, labels def lowercase_ ( self : str)-> Any: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: str = TFRegNetModel(config=UpperCAmelCase__) __lowerCAmelCase: int = model(UpperCAmelCase__ , training=UpperCAmelCase__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase_ ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict)-> Any: '''simple docstring''' __lowerCAmelCase: str = self.num_labels __lowerCAmelCase: Any = TFRegNetForImageClassification(UpperCAmelCase__) __lowerCAmelCase: List[Any] = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Dict = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[int] = config_and_inputs __lowerCAmelCase: int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = False def lowercase_ ( self : List[str])-> Tuple: '''simple docstring''' __lowerCAmelCase: int = TFRegNetModelTester(self) __lowerCAmelCase: Dict = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__) def lowercase_ ( self : List[str])-> Tuple: '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds") def lowercase_ ( self : Tuple)-> int: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def lowercase_ ( self : str)-> str: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings") def lowercase_ ( self : Dict)-> int: '''simple docstring''' pass def lowercase_ ( self : str)-> List[str]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: str = model_class(UpperCAmelCase__) __lowerCAmelCase: List[Any] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: int = [*signature.parameters.keys()] __lowerCAmelCase: Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def lowercase_ ( self : int)-> Tuple: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def lowercase_ ( self : Optional[Any])-> Dict: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]): __lowerCAmelCase: str = model_class(UpperCAmelCase__) __lowerCAmelCase: Tuple = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) __lowerCAmelCase: int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase: Any = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCAmelCase , __lowerCAmelCase: int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase: Union[str, Any] = layer_type __lowerCAmelCase: int = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase: int = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def lowercase_ ( self : Dict)-> int: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict={}): __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase__ , return_dict=UpperCAmelCase__ , **UpperCAmelCase__) __lowerCAmelCase: int = model(UpperCAmelCase__ , return_dict=UpperCAmelCase__ , **UpperCAmelCase__).to_tuple() def recursive_check(UpperCamelCase__ : int , UpperCamelCase__ : List[str]): if isinstance(UpperCAmelCase__ , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase__ , UpperCAmelCase__): recursive_check(UpperCAmelCase__ , UpperCAmelCase__) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCAmelCase__ , UpperCAmelCase__)) , msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ) , ) recursive_check(UpperCAmelCase__ , UpperCAmelCase__) for model_class in self.all_model_classes: __lowerCAmelCase: Optional[int] = model_class(UpperCAmelCase__) __lowerCAmelCase: str = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) __lowerCAmelCase: Optional[Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) __lowerCAmelCase: Optional[int] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) __lowerCAmelCase: int = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) __lowerCAmelCase: Dict = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) __lowerCAmelCase: Optional[int] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , {"output_hidden_states": True}) __lowerCAmelCase: str = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) __lowerCAmelCase: Optional[Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , {"output_hidden_states": True}) def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def lowercase_ ( self : List[Any])-> List[str]: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Dict = TFRegNetModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def a__ ( ) -> Union[str, Any]: __lowerCAmelCase: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def lowercase_ ( self : Union[str, Any])-> int: '''simple docstring''' __lowerCAmelCase: int = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) __lowerCAmelCase: Dict = self.default_image_processor __lowerCAmelCase: List[Any] = prepare_img() __lowerCAmelCase: str = image_processor(images=UpperCAmelCase__ , return_tensors="tf") # forward pass __lowerCAmelCase: List[Any] = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits __lowerCAmelCase: str = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) __lowerCAmelCase: List[Any] = tf.constant([-0.4180, -1.5051, -3.4836]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)
346
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
0
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> None: _a : Any = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _a : Any = Vector() def __UpperCamelCase ( self ) -> None: _a : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowerCamelCase_ ) , '(0,0,0,0,0,1)' ) def __UpperCamelCase ( self ) -> None: _a : int = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowerCamelCase_ ) , 4 ) def __UpperCamelCase ( self ) -> None: _a : Optional[Any] = Vector([1, 2] ) _a : Any = Vector([1, 2, 3, 4, 5] ) _a : Dict = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __UpperCamelCase ( self ) -> None: _a : Union[str, Any] = Vector([1, 2, 3] ) _a : str = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __UpperCamelCase ( self ) -> None: _a : Optional[Any] = Vector([1, 2, 3] ) _a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __UpperCamelCase ( self ) -> None: _a : Dict = Vector([1, 2, 3] ) _a : Any = Vector([2, -1, 4] ) # for test of dot product _a : Optional[int] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def __UpperCamelCase ( self ) -> None: self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 ) def __UpperCamelCase ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def __UpperCamelCase ( self ) -> None: _a : List[Any] = Vector([1, 2, 3] ) _a : List[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowerCamelCase_ , lowerCamelCase_ ) ) , '(3,4,7)' ) def __UpperCamelCase ( self ) -> None: _a : Union[str, Any] = Vector([1, 0, 0, 0, 0, 0] ) _a : Union[str, Any] = x.copy() self.assertEqual(str(lowerCamelCase_ ) , str(lowerCamelCase_ ) ) def __UpperCamelCase ( self ) -> None: _a : int = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowerCamelCase_ ) , '(0,1,0)' ) def __UpperCamelCase ( self ) -> None: _a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(lowerCamelCase_ ) ) def __UpperCamelCase ( self ) -> None: _a : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a : Any = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCamelCase ( self ) -> None: _a : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a : Union[str, Any] = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCamelCase ( self ) -> None: _a : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __UpperCamelCase ( self ) -> None: _a : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _a : Optional[int] = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def __UpperCamelCase ( self ) -> None: _a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(lowerCamelCase_ ) ) def __UpperCamelCase ( self ) -> None: _a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __UpperCamelCase ( self ) -> None: _a : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def __UpperCamelCase ( self ) -> None: _a : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def __UpperCamelCase ( self ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
424
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Union[str, Any] = """convbert""" def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=2 , lowerCamelCase_=9 , lowerCamelCase_=1 , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[Any]: super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) _a : Optional[Any] = vocab_size _a : Optional[int] = hidden_size _a : List[Any] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : List[str] = intermediate_size _a : Tuple = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Any = max_position_embeddings _a : Any = type_vocab_size _a : List[str] = initializer_range _a : str = layer_norm_eps _a : Union[str, Any] = embedding_size _a : int = head_ratio _a : Union[str, Any] = conv_kernel_size _a : List[Any] = num_groups _a : Tuple = classifier_dropout class a ( snake_case__ ): '''simple docstring''' @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
424
1
def UpperCamelCase_ ( __a , __a , __a , __a ) -> List[Any]: if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def UpperCamelCase_ ( __a , __a ) -> int: print("moving disk from" , __UpperCamelCase , "to" , __UpperCamelCase ) def UpperCamelCase_ ( ) -> Union[str, Any]: a__ : Optional[Any] = int(input("Height of hanoi: " ).strip() ) move_tower(__UpperCamelCase , "A" , "B" , "C" ) if __name__ == "__main__": main()
37
'''simple docstring''' from __future__ import annotations import time import numpy as np snake_case : List[str] = [8, 5, 9, 7] snake_case : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] snake_case : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): """simple docstring""" __lowercase = claim_vector __lowercase = allocated_resources_table __lowercase = maximum_claim_table def __magic_name__ ( self ): """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ): """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ): """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ): """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def __magic_name__ ( self , **__UpperCAmelCase ): """simple docstring""" __lowercase = self.__need() __lowercase = self.__allocated_resources_table __lowercase = self.__available_resources() __lowercase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 5_0 + """\n""" ) while need_list: __lowercase = False for each_need in need_list: __lowercase = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: __lowercase = False break if execution: __lowercase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowercase = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack __lowercase = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def __magic_name__ ( self ): """simple docstring""" print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
566
0
from math import sqrt def lowerCamelCase_ ( lowerCAmelCase__ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( lowerCAmelCase__ : int = 10001 ) -> int: '''simple docstring''' A = 0 A = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCAmelCase__ ): count += 1 while count != nth: number += 2 if is_prime(lowerCAmelCase__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
224
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase__ : int = 4 ) -> list[list[int]]: '''simple docstring''' A = abs(lowerCAmelCase__ ) or 4 return [[1 + x + y * row_size for x in range(lowerCAmelCase__ )] for y in range(lowerCAmelCase__ )] def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(lowerCAmelCase__ ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(lowerCAmelCase__ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(lowerCAmelCase__ ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' A = [list(lowerCAmelCase__ ) for x in zip(*lowerCAmelCase__ )] return matrix def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' A = matrix[::-1] return matrix def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> list[list[int]]: '''simple docstring''' A = [x[::-1] for x in matrix] return matrix def lowerCamelCase_ ( lowerCAmelCase__ : list[list[int]] ) -> None: '''simple docstring''' for i in matrix: print(*lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :Dict =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __snake_case :Optional[Any] =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __snake_case :Tuple =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
224
1
'''simple docstring''' from manim import * class snake_case__ ( snake_case_): def A ( self : Any ) -> Any: UpperCAmelCase_ : List[str] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) UpperCAmelCase_ : Optional[Any] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) UpperCAmelCase_ : Optional[Any] = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) UpperCAmelCase_ : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase_ : Optional[int] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = [mem.copy() for i in range(1 )] UpperCAmelCase_ : List[str] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text('''GPU''' , font_size=24 ) UpperCAmelCase_ : Tuple = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.align_to(UpperCamelCase__ , UpperCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase__ ) UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Any = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) UpperCAmelCase_ : Dict = Text('''Model''' , font_size=24 ) UpperCAmelCase_ : Optional[Any] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) , ) UpperCAmelCase_ : Optional[Any] = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM." , font_size=24 , ) UpperCAmelCase_ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=2.5 ) , Write(UpperCamelCase__ ) , Write(UpperCamelCase__ ) ) self.add(UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Union[str, Any] = [] for i, rect in enumerate(UpperCamelCase__ ): UpperCAmelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase__ ) cpu_target.generate_target() UpperCAmelCase_ : Optional[int] = 0.46 / 4 UpperCAmelCase_ : Any = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase__ , buff=0.0 ) cpu_targs.append(UpperCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase__ ) ) second_animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5 ) ) self.play(*UpperCamelCase__ ) self.play(*UpperCamelCase__ ) self.wait()
541
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCAmelCase ( lowercase : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case ,snake_case : List[str] = image.size snake_case ,snake_case : int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case : Any = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) snake_case : Dict = np.array(lowercase ).astype(np.floataa ) / 255.0 snake_case : List[str] = image[None].transpose(0 , 3 , 1 , 2 ) snake_case : List[Any] = torch.from_numpy(lowercase ) return 2.0 * image - 1.0 class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(vqvae=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 100 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(UpperCamelCase__ , PIL.Image.Image ): snake_case : Tuple = 1 elif isinstance(UpperCamelCase__ , torch.Tensor ): snake_case : str = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCamelCase__ )}' ) if isinstance(UpperCamelCase__ , PIL.Image.Image ): snake_case : Optional[int] = preprocess(UpperCamelCase__ ) snake_case ,snake_case : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case : Any = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case : List[str] = next(self.unet.parameters() ).dtype snake_case : int = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) snake_case : List[Any] = image.to(device=self.device , dtype=UpperCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) snake_case : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : Union[str, Any] = {} if accepts_eta: snake_case : List[str] = eta for t in self.progress_bar(UpperCamelCase__ ): # concat latents and low resolution image in the channel dimension. snake_case : int = torch.cat([latents, image] , dim=1 ) snake_case : List[Any] = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual snake_case : int = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case : List[Any] = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # decode the image latents with the VQVAE snake_case : Optional[int] = self.vqvae.decode(UpperCamelCase__ ).sample snake_case : Tuple = torch.clamp(UpperCamelCase__ , -1.0 , 1.0 ) snake_case : Union[str, Any] = image / 2 + 0.5 snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Union[str, Any] = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
178
0
"""simple docstring""" from __future__ import annotations def lowercase (_snake_case ,_snake_case ) -> bool: '''simple docstring''' if len(_snake_case ) == 0: return False __UpperCamelCase = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] ,_snake_case ) else: return binary_search(a_list[midpoint + 1 :] ,_snake_case ) if __name__ == "__main__": _A = input("Enter numbers separated by comma:\n").strip() _A = [int(item.strip()) for item in user_input.split(",")] _A = int(input("Enter the number to be found in the list:\n").strip()) _A = "" if binary_search(sequence, target) else "not " print(f"""{target} was {not_str}found in {sequence}""")
228
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] , A_ : str )-> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __UpperCamelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(A_ ) def A ( self : Tuple )-> int: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict )-> int: __UpperCamelCase = "sgugger/tiny-distilbert-classification" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[str] )-> Dict: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def A ( self : Optional[Any] )-> Union[str, Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict )-> Tuple: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` __UpperCamelCase = None __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Union[str, Any] )-> str: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def A ( self : List[Any] )-> List[Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Tuple )-> Union[str, Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Any )-> List[str]: __UpperCamelCase = "sshleifer/tinier_bart" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Tuple )-> Optional[int]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : List[str] )-> Dict: __UpperCamelCase = "sshleifer/tinier_bart" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : int )-> Optional[Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(A_ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(A_ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(A_ , "train_time.csv" ) , env_info_csv_file=os.path.join(A_ , "env.csv" ) , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "env.csv" ) ).exists() ) def A ( self : List[Any] )-> str: __UpperCamelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(A_ : List[str] ): self.assertTrue(hasattr(A_ , "sequential" ) ) self.assertTrue(hasattr(A_ , "cumulative" ) ) self.assertTrue(hasattr(A_ , "current" ) ) self.assertTrue(hasattr(A_ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , "log.txt" ) , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ , "log.txt" ) ).exists() )
228
1
'''simple docstring''' from collections import defaultdict def snake_case ( a_ : Optional[int] , a_ : List[Any] ) -> bool: """simple docstring""" UpperCamelCase_ : Any = first_str.lower().strip() UpperCamelCase_ : List[Any] = second_str.lower().strip() # Remove whitespace UpperCamelCase_ : Union[str, Any] = first_str.replace(""" """ , """""" ) UpperCamelCase_ : int = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__UpperCamelCase ) != len(__UpperCamelCase ): return False # Default values for count should be 0 UpperCamelCase_ : int = defaultdict(__UpperCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__UpperCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase =input("Enter the first string ").strip() UpperCamelCase =input("Enter the second string ").strip() UpperCamelCase =check_anagrams(input_a, input_b) print(f"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
208
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = ['''model.decoder.embed_positions.weights'''] def _snake_case ( A ) -> Optional[Any]: if "emb" in name: lowerCAmelCase__ = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: lowerCAmelCase__ = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: lowerCAmelCase__ = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: lowerCAmelCase__ = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: lowerCAmelCase__ = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: lowerCAmelCase__ = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: lowerCAmelCase__ = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: lowerCAmelCase__ = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: lowerCAmelCase__ = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: lowerCAmelCase__ = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: lowerCAmelCase__ = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def _snake_case ( A , A ) -> Tuple[Dict, Dict]: lowerCAmelCase__ = list(state_dict.keys() ) lowerCAmelCase__ = {} for key in keys: lowerCAmelCase__ = state_dict.pop(lowercase_ ) lowerCAmelCase__ = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj lowerCAmelCase__ = val[:hidden_size, :] lowerCAmelCase__ = val[hidden_size : 2 * hidden_size, :] lowerCAmelCase__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCAmelCase__ = val else: lowerCAmelCase__ = val return state_dict, enc_dec_proj_state_dict def _snake_case ( A ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values lowerCAmelCase__ = 1024 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 elif checkpoint == "medium": lowerCAmelCase__ = 1536 lowerCAmelCase__ = 48 lowerCAmelCase__ = 24 elif checkpoint == "large": lowerCAmelCase__ = 2048 lowerCAmelCase__ = 48 lowerCAmelCase__ = 32 else: raise ValueError(F"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" ) lowerCAmelCase__ = MusicgenDecoderConfig( hidden_size=lowercase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , ) return config @torch.no_grad() def _snake_case ( A , A=None , A=None , A="cpu" ) -> List[str]: lowerCAmelCase__ = MusicGen.get_pretrained(lowercase_ , device=lowercase_ ) lowerCAmelCase__ = decoder_config_from_checkpoint(lowercase_ ) lowerCAmelCase__ = fairseq_model.lm.state_dict() lowerCAmelCase__ = rename_state_dict( lowercase_ , hidden_size=decoder_config.hidden_size ) lowerCAmelCase__ = TaEncoderModel.from_pretrained('''t5-base''' ) lowerCAmelCase__ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) lowerCAmelCase__ = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCAmelCase__ = decoder.load_state_dict(lowercase_ , strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(lowercase_ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model lowerCAmelCase__ = MusicgenForConditionalGeneration(text_encoder=lowercase_ , audio_encoder=lowercase_ , decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass lowerCAmelCase__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowerCAmelCase__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowerCAmelCase__ = model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor lowerCAmelCase__ = AutoTokenizer.from_pretrained('''t5-base''' ) lowerCAmelCase__ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) lowerCAmelCase__ = MusicgenProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) # set the appropriate bos/pad token ids lowerCAmelCase__ = 2048 lowerCAmelCase__ = 2048 # set other default generation config params lowerCAmelCase__ = int(30 * audio_encoder.config.frame_rate ) lowerCAmelCase__ = True lowerCAmelCase__ = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) __UpperCAmelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
707
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = '''RegNetConfig''' # Base docstring __UpperCAmelCase = '''facebook/regnet-y-040''' __UpperCAmelCase = [1, 1_088, 7, 7] # Image classification docstring __UpperCAmelCase = '''facebook/regnet-y-040''' __UpperCAmelCase = '''tabby, tabby cat''' __UpperCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 3 , lowerCamelCase_ = 1 , lowerCamelCase_ = 1 , lowerCamelCase_ = "relu" , ) -> int: super().__init__() lowerCAmelCase__ = nn.Convad( lowerCamelCase_ , lowerCamelCase_ , kernel_size=lowerCamelCase_ , stride=lowerCamelCase_ , padding=kernel_size // 2 , groups=lowerCamelCase_ , bias=lowerCamelCase_ , ) lowerCAmelCase__ = nn.BatchNormad(lowerCamelCase_ ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else nn.Identity() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = self.convolution(lowerCamelCase_ ) lowerCAmelCase__ = self.normalization(lowerCamelCase_ ) lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCAmelCase__ = config.num_channels def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCAmelCase__ = self.embedder(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 ) -> Any: super().__init__() lowerCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , stride=lowerCamelCase_ , bias=lowerCamelCase_ ) lowerCAmelCase__ = nn.BatchNormad(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tensor: lowerCAmelCase__ = self.convolution(lowerCamelCase_ ) lowerCAmelCase__ = self.normalization(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: super().__init__() lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase__ = nn.Sequential( nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: # b c h w -> b c 1 1 lowerCAmelCase__ = self.pooler(lowerCamelCase_ ) lowerCAmelCase__ = self.attention(lowerCamelCase_ ) lowerCAmelCase__ = hidden_state * attention return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ) -> Optional[int]: super().__init__() lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = hidden_state lowerCAmelCase__ = self.layer(lowerCamelCase_ ) lowerCAmelCase__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ) -> Optional[int]: super().__init__() lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = hidden_state lowerCAmelCase__ = self.layer(lowerCamelCase_ ) lowerCAmelCase__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , ) -> Dict: super().__init__() lowerCAmelCase__ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowerCAmelCase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , ) , *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for _ in range(depth - 1 )] , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = self.layers(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[int]: super().__init__() lowerCAmelCase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = True ) -> BaseModelOutputWithNoAttention: lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(lowerCamelCase_ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) class a__ ( a__ ): '''simple docstring''' lowercase__ : List[Any] = RegNetConfig lowercase__ : Tuple = "regnet" lowercase__ : List[str] = "pixel_values" lowercase__ : Tuple = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: if isinstance(lowerCamelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> int: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = value __UpperCAmelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __UpperCAmelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[int]: super().__init__(lowerCamelCase_ ) lowerCAmelCase__ = config lowerCAmelCase__ = RegNetEmbeddings(lowerCamelCase_ ) lowerCAmelCase__ = RegNetEncoder(lowerCamelCase_ ) lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(lowerCamelCase_ ) lowerCAmelCase__ = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(lowerCamelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__(lowerCamelCase_ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = RegNetModel(lowerCamelCase_ ) # classification head lowerCAmelCase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier(lowerCamelCase_ ) lowerCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ = '''single_label_classification''' else: lowerCAmelCase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ = MSELoss() if self.num_labels == 1: lowerCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ = CrossEntropyLoss() lowerCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ = BCEWithLogitsLoss() lowerCAmelCase__ = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
98
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __A : Optional[int] = TypeVar('''T''') class _UpperCAmelCase ( Generic[T] ): def __init__( self : Optional[Any] , A : T ) -> int: lowercase_ : Tuple = data lowercase_ : Node[T] | None = None def __str__( self : Any ) -> str: return F'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): def __init__( self : int ) -> None: lowercase_ : Node[T] | None = None def __iter__( self : Dict ) -> Iterator[T]: lowercase_ : Any = self.top while node: yield node.data lowercase_ : Tuple = node.next def __str__( self : Optional[int] ) -> str: return "->".join([str(A ) for item in self] ) def __len__( self : List[str] ) -> int: return len(tuple(iter(self ) ) ) def A ( self : Dict ) -> bool: return self.top is None def A ( self : Optional[Any] , A : T ) -> None: lowercase_ : Optional[Any] = Node(A ) if not self.is_empty(): lowercase_ : List[Any] = self.top lowercase_ : List[str] = node def A ( self : Union[str, Any] ) -> T: if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , A ) lowercase_ : Union[str, Any] = self.top lowercase_ : Dict = self.top.next return pop_node.data def A ( self : Optional[int] ) -> T: if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def A ( self : Tuple ) -> None: lowercase_ : Optional[Any] = None if __name__ == "__main__": from doctest import testmod testmod()
231
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowercase ( __snake_case : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowercase ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase_ : Union[str, Any] = [1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case , __snake_case , num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case , __snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def lowercase ( __snake_case : Union[str, Any] ): lowercase_ : Dict = [1, 2] lowercase_ : Tuple = {'''a''': 1, '''b''': 2} lowercase_ : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowercase_ : Dict = {'''a''': {'''1''': 1}, '''b''': 2} lowercase_ : int = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase_ : Any = [2, 3] lowercase_ : Optional[int] = {'''a''': 2, '''b''': 3} lowercase_ : Any = {'''a''': [2, 3], '''b''': [4, 5]} lowercase_ : str = {'''a''': {'''1''': 2}, '''b''': 3} lowercase_ : Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa
231
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _snake_case : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _snake_case : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : Dict = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
from math import pi, sqrt, tan def UpperCamelCase_( lowerCamelCase_ ) -> float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase_( lowerCamelCase_ ) -> float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def UpperCamelCase_( lowerCamelCase_ ) -> float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _lowercase : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(lowerCamelCase_ , 2 ) * torus_radius * tube_radius def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def UpperCamelCase_( lowerCamelCase_ ) -> float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _lowercase : int = (sidea + sidea + sidea) / 2 _lowercase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def UpperCamelCase_( lowerCamelCase_ ) -> float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
89
from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
393
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever SCREAMING_SNAKE_CASE_: List[str] =logging.getLogger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Dict=None ): super().__init__( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) UpperCAmelCase_ = None def _lowercase (self : Optional[Any] , __a : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually UpperCAmelCase_ = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase_ = str(distributed_port + 1 ) UpperCAmelCase_ = dist.new_group(ranks=__a , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase (self : Any ): return dist.get_rank(group=self.process_group ) == 0 def _lowercase (self : str , __a : Dict , __a : List[str] , __a : Any=torch.floataa ): UpperCAmelCase_ = torch.empty(__a , dtype=__a ) dist.scatter(__a , src=0 , scatter_list=__a , group=self.process_group ) return target_tensor def _lowercase (self : Tuple ): UpperCAmelCase_ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase_ = next((addr for addr in addrs if addr.startswith("e" )) , __a ) return ifname def _lowercase (self : int , __a : np.ndarray , __a : int ): # single GPU training if not dist.is_initialized(): UpperCAmelCase_ , UpperCAmelCase_ = self._main_retrieve(__a , __a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__a ) # distributed training UpperCAmelCase_ = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase_ = None if self._is_main(): UpperCAmelCase_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__a )] dist.gather(torch.tensor(__a ) , dst=0 , gather_list=__a , group=self.process_group ) # scatter logic UpperCAmelCase_ = question_hidden_states.shape[0] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if self._is_main(): assert len(__a ) == world_size UpperCAmelCase_ , UpperCAmelCase_ = self._main_retrieve(torch.cat(__a ).numpy() , __a ) UpperCAmelCase_ , UpperCAmelCase_ = torch.tensor(__a ), torch.tensor(__a ) UpperCAmelCase_ = self._chunk_tensor(__a , __a ) UpperCAmelCase_ = self._chunk_tensor(__a , __a ) UpperCAmelCase_ = self._scattered(__a , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase_ = self._scattered(__a , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__a )
415
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: Dict ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCamelCase_ ( lowerCamelCase ): a__ = '''dpt''' def __init__( self , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=3_8_4 , __lowerCAmelCase=1_6 , __lowerCAmelCase=3 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=[2, 5, 8, 1_1] , __lowerCAmelCase="project" , __lowerCAmelCase=[4, 2, 1, 0.5] , __lowerCAmelCase=[9_6, 1_9_2, 3_8_4, 7_6_8] , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=-1 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.4 , __lowerCAmelCase=2_5_5 , __lowerCAmelCase=0.1 , __lowerCAmelCase=[1, 1_0_2_4, 2_4, 2_4] , __lowerCAmelCase=[0, 1] , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) __magic_name__ :str = hidden_size __magic_name__ :Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) __magic_name__ :Tuple = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } __magic_name__ :List[Any] = BitConfig(**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) __magic_name__ :Tuple = BitConfig(**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Dict = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __magic_name__ :Any = backbone_featmap_shape __magic_name__ :Any = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: __magic_name__ :Dict = None __magic_name__ :Dict = None __magic_name__ :List[Any] = [] __magic_name__ :int = num_hidden_layers __magic_name__ :Union[str, Any] = num_attention_heads __magic_name__ :Tuple = intermediate_size __magic_name__ :List[Any] = hidden_act __magic_name__ :int = hidden_dropout_prob __magic_name__ :Dict = attention_probs_dropout_prob __magic_name__ :int = initializer_range __magic_name__ :Tuple = layer_norm_eps __magic_name__ :List[Any] = image_size __magic_name__ :str = patch_size __magic_name__ :str = num_channels __magic_name__ :Union[str, Any] = qkv_bias __magic_name__ :Any = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) __magic_name__ :Tuple = readout_type __magic_name__ :List[Any] = reassemble_factors __magic_name__ :Any = neck_hidden_sizes __magic_name__ :int = fusion_hidden_size __magic_name__ :str = head_in_index __magic_name__ :Any = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __magic_name__ :Dict = use_auxiliary_head __magic_name__ :Dict = auxiliary_loss_weight __magic_name__ :Optional[int] = semantic_loss_ignore_index __magic_name__ :Any = semantic_classifier_dropout def A ( self ): """simple docstring""" __magic_name__ :List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __magic_name__ :List[str] = self.backbone_config.to_dict() __magic_name__ :Optional[Any] = self.__class__.model_type return output
0
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) a_ = field a_ = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} a_ = Json( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , field=UpperCamelCase__ , **UpperCamelCase__ , ) def _a ( self ): """simple docstring""" if self.streaming: a_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) a_ = dataset a_ = path_or_buf a_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a_ = num_proc a_ = 'utf-8' a_ = to_json_kwargs def _a ( self ): """simple docstring""" a_ = self.to_json_kwargs.pop('path_or_buf' , UpperCamelCase__ ) a_ = self.to_json_kwargs.pop('orient' , 'records' ) a_ = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) a_ = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) a_ = self.to_json_kwargs.pop('compression' , UpperCamelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=UpperCamelCase__ ) as buffer: a_ = self._write(file_obj=UpperCamelCase__ , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) a_ = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **self.to_json_kwargs ) return written def _a ( self , UpperCamelCase__ ): """simple docstring""" a_ , a_ , a_ , a_ , a_ = args a_ = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a_ = batch.to_pandas().to_json( path_or_buf=UpperCamelCase__ , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **UpperCamelCase__ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ): """simple docstring""" a_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): a_ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase__ ) else: a_ , a_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(UpperCamelCase__ ) return written
536
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Any =tempfile.mkdtemp() snake_case : Optional[Any] =BlipImageProcessor() snake_case : Union[str, Any] =GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) snake_case : Union[str, Any] =BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) snake_case : Optional[int] =InstructBlipProcessor(_snake_case, _snake_case, _snake_case ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Any, **_snake_case : Dict ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).tokenizer def __snake_case ( self : Union[str, Any], **_snake_case : Any ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).image_processor def __snake_case ( self : str, **_snake_case : Union[str, Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).qformer_tokenizer def __snake_case ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : List[Any] =[np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] snake_case : Optional[int] =[Image.fromarray(np.moveaxis(_snake_case, 0, -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : int ): '''simple docstring''' snake_case : List[Any] =InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname ) snake_case : Optional[Any] =self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) snake_case : Any =self.get_image_processor(do_normalize=_snake_case, padding_value=1.0 ) snake_case : Union[str, Any] =InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=_snake_case, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, _snake_case ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, _snake_case ) self.assertIsInstance(processor.qformer_tokenizer, _snake_case ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Tuple =self.get_image_processor() snake_case : List[str] =self.get_tokenizer() snake_case : Tuple =self.get_qformer_tokenizer() snake_case : Any =InstructBlipProcessor( tokenizer=_snake_case, image_processor=_snake_case, qformer_tokenizer=_snake_case ) snake_case : str =self.prepare_image_inputs() snake_case : Union[str, Any] =image_processor(_snake_case, return_tensors='''np''' ) snake_case : Dict =processor(images=_snake_case, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def __snake_case ( self : Dict ): '''simple docstring''' snake_case : Tuple =self.get_image_processor() snake_case : List[Any] =self.get_tokenizer() snake_case : Optional[Any] =self.get_qformer_tokenizer() snake_case : Tuple =InstructBlipProcessor( tokenizer=_snake_case, image_processor=_snake_case, qformer_tokenizer=_snake_case ) snake_case : List[Any] ='''lower newer''' snake_case : List[Any] =processor(text=_snake_case ) snake_case : int =tokenizer(_snake_case, return_token_type_ids=_snake_case ) snake_case : Union[str, Any] =qformer_tokenizer(_snake_case, return_token_type_ids=_snake_case ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['''qformer_''' + key] ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : int =self.get_image_processor() snake_case : Tuple =self.get_tokenizer() snake_case : List[Any] =self.get_qformer_tokenizer() snake_case : Optional[Any] =InstructBlipProcessor( tokenizer=_snake_case, image_processor=_snake_case, qformer_tokenizer=_snake_case ) snake_case : int ='''lower newer''' snake_case : Optional[int] =self.prepare_image_inputs() snake_case : int =processor(text=_snake_case, images=_snake_case ) self.assertListEqual( list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''], ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Union[str, Any] =self.get_image_processor() snake_case : Any =self.get_tokenizer() snake_case : List[Any] =self.get_qformer_tokenizer() snake_case : Any =InstructBlipProcessor( tokenizer=_snake_case, image_processor=_snake_case, qformer_tokenizer=_snake_case ) snake_case : Optional[int] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : Optional[int] =processor.batch_decode(_snake_case ) snake_case : Optional[int] =tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) def __snake_case ( self : str ): '''simple docstring''' snake_case : Tuple =self.get_image_processor() snake_case : str =self.get_tokenizer() snake_case : str =self.get_qformer_tokenizer() snake_case : Optional[Any] =InstructBlipProcessor( tokenizer=_snake_case, image_processor=_snake_case, qformer_tokenizer=_snake_case ) snake_case : Union[str, Any] ='''lower newer''' snake_case : Optional[int] =self.prepare_image_inputs() snake_case : Optional[Any] =processor(text=_snake_case, images=_snake_case ) self.assertListEqual( list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''], )
136
'''simple docstring''' from __future__ import annotations from statistics import mean def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Dict =[0] * no_of_processes snake_case : Dict =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase_ ): snake_case : Any =burst_time[i] snake_case : list[int] =[] snake_case : Optional[Any] =0 snake_case : List[Any] =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case : Union[str, Any] =[] snake_case : Optional[int] =-1 for i in range(lowerCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case : Any =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case : str =i total_time += burst_time[target_process] completed += 1 snake_case : Dict =0 snake_case : Dict =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[int] =[0] * no_of_processes for i in range(lowerCamelCase_ ): snake_case : Optional[int] =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") A : Optional[Any] = 4 A : Dict = [2, 5, 3, 7] A : Any = [0, 0, 0, 0] A : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A : Optional[int] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
136
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowercase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = TextaTextGenerationPipeline(model=_snake_case , tokenizer=_snake_case ) return generator, ["Something to write", "Something else"] def _lowercase ( self : int , __lowerCamelCase : str , __lowerCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = generator("""Something there""" ) self.assertEqual(_snake_case , [{"""generated_text""": ANY(_snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) UpperCAmelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}], [{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}], ] , ) UpperCAmelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}], [{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}], ] , ) with self.assertRaises(_snake_case ): generator(4 ) @require_torch def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility UpperCAmelCase = generator("""Something there""" , do_sample=_snake_case ) self.assertEqual(_snake_case , [{"""generated_text""": """"""}] ) UpperCAmelCase = 3 UpperCAmelCase = generator( """Something there""" , num_return_sequences=_snake_case , num_beams=_snake_case , ) UpperCAmelCase = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(_snake_case , _snake_case ) UpperCAmelCase = generator("""This is a test""" , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case ) self.assertEqual( _snake_case , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) UpperCAmelCase = generator.model.config.eos_token_id UpperCAmelCase = "<pad>" UpperCAmelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility UpperCAmelCase = generator("""Something there""" , do_sample=_snake_case ) self.assertEqual(_snake_case , [{"""generated_text""": """"""}] )
377
'''simple docstring''' import json import sys def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: UpperCAmelCase_ : Dict = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[Any] = results[benchmark_name] UpperCAmelCase_ : Any = benchmark_name.split("/" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) UpperCAmelCase_ : Any = "| metric |" UpperCAmelCase_ : Any = "|--------|" UpperCAmelCase_ : Union[str, Any] = "| new / old (diff) |" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = benchmark_res[metric_name] UpperCAmelCase_ : Union[str, Any] = metric_vals["new"] UpperCAmelCase_ : Optional[Any] = metric_vals.get("old" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = metric_vals.get("diff" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = F''' {new_val:f}''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowerCamelCase = sys.argv[1] _lowerCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
71
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( snake_case__ ): _a : Any = ["""pixel_values"""] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_5_5 , a = True , a = None , a = True , **a , ): super().__init__(**UpperCAmelCase_ ) snake_case__ : int =size if size is not None else {"""shortest_edge""": 2_2_4} snake_case__ : Dict =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) snake_case__ : Optional[Any] =crop_size if crop_size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case__ : str =get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" ) snake_case__ : str =do_resize snake_case__ : Optional[Any] =size snake_case__ : Union[str, Any] =resample snake_case__ : int =do_rescale snake_case__ : str =rescale_factor snake_case__ : Union[str, Any] =do_center_crop snake_case__ : Union[str, Any] =crop_size snake_case__ : Dict =do_flip_channel_order def lowercase__ ( self , a , a , a = PIL.Image.BILINEAR , a = None , **a , ): snake_case__ : List[Any] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) snake_case__ : List[str] =get_resize_output_image_size(UpperCAmelCase_ , size=size["""shortest_edge"""] , default_to_square=UpperCAmelCase_ ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self , a , a , a = None , **a , ): snake_case__ : Any =get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self , a , a , a = None , **a , ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self , a , a = None ): return flip_channel_order(UpperCAmelCase_ , data_format=UpperCAmelCase_ ) def lowercase__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): snake_case__ : Any =do_resize if do_resize is not None else self.do_resize snake_case__ : Tuple =resample if resample is not None else self.resample snake_case__ : List[Any] =do_rescale if do_rescale is not None else self.do_rescale snake_case__ : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Union[str, Any] =do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Any =( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case__ : Dict =size if size is not None else self.size snake_case__ : Any =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) snake_case__ : int =crop_size if crop_size is not None else self.crop_size snake_case__ : List[str] =get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" ) snake_case__ : Any =make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. snake_case__ : Tuple =[to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: snake_case__ : Tuple =[self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_center_crop: snake_case__ : Any =[self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] if do_rescale: snake_case__ : Tuple =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case__ : Optional[int] =[self.flip_channel_order(image=UpperCAmelCase_ ) for image in images] snake_case__ : Optional[int] =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] snake_case__ : int ={"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) def lowercase__ ( self , a , a = None ): snake_case__ : Union[str, Any] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): snake_case__ : Optional[int] =target_sizes.numpy() snake_case__ : Any =[] for idx in range(len(UpperCAmelCase_ ) ): snake_case__ : List[Any] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=UpperCAmelCase_ ) snake_case__ : Optional[int] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: snake_case__ : Optional[Any] =logits.argmax(dim=1 ) snake_case__ : int =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
702
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Any = {"""vocab_file""": """spiece.model"""} __lowerCamelCase : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } __lowerCamelCase : List[str] = { """google/bigbird-roberta-base""": 40_96, """google/bigbird-roberta-large""": 40_96, """google/bigbird-base-trivia-itc""": 40_96, } class _lowercase ( _A ): _a : int = VOCAB_FILES_NAMES _a : List[str] = PRETRAINED_VOCAB_FILES_MAP _a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Tuple = ['input_ids', 'attention_mask'] _a : List[int] = [] def __init__( self , a , a="<unk>" , a="<s>" , a="</s>" , a="<pad>" , a="[SEP]" , a="[MASK]" , a="[CLS]" , a = None , **a , ): snake_case__ : str =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token snake_case__ : Optional[int] =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token snake_case__ : Any =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token snake_case__ : List[str] =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token snake_case__ : int =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token snake_case__ : Tuple =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Union[str, Any] =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token snake_case__ : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sep_token=a , mask_token=a , cls_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) snake_case__ : Optional[int] =vocab_file snake_case__ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def lowercase__ ( self ): return self.sp_model.get_piece_size() def lowercase__ ( self ): snake_case__ : Optional[Any] ={self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): snake_case__ : List[Any] =self.__dict__.copy() snake_case__ : Optional[int] =None return state def __setstate__( self , a ): snake_case__ : Optional[Any] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ : Optional[Any] ={} snake_case__ : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self , a ): return self.sp_model.encode(a , out_type=a ) def lowercase__ ( self , a ): return self.sp_model.piece_to_id(a ) def lowercase__ ( self , a ): snake_case__ : Dict =self.sp_model.IdToPiece(a ) return token def lowercase__ ( self , a ): snake_case__ : Optional[int] =[] snake_case__ : Dict ="""""" snake_case__ : Dict =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token snake_case__ : Optional[Any] =True snake_case__ : Dict =[] else: current_sub_tokens.append(a ) snake_case__ : List[Any] =False out_string += self.sp_model.decode(a ) return out_string.strip() def lowercase__ ( self , a , a = False , a = None , a = True , **a , ): snake_case__ : List[str] =kwargs.pop("""use_source_tokenizer""" , a ) snake_case__ : int =self.convert_ids_to_tokens(a , skip_special_tokens=a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case__ : List[Any] =[] snake_case__ : int =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a ) ) snake_case__ : List[Any] =[] sub_texts.append(a ) else: current_sub_text.append(a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case__ : Dict =re.sub(R""" (\[(MASK|SEP)\])""" , R"""\1""" , """ """.join(a ) ) else: snake_case__ : Dict ="""""".join(a ) snake_case__ : str =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case__ : Any =self.clean_up_tokenization(a ) return clean_text else: return text def lowercase__ ( self , a , a = None ): if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case__ : Any =os.path.join( a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , """wb""" ) as fi: snake_case__ : Any =self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def lowercase__ ( self , a , a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Union[str, Any] =[self.cls_token_id] snake_case__ : Dict =[self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self , a , a = None , a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def lowercase__ ( self , a , a = None ): snake_case__ : List[str] =[self.sep_token_id] snake_case__ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
448
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) set_seed(770) lowerCAmelCase__ = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } lowerCAmelCase__ = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } lowerCAmelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase__ = os.path.join(os.path.expanduser('~'), '.cache') lowerCAmelCase__ = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> str: UpperCamelCase__ : Optional[Any] = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase_ , REMOTE_MODEL_PATHS[key]['file_name']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) hf_hub_download(repo_id=lowerCamelCase_ , filename=lowerCamelCase_ , local_dir=lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_="text") -> List[str]: if model_type == "text": UpperCamelCase__ : Optional[int] = BarkSemanticModel UpperCamelCase__ : Optional[Any] = BarkSemanticConfig UpperCamelCase__ : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase__ : Tuple = BarkCoarseModel UpperCamelCase__ : Optional[int] = BarkCoarseConfig UpperCamelCase__ : str = BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase__ : Dict = BarkFineModel UpperCamelCase__ : int = BarkFineConfig UpperCamelCase__ : Optional[Any] = BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase__ : int = f'{model_type}_small' if use_small else model_type UpperCamelCase__ : int = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase_): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.') _download(model_info['repo_id'] , model_info['file_name']) UpperCamelCase__ : Optional[int] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) # this is a hack UpperCamelCase__ : Any = checkpoint['model_args'] if "input_vocab_size" not in model_args: UpperCamelCase__ : str = model_args['vocab_size'] UpperCamelCase__ : Tuple = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase__ : Optional[Any] = model_args.pop('n_head') UpperCamelCase__ : Union[str, Any] = model_args.pop('n_embd') UpperCamelCase__ : int = model_args.pop('n_layer') UpperCamelCase__ : Union[str, Any] = ConfigClass(**checkpoint['model_args']) UpperCamelCase__ : Optional[int] = ModelClass(config=lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = GenerationConfigClass() UpperCamelCase__ : List[Any] = model_generation_config UpperCamelCase__ : List[Any] = checkpoint['model'] # fixup checkpoint UpperCamelCase__ : Dict = '_orig_mod.' for k, v in list(state_dict.items()): if k.startswith(lowerCamelCase_): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase__ : List[str] = k[len(lowerCamelCase_) :] for old_layer_name in new_layer_name_dict: UpperCamelCase__ : Any = new_k.replace(lowerCamelCase_ , new_layer_name_dict[old_layer_name]) UpperCamelCase__ : Dict = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : str = set(state_dict.keys()) - set(model.state_dict().keys()) UpperCamelCase__ : Optional[Any] = {k for k in extra_keys if not k.endswith('.attn.bias')} UpperCamelCase__ : List[Any] = set(model.state_dict().keys()) - set(state_dict.keys()) UpperCamelCase__ : str = {k for k in missing_keys if not k.endswith('.attn.bias')} if len(lowerCamelCase_) != 0: raise ValueError(f'extra keys found: {extra_keys}') if len(lowerCamelCase_) != 0: raise ValueError(f'missing keys: {missing_keys}') model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_) UpperCamelCase__ : List[str] = model.num_parameters(exclude_embeddings=lowerCamelCase_) UpperCamelCase__ : int = checkpoint['best_val_loss'].item() logger.info(f'model loaded: {round(n_params/1e6 , 1)}M params, {round(lowerCamelCase_ , 3)} loss') model.eval() model.to(lowerCamelCase_) del checkpoint, state_dict return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_="text") -> int: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase__ : Any = 'cpu' # do conversion on cpu UpperCamelCase__ : str = _get_ckpt_path(lowerCamelCase_ , use_small=lowerCamelCase_) UpperCamelCase__ : Tuple = _load_model(lowerCamelCase_ , lowerCamelCase_ , model_type=lowerCamelCase_ , use_small=lowerCamelCase_) # load bark initial model UpperCamelCase__ : Union[str, Any] = _bark_load_model(lowerCamelCase_ , 'cpu' , model_type=lowerCamelCase_ , use_small=lowerCamelCase_) if model_type == "text": UpperCamelCase__ : Union[str, Any] = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCamelCase_) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters') # check if same output as the bark model UpperCamelCase__ : Any = 5 UpperCamelCase__ : str = 10 if model_type in ["text", "coarse"]: UpperCamelCase__ : Optional[int] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int) UpperCamelCase__ : Tuple = bark_model(lowerCamelCase_)[0] UpperCamelCase__ : List[Any] = model(lowerCamelCase_) # take last logits UpperCamelCase__ : Tuple = output_new_model_total.logits[:, [-1], :] else: UpperCamelCase__ : Tuple = 3 UpperCamelCase__ : List[Any] = 8 UpperCamelCase__ : Optional[int] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int) UpperCamelCase__ : str = model(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Any = bark_model(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape') if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal') Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: UpperCamelCase__ : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase_ , 'config.json')) UpperCamelCase__ : Dict = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase_ , 'config.json')) UpperCamelCase__ : Optional[int] = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase_ , 'config.json')) UpperCamelCase__ : Union[str, Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz') UpperCamelCase__ : str = BarkSemanticModel.from_pretrained(lowerCamelCase_) UpperCamelCase__ : Optional[int] = BarkCoarseModel.from_pretrained(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = BarkFineModel.from_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = EncodecModel.from_pretrained('facebook/encodec_24khz') UpperCamelCase__ : Optional[Any] = BarkConfig.from_sub_model_configs( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config) UpperCamelCase__ : Dict = BarkModel(lowerCamelCase_) UpperCamelCase__ : int = semantic UpperCamelCase__ : Tuple = coarseAcoustic UpperCamelCase__ : Union[str, Any] = fineAcoustic UpperCamelCase__ : Optional[int] = codec UpperCamelCase__ : Union[str, Any] = bark_generation_config Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) bark.save_pretrained(lowerCamelCase_ , repo_id=lowerCamelCase_ , push_to_hub=lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') lowerCAmelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
596
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = field(default_factory=__lowerCamelCase ) _lowerCamelCase = field(default_factory=__lowerCamelCase ) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Tensor): UpperCamelCase__ : str = len(list(m.modules())) == 1 or isinstance(UpperCAmelCase_ , nn.Convad) or isinstance(UpperCAmelCase_ , nn.BatchNormad) if has_not_submodules: self.traced.append(UpperCAmelCase_) def __call__( self : List[str] , UpperCAmelCase_ : Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(UpperCAmelCase_) [x.remove() for x in self.handles] return self @property def __UpperCamelCase ( self : Union[str, Any]): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase_: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 1 _lowerCamelCase = field(default_factory=__lowerCamelCase ) _lowerCamelCase = field(default_factory=__lowerCamelCase ) _lowerCamelCase = True def __call__( self : Optional[Any] , UpperCAmelCase_ : Tensor): UpperCamelCase__ : int = Tracker(self.dest)(UpperCAmelCase_).parametrized UpperCamelCase__ : Any = Tracker(self.src)(UpperCAmelCase_).parametrized UpperCamelCase__ : Any = list(filter(lambda UpperCAmelCase_: type(UpperCAmelCase_) not in self.src_skip , UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = list(filter(lambda UpperCAmelCase_: type(UpperCAmelCase_) not in self.dest_skip , UpperCAmelCase_)) if len(UpperCAmelCase_) != len(UpperCAmelCase_) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(UpperCAmelCase_)} operations while' F' destination module has {len(UpperCAmelCase_)}.') for dest_m, src_m in zip(UpperCAmelCase_ , UpperCAmelCase_): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}') class __lowercase (nn.Module ): def __init__( self : Any , UpperCAmelCase_ : nn.Module): super().__init__() UpperCamelCase__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block'), F'Unexpected layer name {k}' UpperCamelCase__ : Optional[Any] = len(UpperCAmelCase_) + 1 feature_blocks.append((F'res{block_index}', v)) UpperCamelCase__ : Any = nn.ModuleDict(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Tensor): return get_trunk_forward_outputs( UpperCAmelCase_ , out_feat_keys=UpperCAmelCase_ , feature_blocks=self._feature_blocks , ) class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str): UpperCamelCase__ : int = x.split('-') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : str): # default to timm! if x not in self: UpperCamelCase__ : List[Any] = self.convert_name_to_timm(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = partial(lambda: (timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_).eval(), None)) else: UpperCamelCase__ : List[str] = super().__getitem__(UpperCAmelCase_) return val class __lowercase (__lowerCamelCase ): def __getitem__( self : Tuple , UpperCAmelCase_ : str): if "seer" in x and "in1k" not in x: UpperCamelCase__ : Optional[Any] = RegNetModel else: UpperCamelCase__ : Optional[Any] = RegNetForImageClassification return val def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: for from_key, to_key in keys: UpperCamelCase__ : str = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}') return to_state_dict def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ) -> List[Any]: print(f'Converting {name}...') with torch.no_grad(): UpperCamelCase__, UpperCamelCase__ : Any = from_model_func() UpperCamelCase__ : int = our_model_func(lowerCamelCase_).eval() UpperCamelCase__ : Union[str, Any] = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ , raise_if_mismatch=lowerCamelCase_) UpperCamelCase__ : Dict = torch.randn((1, 3, 224, 224)) module_transfer(lowerCamelCase_) if from_state_dict is not None: UpperCamelCase__ : Any = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCamelCase__ : Optional[int] = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] UpperCamelCase__ : Optional[Any] = manually_copy_vissl_head(lowerCamelCase_ , our_model.state_dict() , lowerCamelCase_) our_model.load_state_dict(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = our_model(lowerCamelCase_ , output_hidden_states=lowerCamelCase_) UpperCamelCase__ : Dict = ( our_outputs.logits if isinstance(lowerCamelCase_ , lowerCamelCase_) else our_outputs.last_hidden_state ) UpperCamelCase__ : Optional[int] = from_model(lowerCamelCase_) UpperCamelCase__ : Optional[int] = from_output[-1] if type(lowerCamelCase_) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCamelCase__ : Any = our_outputs.hidden_states[-1] assert torch.allclose(lowerCamelCase_ , lowerCamelCase_), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = 224 if 'seer' not in name else 384 # we can use the convnext one UpperCamelCase__ : int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=lowerCamelCase_) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) print(f'Pushed {name}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = True) -> int: UpperCamelCase__ : Any = 'imagenet-1k-id2label.json' UpperCamelCase__ : int = 1_000 UpperCamelCase__ : Tuple = (1, num_labels) UpperCamelCase__ : Dict = 'huggingface/label-files' UpperCamelCase__ : str = num_labels UpperCamelCase__ : Optional[int] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : Dict = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Dict = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : int = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_) UpperCamelCase__ : Tuple = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x'), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x'), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x'), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x'), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x'), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='x'), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='x'), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='x'), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='x'), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='x'), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='x'), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='x'), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010), } UpperCamelCase__ : Dict = NameToOurModelFuncMap() UpperCamelCase__ : Optional[int] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCamelCase_ , lowerCamelCase_) -> Tuple[nn.Module, Dict]: UpperCamelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , model_dir=str(lowerCamelCase_) , map_location='cpu') UpperCamelCase__ : List[str] = model_func() # check if we have a head, if yes add it UpperCamelCase__ : str = files['classy_state_dict']['base_model']['model'] UpperCamelCase__ : str = model_state_dict['trunk'] model.load_state_dict(lowerCamelCase_) return model.eval(), model_state_dict["heads"] # pretrained UpperCamelCase__ : Dict = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : Any = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : int = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf()) , ) UpperCamelCase__ : List[str] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52))) , ) # IN1K finetuned UpperCamelCase__ : Tuple = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : Optional[Any] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : Any = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf()) , ) UpperCamelCase__ : Tuple = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52))) , ) if model_name: convert_weight_and_push( lowerCamelCase_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCamelCase_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
596
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCamelCase : Any = ['gpt2'] __UpperCamelCase : Union[str, Any] = 'gpt2' if is_tf_available(): class _UpperCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__() __lowerCamelCase : Union[str, Any] = tokenizer __lowerCamelCase : Any = AutoConfig.from_pretrained(_lowerCamelCase ) __lowerCamelCase : str = TFGPTaLMHeadModel.from_config(_lowerCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _snake_case ( self : Any , _lowerCamelCase : int ): '''simple docstring''' __lowerCamelCase : int = self.tokenizer(_lowerCamelCase ) __lowerCamelCase : Optional[int] = tokenized["""input_ids"""].to_tensor() __lowerCamelCase : int = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase : List[str] = self.model(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' super().setUp() __lowerCamelCase : str = [GPTaTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase : Any = [TFGPTaTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase : List[Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __lowerCamelCase : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self : int ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCamelCase : str = tokenizer([test_inputs] , return_tensors="""tf""" ) __lowerCamelCase : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase : Tuple = python_outputs[key].numpy() __lowerCamelCase : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(_lowerCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : List[Any] = tf.function(_lowerCamelCase ) for test_inputs in self.test_sentences: __lowerCamelCase : Tuple = tf.constant(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = compiled_tokenizer(_lowerCamelCase ) __lowerCamelCase : Tuple = tf_tokenizer(_lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Union[str, Any] = ModelToSave(tokenizer=_lowerCamelCase ) __lowerCamelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase : Dict = model.serving(_lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase : List[Any] = Path(_lowerCamelCase ) / """saved.model""" tf.saved_model.save(_lowerCamelCase , _lowerCamelCase , signatures={"""serving_default""": model.serving} ) __lowerCamelCase : int = tf.saved_model.load(_lowerCamelCase ) __lowerCamelCase : int = loaded_model.signatures["""serving_default"""](_lowerCamelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : str = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase : Dict = tf_tokenizer(_lowerCamelCase ) # Build model with some sample inputs __lowerCamelCase : Optional[int] = tf_tokenizer.get_config() __lowerCamelCase : Union[str, Any] = TFGPTaTokenizer.from_config(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = model_from_config(_lowerCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase : Union[str, Any] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __lowerCamelCase : int = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase : Dict = tf_tokenizer(_lowerCamelCase , max_length=_lowerCamelCase ) __lowerCamelCase : int = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
720
import qiskit def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : Dict = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase : Dict = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase : str = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
458
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer a__ : List[str] = logging.get_logger(__name__) a__ : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a__ : Optional[Any] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } a__ : Optional[int] = { """Salesforce/codegen-350M-mono""": 2_0_4_8, } class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] snake_case_ = CodeGenTokenizer def __init__( self : Union[str, Any] , a_ : Any=None , a_ : Optional[int]=None , a_ : int=None , a_ : Union[str, Any]="<|endoftext|>" , a_ : Tuple="<|endoftext|>" , a_ : Optional[Any]="<|endoftext|>" , a_ : List[Any]=False , **a_ : str , ): """simple docstring""" super().__init__( a_ , a_ , tokenizer_file=a_ , unk_token=a_ , bos_token=a_ , eos_token=a_ , add_prefix_space=a_ , **a_ , ) if kwargs.pop("""add_bos_token""" , a_ ): lowerCamelCase__ = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) lowerCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , a_ ) != add_prefix_space: lowerCamelCase__ = getattr(a_ , pre_tok_state.pop("""type""" ) ) lowerCamelCase__ = add_prefix_space lowerCamelCase__ = pre_tok_class(**a_ ) lowerCamelCase__ = add_prefix_space def _UpperCamelCase ( self : Any , *a_ : Any , **a_ : List[Any] ): """simple docstring""" lowerCamelCase__ = kwargs.get("""is_split_into_words""" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def _UpperCamelCase ( self : Union[str, Any] , *a_ : int , **a_ : Tuple ): """simple docstring""" lowerCamelCase__ = kwargs.get("""is_split_into_words""" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def _UpperCamelCase ( self : List[Any] , a_ : str , a_ : Optional[str] = None ): """simple docstring""" lowerCamelCase__ = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def _UpperCamelCase ( self : Tuple , a_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , a_ : bool = False , a_ : bool = None , a_ : Optional[List[str]] = None , **a_ : Optional[int] , ): """simple docstring""" lowerCamelCase__ = super().decode( token_ids=a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ , **a_ , ) if truncate_before_pattern is not None and len(a_ ) > 0: lowerCamelCase__ = self.truncate(a_ , a_ ) return decoded_text def _UpperCamelCase ( self : List[Any] , a_ : Tuple , a_ : Optional[int] ): """simple docstring""" def find_re(a_ : Any , a_ : Tuple , a_ : Any ): lowerCamelCase__ = pattern.search(a_ , a_ ) return m.start() if m else -1 lowerCamelCase__ = [re.compile(a_ , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCamelCase__ = list(re.finditer("""^print""" , a_ , re.MULTILINE ) ) if len(a_ ) > 1: lowerCamelCase__ = completion[: prints[1].start()] lowerCamelCase__ = list(re.finditer("""^def""" , a_ , re.MULTILINE ) ) if len(a_ ) > 1: lowerCamelCase__ = completion[: defs[1].start()] lowerCamelCase__ = 0 lowerCamelCase__ = [ pos for pos in [find_re(a_ , a_ , a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
165
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a__ : Union[str, Any] = logging.get_logger(__name__) class lowercase ( UpperCAmelCase_ ): """simple docstring""" def _UpperCamelCase ( self : int , a_ : Union[str, Any] ): """simple docstring""" if isinstance(a_ , a_ ): lowerCamelCase__ = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self : Dict , a_ : Any , a_ : Optional[int] , a_ : Tuple ): """simple docstring""" if len(a_ ) == 0 or len(a_ ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(a_ ) ) if isinstance(a_ , a_ ): lowerCamelCase__ = [sequences] lowerCamelCase__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(a_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase_ ) class lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , a_ : Tuple=ZeroShotClassificationArgumentHandler() , *a_ : Optional[Any] , **a_ : Optional[int] ): """simple docstring""" lowerCamelCase__ = args_parser super().__init__(*a_ , **a_ ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _UpperCamelCase ( self : str , a_ : List[Any] , a_ : Optional[Any]=True , a_ : List[Any]=True , a_ : str=TruncationStrategy.ONLY_FIRST , **a_ : Any ): """simple docstring""" lowerCamelCase__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowerCamelCase__ = self.tokenizer.eos_token try: lowerCamelCase__ = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=a_ , ) except Exception as e: if "too short" in str(a_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCamelCase__ = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _UpperCamelCase ( self : List[str] , **a_ : Union[str, Any] ): """simple docstring""" if kwargs.get("""multi_class""" , a_ ) is not None: lowerCamelCase__ = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowerCamelCase__ = {} if "candidate_labels" in kwargs: lowerCamelCase__ = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowerCamelCase__ = kwargs["""hypothesis_template"""] lowerCamelCase__ = {} if "multi_label" in kwargs: lowerCamelCase__ = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self : Any , a_ : Union[str, List[str]] , *a_ : str , **a_ : Dict , ): """simple docstring""" if len(a_ ) == 0: pass elif len(a_ ) == 1 and "candidate_labels" not in kwargs: lowerCamelCase__ = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(a_ , **a_ ) def _UpperCamelCase ( self : Optional[int] , a_ : int , a_ : List[str]=None , a_ : Tuple="This example is {}." ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = self._args_parser(a_ , a_ , a_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(a_ , a_ ) ): lowerCamelCase__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(a_ ) - 1, **model_input, } def _UpperCamelCase ( self : Optional[Any] , a_ : Any ): """simple docstring""" lowerCamelCase__ = inputs["""candidate_label"""] lowerCamelCase__ = inputs["""sequence"""] lowerCamelCase__ = {k: inputs[k] for k in self.tokenizer.model_input_names} lowerCamelCase__ = self.model(**a_ ) lowerCamelCase__ = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _UpperCamelCase ( self : Union[str, Any] , a_ : List[Any] , a_ : Tuple=False ): """simple docstring""" lowerCamelCase__ = [outputs["""candidate_label"""] for outputs in model_outputs] lowerCamelCase__ = [outputs["""sequence"""] for outputs in model_outputs] lowerCamelCase__ = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowerCamelCase__ = logits.shape[0] lowerCamelCase__ = len(a_ ) lowerCamelCase__ = N // n lowerCamelCase__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(a_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCamelCase__ = self.entailment_id lowerCamelCase__ = -1 if entailment_id == 0 else 0 lowerCamelCase__ = reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCamelCase__ = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) lowerCamelCase__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCamelCase__ = reshaped_outputs[..., self.entailment_id] lowerCamelCase__ = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) lowerCamelCase__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
165
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class lowerCamelCase (a__ ): _lowercase : Optional[int] = """xlnet""" _lowercase : Optional[Any] = ["""mems"""] _lowercase : Any = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase__=32_000 , lowercase__=1_024 , lowercase__=24 , lowercase__=16 , lowercase__=4_096 , lowercase__="gelu" , lowercase__=True , lowercase__="bi" , lowercase__=0.02 , lowercase__=1E-1_2 , lowercase__=0.1 , lowercase__=512 , lowercase__=None , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=-1 , lowercase__=False , lowercase__="last" , lowercase__=True , lowercase__="tanh" , lowercase__=0.1 , lowercase__=5 , lowercase__=5 , lowercase__=5 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = vocab_size _snake_case : Dict = d_model _snake_case : int = n_layer _snake_case : Union[str, Any] = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _snake_case : str = d_model // n_head _snake_case : Any = ff_activation _snake_case : int = d_inner _snake_case : List[Any] = untie_r _snake_case : Optional[int] = attn_type _snake_case : Optional[Any] = initializer_range _snake_case : str = layer_norm_eps _snake_case : List[Any] = dropout _snake_case : Any = mem_len _snake_case : List[Any] = reuse_len _snake_case : Union[str, Any] = bi_data _snake_case : List[str] = clamp_len _snake_case : Optional[int] = same_length _snake_case : List[Any] = summary_type _snake_case : str = summary_use_proj _snake_case : Optional[Any] = summary_activation _snake_case : Optional[Any] = summary_last_dropout _snake_case : List[Any] = start_n_top _snake_case : List[str] = end_n_top _snake_case : Tuple = bos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , lowercase__ , ) _snake_case : Optional[int] = kwargs['''use_cache'''] _snake_case : int = use_mems_eval _snake_case : Union[str, Any] = use_mems_train super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) @property def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
47
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
1
import os # Precomputes a list of the 100 first triangular numbers a = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def UpperCAmelCase_ ( ): lowercase_ = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) lowercase_ = os.path.join(_UpperCAmelCase , """words.txt""" ) lowercase_ = """""" with open(_UpperCAmelCase ) as f: lowercase_ = f.readline() lowercase_ = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] lowercase_ = [ word for word in [sum(ord(_UpperCAmelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
412
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCamelCase : Optional[int] ="\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _UpperCamelCase : Any ="\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _UpperCamelCase : Any ="\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=1 , _snake_case="binary" , _snake_case=None ): """simple docstring""" __lowerCamelCase = fa_score( _snake_case , _snake_case , labels=_snake_case , pos_label=_snake_case , average=_snake_case , sample_weight=_snake_case ) return {"f1": float(_snake_case ) if score.size == 1 else score}
707
'''simple docstring''' import functools def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = len(A_ ) __lowerCamelCase = len(A_ ) @functools.cache def min_distance(A_ , A_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowerCamelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A_ ) , 1 + min_distance(A_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
575
0
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=10 ): A__ = [] for _ in range(_lowerCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str]=10 ): A__ = [] for step in range(_lowerCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(_lowerCamelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _lowerCamelCase ) A__ = torch.load(_lowerCamelCase ) scheduler.load_state_dict(_lowerCamelCase ) return lrs @require_torch class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :int , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Optional[Any] )-> int: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Dict: A__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) A__ = torch.tensor([0.4, 0.2, -0.5] ) A__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A__ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): A__ = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def UpperCAmelCase_ ( self :Tuple )-> List[str]: A__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) A__ = torch.tensor([0.4, 0.2, -0.5] ) A__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A__ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowercase_ , weight_decay=0.0 , relative_step=lowercase_ , scale_parameter=lowercase_ , warmup_init=lowercase_ , ) for _ in range(10_00 ): A__ = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCAmelCase ( unittest.TestCase ): __lowercase = nn.Linear(50 , 50 ) if is_torch_available() else None __lowercase = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None __lowercase = 10 def UpperCAmelCase_ ( self :Tuple , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :List[Any] , lowercase_ :str=None )-> Optional[int]: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ , msg=lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Any: A__ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A__ = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): A__, A__ = data A__ = scheduler_func(self.optimizer , **lowercase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A__ = unwrap_schedule(lowercase_ , self.num_steps ) self.assertListAlmostEqual( lowercase_ , lowercase_ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) A__ = scheduler_func(self.optimizer , **lowercase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowercase_ ) # wrap to test picklability of the schedule A__ = unwrap_and_save_reload_schedule(lowercase_ , self.num_steps ) self.assertListEqual(lowercase_ , lowercase_ , msg=F"failed for {scheduler_func} in save and reload" ) class UpperCAmelCase : def __init__( self :str , lowercase_ :List[str] )-> Tuple: A__ = fn def __call__( self :List[Any] , *lowercase_ :Dict , **lowercase_ :Dict )-> Tuple: return self.fn(*lowercase_ , **lowercase_ ) @classmethod def UpperCAmelCase_ ( self :Any , lowercase_ :Tuple )-> List[Any]: A__ = list(map(self , scheduler.lr_lambdas ) )
440
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """swin2sr""" UpperCAmelCase_ : Union[str, Any] = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , lowercase_ : Union[str, Any]=64 , lowercase_ : Dict=1 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=180 , lowercase_ : Any=[6, 6, 6, 6, 6, 6] , lowercase_ : str=[6, 6, 6, 6, 6, 6] , lowercase_ : Optional[Any]=8 , lowercase_ : Union[str, Any]=2.0 , lowercase_ : Optional[Any]=True , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.1 , lowercase_ : Dict="gelu" , lowercase_ : Dict=False , lowercase_ : Any=0.02 , lowercase_ : Optional[Any]=1E-5 , lowercase_ : List[Any]=2 , lowercase_ : List[Any]=1.0 , lowercase_ : int="1conv" , lowercase_ : Optional[Any]="pixelshuffle" , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : int = embed_dim UpperCAmelCase : Optional[int] = depths UpperCAmelCase : List[Any] = len(lowercase_ ) UpperCAmelCase : Optional[int] = num_heads UpperCAmelCase : List[Any] = window_size UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : Optional[int] = qkv_bias UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Any = drop_path_rate UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = use_absolute_embeddings UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Union[str, Any] = upscale UpperCAmelCase : Optional[int] = img_range UpperCAmelCase : List[str] = resi_connection UpperCAmelCase : List[str] = upsampler
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCAmelCase_ = int(input("Enter number: ").strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
539
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> Tuple: __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a = test_metrics @require_cpu def UpperCamelCase__ ( self ) -> Tuple: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase__ ( self ) -> str: debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase__ ( self ) -> Dict: self.test_metrics.main() @require_multi_gpu def UpperCamelCase__ ( self ) -> int: print(f"Found {torch.cuda.device_count()} devices." ) __a = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
539
1
"""simple docstring""" from __future__ import annotations def __a ( A = 4 ): '''simple docstring''' lowercase__ = abs(lowercase_ ) or 4 return [[1 + x + y * row_size for x in range(lowercase_ )] for y in range(lowercase_ )] def __a ( A ): '''simple docstring''' return reverse_row(transpose(lowercase_ ) ) # OR.. transpose(reverse_column(matrix)) def __a ( A ): '''simple docstring''' return reverse_row(reverse_column(lowercase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def __a ( A ): '''simple docstring''' return reverse_column(transpose(lowercase_ ) ) # OR.. transpose(reverse_row(matrix)) def __a ( A ): '''simple docstring''' lowercase__ = [list(lowercase_ ) for x in zip(*lowercase_ )] return matrix def __a ( A ): '''simple docstring''' lowercase__ = matrix[::-1] return matrix def __a ( A ): '''simple docstring''' lowercase__ = [x[::-1] for x in matrix] return matrix def __a ( A ): '''simple docstring''' for i in matrix: print(*lowercase_ ) if __name__ == "__main__": lowerCAmelCase_: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) lowerCAmelCase_: Optional[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) lowerCAmelCase_: Optional[int] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
"""simple docstring""" from collections import namedtuple UpperCAmelCase__ = namedtuple("""from_to""", """from_ to""") UpperCAmelCase__ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_0454, 264.172), """cubicyard""": from_to(0.7_6455, 1.3_0795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.0_0023_6588, 4226.75), } def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + """, """.join(lowercase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + """, """.join(lowercase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
277
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class a ( lowerCAmelCase_ ): _snake_case : int = 'dpt' def __init__( self : Any , __lowerCAmelCase : Optional[Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Optional[int]=12 , __lowerCAmelCase : Dict=3072 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Optional[Any]=1e-1_2 , __lowerCAmelCase : List[str]=384 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=[2, 5, 8, 11] , __lowerCAmelCase : Any="project" , __lowerCAmelCase : Dict=[4, 2, 1, 0.5] , __lowerCAmelCase : int=[96, 192, 384, 768] , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Optional[Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[Any]=0.4 , __lowerCAmelCase : List[str]=255 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=[1, 1024, 24, 24] , __lowerCAmelCase : List[Any]=[0, 1] , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : str , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _UpperCAmelCase = BitConfig(**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase = BitConfig(**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = [] _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _UpperCAmelCase = readout_type _UpperCAmelCase = reassemble_factors _UpperCAmelCase = neck_hidden_sizes _UpperCAmelCase = fusion_hidden_size _UpperCAmelCase = head_in_index _UpperCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = semantic_loss_ignore_index _UpperCAmelCase = semantic_classifier_dropout def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
277
1
import os import sys _lowerCAmelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _lowerCAmelCase : Optional[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[Any] ): """simple docstring""" return AutoTokenizer.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any] ): """simple docstring""" return AutoModel.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : int ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : int , **_lowerCAmelCase : List[str] ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase ( *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase )
364
import torch from transformers import AutoModel class _UpperCamelCase ( torch.nn.Module ): def __init__( self :str , lowerCamelCase :Tuple="sayef/fsner-bert-base-uncased" ) -> int: super(lowerCamelCase , self ).__init__() UpperCAmelCase__ = AutoModel.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase ) UpperCAmelCase__ = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCAmelCase__ = torch.nn.Softmax(dim=1 ) def UpperCAmelCase_ ( self :Union[str, Any] , **lowerCamelCase :Tuple ) -> Dict: return self.bert(**lowerCamelCase ).last_hidden_state def UpperCAmelCase_ ( self :Any , lowerCamelCase :Union[str, Any] ) -> Union[str, Any]: return token_embeddings.sum(2 , keepdim=lowerCamelCase ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :List[Any] , lowerCamelCase :int , lowerCamelCase :Union[str, Any]=1 ) -> Dict: return self.softmax(T * self.cos(lowerCamelCase , lowerCamelCase ) ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Any , lowerCamelCase :Any ) -> Union[str, Any]: UpperCAmelCase__ = W_supports["sizes"].tolist() UpperCAmelCase__ = W_supports["start_token_id"].item() UpperCAmelCase__ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase__ = self.BERT(**lowerCamelCase ) UpperCAmelCase__ = self.BERT(**lowerCamelCase ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = W_supports["input_ids"] == start_token_id UpperCAmelCase__ = W_supports["input_ids"] == end_token_id for i, size in enumerate(lowerCamelCase ): if i == 0: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = support_sizes[i - 1] UpperCAmelCase__ = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase__ = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase__ = torch.vstack((p_starts, p_start) ) UpperCAmelCase__ = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase__ = p_start UpperCAmelCase__ = p_end return p_starts, p_ends
364
1
"""simple docstring""" class __snake_case : def __init__( self: List[Any] ): __lowerCamelCase = {} def __a ( self: Optional[Any] ): print(self.vertex ) for i in self.vertex: print(A_ , """ -> """ , """ -> """.join([str(A_ ) for j in self.vertex[i]] ) ) def __a ( self: Any , A_: str , A_: Tuple ): if from_vertex in self.vertex: self.vertex[from_vertex].append(A_ ) else: # else make a new vertex __lowerCamelCase = [to_vertex] def __a ( self: Any ): __lowerCamelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(A_ , A_ ) def __a ( self: Any , A_: List[str] , A_: Tuple ): __lowerCamelCase = True print(A_ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(A_ , A_ ) if __name__ == "__main__": __magic_name__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
281
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ): __a : Tuple = IFPipeline __a : List[Any] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __a : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __a : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _snake_case ( self ) -> List[str]: '''simple docstring''' return self._get_dummy_components() def _snake_case ( self , lowercase , lowercase=0 ) -> int: '''simple docstring''' if str(lowercase ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowercase ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowercase ).manual_seed(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ) -> int: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case ( self ) -> Tuple: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: '''simple docstring''' self._test_save_load_local() def _snake_case ( self ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Dict = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=lowercase , tokenizer=lowercase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Tuple = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowercase , lowercase , lowercase , lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __SCREAMING_SNAKE_CASE : List[str] = IFImgaImgPipeline(**pipe_a.components ) __SCREAMING_SNAKE_CASE : str = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowercase , lowercase , lowercase , lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __SCREAMING_SNAKE_CASE : str = IFInpaintingPipeline(**pipe_a.components ) __SCREAMING_SNAKE_CASE : Any = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowercase , lowercase , lowercase , lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' _start_torch_memory_measurement() __SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = pipe_a( prompt_embeds=lowercase , negative_prompt_embeds=lowercase , num_inference_steps=2 , generator=lowercase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (6_4, 6_4, 3) __SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(lowercase , lowercase ) # pipeline 2 _start_torch_memory_measurement() __SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : Dict = pipe_a( prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Dict = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __SCREAMING_SNAKE_CASE : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(lowercase , lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' _start_torch_memory_measurement() __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = pipe_a( prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , num_inference_steps=2 , generator=lowercase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) __SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __SCREAMING_SNAKE_CASE : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(lowercase , lowercase ) # pipeline 2 _start_torch_memory_measurement() __SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : Tuple = pipe_a( prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , original_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(lowercase , lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' _start_torch_memory_measurement() __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = pipe_a( prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , mask_image=lowercase , num_inference_steps=2 , generator=lowercase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) __SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __SCREAMING_SNAKE_CASE : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(lowercase , lowercase ) # pipeline 2 _start_torch_memory_measurement() __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(lowercase ) __SCREAMING_SNAKE_CASE : Dict = pipe_a( prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , mask_image=lowercase , original_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __SCREAMING_SNAKE_CASE : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(lowercase , lowercase ) def A_ ( ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
158
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): debug_launcher(test_script.main ) def lowercase ( self ): debug_launcher(test_ops.main )
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase_ : """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE ( self : int ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any=True ,lowercase__ : Dict=False ,lowercase__ : Dict=False ,lowercase__ : Tuple=False ,): __lowercase = 4 __lowercase = 3_2 __lowercase = (3_2, 3_2) __lowercase = torch.manual_seed(0 ) __lowercase = torch.device(lowercase__ ) __lowercase = (batch_size, num_channels) + sizes __lowercase = randn_tensor(lowercase__ ,generator=lowercase__ ,device=lowercase__ ) __lowercase = {'''hidden_states''': hidden_states} if include_temb: __lowercase = 1_2_8 __lowercase = randn_tensor((batch_size, temb_channels) ,generator=lowercase__ ,device=lowercase__ ) if include_res_hidden_states_tuple: __lowercase = torch.manual_seed(1 ) __lowercase = (randn_tensor(lowercase__ ,generator=lowercase__ ,device=lowercase__ ),) if include_encoder_hidden_states: __lowercase = floats_tensor((batch_size, 3_2, 3_2) ).to(lowercase__ ) if include_skip_sample: __lowercase = randn_tensor(((batch_size, 3) + sizes) ,generator=lowercase__ ,device=lowercase__ ) return dummy_input def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": __lowercase = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) __lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**lowercase__ ) unet_block.to(lowercase__ ) unet_block.eval() with torch.no_grad(): __lowercase = unet_block(**lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = output[0] self.assertEqual(output.shape ,self.output_shape ) __lowercase = output[0, -1, -3:, -3:] __lowercase = torch.tensor(lowercase__ ).to(lowercase__ ) assert torch_all_close(output_slice.flatten() ,lowercase__ ,atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' ,'''Training is not supported in mps''' ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**lowercase__ ) model.to(lowercase__ ) model.train() __lowercase = model(**lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = output[0] __lowercase = torch.device(lowercase__ ) __lowercase = randn_tensor(output.shape ,device=lowercase__ ) __lowercase = torch.nn.functional.mse_loss(lowercase__ ,lowercase__ ) loss.backward()
41
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _snake_case : Tuple = False _snake_case : Optional[int] = True _snake_case : Any = False if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _snake_case : Tuple = parser.parse_args() _snake_case : Optional[Any] = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } _snake_case : Tuple = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } _snake_case : Any = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: _snake_case : List[Any] = reader.read() _snake_case : List[Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): _snake_case : List[Any] = UNetaDModel(**config) else: _snake_case : int = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel _snake_case : Optional[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _snake_case : Any = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _snake_case : Any = config[key] del config[key] _snake_case : List[str] = [k.replace("UNetRes", "") for k in config["down_block_types"]] _snake_case : Any = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: _snake_case : Optional[int] = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) _snake_case : Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue _snake_case : List[Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: _snake_case : Dict = param_value _snake_case : Any = True if not has_changed: _snake_case : int = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
441
0
'''simple docstring''' from __future__ import annotations class _A : '''simple docstring''' def __init__( self : int , lowerCamelCase : int )-> None: snake_case__ : int = order # a_{0} ... a_{k} snake_case__ : Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} snake_case__ : Optional[int] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] snake_case__ : str = [0.0] * self.order # y[n-1] ... y[n-k] snake_case__ : Any = [0.0] * self.order def __lowerCAmelCase ( self : Any , lowerCamelCase : list[float] , lowerCamelCase : list[float] )-> None: if len(lowerCamelCase ) < self.order: snake_case__ : Optional[Any] = [1.0, *a_coeffs] if len(lowerCamelCase ) != self.order + 1: snake_case__ : Union[str, Any] = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase )}""" ) raise ValueError(lowerCamelCase ) if len(lowerCamelCase ) != self.order + 1: snake_case__ : Optional[int] = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase )}""" ) raise ValueError(lowerCamelCase ) snake_case__ : Union[str, Any] = a_coeffs snake_case__ : Union[str, Any] = b_coeffs def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : float )-> float: snake_case__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) snake_case__ : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] snake_case__ : Optional[Any] = self.input_history[:-1] snake_case__ : str = self.output_history[:-1] snake_case__ : Optional[Any] = sample snake_case__ : str = result return result
719
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _A ( UpperCamelCase ): '''simple docstring''' _lowercase = 'blenderbot-small' _lowercase = ['past_key_values'] _lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , lowerCamelCase : Any=50_265 , lowerCamelCase : str=512 , lowerCamelCase : List[Any]=8 , lowerCamelCase : List[Any]=2_048 , lowerCamelCase : str=16 , lowerCamelCase : Any=8 , lowerCamelCase : Dict=2_048 , lowerCamelCase : int=16 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : Any=0.0 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Dict="gelu" , lowerCamelCase : List[str]=512 , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : List[str]=0.02 , lowerCamelCase : List[str]=1 , lowerCamelCase : List[str]=False , lowerCamelCase : List[str]=0 , lowerCamelCase : List[str]=1 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=2 , **lowerCamelCase : Tuple , )-> Tuple: snake_case__ : List[str] = vocab_size snake_case__ : Dict = max_position_embeddings snake_case__ : Union[str, Any] = d_model snake_case__ : Any = encoder_ffn_dim snake_case__ : Dict = encoder_layers snake_case__ : Optional[Any] = encoder_attention_heads snake_case__ : Dict = decoder_ffn_dim snake_case__ : Dict = decoder_layers snake_case__ : Dict = decoder_attention_heads snake_case__ : Tuple = dropout snake_case__ : Union[str, Any] = attention_dropout snake_case__ : Union[str, Any] = activation_dropout snake_case__ : str = activation_function snake_case__ : Optional[Any] = init_std snake_case__ : Tuple = encoder_layerdrop snake_case__ : Optional[Any] = decoder_layerdrop snake_case__ : List[str] = use_cache snake_case__ : List[Any] = encoder_layers snake_case__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , forced_eos_token_id=lowerCamelCase , **lowerCamelCase , ) class _A ( UpperCamelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case__ : Any = {0: """batch"""} snake_case__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case__ : Tuple = {0: """batch""", 1: """decoder_sequence"""} snake_case__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case__ , snake_case__ : List[Any] = self.num_layers for i in range(lowerCamelCase ): snake_case__ : Any = {0: """batch""", 2: """past_sequence + sequence"""} snake_case__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case__ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __lowerCAmelCase ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case__ : str = super().outputs else: snake_case__ : str = super(lowerCamelCase , self ).outputs if self.use_past: snake_case__ , snake_case__ : int = self.num_layers for i in range(lowerCamelCase ): snake_case__ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} snake_case__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __lowerCAmelCase ( self : Tuple , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: snake_case__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Generate decoder inputs snake_case__ : Any = seq_length if not self.use_past else 1 snake_case__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case__ : List[str] = dict(**lowerCamelCase , **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case__ , snake_case__ : int = common_inputs["""input_ids"""].shape snake_case__ : Union[str, Any] = common_inputs["""decoder_input_ids"""].shape[1] snake_case__ , snake_case__ : List[Any] = self.num_attention_heads snake_case__ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : int = decoder_seq_length + 3 snake_case__ : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : Optional[int] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCamelCase , lowerCamelCase )] , dim=1 ) snake_case__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ , snake_case__ : Dict = self.num_layers snake_case__ : Any = min(lowerCamelCase , lowerCamelCase ) snake_case__ : Tuple = max(lowerCamelCase , lowerCamelCase ) - min_num_layers snake_case__ : Optional[Any] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. snake_case__ : List[str] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCamelCase , lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case__ , snake_case__ : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case__ : List[Any] = seqlen + 2 snake_case__ , snake_case__ : Union[str, Any] = self.num_layers snake_case__ , snake_case__ : List[Any] = self.num_attention_heads snake_case__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : str = common_inputs["""attention_mask"""].dtype snake_case__ : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) snake_case__ : Tuple = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def __lowerCAmelCase ( self : List[Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : List[Any] = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : int = tokenizer.num_special_tokens_to_add(lowerCamelCase ) snake_case__ : List[Any] = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Dict = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : str = dict(tokenizer(lowerCamelCase , return_tensors=lowerCamelCase ) ) return common_inputs def __lowerCAmelCase ( self : str , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case__ : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) elif self.task == "causal-lm": snake_case__ : int = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) else: snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) return common_inputs def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : int )-> str: if self.task in ["default", "seq2seq-lm"]: snake_case__ : Tuple = super()._flatten_past_key_values_(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: snake_case__ : List[str] = super(lowerCamelCase , self )._flatten_past_key_values_( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
172
0
from math import ceil def __UpperCamelCase ( A , A ): UpperCamelCase__ = list(range(0 , A ) ) UpperCamelCase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ = [] for i in device_map_blocks: if device_map_blocks.count(A ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(A ) # Missing blocks UpperCamelCase__ = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ = [i for i in device_map_blocks if i not in blocks] if len(A ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(A ) ) if len(A ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(A ) ) if len(A ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(A ) ) def __UpperCamelCase ( A , A ): UpperCamelCase__ = list(range(A ) ) UpperCamelCase__ = int(ceil(n_layers / len(A ) ) ) UpperCamelCase__ = [layers[i : i + n_blocks] for i in range(0 , A , A )] return dict(zip(A , A ) )
415
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ) -> Any: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = embeddings_size UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = scope UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def _a (self ) -> List[str]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' UpperCamelCase__ = TFRegNetModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _A ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Dict =( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =False SCREAMING_SNAKE_CASE_ : int =False SCREAMING_SNAKE_CASE_ : List[Any] =False SCREAMING_SNAKE_CASE_ : Optional[Any] =False def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = TFRegNetModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a (self ) -> int: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a (self ) -> Dict: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a (self ) -> Optional[Any]: '''simple docstring''' pass def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _a (self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ = layer_type UpperCamelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _a (self ) -> Optional[int]: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase ( ): UpperCamelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _A ( unittest.TestCase ): @cached_property def _a (self ) -> Any: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
415
1
'''simple docstring''' def snake_case_ ( a__ : int ,a__ : int ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): """simple docstring""" assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
163
'''simple docstring''' from statistics import mean, stdev def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = min(a__ ) __lowercase = max(a__ ) # normalize data return [round((x - x_min) / (x_max - x_min) ,a__ ) for x in data] def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = mean(a__ ) __lowercase = stdev(a__ ) # standardize data return [round((x - mu) / (sigma) ,a__ ) for x in data]
163
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( UpperCamelCase: Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(UpperCamelCase , np.ndarray ): return list(tensor.shape ) __lowerCAmelCase = tf.shape(UpperCamelCase ) if tensor.shape == tf.TensorShape(UpperCamelCase ): return dynamic __lowerCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase )] def _UpperCAmelCase ( UpperCamelCase: tf.Tensor , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCamelCase , name=UpperCamelCase ) def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Tuple , UpperCamelCase: str=1e-5 , UpperCamelCase: Optional[Any]=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase , UpperCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized __lowerCAmelCase , __lowerCAmelCase = tf.nn.moments(UpperCamelCase , axes=[axis] , keepdims=UpperCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __lowerCAmelCase = [1] * inputs.shape.rank __lowerCAmelCase = shape_list(UpperCamelCase )[axis] __lowerCAmelCase = tf.reshape(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = tf.reshape(UpperCamelCase , UpperCamelCase ) # Compute layer normalization using the batch_normalization # function. __lowerCAmelCase = tf.nn.batch_normalization( UpperCamelCase , UpperCamelCase , UpperCamelCase , offset=UpperCamelCase , scale=UpperCamelCase , variance_epsilon=UpperCamelCase , ) return outputs def _UpperCAmelCase ( UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=0 , UpperCamelCase: Tuple=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __lowerCAmelCase = tf.shape(UpperCamelCase ) __lowerCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __lowerCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase , UpperCamelCase ) def _UpperCAmelCase ( UpperCamelCase: tf.Tensor ): """simple docstring""" if not isinstance(UpperCamelCase , tf.Tensor ): __lowerCAmelCase = tf.convert_to_tensor(UpperCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __lowerCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __lowerCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _UpperCAmelCase ( UpperCamelCase: tf.Tensor , UpperCamelCase: int , UpperCamelCase: str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( UpperCamelCase , tf.cast(UpperCamelCase , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] ): """simple docstring""" __lowerCAmelCase = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __lowerCAmelCase = [x for x in data if len(UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) __lowerCAmelCase = np.asarray(UpperCamelCase ) __lowerCAmelCase = 1 __lowerCAmelCase = np.array_split(UpperCamelCase , UpperCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __lowerCAmelCase = np.array_split(UpperCamelCase , UpperCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase ): __lowerCAmelCase = chunk_data else: __lowerCAmelCase = data def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Dict ): """simple docstring""" if name in group.attrs: __lowerCAmelCase = [n.decode("utf8" ) if hasattr(UpperCamelCase , "decode" ) else n for n in group.attrs[name]] else: __lowerCAmelCase = [] __lowerCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(UpperCamelCase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def _UpperCAmelCase ( UpperCamelCase: Union[str, Any] ): """simple docstring""" def _expand_single_ad_tensor(UpperCamelCase: Union[str, Any] ): if isinstance(UpperCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase )
611
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCAmelCase = model_type_to_module_name(UpperCamelCase ) __lowerCAmelCase = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(UpperCamelCase , UpperCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase , "__name__" , UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCAmelCase = importlib.import_module("transformers" ) if hasattr(UpperCamelCase , UpperCamelCase ): return getattr(UpperCamelCase , UpperCamelCase ) return None def _UpperCAmelCase ( UpperCamelCase: Union[str, os.PathLike] , UpperCamelCase: Optional[Union[str, os.PathLike]] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: Optional[Dict[str, str]] = None , UpperCamelCase: Optional[Union[bool, str]] = None , UpperCamelCase: Optional[str] = None , UpperCamelCase: bool = False , **UpperCamelCase: List[Any] , ): """simple docstring""" __lowerCAmelCase = get_file_from_repo( UpperCamelCase , UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , resume_download=UpperCamelCase , proxies=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , local_files_only=UpperCamelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase , encoding="utf-8" ) as reader: return json.load(UpperCamelCase ) class a : def __init__( self : Optional[Any] ): """simple docstring""" raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def UpperCAmelCase__ ( cls : Tuple , snake_case__ : Dict , **snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = kwargs.pop("config" , snake_case__ ) __lowerCAmelCase = kwargs.pop("trust_remote_code" , snake_case__ ) __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(snake_case__ , **snake_case__ ) __lowerCAmelCase = config_dict.get("image_processor_type" , snake_case__ ) __lowerCAmelCase = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowerCAmelCase = config_dict.pop("feature_extractor_type" , snake_case__ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __lowerCAmelCase = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoFeatureExtractor"] __lowerCAmelCase = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): __lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.image_processor_type`` __lowerCAmelCase = getattr(snake_case__ , "image_processor_type" , snake_case__ ) if hasattr(snake_case__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: __lowerCAmelCase = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __lowerCAmelCase = image_processor_class_from_name(snake_case__ ) __lowerCAmelCase = image_processor_auto_map is not None __lowerCAmelCase = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING __lowerCAmelCase = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: __lowerCAmelCase = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) __lowerCAmelCase = kwargs.pop("code_revision" , snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__ , **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: __lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCAmelCase__ ( snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(snake_case__ , snake_case__ )
611
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case ( UpperCAmelCase : Tuple ): def wrapper(*UpperCAmelCase : List[str], **UpperCAmelCase : str ): A = timeit.default_timer() A = func(*UpperCAmelCase, **UpperCAmelCase ) A = timeit.default_timer() - starttime return delta A = func.__name__ return wrapper def snake_case ( UpperCAmelCase : dict, UpperCAmelCase : int=1_00, UpperCAmelCase : Optional[Any]=None ): A = [] A = seq_shapes or {} for i in range(UpperCAmelCase ): A = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase, _ArrayXD ): A = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase, datasets.Value ): if v.dtype == "string": A = 'The small grey turtle was surprisingly fast when challenged.' else: A = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase, datasets.Sequence ): while isinstance(UpperCAmelCase, datasets.Sequence ): A = v.feature A = seq_shapes[k] A = np.random.rand(*UpperCAmelCase ).astype(v.dtype ) A = data dummy_data.append((i, example) ) return dummy_data def snake_case ( UpperCAmelCase : Union[str, Any], UpperCAmelCase : Dict, UpperCAmelCase : Dict=1_00, UpperCAmelCase : str=None ): A = generate_examples(UpperCAmelCase, num_examples=UpperCAmelCase, seq_shapes=UpperCAmelCase ) with ArrowWriter(features=UpperCAmelCase, path=UpperCAmelCase ) as writer: for key, record in dummy_data: A = features.encode_example(UpperCAmelCase ) writer.write(UpperCAmelCase ) A , A = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) A = datasets.Dataset.from_file(filename=UpperCAmelCase, info=datasets.DatasetInfo(features=UpperCAmelCase ) ) return dataset
110
from math import factorial class UpperCamelCase : """simple docstring""" def __init__( self : Any ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: '''simple docstring''' A = real if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [1] * rank else: A = rank def __repr__( self : Any ) -> Optional[Any]: '''simple docstring''' return ( f'{self.real}+' f'{"+".join(str(_SCREAMING_SNAKE_CASE )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def A( self : Optional[Any] ) -> Tuple: '''simple docstring''' A = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,_SCREAMING_SNAKE_CASE ) def __add__( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : int ) -> Any: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return Dual(self.real + other ,self.duals ) A = self.duals.copy() A = other.duals.copy() if len(_SCREAMING_SNAKE_CASE ) > len(_SCREAMING_SNAKE_CASE ): o_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) elif len(_SCREAMING_SNAKE_CASE ) < len(_SCREAMING_SNAKE_CASE ): s_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) A = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,_SCREAMING_SNAKE_CASE ) snake_case = __add__ def __sub__( self : Tuple ,_SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: '''simple docstring''' return self + other * -1 def __mul__( self : Any ,_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,_SCREAMING_SNAKE_CASE ) A = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,_SCREAMING_SNAKE_CASE ) snake_case = __mul__ def __truediv__( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> List[str]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,_SCREAMING_SNAKE_CASE ) raise ValueError def __floordiv__( self : Any ,_SCREAMING_SNAKE_CASE : Any ) -> Dict: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,_SCREAMING_SNAKE_CASE ) raise ValueError def __pow__( self : int ,_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: '''simple docstring''' if n < 0 or isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self A = self for _ in range(n - 1 ): x *= self return x def snake_case ( UpperCAmelCase : Optional[int], UpperCAmelCase : List[Any], UpperCAmelCase : int ): if not callable(UpperCAmelCase ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCAmelCase, (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError('differentiate() requires an int as input for order' ) A = Dual(UpperCAmelCase, 1 ) A = func(UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case ( UpperCAmelCase : int ): return y**2 * y**4 print(differentiate(f, 9, 2))
110
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) _lowerCamelCase : Optional[int] = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_lowerCAmelCase ) DownloadCommand.register_subcommand(_lowerCAmelCase ) EnvironmentCommand.register_subcommand(_lowerCAmelCase ) RunCommand.register_subcommand(_lowerCAmelCase ) ServeCommand.register_subcommand(_lowerCAmelCase ) UserCommands.register_subcommand(_lowerCAmelCase ) AddNewModelCommand.register_subcommand(_lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(_lowerCAmelCase ) LfsCommands.register_subcommand(_lowerCAmelCase ) PTtoTFCommand.register_subcommand(_lowerCAmelCase ) # Let's go _lowerCamelCase : Optional[Any] = parser.parse_args() if not hasattr(_lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run _lowerCamelCase : Optional[Any] = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
44
from __future__ import annotations import math import random from typing import Any class __lowerCAmelCase : '''simple docstring''' def __init__( self: Dict ): lowercase__ : list[Any] = [] lowercase__ : int = 0 lowercase__ : int = 0 def snake_case__( self: Optional[int] ): return self.head == self.tail def snake_case__( self: Any, lowerCamelCase_: Any ): self.data.append(lowerCamelCase_ ) lowercase__ : int = self.tail + 1 def snake_case__( self: Tuple ): lowercase__ : Optional[Any] = self.data[self.head] lowercase__ : Optional[int] = self.head + 1 return ret def snake_case__( self: List[Any] ): return self.tail - self.head def snake_case__( self: List[Any] ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class __lowerCAmelCase : '''simple docstring''' def __init__( self: Union[str, Any], lowerCamelCase_: Any ): lowercase__ : List[Any] = data lowercase__ : MyNode | None = None lowercase__ : MyNode | None = None lowercase__ : int = 1 def snake_case__( self: Optional[Any] ): return self.data def snake_case__( self: List[str] ): return self.left def snake_case__( self: Optional[int] ): return self.right def snake_case__( self: Optional[Any] ): return self.height def snake_case__( self: Optional[int], lowerCamelCase_: Any ): lowercase__ : Tuple = data def snake_case__( self: Optional[int], lowerCamelCase_: MyNode | None ): lowercase__ : Dict = node def snake_case__( self: Union[str, Any], lowerCamelCase_: MyNode | None ): lowercase__ : Optional[Any] = node def snake_case__( self: List[Any], lowerCamelCase_: int ): lowercase__ : Union[str, Any] = height def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def SCREAMING_SNAKE_CASE__ ( _lowercase : int , _lowercase : int ) -> int: '''simple docstring''' if a > b: return a return b def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode ) -> MyNode: '''simple docstring''' print('left rotation node:' , node.get_data() ) lowercase__ : Optional[int] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowercase ) lowercase__ : List[str] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowercase ) lowercase__ : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowercase ) return ret def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode ) -> MyNode: '''simple docstring''' print('right rotation node:' , node.get_data() ) lowercase__ : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowercase ) lowercase__ : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowercase ) lowercase__ : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowercase ) return ret def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode ) -> MyNode: '''simple docstring''' lowercase__ : str = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowercase ) ) return right_rotation(_lowercase ) def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode ) -> MyNode: '''simple docstring''' lowercase__ : Optional[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowercase ) ) return left_rotation(_lowercase ) def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode | None , _lowercase : Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(_lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase__ : Tuple = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase__ : Optional[Any] = right_rotation(_lowercase ) else: lowercase__ : List[str] = lr_rotation(_lowercase ) else: node.set_right(insert_node(node.get_right() , _lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase__ : Dict = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase__ : Dict = rl_rotation(_lowercase ) else: lowercase__ : Tuple = left_rotation(_lowercase ) lowercase__ : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowercase ) return node def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode ) -> Any: '''simple docstring''' while True: lowercase__ : List[Any] = root.get_right() if right_child is None: break lowercase__ : List[str] = right_child return root.get_data() def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode ) -> Any: '''simple docstring''' while True: lowercase__ : Any = root.get_left() if left_child is None: break lowercase__ : List[str] = left_child return root.get_data() def SCREAMING_SNAKE_CASE__ ( _lowercase : MyNode , _lowercase : Any ) -> MyNode | None: '''simple docstring''' lowercase__ : List[Any] = root.get_left() lowercase__ : List[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase__ : Dict = get_left_most(_lowercase ) root.set_data(_lowercase ) root.set_right(del_node(_lowercase , _lowercase ) ) elif left_child is not None: lowercase__ : List[Any] = left_child elif right_child is not None: lowercase__ : Dict = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(_lowercase , _lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowercase , _lowercase ) ) if get_height(_lowercase ) - get_height(_lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase__ : List[Any] = left_rotation(_lowercase ) else: lowercase__ : Optional[Any] = rl_rotation(_lowercase ) elif get_height(_lowercase ) - get_height(_lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase__ : Optional[int] = right_rotation(_lowercase ) else: lowercase__ : Dict = lr_rotation(_lowercase ) lowercase__ : Any = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowercase ) return root class __lowerCAmelCase : '''simple docstring''' def __init__( self: str ): lowercase__ : MyNode | None = None def snake_case__( self: Optional[Any] ): return get_height(self.root ) def snake_case__( self: List[Any], lowerCamelCase_: Any ): print('insert:' + str(lowerCamelCase_ ) ) lowercase__ : int = insert_node(self.root, lowerCamelCase_ ) def snake_case__( self: Tuple, lowerCamelCase_: Any ): print('delete:' + str(lowerCamelCase_ ) ) if self.root is None: print('Tree is empty!' ) return lowercase__ : int = del_node(self.root, lowerCamelCase_ ) def __str__( self: str, ): # a level traversale, gives a more intuitive look on the tree lowercase__ : Optional[int] = '' lowercase__ : Any = MyQueue() q.push(self.root ) lowercase__ : Dict = self.get_height() if layer == 0: return output lowercase__ : Optional[int] = 0 while not q.is_empty(): lowercase__ : Dict = q.pop() lowercase__ : Optional[Any] = ' ' * int(math.pow(2, layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCamelCase_ ) q.push(lowerCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowercase__ : Union[str, Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2, lowerCamelCase_ ) - 1: lowercase__ : Optional[int] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __UpperCamelCase: int = AVLtree() __UpperCamelCase: int = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
266
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCamelCase = object() # For specifying empty leaf dict `{}` __lowerCamelCase = object() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): A_ = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase, ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: def replace(UpperCAmelCase__, UpperCAmelCase__ ): for rule, replacement in rules: if _match(__UpperCamelCase, __UpperCamelCase ): return replacement return val return replace def UpperCAmelCase__ ( ) -> Dict: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", __UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""", __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = _get_partition_rules() A_ = _replacement_rules(__UpperCamelCase ) A_ = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} A_ = {k: replace(__UpperCamelCase, __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """pix2struct_text_model""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCAmelCase=50244 , __UpperCAmelCase=768 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=1.0 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = d_kv __lowerCamelCase = d_ff __lowerCamelCase = num_layers __lowerCamelCase = num_heads __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_factor __lowerCamelCase = use_cache __lowerCamelCase = eos_token_id __lowerCamelCase = decoder_start_token_id # for backwards compatibility __lowerCamelCase = dense_act_fn super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , is_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) @classmethod def lowerCamelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) __lowerCamelCase ,__lowerCamelCase = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowerCamelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """pix2struct_vision_model""" def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=768 , __UpperCAmelCase=2048 , __UpperCAmelCase=64 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=1E-6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-1_0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=4096 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = hidden_size __lowerCamelCase = patch_embed_hidden_size __lowerCamelCase = d_ff __lowerCamelCase = dropout_rate __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = initializer_range __lowerCamelCase = initializer_factor __lowerCamelCase = attention_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = dense_act_fn __lowerCamelCase = seq_len __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = d_kv @classmethod def lowerCamelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) __lowerCamelCase ,__lowerCamelCase = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowerCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """pix2struct""" lowerCAmelCase__ = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(tie_word_embeddings=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) if text_config is None: __lowerCamelCase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __lowerCamelCase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __lowerCamelCase = PixaStructTextConfig(**__UpperCAmelCase ) __lowerCamelCase = PixaStructVisionConfig(**__UpperCAmelCase ) __lowerCamelCase = self.text_config.decoder_start_token_id __lowerCamelCase = self.text_config.pad_token_id __lowerCamelCase = self.text_config.eos_token_id __lowerCamelCase = initializer_factor __lowerCamelCase = initializer_range __lowerCamelCase = self.initializer_range __lowerCamelCase = self.initializer_range __lowerCamelCase = is_vqa @classmethod def lowerCamelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.text_config.to_dict() __lowerCamelCase = self.vision_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
175
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def a__ ( _UpperCamelCase : List[Any] ): if "cls_token" in name: __lowerCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: __lowerCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: __lowerCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: __lowerCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: __lowerCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: __lowerCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: __lowerCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: __lowerCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: __lowerCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: __lowerCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: __lowerCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: __lowerCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: __lowerCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: __lowerCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: __lowerCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Dict ): for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = int(key_split[1] ) if "decoder_blocks" in key: __lowerCamelCase = config.decoder_hidden_size __lowerCamelCase = '''decoder.decoder_layers.''' if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] elif "bias" in key: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] else: __lowerCamelCase = config.hidden_size __lowerCamelCase = '''vit.encoder.layer.''' if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] elif "bias" in key: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] else: __lowerCamelCase = val return orig_state_dict def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Any ): __lowerCamelCase = ViTMAEConfig() if "large" in checkpoint_url: __lowerCamelCase = 10_24 __lowerCamelCase = 40_96 __lowerCamelCase = 24 __lowerCamelCase = 16 elif "huge" in checkpoint_url: __lowerCamelCase = 14 __lowerCamelCase = 12_80 __lowerCamelCase = 51_20 __lowerCamelCase = 32 __lowerCamelCase = 16 __lowerCamelCase = ViTMAEForPreTraining(_UpperCamelCase ) __lowerCamelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase ,map_location='''cpu''' )['''model'''] __lowerCamelCase = ViTMAEImageProcessor(size=config.image_size ) __lowerCamelCase = convert_state_dict(_UpperCamelCase ,_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() __lowerCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' __lowerCamelCase = Image.open(requests.get(_UpperCamelCase ,stream=_UpperCamelCase ).raw ) __lowerCamelCase = ViTMAEImageProcessor(size=config.image_size ) __lowerCamelCase = image_processor(images=_UpperCamelCase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits if "large" in checkpoint_url: __lowerCamelCase = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: __lowerCamelCase = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: __lowerCamelCase = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_UpperCamelCase ,atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
175
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : List[str] = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] _UpperCAmelCase : int = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] _UpperCAmelCase : str = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): _UpperCAmelCase : Optional[int] = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a :str = logging.getLogger(__name__) def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=__lowerCAmelCase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=__lowerCAmelCase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=__lowerCAmelCase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=__lowerCAmelCase , default="""data/dump""" , help="""The dump file prefix.""" ) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE__ : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` SCREAMING_SNAKE_CASE__ : Dict = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE__ : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: SCREAMING_SNAKE_CASE__ : int = fp.readlines() logger.info("""Start encoding""" ) logger.info(F'''{len(__lowerCAmelCase )} examples to process.''' ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1_0000 SCREAMING_SNAKE_CASE__ : Dict = time.time() for text in data: SCREAMING_SNAKE_CASE__ : Dict = F'''{bos} {text.strip()} {sep}''' SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) rslt.append(__lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE__ : str = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) SCREAMING_SNAKE_CASE__ : Tuple = time.time() logger.info("""Finished binarization""" ) logger.info(F'''{len(__lowerCAmelCase )} examples processed.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' SCREAMING_SNAKE_CASE__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE__ : Tuple = [np.uintaa(__lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.intaa(__lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(__lowerCAmelCase , """wb""" ) as handle: pickle.dump(rslt_ , __lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
680
0
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->bool: """simple docstring""" __lowercase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowercase : set[int] = set() return any( node not in visited and depth_first_search(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) for node in graph ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->bool: """simple docstring""" visited.add(_lowerCamelCase ) rec_stk.add(_lowerCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_lowerCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(_lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
281
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCamelCase = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any ): inspect_dataset(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): inspect_metric(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: List[str] ): with pytest.raises(UpperCamelCase__ ): get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = get_dataset_config_names(UpperCamelCase__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = get_dataset_infos(UpperCamelCase__ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE__ = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = get_dataset_infos(UpperCamelCase__ ) assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: int ): with pytest.raises(UpperCamelCase__ ): get_dataset_split_names(UpperCamelCase__ , config_name=UpperCamelCase__ )
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = torch.device("""cpu""") def UpperCAmelCase_ (): """simple docstring""" _a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : Any = Image.open(requests.get(__a , stream=__a ).raw ) return im def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def UpperCAmelCase_ (__a : List[Any] , __a : List[str] , __a : Tuple ): """simple docstring""" _a : Union[str, Any] = dct.pop(__a ) _a : List[str] = val def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : Union[str, Any] = [] for k in state_dict.keys(): _a : int = k if ".pwconv" in k: _a : List[str] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: _a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: _a : Union[str, Any] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: _a : Tuple = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: _a : List[Any] = k_new.split('.' ) if ls[2].isdigit(): _a : str = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: _a : Any = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Dict ): """simple docstring""" _a : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _a : Optional[Any] = 1_0_0_0 _a : Any = 'huggingface/label-files' _a : Dict = 'imagenet-1k-id2label.json' _a : List[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) _a : Optional[Any] = {int(__a ): v for k, v in idalabel.items()} _a : List[Any] = idalabel _a : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _a : str = [3, 3, 6, 4] _a : int = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": _a : Dict = [3, 3, 9, 6] _a : Union[str, Any] = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": _a : Union[str, Any] = [4, 3, 1_0, 5] _a : Tuple = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": _a : int = [4, 4, 1_2, 6] _a : Tuple = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): _a : Union[str, Any] = torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: _a : List[Any] = torch.load(__a , map_location='cpu' ) _a : Optional[int] = checkpoint _a : Any = create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model _a : Optional[Any] = SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs _a : Optional[int] = prepare_img() _a : int = ViTImageProcessor.from_pretrained('preprocessor_config' ) _a : List[Any] = processor(images=__a , return_tensors='pt' ) # compare outputs from both models _a : Any = get_expected_output(__a ) _a : int = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __lowerCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
229
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): lowerCamelCase ={ "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: lowerCamelCase ={ "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Dict = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ : str = numpy_to_pil(UpperCamelCase__ ) return images def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if images.ndim == 3: UpperCamelCase__ : Tuple = images[None, ...] UpperCamelCase__ : List[str] = (images * 2_5_5).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ : int = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: UpperCamelCase__ : Optional[int] = [Image.fromarray(UpperCamelCase__ ) for image in images] return pil_images
462
import math def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : List[str] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = 1 / 1_2_3_4_5 ): UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Optional[Any] = 3 while True: UpperCamelCase__ : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCamelCase__ ): UpperCamelCase__ : int = int(UpperCamelCase__ ) total_partitions += 1 if check_partition_perfect(UpperCamelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCamelCase__ ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
462
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : str = (DEISMultistepScheduler,) _lowerCAmelCase : Tuple = (("""num_inference_steps""", 2_5),) def _snake_case ( self : Union[str, Any] , **lowercase_ : int ): snake_case_ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase_ ) return config def _snake_case ( self : Optional[Any] , lowercase_ : Any=0 , **lowercase_ : Dict ): snake_case_ : Union[str, Any] = dict(self.forward_default_kwargs ) snake_case_ : Union[str, Any] = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ : int = self.dummy_sample snake_case_ : Optional[Any] = 0.1 * sample snake_case_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case_ : List[str] = self.get_scheduler_config(**lowercase_ ) snake_case_ : Union[str, Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ : Dict = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_, snake_case_ : str = sample, sample for t in range(lowercase_ , time_step + scheduler.config.solver_order + 1 ): snake_case_ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ : Dict = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self : Dict ): pass def _snake_case ( self : Optional[int] , lowercase_ : str=0 , **lowercase_ : Optional[int] ): snake_case_ : Tuple = dict(self.forward_default_kwargs ) snake_case_ : Any = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ : int = self.dummy_sample snake_case_ : Optional[int] = 0.1 * sample snake_case_ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Tuple = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ : List[str] = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) snake_case_ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ : int = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self : str , lowercase_ : Any=None , **lowercase_ : Dict ): if scheduler is None: snake_case_ : int = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) snake_case_ : List[str] = scheduler_class(**lowercase_ ) snake_case_ : str = self.scheduler_classes[0] snake_case_ : Optional[int] = self.get_scheduler_config(**lowercase_ ) snake_case_ : str = scheduler_class(**lowercase_ ) snake_case_ : List[Any] = 10 snake_case_ : Optional[Any] = self.dummy_model() snake_case_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[str] = model(lowercase_ , lowercase_ ) snake_case_ : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def _snake_case ( self : int ): snake_case_ : int = dict(self.forward_default_kwargs ) snake_case_ : Dict = kwargs.pop('''num_inference_steps''' , lowercase_ ) for scheduler_class in self.scheduler_classes: snake_case_ : Any = self.get_scheduler_config() snake_case_ : int = scheduler_class(**lowercase_ ) snake_case_ : Optional[Any] = self.dummy_sample snake_case_ : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps''' ): snake_case_ : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] snake_case_ : Dict = dummy_past_residuals[: scheduler.config.solver_order] snake_case_ : Dict = scheduler.timesteps[5] snake_case_ : Dict = scheduler.timesteps[6] snake_case_ : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self : Any ): # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case_ : List[Any] = DEISMultistepScheduler(**self.get_scheduler_config() ) snake_case_ : str = self.full_loop(scheduler=lowercase_ ) snake_case_ : List[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 snake_case_ : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case_ : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case_ : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) snake_case_ : Any = self.full_loop(scheduler=lowercase_ ) snake_case_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 def _snake_case ( self : Tuple ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def _snake_case ( self : Optional[int] ): self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , algorithm_type='''deis''' , solver_order=lowercase_ , solver_type=lowercase_ , ) def _snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def _snake_case ( self : Optional[int] ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , algorithm_type=lowercase_ , ) snake_case_ : int = self.full_loop( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , algorithm_type=lowercase_ , ) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def _snake_case ( self : Optional[int] ): self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def _snake_case ( self : Union[str, Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowercase_ , time_step=0 ) def _snake_case ( self : Tuple ): snake_case_ : str = self.full_loop() snake_case_ : Union[str, Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 def _snake_case ( self : Any ): snake_case_ : Tuple = self.full_loop(prediction_type='''v_prediction''' ) snake_case_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0_91 ) < 1E-3 def _snake_case ( self : Optional[int] ): snake_case_ : Optional[int] = self.scheduler_classes[0] snake_case_ : List[Any] = self.get_scheduler_config(thresholding=lowercase_ , dynamic_thresholding_ratio=0 ) snake_case_ : List[str] = scheduler_class(**lowercase_ ) snake_case_ : str = 10 snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Optional[Any] = model(lowercase_ , lowercase_ ) snake_case_ : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample assert sample.dtype == torch.floataa
123
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __lowercase ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_a ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def __lowercase ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def __lowercase ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_a ): http_head('''https://huggingface.co''' )
123
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) snake_case_ : List[str] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = LxmertTokenizer UpperCAmelCase = LxmertTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCamelCase ( self : List[str] , _a : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''UNwant\u00E9d,running''' _SCREAMING_SNAKE_CASE ='''unwanted, running''' return input_text, output_text def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE ='''I was born in 92000, and this is falsé.''' _SCREAMING_SNAKE_CASE =tokenizer.tokenize(_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =tokenizer.encode(_a , add_special_tokens=_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =tokenizer.encode(_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
191
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CanineTokenizer _lowercase = False def _UpperCamelCase( self : Dict ): super().setUp() a__ : str = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase( self : Union[str, Any] ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase( self : Optional[Any] , **lowerCamelCase__ : Tuple ): a__ : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) a__ : Optional[int] = 1_024 return tokenizer @require_torch def _UpperCamelCase( self : Tuple ): a__ : Dict = self.canine_tokenizer a__ : Union[str, Any] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off a__ : Dict = [57_344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57_345, 0, 0, 0, 0] # fmt: on a__ : str = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase( self : Optional[int] ): a__ : Optional[Any] = self.canine_tokenizer a__ : List[Any] = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] a__ : Any = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , lowerCamelCase__ ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertIn("token_type_ids" , lowerCamelCase__ ) @require_torch def _UpperCamelCase( self : List[str] ): a__ : int = self.canine_tokenizer a__ : List[Any] = [ "What's the weater?", "It's about 25 degrees.", ] a__ : Dict = tokenizer( text_target=lowerCamelCase__ , max_length=32 , padding="max_length" , truncation=lowerCamelCase__ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase( self : int ): # safety check on max_len default value so we are sure the test works a__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a__ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ : Optional[Any] = tempfile.mkdtemp() a__ : int = " He is very happy, UNwant\u00E9d,running" a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) a__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) a__ : Optional[int] = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) shutil.rmtree(lowerCamelCase__ ) a__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ : Tuple = tempfile.mkdtemp() a__ : int = " He is very happy, UNwant\u00E9d,running" a__ : Any = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: a__ : List[Any] = chr(0XE007 ) additional_special_tokens.append(lowerCamelCase__ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) a__ : str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) a__ : Tuple = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) a__ : List[Any] = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertIn(lowerCamelCase__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a__ : List[str] = tokenizer.__class__.from_pretrained(lowerCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : Optional[int] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a__, a__ : Tuple = self.get_clean_sequence(lowerCamelCase__ ) # a special token for Canine can be defined as follows: a__ : List[Any] = 0XE005 a__ : Optional[Any] = chr(lowerCamelCase__ ) tokenizer.add_special_tokens({"cls_token": special_token} ) a__ : str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) a__ : Optional[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCamelCase__ ) a__ : Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , input_encoded + special_token_id ) a__ : List[Any] = tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a__ : List[Any] = chr(0XE005 ) a__ : str = chr(0XE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCamelCase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) a__ : Dict = tokenizer.tokenize(lowerCamelCase__ ) a__ : int = tokenizer.tokenize(lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) self.assertEqual(token_a[0] , lowerCamelCase__ ) self.assertEqual(token_a[0] , lowerCamelCase__ ) @require_tokenizers def _UpperCamelCase( self : Tuple ): a__ : Any = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: a__ : List[Any] = 0XE006 a__ : Union[str, Any] = chr(lowerCamelCase__ ) a__ : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCamelCase__ ) tokenizer.from_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: a__ : Dict = json.load(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: a__ : Tuple = json.load(lowerCamelCase__ ) # a special token for Canine can be defined as follows: a__ : Optional[int] = 0XE006 a__ : Tuple = chr(lowerCamelCase__ ) a__ : List[Any] = [new_token_a] a__ : Optional[Any] = [new_token_a] with open(os.path.join(lowerCamelCase__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ : Any = tokenizer_class.from_pretrained(lowerCamelCase__ , extra_ids=0 ) self.assertIn(lowerCamelCase__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) a__ : Optional[Any] = 0XE007 a__ : str = chr(lowerCamelCase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ : List[str] = [AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ )] a__ : List[str] = tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , extra_ids=0 ) self.assertIn(lowerCamelCase__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase( self : Union[str, Any] ): a__ : int = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a__ : Optional[Any] = "hello world" if self.space_between_special_tokens: a__ : Any = "[CLS] hello world [SEP]" else: a__ : str = input a__ : Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Dict = tokenizer.decode(lowerCamelCase__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCamelCase__ , [output, output.lower()] ) def _UpperCamelCase( self : Dict ): a__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a__ : int = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] a__ : Optional[Any] = "a" a__ : Optional[Any] = ord(lowerCamelCase__ ) for attr in attributes_list: setattr(lowerCamelCase__ , attr + "_id" , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , attr + "_id" ) , lowerCamelCase__ ) setattr(lowerCamelCase__ , attr + "_id" , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , attr + "_id" ) , lowerCamelCase__ ) setattr(lowerCamelCase__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens_ids" ) , [] ) a__ : List[Any] = 0XE006 a__ : Dict = chr(lowerCamelCase__ ) setattr(lowerCamelCase__ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase( self : str ): pass def _UpperCamelCase( self : int ): pass def _UpperCamelCase( self : Any ): pass def _UpperCamelCase( self : Any ): pass def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : List[Any] ): pass def _UpperCamelCase( self : Optional[int] ): pass
37
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Union[str, Any] = 1_6 UpperCAmelCase__ : str = 3_2 def lowercase_ ( _snake_case ,_snake_case = 16 ): SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(_snake_case ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : int = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_snake_case ,max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = datasets.map( _snake_case ,batched=_snake_case ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Tuple = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Dict = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Tuple = 8 else: SCREAMING_SNAKE_CASE__ : Any = None return tokenizer.pad( _snake_case ,padding="""longest""" ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,return_tensors="""pt""" ,) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : List[Any] = DataLoader( tokenized_datasets["""train"""] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = DataLoader( tokenized_datasets["""validation"""] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=_snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Tuple = mocked_dataloaders # noqa: F811 def lowercase_ ( _snake_case ,_snake_case ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,_snake_case ) == "1": SCREAMING_SNAKE_CASE__ : int = 2 # New Code # SCREAMING_SNAKE_CASE__ : Tuple = int(args.gradient_accumulation_steps ) SCREAMING_SNAKE_CASE__ : List[str] = int(args.local_sgd_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : Optional[Any] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=_snake_case ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : List[Any] = config["""lr"""] SCREAMING_SNAKE_CASE__ : List[Any] = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ : Any = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ : Tuple = evaluate.load("""glue""" ,"""mrpc""" ) set_seed(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = get_dataloaders(_snake_case ,_snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=_snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = AdamW(params=model.parameters() ,lr=_snake_case ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : List[Any] = get_linear_schedule_with_warmup( optimizer=_snake_case ,num_warmup_steps=100 ,num_training_steps=(len(_snake_case ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.prepare( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) # Now we train the model for epoch in range(_snake_case ): model.train() with LocalSGD( accelerator=_snake_case ,model=_snake_case ,local_sgd_steps=_snake_case ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = model(**_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.loss accelerator.backward(_snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**_snake_case ) SCREAMING_SNAKE_CASE__ : Any = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_snake_case ,references=_snake_case ,) SCREAMING_SNAKE_CASE__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=_snake_case ,default=_snake_case ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) # New Code # parser.add_argument( """--gradient_accumulation_steps""" ,type=_snake_case ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,) parser.add_argument( """--local_sgd_steps""" ,type=_snake_case ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() SCREAMING_SNAKE_CASE__ : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_snake_case ,_snake_case ) if __name__ == "__main__": main()
223
0
"""simple docstring""" # flake8: noqa # Lint as: python3 lowerCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''umt5''' lowerCamelCase_ = ['''past_key_values'''] def __init__( self , lowercase=2_5_0_1_1_2 , lowercase=5_1_2 , lowercase=6_4 , lowercase=1_0_2_4 , lowercase=8 , lowercase=None , lowercase=6 , lowercase=3_2 , lowercase=1_2_8 , lowercase=0.1 , lowercase=1E-6 , lowercase=1.0 , lowercase="gated-gelu" , lowercase=True , lowercase=True , lowercase="T5Tokenizer" , lowercase=True , lowercase=0 , lowercase=1 , lowercase=0 , **lowercase , ): """simple docstring""" super().__init__( is_encoder_decoder=lowercase , tokenizer_class=lowercase , tie_word_embeddings=lowercase , pad_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , **lowercase , ) A_ : Optional[Any] = vocab_size A_ : List[Any] = d_model A_ : Any = d_kv A_ : Union[str, Any] = d_ff A_ : List[Any] = num_layers A_ : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Dict = num_heads A_ : Tuple = relative_attention_num_buckets A_ : List[Any] = relative_attention_max_distance A_ : Optional[int] = dropout_rate A_ : Tuple = layer_norm_epsilon A_ : List[str] = initializer_factor A_ : Dict = feed_forward_proj A_ : Union[str, Any] = use_cache A_ : Union[str, Any] = self.feed_forward_proj.split('-' ) A_ : Optional[Any] = act_info[-1] A_ : List[str] = act_info[0] == 'gated' if len(lowercase ) > 1 and act_info[0] != "gated" or len(lowercase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": A_ : Tuple = 'gelu_new' @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.d_model @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.num_heads @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.num_layers class UpperCAmelCase ( __A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: A_ : Tuple = 'past_encoder_sequence + sequence' A_ : List[str] = {0: 'batch'} A_ : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A_ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} A_ : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCAmelCase_ ( self ): """simple docstring""" return 1_3 @property def lowerCAmelCase_ ( self ): """simple docstring""" return 5E-4
558
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase = pytest.mark.integration @pytest.mark.parametrize('path' ,['paws', 'csv'] ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' inspect_dataset(__lowercase ,__lowercase ) A_ : Optional[Any] = path + '.py' assert script_name in os.listdir(__lowercase ) assert "__pycache__" not in os.listdir(__lowercase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' ,['accuracy'] ) def UpperCamelCase ( __lowercase : Any ,__lowercase : Union[str, Any] ): '''simple docstring''' inspect_metric(__lowercase ,__lowercase ) A_ : Optional[Any] = path + '.py' assert script_name in os.listdir(__lowercase ) assert "__pycache__" not in os.listdir(__lowercase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : Dict ,__lowercase : Dict ): '''simple docstring''' A_ : List[Any] = get_dataset_config_info(__lowercase ,config_name=__lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def UpperCamelCase ( __lowercase : Dict ,__lowercase : List[Any] ,__lowercase : int ): '''simple docstring''' with pytest.raises(__lowercase ): get_dataset_config_info(__lowercase ,config_name=__lowercase ) @pytest.mark.parametrize( 'path, expected' ,[ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] ,) def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' A_ : Any = get_dataset_config_names(__lowercase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' ,[ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : str ,__lowercase : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = get_dataset_infos(__lowercase ) assert list(infos.keys() ) == expected_configs A_ : Any = expected_configs[0] assert expected_config in infos A_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : Any ,__lowercase : Optional[Any] ,__lowercase : Dict ): '''simple docstring''' A_ : Optional[Any] = get_dataset_infos(__lowercase ) assert expected_config in infos A_ : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Tuple ,__lowercase : str ): '''simple docstring''' with pytest.raises(__lowercase ): get_dataset_split_names(__lowercase ,config_name=__lowercase )
558
1
"""simple docstring""" from __future__ import annotations def __lowercase ( lowerCamelCase_ : int = 4 ): SCREAMING_SNAKE_CASE__ = abs(lowerCamelCase_ ) or 4 return [[1 + x + y * row_size for x in range(lowerCamelCase_ )] for y in range(lowerCamelCase_ )] def __lowercase ( lowerCamelCase_ : list[list[int]] ): return reverse_row(transpose(lowerCamelCase_ ) ) # OR.. transpose(reverse_column(matrix)) def __lowercase ( lowerCamelCase_ : list[list[int]] ): return reverse_row(reverse_column(lowerCamelCase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def __lowercase ( lowerCamelCase_ : list[list[int]] ): return reverse_column(transpose(lowerCamelCase_ ) ) # OR.. transpose(reverse_row(matrix)) def __lowercase ( lowerCamelCase_ : list[list[int]] ): SCREAMING_SNAKE_CASE__ = [list(lowerCamelCase_ ) for x in zip(*lowerCamelCase_ )] return matrix def __lowercase ( lowerCamelCase_ : list[list[int]] ): SCREAMING_SNAKE_CASE__ = matrix[::-1] return matrix def __lowercase ( lowerCamelCase_ : list[list[int]] ): SCREAMING_SNAKE_CASE__ = [x[::-1] for x in matrix] return matrix def __lowercase ( lowerCamelCase_ : list[list[int]] ): for i in matrix: print(*lowerCamelCase_ ) if __name__ == "__main__": _lowerCamelCase = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) _lowerCamelCase = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) _lowerCamelCase = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
719
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowerCamelCase = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) SCREAMING_SNAKE_CASE__ = os.path.abspath("examples" ) for item in os.listdir(UpperCAmelCase__ ): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE__ = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase__ , feature_script=UpperCAmelCase__ , tested_section="main()" if parser_only else "training_function()" , ): SCREAMING_SNAKE_CASE__ = compare_against_test( os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = "\n".join(UpperCAmelCase__ ) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE__ = diff.replace(UpperCAmelCase__ , "" ) self.assertEqual(UpperCAmelCase__ , "" ) def lowerCAmelCase__ ( self ): self.one_complete_example("complete_nlp_example.py" , UpperCAmelCase__ ) self.one_complete_example("complete_nlp_example.py" , UpperCAmelCase__ ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) SCREAMING_SNAKE_CASE__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.one_complete_example("complete_cv_example.py" , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Dict = False @classmethod def lowerCAmelCase__ ( cls ): super().setUpClass() SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowerCAmelCase__ ( cls ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() SCREAMING_SNAKE_CASE__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() SCREAMING_SNAKE_CASE__ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase__ ) self.assertNotIn("epoch 0:" , UpperCAmelCase__ ) self.assertIn("epoch 1:" , UpperCAmelCase__ ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() SCREAMING_SNAKE_CASE__ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase__ ) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , UpperCAmelCase__ ) self.assertIn("epoch 1:" , UpperCAmelCase__ ) else: self.assertIn("epoch 0:" , UpperCAmelCase__ ) self.assertIn("epoch 1:" , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): SCREAMING_SNAKE_CASE__ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = re.findall("({.+})" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = [r for r in results if "accuracy" in r][-1] SCREAMING_SNAKE_CASE__ = ast.literal_eval(UpperCAmelCase__ ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , "tracking" ) ) ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
112
0
"""simple docstring""" import pprint import requests lowerCamelCase_ = '''https://zenquotes.io/api''' def snake_case ( ): return requests.get(API_ENDPOINT_URL + "/today" ).json() def snake_case ( ): return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": lowerCamelCase_ = random_quotes() pprint.pprint(response)
95
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case_ ( __UpperCamelCase ): """simple docstring""" snake_case__ = """glpn""" def __init__(self: Tuple , __UpperCAmelCase: Tuple=3 , __UpperCAmelCase: Dict=4 , __UpperCAmelCase: Any=[2, 2, 2, 2] , __UpperCAmelCase: Optional[int]=[8, 4, 2, 1] , __UpperCAmelCase: Dict=[32, 64, 160, 256] , __UpperCAmelCase: List[str]=[7, 3, 3, 3] , __UpperCAmelCase: Dict=[4, 2, 2, 2] , __UpperCAmelCase: Optional[int]=[1, 2, 5, 8] , __UpperCAmelCase: Dict=[4, 4, 4, 4] , __UpperCAmelCase: List[str]="gelu" , __UpperCAmelCase: str=0.0 , __UpperCAmelCase: List[Any]=0.0 , __UpperCAmelCase: Dict=0.02 , __UpperCAmelCase: List[str]=0.1 , __UpperCAmelCase: Union[str, Any]=1E-6 , __UpperCAmelCase: Dict=64 , __UpperCAmelCase: Dict=10 , __UpperCAmelCase: Union[str, Any]=-1 , **__UpperCAmelCase: Dict , ) -> str: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __a : Optional[Any] = num_channels __a : Tuple = num_encoder_blocks __a : int = depths __a : Union[str, Any] = sr_ratios __a : str = hidden_sizes __a : List[Any] = patch_sizes __a : Optional[Any] = strides __a : Any = mlp_ratios __a : Any = num_attention_heads __a : Any = hidden_act __a : List[Any] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : List[str] = initializer_range __a : Optional[int] = drop_path_rate __a : Any = layer_norm_eps __a : List[Any] = decoder_hidden_size __a : Any = max_depth __a : int = head_in_index
351
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowercase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""DPTFeatureExtractor"""] __lowercase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowercase = { """yjernite/retribert-base-uncased""": 512, } __lowercase = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _lowercase ( __lowerCamelCase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = RetriBertTokenizer _lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]="[UNK]" , lowerCamelCase__ : Optional[Any]="[SEP]" , lowerCamelCase__ : List[Any]="[PAD]" , lowerCamelCase__ : Tuple="[CLS]" , lowerCamelCase__ : List[Any]="[MASK]" , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str=None , **lowerCamelCase__ : List[Any] , ) -> Dict: """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): A_ = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**lowerCamelCase__ ) A_ = do_lower_case def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=None ) -> Union[str, Any]: """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A_ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
563
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _UpperCAmelCase = remove_duplicates(key.upper() ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) # First fill cipher with key characters _UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(_SCREAMING_SNAKE_CASE )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_SCREAMING_SNAKE_CASE ) , 26 ): _UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _UpperCAmelCase = alphabet[i - offset] _UpperCAmelCase = char return cipher_alphabet def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : dict[str, str] ): '''simple docstring''' _UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = input('''Enter message to encode or decode: ''' ).strip() _UpperCAmelCase = input('''Enter keyword: ''' ).strip() _UpperCAmelCase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: _UpperCAmelCase = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) _UpperCAmelCase = create_cipher_map(_SCREAMING_SNAKE_CASE ) print(func(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
602
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str=1_3 , __UpperCamelCase : Dict=7 , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=9_9 , __UpperCamelCase : List[Any]=3_2 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Any=3_7 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[str]=1_2_8 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Tuple=1_6 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Union[str, Any]=None , )->List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] )->Optional[Any]: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] )->List[Any]: ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : str )->Dict: _UpperCAmelCase = NezhaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , )->Optional[Any]: _UpperCAmelCase = True _UpperCAmelCase = NezhaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] )->Optional[int]: _UpperCAmelCase = NezhaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] )->Optional[Any]: _UpperCAmelCase = NezhaForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->Optional[Any]: _UpperCAmelCase = NezhaForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : str )->Tuple: _UpperCAmelCase = NezhaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any )->Union[str, Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = NezhaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any )->Tuple: _UpperCAmelCase = self.num_labels _UpperCAmelCase = NezhaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Dict )->Union[str, Any]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = NezhaForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True def lowercase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=False )->Union[str, Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def lowercase__ ( self : List[Any] )->List[Any]: _UpperCAmelCase = NezhaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->Any: self.config_tester.run_common_tests() def lowercase__ ( self : int )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->int: # This regression test was failing with PyTorch < 1.3 ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Any )->List[str]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NezhaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def lowercase__ ( self : Any )->Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=__UpperCamelCase ) _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = torch.jit.trace( __UpperCamelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , '''bert.pt''' ) ) _UpperCAmelCase = torch.jit.load(os.path.join(__UpperCamelCase , '''bert.pt''' ) , map_location=__UpperCamelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCamelCase ) , inputs_dict['''attention_mask'''].to(__UpperCamelCase ) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : int )->Any: _UpperCAmelCase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) )
602
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : str = set() __UpperCAmelCase : Any = [] def parse_line(lowercase_ ): for line in fp: if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : List[Any] = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowercase_ ) > 0: __UpperCAmelCase : Any = '''\n'''.join(lowercase_ ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(lowercase_ ) buffer.clear() continue else: __UpperCAmelCase : str = line.strip() buffer.append(lowercase_ ) if from_gh: for filename in os.listdir(lowercase_ ): __UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with open(lowercase_ ) as fp: parse_line(lowercase_ ) else: try: with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase_ ) as fp: parse_line(lowercase_ ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : Optional[Any] = [os.path.join(lowercase_ , lowercase_ ) for p in os.listdir(lowercase_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase_ , lowercase_ ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' return values.split(''',''' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase__ : List[str] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowercase__ : str = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def a__ ( lowercase : Optional[int], lowercase : Optional[int]=False ) -> Tuple: """simple docstring""" _UpperCamelCase , _UpperCamelCase = create_model( '''HTSAT-tiny''', '''roberta''', lowercase, precision='''fp32''', device='''cuda:0''' if torch.cuda.is_available() else '''cpu''', enable_fusion=lowercase, fusion_type='''aff_2d''' if enable_fusion else None, ) return model, model_cfg def a__ ( lowercase : List[Any] ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = r'''.*sequential.(\d+).*''' _UpperCamelCase = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCamelCase = key.replace(lowercase, lowercase ) if re.match(lowercase, lowercase ): # replace sequential layers with list _UpperCamelCase = re.match(lowercase, lowercase ).group(1 ) _UpperCamelCase = key.replace(F"""sequential.{sequential_layer}.""", F"""layers.{int(lowercase )//3}.linear.""" ) elif re.match(lowercase, lowercase ): _UpperCamelCase = int(re.match(lowercase, lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCamelCase = 1 if projecton_layer == 0 else 2 _UpperCamelCase = key.replace(F"""_projection.{projecton_layer}.""", F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCamelCase = value _UpperCamelCase = mixed_qkv.size(0 ) // 3 _UpperCamelCase = mixed_qkv[:qkv_dim] _UpperCamelCase = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCamelCase = mixed_qkv[qkv_dim * 2 :] _UpperCamelCase = query_layer _UpperCamelCase = key_layer _UpperCamelCase = value_layer else: _UpperCamelCase = value return model_state_dict def a__ ( lowercase : Optional[int], lowercase : Dict, lowercase : List[str], lowercase : Dict=False ) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = init_clap(lowercase, enable_fusion=lowercase ) clap_model.eval() _UpperCamelCase = clap_model.state_dict() _UpperCamelCase = rename_state_dict(lowercase ) _UpperCamelCase = ClapConfig() _UpperCamelCase = enable_fusion _UpperCamelCase = ClapModel(lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase, strict=lowercase ) model.save_pretrained(lowercase ) transformers_config.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowercase__ : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
98
'''simple docstring''' def a__ ( lowercase : str ) -> int: """simple docstring""" assert column_title.isupper() _UpperCamelCase = 0 _UpperCamelCase = len(lowercase ) - 1 _UpperCamelCase = 0 while index >= 0: _UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26, lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
98
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = '''gpt_bigcode''' _lowercase : str = ['''past_key_values'''] _lowercase : Union[str, Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=50_257 , _lowercase=1_024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
707
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _lowercase = ["""bert-base-uncased""", """bert-base-cased"""] _lowercase = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class UpperCAmelCase_ ( tf.keras.Model ): '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" super().__init__() _lowerCAmelCase = tokenizer _lowerCAmelCase = AutoConfig.from_pretrained(_lowercase ) _lowerCAmelCase = TFAutoModel.from_config(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.tokenizer(_lowercase ) _lowerCAmelCase = self.bert(**_lowercase ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = [ BertTokenizer.from_pretrained(_lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowerCAmelCase = [TFBertTokenizer.from_pretrained(_lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_lowercase , use_fast_bert_tokenizer=_lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCAmelCase = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase = tokenizer(_lowercase , return_tensors="""tf""" , padding="""longest""" ) _lowerCAmelCase = tf_tokenizer(_lowercase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase = tf_tokenizer(self.paired_sentences ) _lowerCAmelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase = tf.function(_lowercase ) for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase = tf.constant(_lowercase ) _lowerCAmelCase = compiled_tokenizer(_lowercase ) _lowerCAmelCase = tf_tokenizer(_lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase = ModelToSave(tokenizer=_lowercase ) _lowerCAmelCase = tf.convert_to_tensor(self.test_sentences ) _lowerCAmelCase = model(_lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase = Path(_lowercase ) / """saved.model""" model.save(_lowercase ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = loaded_model(_lowercase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
162
0
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : int = parser.parse_args() if args.model_type == "roberta": lowerCamelCase : Union[str, Any] = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Optional[Any] = 'roberta' elif args.model_type == "gpt2": lowerCamelCase : int = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCamelCase : Union[str, Any] = 'transformer' lowerCamelCase : Optional[int] = model.state_dict() lowerCamelCase : Dict = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCamelCase : Union[str, Any] = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCamelCase : Dict = f"""{prefix}.embeddings.{w}.weight""" lowerCamelCase : Tuple = state_dict[param_name] for w in ["weight", "bias"]: lowerCamelCase : Optional[Any] = f"""{prefix}.embeddings.LayerNorm.{w}""" lowerCamelCase : Union[str, Any] = state_dict[param_name] # Transformer Blocks # lowerCamelCase : Union[str, Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCamelCase : Union[str, Any] = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] lowerCamelCase : Any = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCamelCase : int = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : List[str] = state_dict[f"""lm_head.dense.{w}"""] lowerCamelCase : Optional[Any] = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCamelCase : Optional[Any] = state_dict[f"""{prefix}.ln_f.{w}"""] lowerCamelCase : Optional[int] = state_dict['lm_head.weight'] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
460
'''simple docstring''' from __future__ import annotations from collections import deque class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(UpperCamelCase ) self.set_fail_transitions() def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(UpperCamelCase , UpperCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCamelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCamelCase ) lowercase__ = self.adlist[r]['''fail_state'''] while ( self.find_next_state(UpperCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): lowercase__ = self.adlist[state]['''fail_state'''] lowercase__ = self.find_next_state( UpperCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(UpperCamelCase ) ): while ( self.find_next_state(UpperCamelCase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]['''fail_state'''] lowercase__ = self.find_next_state(UpperCamelCase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
460
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : str = "naver-clova-ix/donut-base-finetuned-docvqa" A__ : Union[str, Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) A__ : List[Any] = "document_qa" A__ : Tuple = AutoProcessor A__ : List[str] = VisionEncoderDecoderModel A__ : str = ["image", "text"] A__ : List[str] = ["text"] def __init__( self : Union[str, Any] , *_snake_case : Tuple , **_snake_case : int ): """simple docstring""" if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__snake_case , **__snake_case ) def _a ( self : Dict , _snake_case : "Image" , _snake_case : str ): """simple docstring""" A__ = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' A__ = task_prompt.replace('{user_input}' , __snake_case ) A__ = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='pt' ).input_ids A__ = self.pre_processor(__snake_case , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Optional[int] , _snake_case : Tuple ): """simple docstring""" return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def _a ( self : Dict , _snake_case : Optional[int] ): """simple docstring""" A__ = self.pre_processor.batch_decode(__snake_case )[0] A__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) A__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) A__ = re.sub(R'<.*?>' , '' , __snake_case , count=1 ).strip() # remove first task start token A__ = self.pre_processor.tokenajson(__snake_case ) return sequence["answer"]
705
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Any = IFInpaintingPipeline A__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} A__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def _a ( self : Any ): """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _snake_case : Any , _snake_case : str=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): A__ = torch.manual_seed(_snake_case ) else: A__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _a ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _a ( self : Optional[int] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _a ( self : List[str] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _a ( self : Dict ): """simple docstring""" self._test_save_load_local() def _a ( self : Optional[int] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
52
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } SCREAMING_SNAKE_CASE_ : Dict = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py SCREAMING_SNAKE_CASE_ : int = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later SCREAMING_SNAKE_CASE_ : List[Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(get_home_dir() , 'models' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = nlp.model.BERTModel( lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , ) original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = original_bort._collect_params_with_prefix() # Build our config 🤗 SCREAMING_SNAKE_CASE_ : str = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.0_2, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCamelCase_ ), } SCREAMING_SNAKE_CASE_ : List[str] = BertConfig.from_dict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = BertForMaskedLM(lowerCamelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase_ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE_ : List[str] = hf_param.shape SCREAMING_SNAKE_CASE_ : List[Any] = to_torch(params[gluon_param] ) SCREAMING_SNAKE_CASE_ : int = gluon_param.shape assert ( shape_hf == shape_gluon ), F'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) SCREAMING_SNAKE_CASE_ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): SCREAMING_SNAKE_CASE_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention SCREAMING_SNAKE_CASE_ : BertSelfAttention = layer.attention.self SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( self_attn.key.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( self_attn.key.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) SCREAMING_SNAKE_CASE_ : str = check_and_map_params( self_attn.query.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( self_attn.query.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( self_attn.value.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( self_attn.value.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output SCREAMING_SNAKE_CASE_ : BertSelfOutput = layer.attention.output SCREAMING_SNAKE_CASE_ : str = check_and_map_params( self_output.dense.bias , F'encoder.transformer_cells.{i}.proj.bias' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( self_output.dense.weight , F'encoder.transformer_cells.{i}.proj.weight' ) SCREAMING_SNAKE_CASE_ : int = check_and_map_params( self_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.layer_norm.beta' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( self_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate SCREAMING_SNAKE_CASE_ : BertIntermediate = layer.intermediate SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( intermediate.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params( intermediate.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output SCREAMING_SNAKE_CASE_ : BertOutput = layer.output SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( bert_output.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( bert_output.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) SCREAMING_SNAKE_CASE_ : str = check_and_map_params( bert_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models SCREAMING_SNAKE_CASE_ : Tuple = RobertaTokenizer.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode_plus(lowerCamelCase_ )['input_ids'] # Get gluon output SCREAMING_SNAKE_CASE_ : Optional[Any] = mx.nd.array([input_ids] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = original_bort(inputs=lowerCamelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = BertModel.from_pretrained(lowerCamelCase_ ) hf_bort_model.eval() SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : str = hf_bort_model(**lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = output_gluon[0].asnumpy() SCREAMING_SNAKE_CASE_ : Optional[int] = output_hf[0].detach().numpy() SCREAMING_SNAKE_CASE_ : Any = np.max(np.abs(hf_layer - gluon_layer ) ).item() SCREAMING_SNAKE_CASE_ : Tuple = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
105
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ (__snake_case ): """simple docstring""" __UpperCamelCase : Any = (CMStochasticIterativeScheduler,) __UpperCamelCase : Dict = 1_0 def lowercase ( self : Dict , **__a : Dict ): snake_case__ : List[str] = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**__a ) return config def lowercase ( self : List[str] ): snake_case__ : Optional[Any] = 1_0 snake_case__ : List[str] = self.get_scheduler_config() snake_case__ : str = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) snake_case__ : Tuple = scheduler.timesteps[0] snake_case__ : Tuple = scheduler.timesteps[1] snake_case__ : int = self.dummy_sample snake_case__ : Union[str, Any] = 0.1 * sample snake_case__ : Optional[Any] = scheduler.step(__a , __a , __a ).prev_sample snake_case__ : Union[str, Any] = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase ( self : Optional[int] ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__a ) def lowercase ( self : Optional[int] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def lowercase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : Optional[int] = scheduler_class(**__a ) snake_case__ : int = 1 scheduler.set_timesteps(__a ) snake_case__ : str = scheduler.timesteps snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : int = self.dummy_model() snake_case__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input snake_case__ : List[str] = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual snake_case__ : Dict = model(__a , __a ) # 3. predict previous sample x_t-1 snake_case__ : List[str] = scheduler.step(__a , __a , __a , generator=__a ).prev_sample snake_case__ : Optional[Any] = pred_prev_sample snake_case__ : str = torch.sum(torch.abs(__a ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase ( self : List[str] ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : Dict = self.get_scheduler_config() snake_case__ : Tuple = scheduler_class(**__a ) snake_case__ : Union[str, Any] = [1_0_6, 0] scheduler.set_timesteps(timesteps=__a ) snake_case__ : str = scheduler.timesteps snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ : Tuple = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual snake_case__ : Optional[int] = model(__a , __a ) # 3. predict previous sample x_t-1 snake_case__ : List[str] = scheduler.step(__a , __a , __a , generator=__a ).prev_sample snake_case__ : List[str] = pred_prev_sample snake_case__ : Tuple = torch.sum(torch.abs(__a ) ) snake_case__ : Union[str, Any] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.scheduler_classes[0] snake_case__ : Union[str, Any] = self.get_scheduler_config() snake_case__ : Optional[int] = scheduler_class(**__a ) snake_case__ : Dict = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(__a , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__a ) def lowercase ( self : Any ): snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config() snake_case__ : Union[str, Any] = scheduler_class(**__a ) snake_case__ : int = [3_9, 3_0, 1_2, 1, 0] snake_case__ : List[Any] = len(__a ) with self.assertRaises(__a , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def lowercase ( self : str ): snake_case__ : Optional[Any] = self.scheduler_classes[0] snake_case__ : Dict = self.get_scheduler_config() snake_case__ : str = scheduler_class(**__a ) snake_case__ : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__a )
648
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = (DDPMScheduler,) def snake_case_ ( self : Dict , **_snake_case : List[str] ): __lowercase : Tuple = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_snake_case ) return config def snake_case_ ( self : Union[str, Any] ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def snake_case_ ( self : Dict ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def snake_case_ ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def snake_case_ ( self : Optional[int] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_snake_case ) def snake_case_ ( self : Tuple ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_snake_case ) def snake_case_ ( self : Any ): self.check_over_configs(thresholding=_snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , ) def snake_case_ ( self : List[str] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def snake_case_ ( self : Dict ): for t in [0, 500, 999]: self.check_over_forward(time_step=_snake_case ) def snake_case_ ( self : Optional[Any] ): __lowercase : int = self.scheduler_classes[0] __lowercase : str = self.get_scheduler_config() __lowercase : Union[str, Any] = scheduler_class(**_snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def snake_case_ ( self : Tuple ): __lowercase : str = self.scheduler_classes[0] __lowercase : str = self.get_scheduler_config() __lowercase : int = scheduler_class(**_snake_case ) __lowercase : List[Any] = len(_snake_case ) __lowercase : Dict = self.dummy_model() __lowercase : Tuple = self.dummy_sample_deter __lowercase : List[str] = torch.manual_seed(0 ) for t in reversed(range(_snake_case ) ): # 1. predict noise residual __lowercase : Optional[int] = model(_snake_case , _snake_case ) # 2. predict previous mean of sample x_t-1 __lowercase : int = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase : Any = pred_prev_sample __lowercase : str = torch.sum(torch.abs(_snake_case ) ) __lowercase : Any = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def snake_case_ ( self : Tuple ): __lowercase : str = self.scheduler_classes[0] __lowercase : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase : Union[str, Any] = scheduler_class(**_snake_case ) __lowercase : List[Any] = len(_snake_case ) __lowercase : List[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter __lowercase : Dict = torch.manual_seed(0 ) for t in reversed(range(_snake_case ) ): # 1. predict noise residual __lowercase : Tuple = model(_snake_case , _snake_case ) # 2. predict previous mean of sample x_t-1 __lowercase : Optional[int] = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase : Any = pred_prev_sample __lowercase : int = torch.sum(torch.abs(_snake_case ) ) __lowercase : List[Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def snake_case_ ( self : str ): __lowercase : int = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : List[str] = scheduler_class(**_snake_case ) __lowercase : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_snake_case ) __lowercase : int = scheduler.timesteps for i, timestep in enumerate(_snake_case ): if i == len(_snake_case ) - 1: __lowercase : Optional[Any] = -1 else: __lowercase : List[str] = timesteps[i + 1] __lowercase : Optional[Any] = scheduler.previous_timestep(_snake_case ) __lowercase : str = prev_t.item() self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : List[Any] ): __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Optional[Any] = self.get_scheduler_config() __lowercase : Union[str, Any] = scheduler_class(**_snake_case ) __lowercase : Any = [100, 87, 50, 51, 0] with self.assertRaises(_snake_case , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_snake_case ) def snake_case_ ( self : List[Any] ): __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : Union[str, Any] = self.get_scheduler_config() __lowercase : int = scheduler_class(**_snake_case ) __lowercase : Dict = [100, 87, 50, 1, 0] __lowercase : str = len(_snake_case ) with self.assertRaises(_snake_case , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_snake_case , timesteps=_snake_case ) def snake_case_ ( self : str ): __lowercase : List[str] = self.scheduler_classes[0] __lowercase : Optional[int] = self.get_scheduler_config() __lowercase : int = scheduler_class(**_snake_case ) __lowercase : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( _snake_case , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_snake_case )
284
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): __lowercase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowercase : Any = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_snake_case ) , torch_builtin(_snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(_snake_case ) , gelu_new(_snake_case ) ) ) def snake_case_ ( self : Dict ): __lowercase : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowercase : List[str] = get_activation('''gelu''' ) __lowercase : Optional[Any] = get_activation('''gelu_10''' ) __lowercase : Tuple = torch_builtin(_snake_case ) __lowercase : List[Any] = geluaa(_snake_case ) __lowercase : Tuple = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case_ ( self : Any ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_snake_case ): get_activation('''bogus''' ) with self.assertRaises(_snake_case ): get_activation(_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = get_activation('''gelu''' ) __lowercase : List[str] = 1 __lowercase : Union[str, Any] = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_snake_case ): __lowercase : Tuple = acta.a
284
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowercase_ ): lowercase = ['keras_nlp'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['keras_nlp'] )
425
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): # Initialise PyTorch model lowercase_ : Any = FunnelConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : int = FunnelBaseModel(__SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
425
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class snake_case__ ( lowercase_ , lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Optional[int] = AutoencoderKL lowerCamelCase : Union[str, Any] = "sample" lowerCamelCase : Optional[Any] = 1E-2 @property def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :List[str] = 4 __snake_case :Any = 3 __snake_case :List[Any] = (32, 32) __snake_case :int = floats_tensor((batch_size, num_channels) + sizes ).to(a__ ) return {"sample": image} @property def __lowercase ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) @property def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __snake_case :Dict = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> List[Any]: '''simple docstring''' pass def __lowercase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case , __snake_case :List[Any] = self.prepare_init_args_and_inputs_for_common() __snake_case :List[Any] = self.model_class(**a__ ) model.to(a__ ) assert not model.is_gradient_checkpointing and model.training __snake_case :Union[str, Any] = model(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case :Union[str, Any] = torch.randn_like(a__ ) __snake_case :int = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case :Optional[Any] = self.model_class(**a__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case :Union[str, Any] = model_a(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case :Optional[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case :Dict = dict(model.named_parameters() ) __snake_case :Dict = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case , __snake_case :Optional[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(a__ ) __snake_case :Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) __snake_case :List[Any] = model.to(a__ ) model.eval() if torch_device == "mps": __snake_case :Any = torch.manual_seed(0 ) else: __snake_case :Dict = torch.Generator(device=a__ ).manual_seed(0 ) __snake_case :Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case :Optional[int] = image.to(a__ ) with torch.no_grad(): __snake_case :Tuple = model(a__ , sample_posterior=a__ , generator=a__ ).sample __snake_case :int = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case :Optional[Any] = torch.tensor( [ -4.00_78e-01, -3.83_23e-04, -1.26_81e-01, -1.14_62e-01, 2.00_95e-01, 1.08_93e-01, -8.82_47e-02, -3.03_61e-01, -9.86_44e-03, ] ) elif torch_device == "cpu": __snake_case :str = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: __snake_case :Optional[int] = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(a__ , a__ , rtol=1e-2 ) ) @slow class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self , a__ , a__ ) -> Any: '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={'_'.join([str(a__ ) for s in shape] )}.npy''' def __lowercase ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , a__=0 , a__=(4, 3, 5_12, 5_12) , a__=False ) -> Optional[int]: '''simple docstring''' __snake_case :Optional[Any] = torch.floataa if fpaa else torch.floataa __snake_case :Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(a__ , a__ ) ) ).to(a__ ).to(a__ ) return image def __lowercase ( self , a__="CompVis/stable-diffusion-v1-4" , a__=False ) -> int: '''simple docstring''' __snake_case :str = """fp16""" if fpaa else None __snake_case :Optional[int] = torch.floataa if fpaa else torch.floataa __snake_case :Optional[Any] = AutoencoderKL.from_pretrained( a__ , subfolder="""vae""" , torch_dtype=a__ , revision=a__ , ) model.to(a__ ).eval() return model def __lowercase ( self , a__=0 ) -> List[str]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(a__ ) return torch.Generator(device=a__ ).manual_seed(a__ ) @parameterized.expand( [ # fmt: off [33, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def __lowercase ( self , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = self.get_sd_vae_model() __snake_case :Union[str, Any] = self.get_sd_image(a__ ) __snake_case :List[str] = self.get_generator(a__ ) with torch.no_grad(): __snake_case :str = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape __snake_case :List[str] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case :Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(a__ , a__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [47, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def __lowercase ( self , a__ , a__ ) -> List[str]: '''simple docstring''' __snake_case :Any = self.get_sd_vae_model(fpaa=a__ ) __snake_case :Optional[int] = self.get_sd_image(a__ , fpaa=a__ ) __snake_case :List[Any] = self.get_generator(a__ ) with torch.no_grad(): __snake_case :List[Any] = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape __snake_case :str = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case :Any = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def __lowercase ( self , a__ , a__ , a__ ) -> Tuple: '''simple docstring''' __snake_case :Tuple = self.get_sd_vae_model() __snake_case :Dict = self.get_sd_image(a__ ) with torch.no_grad(): __snake_case :Tuple = model(a__ ).sample assert sample.shape == image.shape __snake_case :Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case :Union[str, Any] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(a__ , a__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [37, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def __lowercase ( self , a__ , a__ ) -> List[str]: '''simple docstring''' __snake_case :Optional[Any] = self.get_sd_vae_model() __snake_case :int = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case :str = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __snake_case :Optional[int] = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case :str = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [16, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def __lowercase ( self , a__ , a__ ) -> List[str]: '''simple docstring''' __snake_case :Optional[Any] = self.get_sd_vae_model(fpaa=a__ ) __snake_case :Optional[Any] = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): __snake_case :Any = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __snake_case :Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case :Any = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def __lowercase ( self , a__ ) -> List[str]: '''simple docstring''' __snake_case :Dict = self.get_sd_vae_model(fpaa=a__ ) __snake_case :Dict = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): __snake_case :Optional[int] = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case :List[Any] = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(a__ , a__ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def __lowercase ( self , a__ ) -> Optional[int]: '''simple docstring''' __snake_case :List[Any] = self.get_sd_vae_model() __snake_case :List[str] = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case :Any = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case :Any = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(a__ , a__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [47, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def __lowercase ( self , a__ , a__ ) -> Tuple: '''simple docstring''' __snake_case :str = self.get_sd_vae_model() __snake_case :Dict = self.get_sd_image(a__ ) __snake_case :Optional[int] = self.get_generator(a__ ) with torch.no_grad(): __snake_case :List[str] = model.encode(a__ ).latent_dist __snake_case :List[Any] = dist.sample(generator=a__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case :List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case :Optional[int] = torch.tensor(a__ ) __snake_case :Any = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(a__ , a__ , atol=a__ )
291
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Tuple = "dandelin/vilt-b32-finetuned-vqa" lowerCamelCase : List[str] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) lowerCamelCase : Optional[Any] = "image_qa" lowerCamelCase : str = AutoProcessor lowerCamelCase : Union[str, Any] = AutoModelForVisualQuestionAnswering lowerCamelCase : Any = ["image", "text"] lowerCamelCase : Dict = ["text"] def __init__( self , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*a__ , **a__ ) def __lowercase ( self , a__ , a__ ) -> int: '''simple docstring''' return self.pre_processor(a__ , a__ , return_tensors="""pt""" ) def __lowercase ( self , a__ ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model(**a__ ).logits def __lowercase ( self , a__ ) -> Tuple: '''simple docstring''' __snake_case :str = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
291
1
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : str ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) lowercase : List[Any] =sorted(string.lower() ) return len(__magic_name__ ) == len(set(__magic_name__ ) ) if __name__ == "__main__": UpperCamelCase_ = input("""Enter a string """).strip() UpperCamelCase_ = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
92
def lowercase ( _a ) -> int: if not isinstance(_a ,_a ) or number < 0: raise ValueError("Input must be a non-negative integer" ) UpperCAmelCase_: List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
137
0
'''simple docstring''' def lowercase_ ( _lowercase = 1_000_000 ) -> int: '''simple docstring''' lowerCamelCase_ : str = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) lowerCamelCase_ : List[Any] = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
702
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def lowercase_ ( _lowercase ) -> list[list[float]]: '''simple docstring''' lowerCamelCase_ : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCamelCase_ : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowerCamelCase_ : Optional[Any] = [[0.0, 0.0], [0.0, 0.0]] lowerCamelCase_, lowerCamelCase_ : int = matrix[1][1], matrix[0][0] lowerCamelCase_, lowerCamelCase_ : Dict = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCamelCase_ : Tuple = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowerCamelCase_ : Any = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCamelCase_ : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCamelCase_ : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCamelCase_ : Tuple = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCamelCase_ : Optional[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCamelCase_ : Tuple = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCamelCase_ : List[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCamelCase_ : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCamelCase_ : Tuple = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCamelCase_ : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCamelCase_ : str = array(_lowercase ) for i in range(3 ): for j in range(3 ): lowerCamelCase_ : int = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCamelCase_ : int = array(_lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowercase ) # Calculate the inverse of the matrix return [[float(d(_lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
357
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} _SCREAMING_SNAKE_CASE : Any = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } _SCREAMING_SNAKE_CASE : List[Any] = { "allenai/longformer-base-4096": 40_96, "allenai/longformer-large-4096": 40_96, "allenai/longformer-large-4096-finetuned-triviaqa": 40_96, "allenai/longformer-base-4096-extra.pos.embd.only": 40_96, "allenai/longformer-large-4096-extra.pos.embd.only": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase__ (): """simple docstring""" snake_case = ( list(range(ord('''!''' ) ,ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) ,ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) ,ord('''ÿ''' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 snake_case = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ ,UpperCamelCase_ ) ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['input_ids', 'attention_mask'] def __init__( self , __snake_case , __snake_case , __snake_case="replace" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case=False , **__snake_case , ): snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: snake_case = json.load(__snake_case ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: snake_case = merges_handle.read().split('''\n''' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def a_ ( self ): return len(self.encoder ) def a_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a_ ( self , __snake_case ): if token in self.cache: return self.cache[token] snake_case = tuple(__snake_case ) snake_case = get_pairs(__snake_case ) if not pairs: return token while True: snake_case = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case , snake_case = bigram snake_case = [] snake_case = 0 while i < len(__snake_case ): try: snake_case = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(__snake_case ) snake_case = new_word if len(__snake_case ) == 1: break else: snake_case = get_pairs(__snake_case ) snake_case = ''' '''.join(__snake_case ) snake_case = word return word def a_ ( self , __snake_case ): snake_case = [] for token in re.findall(self.pat , __snake_case ): snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def a_ ( self , __snake_case ): return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def a_ ( self , __snake_case ): return self.decoder.get(__snake_case ) def a_ ( self , __snake_case ): snake_case = ''''''.join(__snake_case ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def a_ ( self , __snake_case , __snake_case = None ): if not os.path.isdir(__snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) snake_case = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) snake_case = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def a_ ( self , __snake_case , __snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self , __snake_case , __snake_case = None , __snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def a_ ( self , __snake_case , __snake_case = None ): snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a_ ( self , __snake_case , __snake_case=False , **__snake_case ): snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): snake_case = ''' ''' + text return (text, kwargs)
550
class A__ : """simple docstring""" def __init__( self , __snake_case ): snake_case = n snake_case = [None] * self.n snake_case = 0 # index of the first element snake_case = 0 snake_case = 0 def __len__( self ): return self.size def a_ ( self ): return self.size == 0 def a_ ( self ): return False if self.is_empty() else self.array[self.front] def a_ ( self , __snake_case ): if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) snake_case = data snake_case = (self.rear + 1) % self.n self.size += 1 return self def a_ ( self ): if self.size == 0: raise Exception('''UNDERFLOW''' ) snake_case = self.array[self.front] snake_case = None snake_case = (self.front + 1) % self.n self.size -= 1 return temp
550
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '▁' lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase__ = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase__ = {'vinai/bartpho-syllable': 10_24} class _A ( UpperCamelCase_ ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict="<s>" , lowerCamelCase : str="</s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Tuple="<s>" , lowerCamelCase : str="<unk>" , lowerCamelCase : Dict="<pad>" , lowerCamelCase : Tuple="<mask>" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : Tuple , )-> Tuple: snake_case__ : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token snake_case__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) snake_case__ : Optional[int] = vocab_file snake_case__ : Any = monolingual_vocab_file snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : List[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase__ ) not in self.fairseq_tokens_to_ids: snake_case__ : str = cnt cnt += 1 with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): snake_case__ : Union[str, Any] = line.strip().split()[0] snake_case__ : int = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase__ ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any )-> List[Any]: snake_case__ : int = self.__dict__.copy() snake_case__ : Tuple = None snake_case__ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , lowerCamelCase : Dict )-> Any: snake_case__ : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ : List[Any] = {} snake_case__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None )-> int: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Dict = [self.cls_token_id] snake_case__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False )-> str: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def __lowerCAmelCase ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None )-> Union[str, Any]: snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : int )-> Any: return len(self.fairseq_ids_to_tokens ) def __lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case__ : Any = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : List[str] , lowerCamelCase : str )-> Optional[int]: return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : Optional[int] )-> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __lowerCAmelCase ( self : str , lowerCamelCase : List[Any] )-> List[str]: return self.fairseq_ids_to_tokens[index] def __lowerCAmelCase ( self : Any , lowerCamelCase : int )-> Any: snake_case__ : Tuple = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , """ """ ).strip() return out_string def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None )-> Dict: if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , """wb""" ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(UpperCamelCase__ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
712
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Path , lowerCamelCase : Union[str, None] = None , lowerCamelCase : Union[List[str], None] = None , lowerCamelCase : Union[str, List[str], None] = None , lowerCamelCase : bool = True , )-> Dict: snake_case__ : int = [file for file in os.listdir(lowerCamelCase ) if os.path.isfile(os.path.join(lowerCamelCase , lowerCamelCase ) )] if identifier is not None: snake_case__ : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase , lowerCamelCase ): for n_ in n_identifier: snake_case__ : Union[str, Any] = [file for file in files if n_ not in file] else: snake_case__ : Optional[Any] = [file for file in files if n_identifier not in file] snake_case__ : Tuple = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case__ : int = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowerCamelCase ) if only_modules: snake_case__ : Union[str, Any] = file.split(""".""" )[0] try: snake_case__ : Any = getattr(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = doctest.DocTestSuite(lowerCamelCase ) snake_case__ : int = unittest.TextTestRunner().run(lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: snake_case__ : List[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCAmelCase ( self : Tuple )-> List[str]: snake_case__ : Optional[int] = Path("""src/transformers""" ) snake_case__ : Optional[Any] = """modeling""" snake_case__ : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase , ignore_files=lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Optional[Any] = Path("""src/transformers""" ) snake_case__ : Any = """tokenization""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Dict: snake_case__ : Any = Path("""src/transformers""" ) snake_case__ : List[Any] = """configuration""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Tuple: snake_case__ : int = Path("""src/transformers""" ) snake_case__ : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase , n_identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case__ : List[Any] = Path("""docs/source""" ) snake_case__ : Optional[int] = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase , ignore_files=lowerCamelCase , only_modules=lowerCamelCase )
172
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: snake_case__ = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__lowerCAmelCase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=__lowerCAmelCase , default=5 ) parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=1 ) parser.add_argument('''--freeze''' , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument('''--learning_rate''' , type=__lowerCAmelCase , default=5e-4 ) parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=__lowerCAmelCase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=__lowerCAmelCase , default=10 ) parser.add_argument('''--weight_decay''' , type=__lowerCAmelCase , default=0.01 ) parser.add_argument('''--output_dir''' , type=__lowerCAmelCase , default='''./results''' ) return parser.parse_args() lowerCamelCase__ : Tuple = load("""accuracy""") def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: snake_case__ , snake_case__ = eval_pred snake_case__ = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) class __magic_name__ (SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self:Union[str, Any] , _a:int ): super().__init__() snake_case__ = trainer def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Dict , _a:Union[str, Any] , _a:str , **_a:str ): if control.should_evaluate: snake_case__ = deepcopy(UpperCAmelCase_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = get_args() set_seed(args.seed ) snake_case__ = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) snake_case__ = dataset.train_test_split(test_size=0.2 ) snake_case__ = train_test['''test'''].train_test_split(test_size=0.5 ) snake_case__ = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) snake_case__ = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case__ = tokenizer.eos_token snake_case__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) snake_case__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): snake_case__ = False snake_case__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__lowerCAmelCase ): snake_case__ = tokenizer(example['''src'''] , truncation=__lowerCAmelCase , max_length=1024 ) snake_case__ = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } snake_case__ = train_test_validation.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=train_test_validation['''train'''].column_names , ) snake_case__ = DataCollatorWithPadding(tokenizer=__lowerCAmelCase ) snake_case__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) snake_case__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(__lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
33
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=7_68 ): super().__init__(UpperCAmelCase_ ) snake_case_ = proj_size snake_case_ = CLIPVisionModel(UpperCAmelCase_ ) snake_case_ = PaintByExampleMapper(UpperCAmelCase_ ) snake_case_ = nn.LayerNorm(config.hidden_size ) snake_case_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling snake_case_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=False ): snake_case_ = self.model(pixel_values=UpperCAmelCase_ ) snake_case_ = clip_output.pooler_output snake_case_ = self.mapper(latent_states[:, None] ) snake_case_ = self.final_layer_norm(UpperCAmelCase_ ) snake_case_ = self.proj_out(UpperCAmelCase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase_ ): super().__init__() snake_case_ = (config.num_hidden_layers + 1) // 5 snake_case_ = config.hidden_size snake_case_ = 1 snake_case_ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , activation_fn="gelu" , attention_bias=UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ] ) def _lowercase ( self , UpperCAmelCase_ ): for block in self.blocks: snake_case_ = block(UpperCAmelCase_ ) return hidden_states
508
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = '''src/transformers''' lowerCamelCase__ = '''docs/source/en''' lowerCamelCase__ = '''.''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" with open(__UpperCamelCase ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : int = f.readlines() # Find the start prompt. _UpperCamelCase : int = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 _UpperCamelCase : Union[str, Any] = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : int = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,__UpperCamelCase ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Dict = 2 if text == """✅""" or text == """❌""" else len(__UpperCamelCase ) _UpperCamelCase : Tuple = (width - text_length) // 2 _UpperCamelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : List[str] = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : Dict = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : List[Any] = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : str = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : str = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : Dict = collections.defaultdict(__UpperCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(__UpperCamelCase ): _UpperCamelCase : Union[str, Any] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Dict = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : str = attr_name[:-13] elif _re_tf_models.match(__UpperCamelCase ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Tuple = _re_tf_models.match(__UpperCamelCase ).groups()[0] elif _re_flax_models.match(__UpperCamelCase ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Tuple = _re_flax_models.match(__UpperCamelCase ).groups()[0] elif _re_pt_models.match(__UpperCamelCase ) is not None: _UpperCamelCase : List[Any] = pt_models _UpperCamelCase : Any = _re_pt_models.match(__UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(__UpperCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Any = True break # Try again after removing the last word in the name _UpperCamelCase : Tuple = """""".join(camel_case_split(__UpperCamelCase )[:-1] ) # Let's build that table! _UpperCamelCase : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : str = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : str = [len(__UpperCamelCase ) + 2 for c in columns] _UpperCamelCase : Dict = max([len(__UpperCamelCase ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : List[Any] = """|""" + """|""".join([_center_text(__UpperCamelCase ,__UpperCamelCase ) for c, w in zip(__UpperCamelCase ,__UpperCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: _UpperCamelCase : Union[str, Any] = model_name_to_prefix[name] _UpperCamelCase : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__UpperCamelCase ,__UpperCamelCase ) for l, w in zip(__UpperCamelCase ,__UpperCamelCase )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Optional[int] = _find_text_in_file( filename=os.path.join(__UpperCamelCase ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__UpperCamelCase ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
721
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
0
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __magic_name__ ( _lowerCamelCase: Optional[int], _lowerCamelCase: Dict=None ) -> List[str]: '''simple docstring''' require_version(deps[pkg], UpperCamelCase__ )
535
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase :Tuple = logging.get_logger(__name__) class A__ ( __lowercase): """simple docstring""" snake_case__ : str =['''input_features'''] def __init__( self: Dict , __a: Dict=80 , __a: str=16_000 , __a: int=160 , __a: Tuple=30 , __a: List[str]=400 , __a: Union[str, Any]=0.0 , __a: str=False , **__a: List[Any] , )-> Union[str, Any]: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , return_attention_mask=__a , **__a , ) lowerCamelCase : List[str] = n_fft lowerCamelCase : Optional[int] = hop_length lowerCamelCase : List[Any] = chunk_length lowerCamelCase : Tuple = chunk_length * sampling_rate lowerCamelCase : Optional[Any] = self.n_samples // hop_length lowerCamelCase : int = sampling_rate lowerCamelCase : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__a , norm="""slaney""" , mel_scale="""slaney""" , ) def a__ ( self: int , __a: np.array )-> np.ndarray: lowerCamelCase : Tuple = spectrogram( __a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase : Union[str, Any] = log_spec[:, :-1] lowerCamelCase : Optional[Any] = np.maximum(__a , log_spec.max() - 8.0 ) lowerCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a__ ( __a: List[np.ndarray] , __a: List[np.ndarray] , __a: float = 0.0 )-> List[np.ndarray]: if attention_mask is not None: lowerCamelCase : int = np.array(__a , np.intaa ) lowerCamelCase : Any = [] for vector, length in zip(__a , attention_mask.sum(-1 ) ): lowerCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase : Tuple = padding_value normed_input_values.append(__a ) else: lowerCamelCase : Any = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: str , __a: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a: bool = True , __a: Optional[int] = None , __a: Optional[Union[str, TensorType]] = None , __a: Optional[bool] = None , __a: Optional[str] = "max_length" , __a: Optional[int] = None , __a: Optional[int] = None , __a: Optional[bool] = None , **__a: List[Any] , )-> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase : int = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase : Optional[int] = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase : Tuple = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): lowerCamelCase : str = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase : List[Any] = [np.asarray([raw_speech] ).T] lowerCamelCase : Optional[int] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase : Tuple = self.pad( __a , padding=__a , max_length=max_length if max_length else self.n_samples , truncation=__a , pad_to_multiple_of=__a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase : int = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase : Any = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase : int = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase : str = [self._np_extract_fbank_features(__a ) for waveform in input_features[0]] if isinstance(input_features[0] , __a ): lowerCamelCase : List[Any] = [np.asarray(__a , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase : Dict = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(__a ) return padded_inputs def a__ ( self: Optional[int] )-> Dict[str, Any]: lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) lowerCamelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
222
0
'''simple docstring''' __lowerCamelCase : Tuple = """Input must be a string of 8 numbers plus letter""" __lowerCamelCase : Any = """TRWAGMYFPDXBNJZSQVHLCKE""" def __snake_case (__UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = F"""Expected string as input, found {type(__UpperCAmelCase ).__name__}""" raise TypeError(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = spanish_id.replace('''-''' , '''''' ).upper() if len(__UpperCAmelCase ) != 9: raise ValueError(__UpperCAmelCase ) try: lowerCamelCase_ : Union[str, Any] = int(spanish_id_clean[0:8] ) lowerCamelCase_ : Tuple = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
418
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowerCamelCase_ : str = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house lowerCamelCase_ : Dict = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase_ : Union[str, Any] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCamelCase_ : str = model(UpperCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) lowerCamelCase_ : Union[str, Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house lowerCamelCase_ : Tuple = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase_ : Optional[int] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCamelCase_ : str = model(UpperCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) )
418
1
"""simple docstring""" import requests def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = {"""Content-Type""": """application/json"""} lowerCAmelCase__ = requests.post(lowerCAmelCase__ , json={"""text""": message_body} , headers=lowerCAmelCase__ ) if response.status_code != 200: lowerCAmelCase__ = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
644
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
0
from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase : Tuple = logging.getLogger(__name__) class a__ : def __init__( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_: str = False def lowerCAmelCase ( self : Tuple , A_ : str , A_ : Dict , A_ : List[str] , A_ : List[Any] ) -> Dict: """simple docstring""" if not self.initialized: lowerCamelCase_: Union[str, Any] = RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) lowerCamelCase_: List[str] = True def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" self.retriever.index.init_index() def lowerCAmelCase ( self : Any , A_ : Optional[Any] , A_ : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: int = self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class a__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , A_ : Dict , A_ : List[Any] , A_ : Tuple , A_ : Optional[Any] , A_ : int=None ) -> Optional[Any]: """simple docstring""" if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) lowerCamelCase_: Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowerCAmelCase ( self : int , A_ : str , A_ : List[Any] ) -> Optional[Any]: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase_: Dict = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase_ , lowerCamelCase_: List[str] = ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: lowerCamelCase_ , lowerCamelCase_: Optional[int] = self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def lowerCAmelCase ( cls : Tuple , A_ : Tuple , A_ : Tuple=None , **A_ : List[str] ) -> List[str]: """simple docstring""" return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def lowerCAmelCase ( cls : str , A_ : List[Any] , A_ : Optional[int] , A_ : str=None , **A_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: Optional[int] = kwargs.pop("""config""" , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) lowerCamelCase_: Union[str, Any] = RagTokenizer.from_pretrained(A_ , config=A_ ) lowerCamelCase_: List[Any] = rag_tokenizer.question_encoder lowerCamelCase_: List[Any] = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase_: Any = """custom""" lowerCamelCase_: Any = CustomHFIndex(config.retrieval_vector_size , A_ ) else: lowerCamelCase_: Tuple = cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
423
def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: Any = current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): lowerCamelCase_: Optional[Any] = row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: lowerCamelCase_: Union[str, Any] = column continue lowerCamelCase_: Any = column / magnitude # Subtract to cancel term lowerCamelCase_: str = current_set[0] lowerCamelCase_: Union[str, Any] = [first_row] lowerCamelCase_: Optional[int] = current_set[1::] for row in current_set: lowerCamelCase_: List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCamelCase_: Dict = final_set[0] lowerCamelCase_: List[str] = [] lowerCamelCase_: Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCamelCase_: Any = simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _UpperCAmelCase ) lowerCamelCase_: Dict = resultant return final_set def UpperCAmelCase_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowerCamelCase_: Optional[Any] = len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] lowerCamelCase_: Tuple = equations.copy() if any(0 in row for row in data_set ): lowerCamelCase_: Tuple = data_set.copy() lowerCamelCase_: Tuple = [] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: lowerCamelCase_: Optional[int] = data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _UpperCAmelCase ) lowerCamelCase_: List[Any] = data_set.copy() lowerCamelCase_: str = simplify(_UpperCAmelCase ) lowerCamelCase_: Union[str, Any] = simplified[::-1] lowerCamelCase_: list = [] for row in simplified: lowerCamelCase_: Any = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCamelCase_: List[str] = row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue lowerCamelCase_: Optional[int] = temp_row[1::] lowerCamelCase_: Optional[Any] = temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) lowerCamelCase_: List[Any] = [] for item in solutions: final.append(float(round(_UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase : str = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
423
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( _A: Optional[int] , _A: Optional[Any] , _A: Union[str, Any] , _A: Any="attention" ): '''simple docstring''' __lowerCamelCase = params[f'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __lowerCamelCase = params[f'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __lowerCamelCase = params[f'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __lowerCamelCase = params[f'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def UpperCamelCase__ ( _A: Dict , _A: Union[str, Any] , _A: Any , _A: Any=False ): '''simple docstring''' if split_mlp_wi: __lowerCamelCase = params[f'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __lowerCamelCase = params[f'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __lowerCamelCase = (wi_a, wi_a) else: __lowerCamelCase = params[f'''{prefix}/layers_{i}/mlp/wi/kernel'''] __lowerCamelCase = params[f'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def UpperCamelCase__ ( _A: Optional[Any] , _A: str , _A: Tuple , _A: Tuple ): '''simple docstring''' return params[f'''{prefix}/layers_{i}/{layer_name}/scale'''] def UpperCamelCase__ ( _A: dict , *, _A: int , _A: bool ): '''simple docstring''' __lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] ) __lowerCamelCase = {"""/""".join(_A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCamelCase = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , _A ) __lowerCamelCase = collections.OrderedDict() # Shared embeddings. __lowerCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(_A ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(_A , _A , """encoder""" , """pre_attention_layer_norm""" ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = tax_attention_lookup(_A , _A , """encoder""" , """attention""" ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (MLP). __lowerCamelCase = tax_layer_norm_lookup(_A , _A , """encoder""" , """pre_mlp_layer_norm""" ) __lowerCamelCase , __lowerCamelCase = tax_mlp_lookup(_A , _A , """encoder""" , _A ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T __lowerCamelCase = old[ """encoder/relpos_bias/rel_embedding""" ].T __lowerCamelCase = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(_A ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(_A , _A , """decoder""" , """pre_self_attention_layer_norm""" ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = tax_attention_lookup(_A , _A , """decoder""" , """self_attention""" ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCamelCase = tax_layer_norm_lookup(_A , _A , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = tax_attention_lookup(_A , _A , """decoder""" , """encoder_decoder_attention""" ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 2 (MLP). __lowerCamelCase = tax_layer_norm_lookup(_A , _A , """decoder""" , """pre_mlp_layer_norm""" ) __lowerCamelCase , __lowerCamelCase = tax_mlp_lookup(_A , _A , """decoder""" , _A ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T __lowerCamelCase = old["""decoder/decoder_norm/scale"""] __lowerCamelCase = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCamelCase = old["""decoder/logits_dense/kernel"""].T return new def UpperCamelCase__ ( _A: Optional[int] , _A: bool ): '''simple docstring''' __lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowerCamelCase = state_dict["""shared.weight"""] return state_dict def UpperCamelCase__ ( _A: Union[str, Any] , _A: Tuple , _A: List[str] , _A: Optional[int] ): '''simple docstring''' __lowerCamelCase = checkpoints.load_tax_checkpoint(_A ) __lowerCamelCase = convert_tax_to_pytorch(_A , num_layers=config.num_layers , is_encoder_only=_A ) __lowerCamelCase = make_state_dict(_A , _A ) model.load_state_dict(_A , strict=_A ) def UpperCamelCase__ ( _A: Union[str, Any] , _A: Optional[int] , _A: Dict , _A: bool = False ): '''simple docstring''' __lowerCamelCase = TaConfig.from_json_file(_A ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCamelCase = TaEncoderModel(_A ) else: __lowerCamelCase = TaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tax_weights_in_ta(_A , _A , _A , _A ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_A ) # Verify that we can load the checkpoint. model.from_pretrained(_A ) print("""Done""" ) if __name__ == "__main__": _a : Dict = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) _a : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
718
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): __lowerCamelCase = parent __lowerCamelCase = 1_3 __lowerCamelCase = 7 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = 9_9 __lowerCamelCase = 3_2 __lowerCamelCase = 2 __lowerCamelCase = 4 __lowerCamelCase = 3_7 __lowerCamelCase = """gelu""" __lowerCamelCase = 0.1 __lowerCamelCase = 0.1 __lowerCamelCase = 5_1_2 __lowerCamelCase = 1_6 __lowerCamelCase = 2 __lowerCamelCase = 0.02 __lowerCamelCase = 3 __lowerCamelCase = 4 __lowerCamelCase = None def lowerCamelCase_ ( self ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TFRoFormerModel(config=UpperCAmelCase ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(UpperCAmelCase ) __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = True __lowerCamelCase = TFRoFormerForCausalLM(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TFRoFormerForMaskedLM(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFRoFormerForSequenceClassification(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_choices __lowerCamelCase = TFRoFormerForMultipleChoice(config=UpperCAmelCase ) __lowerCamelCase = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFRoFormerForTokenClassification(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase_ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A = False A = False def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCamelCase_ ( self ): __lowerCamelCase = TFRoFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def lowerCamelCase_ ( self ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self ): __lowerCamelCase = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(UpperCAmelCase )[0] # TODO Replace vocab size __lowerCamelCase = 5_0_0_0_0 __lowerCamelCase = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __lowerCamelCase = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" A = 1e-4 def lowerCamelCase_ ( self ): __lowerCamelCase = tf.constant([[4, 1_0]] ) __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __lowerCamelCase = emba(input_ids.shape ) __lowerCamelCase = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def lowerCamelCase_ ( self ): __lowerCamelCase = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) __lowerCamelCase = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" A = 1e-4 def lowerCamelCase_ ( self ): # 2,12,16,64 __lowerCamelCase = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __lowerCamelCase = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) __lowerCamelCase = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] __lowerCamelCase , __lowerCamelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) __lowerCamelCase = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
571
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor SCREAMING_SNAKE_CASE :Optional[Any] = random.Random() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None )-> Optional[Any]: """simple docstring""" if rng is None: UpperCamelCase_ = global_rng UpperCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=7 , _lowercase=400 , _lowercase=2_000 , _lowercase=24 , _lowercase=24 , _lowercase=0.0 , _lowercase=16_000 , _lowercase=True , _lowercase=True , )-> List[str]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = min_seq_length UpperCamelCase_ = max_seq_length UpperCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_ = feature_size UpperCamelCase_ = num_mel_bins UpperCamelCase_ = padding_value UpperCamelCase_ = sampling_rate UpperCamelCase_ = return_attention_mask UpperCamelCase_ = do_normalize def UpperCAmelCase_ ( self )-> Any: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase_ ( self , _lowercase=False , _lowercase=False )-> int: def _flatten(_lowercase ): return list(itertools.chain(*_lowercase ) ) if equal_length: UpperCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_ = [np.asarray(_lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = SpeechaTextFeatureExtractionTester(self ) def UpperCAmelCase_ ( self , _lowercase )-> Tuple: self.assertTrue(np.all(np.mean(_lowercase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowercase , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCAmelCase_ ( self )-> int: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase_ = [np.asarray(_lowercase ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_ = feature_extractor(_lowercase , padding=_lowercase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # Test batched UpperCamelCase_ = feature_extractor(_lowercase , return_tensors="np" ).input_features UpperCamelCase_ = feature_extractor(_lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_ = np.asarray(_lowercase ) UpperCamelCase_ = feature_extractor(_lowercase , return_tensors="np" ).input_features UpperCamelCase_ = feature_extractor(_lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase_ = ["longest", "max_length", "do_not_pad"] UpperCamelCase_ = [None, 16, None] for max_length, padding in zip(_lowercase , _lowercase ): UpperCamelCase_ = feature_extractor( _lowercase , padding=_lowercase , max_length=_lowercase , return_attention_mask=_lowercase ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = [np.sum(_lowercase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase_ = ["longest", "max_length", "do_not_pad"] UpperCamelCase_ = [None, 16, None] for max_length, padding in zip(_lowercase , _lowercase ): UpperCamelCase_ = feature_extractor( _lowercase , max_length=_lowercase , padding=_lowercase , return_tensors="np" , return_attention_mask=_lowercase ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = [np.sum(_lowercase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase_ = feature_extractor( _lowercase , padding="max_length" , max_length=4 , truncation=_lowercase , return_tensors="np" , return_attention_mask=_lowercase , ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase_ = feature_extractor( _lowercase , padding="longest" , max_length=4 , truncation=_lowercase , return_tensors="np" , return_attention_mask=_lowercase , ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase_ = feature_extractor( _lowercase , padding="longest" , max_length=16 , truncation=_lowercase , return_tensors="np" , return_attention_mask=_lowercase , ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def UpperCAmelCase_ ( self )-> int: import torch UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase_ ( self , _lowercase )-> str: from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase_ = ds.sort("id" ).select(range(_lowercase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase_ ( self )-> List[Any]: # fmt: off UpperCamelCase_ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase_ = self._load_datasamples(1 ) UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = feature_extractor(_lowercase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _lowercase , atol=1e-4 ) )
628
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" UpperCamelCase_ = False if num < 0: UpperCamelCase_ = True UpperCamelCase_ = -num UpperCamelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
628
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A : str = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float , **__magic_name__ : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = kwargs.pop("padding_side" , "right" ) SCREAMING_SNAKE_CASE_ = kwargs.pop("return_attention_mask" , __magic_name__ ) super().__init__(**__magic_name__ ) def __A ( self : List[str] , __magic_name__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __magic_name__ : Union[bool, str, PaddingStrategy] = True , __magic_name__ : Optional[int] = None , __magic_name__ : bool = False , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__magic_name__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): SCREAMING_SNAKE_CASE_ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) SCREAMING_SNAKE_CASE_ = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE_ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__magic_name__ ) == 0: if return_attention_mask: SCREAMING_SNAKE_CASE_ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch SCREAMING_SNAKE_CASE_ = required_input[0] if isinstance(__magic_name__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. SCREAMING_SNAKE_CASE_ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__magic_name__ ): SCREAMING_SNAKE_CASE_ = required_input[index][0] if return_tensors is None: if is_tf_tensor(__magic_name__ ): SCREAMING_SNAKE_CASE_ = "tf" elif is_torch_tensor(__magic_name__ ): SCREAMING_SNAKE_CASE_ = "pt" elif isinstance(__magic_name__ , (int, float, list, tuple, np.ndarray) ): SCREAMING_SNAKE_CASE_ = "np" else: raise ValueError( F'''type of {first_element} unknown: {type(__magic_name__ )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): SCREAMING_SNAKE_CASE_ = to_numpy(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = [to_numpy(__magic_name__ ) for v in value] # Convert padding_strategy in PaddingStrategy SCREAMING_SNAKE_CASE_ = self._get_padding_strategies(padding=__magic_name__ , max_length=__magic_name__ ) SCREAMING_SNAKE_CASE_ = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) if not all(len(__magic_name__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) SCREAMING_SNAKE_CASE_ = [] for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {k: v[i] for k, v in processed_features.items()} # truncation SCREAMING_SNAKE_CASE_ = self._truncate( __magic_name__ , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , truncation=__magic_name__ , ) truncated_inputs.append(__magic_name__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length SCREAMING_SNAKE_CASE_ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) SCREAMING_SNAKE_CASE_ = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE_ = {} for i in range(__magic_name__ ): # padding SCREAMING_SNAKE_CASE_ = self._pad( truncated_inputs[i] , max_length=__magic_name__ , padding_strategy=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , ) for key, value in outputs.items(): if key not in batch_outputs: SCREAMING_SNAKE_CASE_ = [] if value.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = value.astype(np.floataa ) batch_outputs[key].append(__magic_name__ ) return BatchFeature(__magic_name__ , tensor_type=__magic_name__ ) def __A ( self : Any , __magic_name__ : Union[Dict[str, np.ndarray], BatchFeature] , __magic_name__ : Optional[int] = None , __magic_name__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , ) -> dict: SCREAMING_SNAKE_CASE_ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE_ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__magic_name__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: SCREAMING_SNAKE_CASE_ = np.ones(len(__magic_name__ ) , dtype=np.intaa ) if needs_to_be_padded: SCREAMING_SNAKE_CASE_ = max_length - len(__magic_name__ ) if self.padding_side == "right": if return_attention_mask: SCREAMING_SNAKE_CASE_ = np.pad( processed_features["attention_mask"] , (0, difference) ) SCREAMING_SNAKE_CASE_ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) SCREAMING_SNAKE_CASE_ = np.pad( __magic_name__ , __magic_name__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: SCREAMING_SNAKE_CASE_ = np.pad( processed_features["attention_mask"] , (difference, 0) ) SCREAMING_SNAKE_CASE_ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) SCREAMING_SNAKE_CASE_ = np.pad( __magic_name__ , __magic_name__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def __A ( self : Optional[Any] , __magic_name__ : Union[Dict[str, np.ndarray], BatchFeature] , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) SCREAMING_SNAKE_CASE_ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) > max_length if needs_to_be_truncated: SCREAMING_SNAKE_CASE_ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: SCREAMING_SNAKE_CASE_ = processed_features["attention_mask"][:max_length] return processed_features def __A ( self : Optional[int] , __magic_name__ : List[Any]=False , __magic_name__ : int=None ) -> Dict: # Get padding strategy if padding is not False: if padding is True: SCREAMING_SNAKE_CASE_ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = PaddingStrategy(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = padding else: SCREAMING_SNAKE_CASE_ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Optional[Any] = logging.get_logger(__name__) A : List[Any] = torch.device("cpu") def a__ ( ): SCREAMING_SNAKE_CASE_ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im def a__ ( __UpperCamelCase ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] for k in state_dict.keys(): SCREAMING_SNAKE_CASE_ = k if ".pwconv" in k: SCREAMING_SNAKE_CASE_ = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: SCREAMING_SNAKE_CASE_ = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: SCREAMING_SNAKE_CASE_ = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: SCREAMING_SNAKE_CASE_ = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: SCREAMING_SNAKE_CASE_ = k_new.split("." ) if ls[2].isdigit(): SCREAMING_SNAKE_CASE_ = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: SCREAMING_SNAKE_CASE_ = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": SCREAMING_SNAKE_CASE_ = [3, 3, 6, 4] SCREAMING_SNAKE_CASE_ = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": SCREAMING_SNAKE_CASE_ = [3, 3, 9, 6] SCREAMING_SNAKE_CASE_ = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": SCREAMING_SNAKE_CASE_ = [4, 3, 1_0, 5] SCREAMING_SNAKE_CASE_ = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": SCREAMING_SNAKE_CASE_ = [4, 4, 1_2, 6] SCREAMING_SNAKE_CASE_ = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="cpu" , check_hash=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , map_location="cpu" ) SCREAMING_SNAKE_CASE_ = checkpoint SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = SwiftFormerForImageClassification(__UpperCamelCase ).eval() hf_model.load_state_dict(__UpperCamelCase ) # prepare test inputs SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = ViTImageProcessor.from_pretrained("preprocessor_config" ) SCREAMING_SNAKE_CASE_ = processor(images=__UpperCamelCase , return_tensors="pt" ) # compare outputs from both models SCREAMING_SNAKE_CASE_ = get_expected_output(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , __UpperCamelCase , atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A : List[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
356
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Any: _a : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(_a , '''depth_multiplier''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=3_2 , _a=0.25 , _a=8 , _a=True , _a=1_0_2_4 , _a=3_2 , _a="relu6" , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=1_0 , _a=None , ) -> Any: _a : List[str] = parent _a : Tuple = batch_size _a : int = num_channels _a : Dict = image_size _a : Any = depth_multiplier _a : Tuple = min_depth _a : List[Any] = tf_padding _a : Optional[int] = int(last_hidden_size * depth_multiplier ) _a : List[str] = output_stride _a : Dict = hidden_act _a : Optional[int] = classifier_dropout_prob _a : str = use_labels _a : Optional[int] = is_training _a : Dict = num_labels _a : Union[str, Any] = initializer_range _a : Optional[Any] = scope def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[Any] = None _a : Any = None if self.use_labels: _a : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : str = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> Union[str, Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , _a , _a , _a , _a ) -> Dict: _a : Union[str, Any] = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self , _a , _a , _a , _a ) -> Dict: _a : Any = self.num_labels _a : str = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() _a : int = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Dict: _a : Dict = self.prepare_config_and_inputs() _a , _a , _a , _a : Tuple = config_and_inputs _a : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> str: _a : Optional[Any] = MobileNetVaModelTester(self ) _a : List[str] = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowercase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __lowercase ( self ) -> int: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __lowercase ( self ) -> Tuple: pass def __lowercase ( self ) -> List[str]: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[int] = [*signature.parameters.keys()] _a : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> Tuple: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> List[Any]: def check_hidden_states_output(_a , _a , _a ): _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : int = model(**self._prepare_for_class(_a , _a ) ) _a : Union[str, Any] = outputs.hidden_states _a : int = 2_6 self.assertEqual(len(_a ) , _a ) _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> List[Any]: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> str: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> List[Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> Tuple: _a : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(_a ) _a : Any = self.default_image_processor _a : Dict = prepare_img() _a : Union[str, Any] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Any = model(**_a ) # verify the logits _a : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , _a ) _a : List[Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
1
from __future__ import annotations from typing import TypedDict class a__ ( lowerCAmelCase_ ): lowerCamelCase__: str lowerCamelCase__: int def _a ( __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCamelCase ) )] def _a ( __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) a_ : int = all_rotations(__UpperCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation a_ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCamelCase ), } return response def _a ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: a_ : str = int(__UpperCamelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCamelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) a_ : Union[str, Any] = [""""""] * len(__UpperCamelCase ) for _ in range(len(__UpperCamelCase ) ): for i in range(len(__UpperCamelCase ) ): a_ : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __lowerCamelCase = '''Provide a string that I will generate its BWT transform: ''' __lowerCamelCase = input(entry_msg).strip() __lowerCamelCase = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result["bwt_string"]}\'''' ) __lowerCamelCase = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( f'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' f'''we get original string \'{original_string}\'''' )
478
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a__ ( unittest.TestCase ): def UpperCAmelCase( self : int ): a_ : Any = 0 def UpperCAmelCase( self : Dict ): a_ : List[str] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : Any = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Tuple = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : List[Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : List[str] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : int = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type a_ : Tuple = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Tuple = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) a_ : Tuple = CLIPImageProcessor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved a_ : str = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : Union[str, Any] = Path(lowerCamelCase_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int ): with self.assertRaisesRegex( lowerCamelCase_ , """clip-base is not a local folder and is not a valid model identifier""" ): a_ : Any = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase( self : Optional[Any] ): with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): a_ : Dict = AutoImageProcessor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def UpperCAmelCase( self : Dict ): with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): a_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase_ ): a_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): a_ : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) a_ : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) a_ : int = AutoImageProcessor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase( self : List[str] ): try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Union[str, Any] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : str = CustomImageProcessor.from_pretrained(lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) a_ : Any = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase( self : Union[str, Any] ): class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local a_ : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a_ : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
478
1
'''simple docstring''' import math import qiskit def UpperCamelCase__ ( lowerCAmelCase = 1 , lowerCAmelCase = 1 , lowerCAmelCase = 1 ): """simple docstring""" if ( isinstance(__a , __a ) or isinstance(__a , __a ) or isinstance(__a , __a ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(__a ) != input_a) or (math.floor(__a ) != input_a) or (math.floor(__a ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _lowerCAmelCase = qiskit.QuantumRegister(4 , """qr""" ) _lowerCAmelCase = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _lowerCAmelCase = [input_a, input_a, carry_in] _lowerCAmelCase = qiskit.QuantumCircuit(__a , __a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits _lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) _lowerCAmelCase = qiskit.execute(__a , __a , shots=10_00 ) return job.result().get_counts(__a ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
207
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase_ : Dict = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : int = logging.getLogger(__name__) @dataclass(frozen=__A ) class a__ : """simple docstring""" __UpperCamelCase : Tuple = 42 __UpperCamelCase : Tuple = 42 __UpperCamelCase : Dict = None __UpperCamelCase : List[Any] = None __UpperCamelCase : List[str] = None @dataclass(frozen=__A ) class a__ : """simple docstring""" __UpperCamelCase : List[str] = 42 __UpperCamelCase : Tuple = None __UpperCamelCase : str = None __UpperCamelCase : int = None __UpperCamelCase : Union[str, Any] = None if is_torch_available(): import torch from torch.utils.data import Dataset class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 42 def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase=False , __lowercase = False , ): __lowerCAmelCase = hans_processors[task]() __lowerCAmelCase = os.path.join( __A , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(__A ) , __A , ) , ) __lowerCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase , __lowerCAmelCase = label_list[2], label_list[1] __lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + '''.lock''' with FileLock(__A ): if os.path.exists(__A ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) __lowerCAmelCase = torch.load(__A ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) __lowerCAmelCase = ( processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) ) logger.info('''Training examples: %s''' , len(__A ) ) __lowerCAmelCase = hans_convert_examples_to_features(__A , __A , __A , __A ) logger.info('''Saving features into cached file %s''' , __A ) torch.save(self.features , __A ) def __len__(self ): return len(self.features ) def __getitem__(self , __lowercase ): return self.features[i] def _snake_case (self ): return self.label_list if is_tf_available(): import tensorflow as tf class a__ : """simple docstring""" __UpperCamelCase : str = 42 def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase = 1_28 , __lowercase=False , __lowercase = False , ): __lowerCAmelCase = hans_processors[task]() __lowerCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase , __lowerCAmelCase = label_list[2], label_list[1] __lowerCAmelCase = label_list __lowerCAmelCase = processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) __lowerCAmelCase = hans_convert_examples_to_features(__A , __A , __A , __A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(__A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowerCAmelCase = tf.data.Dataset.from_generator( __A , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _snake_case (self ): return self.dataset def __len__(self ): return len(self.features ) def __getitem__(self , __lowercase ): return self.features[i] def _snake_case (self ): return self.label_list class a__ ( __A ): """simple docstring""" def _snake_case (self , __lowercase ): return self._create_examples(self._read_tsv(os.path.join(__A , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _snake_case (self , __lowercase ): return self._create_examples(self._read_tsv(os.path.join(__A , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _snake_case (self ): return ["contradiction", "entailment", "neutral"] def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = [] for i, line in enumerate(__A ): if i == 0: continue __lowerCAmelCase = '''%s-%s''' % (set_type, line[0]) __lowerCAmelCase = line[5] __lowerCAmelCase = line[6] __lowerCAmelCase = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __lowerCAmelCase = line[0] examples.append(InputExample(guid=__A , text_a=__A , text_b=__A , label=__A , pairID=__A ) ) return examples def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): __lowerCAmelCase = {label: i for i, label in enumerate(_lowercase)} __lowerCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase), desc='''convert examples to features'''): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index)) __lowerCAmelCase = tokenizer( example.text_a, example.text_b, add_special_tokens=_lowercase, max_length=_lowercase, padding='''max_length''', truncation=_lowercase, return_overflowing_tokens=_lowercase, ) __lowerCAmelCase = label_map[example.label] if example.label in label_map else 0 __lowerCAmelCase = int(example.pairID) features.append(InputFeatures(**_lowercase, label=_lowercase, pairID=_lowercase)) for i, example in enumerate(examples[:5]): logger.info('''*** Example ***''') logger.info(F"""guid: {example}""") logger.info(F"""features: {features[i]}""") return features _UpperCAmelCase : int = { """hans""": 3, } _UpperCAmelCase : Dict = { """hans""": HansProcessor, }
718
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) class a__ ( __A ): """simple docstring""" def _snake_case (self , __lowercase , __lowercase , __lowercase=None , __lowercase=None ): __lowerCAmelCase = self.layer[current_layer](__lowercase , __lowercase , head_mask[current_layer] ) __lowerCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = BertEncoderWithPabee(__lowercase ) self.init_weights() __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 def _snake_case (self , __lowercase ): __lowerCAmelCase = threshold def _snake_case (self , __lowercase ): __lowerCAmelCase = patience def _snake_case (self ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 def _snake_case (self ): __lowerCAmelCase = self.inference_layers_num / self.inference_instances_num __lowerCAmelCase = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase = torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: __lowerCAmelCase = torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase = self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = encoder_hidden_states.size() __lowerCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __lowerCAmelCase = torch.ones(__lowercase , device=__lowercase ) __lowerCAmelCase = self.invert_attention_mask(__lowercase ) else: __lowerCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase = self.get_head_mask(__lowercase , self.config.num_hidden_layers ) __lowerCAmelCase = self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) __lowerCAmelCase = embedding_output if self.training: __lowerCAmelCase = [] for i in range(self.config.num_hidden_layers ): __lowerCAmelCase = self.encoder.adaptive_forward( __lowercase , current_layer=__lowercase , attention_mask=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = self.pooler(__lowercase ) __lowerCAmelCase = output_layers[i](output_dropout(__lowercase ) ) res.append(__lowercase ) elif self.patience == 0: # Use all layers for inference __lowerCAmelCase = self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __lowerCAmelCase = self.pooler(encoder_outputs[0] ) __lowerCAmelCase = [output_layers[self.config.num_hidden_layers - 1](__lowercase )] else: __lowerCAmelCase = 0 __lowerCAmelCase = None __lowerCAmelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __lowerCAmelCase = self.encoder.adaptive_forward( __lowercase , current_layer=__lowercase , attention_mask=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = self.pooler(__lowercase ) __lowerCAmelCase = output_layers[i](__lowercase ) if regression: __lowerCAmelCase = logits.detach() if patient_result is not None: __lowerCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __lowerCAmelCase = 0 else: __lowerCAmelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: __lowerCAmelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__lowercase ) ): patient_counter += 1 else: __lowerCAmelCase = 0 __lowerCAmelCase = logits if patient_counter == self.patience: break __lowerCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = BertModelWithPabee(__lowercase ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): __lowerCAmelCase = self.bert( input_ids=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __lowerCAmelCase = (logits[-1],) if labels is not None: __lowerCAmelCase = None __lowerCAmelCase = 0 for ix, logits_item in enumerate(__lowercase ): if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __lowerCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __lowerCAmelCase = (total_loss / total_weights,) + outputs return outputs
474
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=1_6 , lowerCamelCase_=3_6 , lowerCamelCase_=6 , lowerCamelCase_=6 , lowerCamelCase_=6 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ) -> Dict: _a : Dict = parent _a : Tuple = batch_size _a : Optional[int] = seq_length _a : List[str] = is_training _a : Tuple = use_input_mask _a : Dict = use_token_type_ids _a : List[str] = use_labels _a : Optional[int] = vocab_size _a : int = embedding_size _a : Tuple = hidden_size _a : str = num_hidden_layers _a : List[str] = num_hidden_groups _a : Union[str, Any] = num_attention_heads _a : Dict = intermediate_size _a : List[str] = hidden_act _a : Tuple = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : Dict = type_vocab_size _a : Tuple = type_sequence_label_size _a : Dict = initializer_range _a : str = num_labels _a : Optional[Any] = num_choices _a : Optional[int] = scope def __UpperCamelCase ( self ) -> Optional[int]: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : List[str] = None if self.use_input_mask: _a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _a : Dict = None if self.use_token_type_ids: _a : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : List[str] = None _a : Optional[int] = None _a : List[Any] = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : str = ids_tensor([self.batch_size] , self.num_choices ) _a : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> Any: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _a : str = AlbertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) _a : Dict = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) _a : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: _a : Optional[int] = AlbertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : Optional[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , sentence_order_label=lowerCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _a : Union[str, Any] = AlbertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _a : Union[str, Any] = AlbertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : Tuple = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _a : str = self.num_labels _a : str = AlbertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _a : Optional[int] = self.num_labels _a : Any = AlbertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _a : Optional[int] = self.num_choices _a : Any = AlbertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Optional[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Optional[int] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[int] = config_and_inputs _a : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase : List[Any] = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : Optional[int] = True def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> List[str]: _a : Optional[Any] = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): _a : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ ) _a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def __UpperCamelCase ( self ) -> List[Any]: _a : int = AlbertModelTester(self ) _a : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7 ) def __UpperCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[int]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Tuple: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Any: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Dict: _a : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Optional[Any] = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) @slow def __UpperCamelCase ( self ) -> Optional[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : int = AlbertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class a ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Dict = AlbertModel.from_pretrained('albert-base-v2' ) _a : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _a : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] _a : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCamelCase_ ) _a : int = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4 ) )
120
0
import math import tensorflow as tf from packaging import version def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __a ( A__ : int ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(A__ , 3 )) )) return x * cdf def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) return x * tf.tanh(tf.math.softplus(A__ ) ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __a ( A__ : List[Any] ): return tf.clip_by_value(_gelu(A__ ) , -10 , 10 ) def __a ( A__ : List[Any] , A__ : int=-1 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tf.split(A__ , 2 , axis=A__ ) return a * tf.math.sigmoid(A__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def __a ( A__ : Optional[Any] ): return tf.keras.activations.gelu(A__ , approximate=A__ ) __A : Dict = tf.keras.activations.gelu __A : Optional[int] = approximate_gelu_wrap else: __A : Tuple = _gelu __A : Any = _gelu_new __A : List[str] = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def __a ( A__ : Tuple ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase_ : List[Any] = logging.get_logger(__name__) @dataclass class _lowerCamelCase ( UpperCamelCase_ ): __a = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **lowerCAmelCase ) -> str: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE__: str= deprecated_arg[3:] setattr(self , lowerCAmelCase , not kwargs.pop(lowerCAmelCase ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) SCREAMING_SNAKE_CASE__: Tuple= kwargs.pop('''torchscript''' , self.torchscript ) SCREAMING_SNAKE_CASE__: Union[str, Any]= kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE__: Any= kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**lowerCAmelCase ) __a = field(default=UpperCamelCase_ , metadata={"help": "Trace the models using torchscript"} ) __a = field(default=UpperCamelCase_ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __a = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def UpperCamelCase_ ( self ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: SCREAMING_SNAKE_CASE__: Any= torch.device('''cpu''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE__: List[str]= xm.xla_device() SCREAMING_SNAKE_CASE__: Any= 0 else: SCREAMING_SNAKE_CASE__: List[Any]= torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE__: List[str]= torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase_ ( self ) -> Optional[Any]: return is_torch_tpu_available() and self.tpu @property def UpperCamelCase_ ( self ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase_ ( self ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def UpperCamelCase_ ( self ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def UpperCamelCase_ ( self ) -> str: return self.n_gpu > 0
64
def A__ ( snake_case_ : float , snake_case_ : float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
64
1
'''simple docstring''' def lowerCamelCase__ ( _A = 1000 ): a : str = 2**power a : Optional[Any] = str(_A ) a : List[Any] = list(_A ) a : Optional[Any] = 0 for i in list_num: sum_of_num += int(_A ) return sum_of_num if __name__ == "__main__": lowerCAmelCase: Dict = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) lowerCAmelCase: str = solution(power) print('Sum of the digits is: ', result)
195
'''simple docstring''' class a__: def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple ): a : List[str] = name a : Dict = value a : List[str] = weight def __repr__( self : int ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase_ ( self : Optional[int] ): return self.value def lowercase_ ( self : List[str] ): return self.name def lowercase_ ( self : int ): return self.weight def lowercase_ ( self : List[str] ): return self.value / self.weight def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = [] for i in range(len(_A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( _A , _A , _A ): a : Optional[Any] = sorted(_A , key=_A , reverse=_A ) a : Optional[int] = [] a , a : str = 0.0, 0.0 for i in range(len(_A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
195
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = "▁" lowerCamelCase__ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } lowerCamelCase__ = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } lowerCamelCase__ = { "facebook/s2t-small-librispeech-asr": 1024, } lowerCamelCase__ = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] lowerCamelCase__ = {"mustc": MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Dict = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ :Tuple = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ :List[int] = [] def __init__( self : List[str] , __a : Optional[Any] , __a : str , __a : Union[str, Any]="<s>" , __a : List[str]="</s>" , __a : Optional[Any]="<pad>" , __a : str="<unk>" , __a : List[str]=False , __a : Optional[Any]=False , __a : Union[str, Any]=None , __a : Optional[Any]=None , __a : Optional[Dict[str, Any]] = None , **__a : str , ) -> None: _UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _UpperCamelCase : str = do_upper_case _UpperCamelCase : List[str] = do_lower_case _UpperCamelCase : List[str] = load_json(__a ) _UpperCamelCase : List[str] = {v: k for k, v in self.encoder.items()} _UpperCamelCase : List[Any] = spm_file _UpperCamelCase : Union[str, Any] = load_spm(__a , self.sp_model_kwargs ) if lang_codes is not None: _UpperCamelCase : Any = lang_codes _UpperCamelCase : int = LANGUAGES[lang_codes] _UpperCamelCase : Any = [F'''<lang:{lang}>''' for lang in self.langs] _UpperCamelCase : Dict = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} _UpperCamelCase : Optional[int] = self.lang_tokens _UpperCamelCase : Optional[int] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _UpperCamelCase : int = {} @property def __SCREAMING_SNAKE_CASE ( self : int ) -> int: return len(self.encoder ) @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self._tgt_lang @tgt_lang.setter def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] ) -> None: _UpperCamelCase : Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : str ) -> None: _UpperCamelCase : int = self.lang_code_to_id[tgt_lang] _UpperCamelCase : Any = [lang_code_id] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : str ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> Optional[Any]: return self.encoder.get(__a , self.encoder[self.unk_token] ) def __SCREAMING_SNAKE_CASE ( self : int , __a : int ) -> str: return self.decoder.get(__a , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[str] ) -> str: _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _UpperCamelCase : Dict = self.sp_model.decode(__a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _UpperCamelCase : Any = [] else: current_sub_tokens.append(__a ) _UpperCamelCase : List[str] = self.sp_model.decode(__a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Any , __a : Tuple , __a : List[Any]=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) _UpperCamelCase : Tuple = [1] * len(self.prefix_tokens ) _UpperCamelCase : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: _UpperCamelCase : Any = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Dict: _UpperCamelCase : Any = self.__dict__.copy() _UpperCamelCase : List[Any] = None return state def __setstate__( self : List[Any] , __a : Dict ) -> None: _UpperCamelCase : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase : Optional[int] = {} _UpperCamelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase : List[str] = Path(__a ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' _UpperCamelCase : Optional[int] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCamelCase : List[str] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: _UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def lowercase__ ( lowercase_ ,lowercase_ ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _UpperCamelCase : Tuple = sentencepiece.SentencePieceProcessor(**lowercase_ ) spm.Load(str(lowercase_ ) ) return spm def lowercase__ ( lowercase_ ) -> Union[Dict, List]: """simple docstring""" with open(lowercase_ ,"r" ) as f: return json.load(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" with open(lowercase_ ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ,indent=2 )
624
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
624
1
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : List[str] = IFImgaImgSuperResolutionPipeline snake_case__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) snake_case__ : Any = PipelineTesterMixin.required_optional_params - {'latents'} def _UpperCamelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' return self._get_superresolution_dummy_components() def _UpperCamelCase ( self :int , __magic_name__ :Optional[int] , __magic_name__ :str=0 ) -> int: '''simple docstring''' if str(__magic_name__ ).startswith('''mps''' ): a__ = torch.manual_seed(__magic_name__ ) else: a__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) a__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) a__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _UpperCamelCase ( self :Tuple ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _UpperCamelCase ( self :Any ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _UpperCamelCase ( self :Any ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _UpperCamelCase ( self :List[str] ) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _UpperCamelCase ( self :Any ) -> Tuple: '''simple docstring''' self._test_save_load_local() def _UpperCamelCase ( self :str ) -> Tuple: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
703
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" a__ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} a__ = features.copy() a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = tmp_path / '''cache''' a__ = JsonDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , split=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if issubclass(UpperCamelCase , UpperCamelCase ): a__ = jsonl_path elif issubclass(UpperCamelCase , UpperCamelCase ): a__ = [jsonl_path] a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase=("train",) ) -> str: """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) for split in splits: a__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_json_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader({'''train''': jsonl_path} , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: """simple docstring""" if split: a__ = {split: jsonl_path} else: a__ = '''train''' a__ = {'''train''': jsonl_path, '''test''': jsonl_path} a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_datasetdict(UpperCamelCase , UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( UpperCamelCase ) -> Any: """simple docstring""" return json.load(UpperCamelCase ) def __snake_case ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return [json.loads(UpperCamelCase ) for line in buffer] class SCREAMING_SNAKE_CASE : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Any , __magic_name__ :Optional[int] ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ ).write() buffer.seek(0 ) a__ = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :Any ) -> List[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ ).write() buffer.seek(0 ) a__ = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Union[str, Any] ) -> List[str]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) a__ = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCamelCase ( self :Any , __magic_name__ :Any , __magic_name__ :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Any ) -> Optional[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) a__ = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :int ) -> Dict: '''simple docstring''' with pytest.raises(__magic_name__ ): with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def _UpperCamelCase ( self :Tuple , __magic_name__ :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :List[Any] , __magic_name__ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ = tmp_path_factory.mktemp('''data''' ) / F"test.json.{extension}" a__ = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(__magic_name__ , __magic_name__ , compression=__magic_name__ ).write() with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f: a__ = f.read() with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f: a__ = f.read() assert exported_content == original_content
158
0
'''simple docstring''' def snake_case ( a_ : int ) -> int: """simple docstring""" if n == 1 or not isinstance(a_ , a_ ): return 0 elif n == 2: return 1 else: UpperCamelCase_ : Dict = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case ( a_ : int ) -> int: """simple docstring""" UpperCamelCase_ : Any = 0 UpperCamelCase_ : Union[str, Any] = 2 while digits < n: index += 1 UpperCamelCase_ : Any = len(str(fibonacci(a_ ) ) ) return index def snake_case ( a_ : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(a_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
208
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase =logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , **__lowerCAmelCase ): super().__init__(**__lowerCAmelCase ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__lowerCAmelCase ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): UpperCamelCase_ : int = {} UpperCamelCase_ : int = {} UpperCamelCase_ : Any = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase_ : Dict = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: UpperCamelCase_ : str = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: UpperCamelCase_ : Any = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: UpperCamelCase_ : str = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase_ : Tuple = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase_ : Any = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: UpperCamelCase_ : List[str] = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: UpperCamelCase_ : Tuple = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: UpperCamelCase_ : Optional[Any] = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: UpperCamelCase_ : Dict = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: UpperCamelCase_ : Optional[int] = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: UpperCamelCase_ : List[Any] = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): return super().__call__(__lowerCAmelCase , *__lowerCAmelCase , num_workers=__lowerCAmelCase , batch_size=__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=64 , __lowerCAmelCase = 0 , __lowerCAmelCase = 5_12 / 15_00 , __lowerCAmelCase = 32 , __lowerCAmelCase = 1 , ): UpperCamelCase_ : Tuple = load_image(__lowerCAmelCase ) UpperCamelCase_ : Tuple = self.image_processor.size["""longest_edge"""] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Dict = self.image_processor.generate_crop_boxes( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : Any = self.image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase_ : str = self.get_inference_context() with inference_context(): UpperCamelCase_ : Optional[int] = self._ensure_tensor_on_device(__lowerCAmelCase , device=self.device ) UpperCamelCase_ : Tuple = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) UpperCamelCase_ : List[Any] = image_embeddings UpperCamelCase_ : Any = grid_points.shape[1] UpperCamelCase_ : List[str] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Dict = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase_ : List[Any] = input_labels[:, i : i + points_per_batch] UpperCamelCase_ : Dict = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=0.88 , __lowerCAmelCase=0.95 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , ): UpperCamelCase_ : Union[str, Any] = model_inputs.pop("""input_boxes""" ) UpperCamelCase_ : Tuple = model_inputs.pop("""is_last""" ) UpperCamelCase_ : Dict = model_inputs.pop("""original_sizes""" ).tolist() UpperCamelCase_ : int = model_inputs.pop("""reshaped_input_sizes""" ).tolist() UpperCamelCase_ : Optional[Any] = self.model(**__lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase_ : List[str] = model_outputs["""pred_masks"""] UpperCamelCase_ : Optional[int] = self.image_processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , binarize=__lowerCAmelCase ) UpperCamelCase_ : List[str] = model_outputs["""iou_scores"""] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Optional[Any] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=0.7 , ): UpperCamelCase_ : Tuple = [] UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : Tuple = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) UpperCamelCase_ : Any = torch.cat(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = torch.cat(__lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Any = self.image_processor.post_process_for_mask_generation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : List[Any] = defaultdict(__lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = {} if output_rle_mask: UpperCamelCase_ : int = rle_mask if output_bboxes_mask: UpperCamelCase_ : int = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
208
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = '''MCTCTFeatureExtractor''' _lowerCamelCase: Optional[int] = '''AutoTokenizer''' def __init__( self : str ,A_ : Tuple ,A_ : int ) -> List[str]: super().__init__(A_ ,A_ ) A = self.feature_extractor A = False def __call__( self : Any ,*A_ : int ,**A_ : str ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ ,**A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A = kwargs.pop('raw_speech' ) else: A = kwargs.pop('audio' ,A_ ) A = kwargs.pop('sampling_rate' ,A_ ) A = kwargs.pop('text' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(A_ ,*A_ ,sampling_rate=A_ ,**A_ ) if text is not None: A = self.tokenizer(A_ ,**A_ ) if text is None: return inputs elif audio is None: return encodings else: A = encodings['input_ids'] return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> int: return self.tokenizer.batch_decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,*A_ : Union[str, Any] ,**A_ : List[Any] ) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ ,**A_ ) A = kwargs.pop('input_features' ,A_ ) A = kwargs.pop('labels' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if input_features is not None: A = self.feature_extractor.pad(A_ ,*A_ ,**A_ ) if labels is not None: A = self.tokenizer.pad(A_ ,**A_ ) if labels is None: return input_features elif input_features is None: return labels else: A = labels['input_ids'] return input_features def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : Dict ,**A_ : List[str] ) -> List[str]: return self.tokenizer.decode(*A_ ,**A_ ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A = True A = self.tokenizer yield A = self.feature_extractor A = False
22
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
1
import numpy as np a_ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class lowercase__ : def __init__( self )-> None: '''simple docstring''' lowerCAmelCase__ = np.array(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> np.ndarray: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = np.where(letter == self.SQUARE ) lowerCAmelCase__ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase ( self , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = message.lower() lowerCAmelCase__ = message.replace(" " , "" ) lowerCAmelCase__ = message.replace("j" , "i" ) lowerCAmelCase__ = np.empty((2, len(__UpperCAmelCase )) ) for letter_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase__ = numbers[0] lowerCAmelCase__ = numbers[1] lowerCAmelCase__ = first_step.reshape(2 * len(__UpperCAmelCase ) ) lowerCAmelCase__ = "" for numbers_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ = int(second_step[numbers_index * 2] ) lowerCAmelCase__ = int(second_step[(numbers_index * 2) + 1] ) lowerCAmelCase__ = self.numbers_to_letter(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = encoded_message + letter return encoded_message def UpperCAmelCase ( self , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = message.lower() message.replace(" " , "" ) lowerCAmelCase__ = np.empty(2 * len(__UpperCAmelCase ) ) for letter_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase__ = numbers[0] lowerCAmelCase__ = numbers[1] lowerCAmelCase__ = first_step.reshape((2, len(__UpperCAmelCase )) ) lowerCAmelCase__ = "" for numbers_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ = int(second_step[0, numbers_index] ) lowerCAmelCase__ = int(second_step[1, numbers_index] ) lowerCAmelCase__ = self.numbers_to_letter(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = decoded_message + letter return decoded_message
339
from __future__ import annotations def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int ) -> list[int]: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCamelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase__ = i + 1 else: lowerCAmelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"{two_pointer([2, 7, 11, 15], 9) = }")
339
1
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __snake_case : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCamelCase ) ) return round(__lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
701
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __UpperCAmelCase : Dict = PipelineTesterMixin.required_optional_params - {"latents"} __UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def __snake_case ( self : Optional[Any] ) -> Tuple: torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __snake_case : Tuple = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) __snake_case : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) __snake_case : List[str] = CLIPTextModel(lowerCamelCase ) __snake_case : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=lowerCamelCase ) __snake_case : List[str] = CLIPTextModelWithProjection(lowerCamelCase ) __snake_case : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=lowerCamelCase ) __snake_case : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __snake_case ( self : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any]=0 ) -> Union[str, Any]: __snake_case : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __snake_case : Any = image / 2 + 0.5 if str(lowerCamelCase ).startswith("mps" ): __snake_case : Dict = torch.manual_seed(lowerCamelCase ) else: __snake_case : int = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def __snake_case ( self : Dict ) -> Any: __snake_case : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : int = StableDiffusionXLImgaImgPipeline(**lowerCamelCase ) __snake_case : List[str] = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Tuple = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Dict = sd_pipe(**lowerCamelCase ).images __snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : str = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : str ) -> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __snake_case ( self : Any ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __snake_case ( self : str ) -> Optional[int]: pass def __snake_case ( self : Tuple ) -> Union[str, Any]: __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = StableDiffusionXLImgaImgPipeline(**lowerCamelCase ) __snake_case : Optional[Any] = sd_pipe.to(lowerCamelCase ) __snake_case : int = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) # forward without prompt embeds __snake_case : List[str] = self.get_dummy_inputs(lowerCamelCase ) __snake_case : str = 3 * ["this is a negative prompt"] __snake_case : Any = negative_prompt __snake_case : Optional[Any] = 3 * [inputs["prompt"]] __snake_case : int = sd_pipe(**lowerCamelCase ) __snake_case : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds __snake_case : List[Any] = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Optional[Any] = 3 * ["this is a negative prompt"] __snake_case : int = 3 * [inputs.pop("prompt" )] ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = sd_pipe.encode_prompt(lowerCamelCase , negative_prompt=lowerCamelCase ) __snake_case : Tuple = sd_pipe( **lowerCamelCase , prompt_embeds=lowerCamelCase , negative_prompt_embeds=lowerCamelCase , pooled_prompt_embeds=lowerCamelCase , negative_pooled_prompt_embeds=lowerCamelCase , ) __snake_case : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any]="cpu" , lowerCamelCase : str=torch.floataa , lowerCamelCase : int=0 ) -> Dict: __snake_case : int = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Optional[Any] = np.random.RandomState(lowerCamelCase ).standard_normal((1, 4, 64, 64) ) __snake_case : Optional[Any] = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase , dtype=lowerCamelCase ) __snake_case : List[str] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __snake_case ( self : str ) -> Any: __snake_case : List[str] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : int = self.get_inputs(lowerCamelCase ) __snake_case : Optional[Any] = pipe(**lowerCamelCase ).images __snake_case : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __snake_case : Optional[int] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
203
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''prophetnet.tokenizer'''} __snake_case = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } __snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } __snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2, } def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = collections.OrderedDict() with open(_lowercase , 'r' , encoding='utf-8' ) as reader: __UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): __UpperCamelCase = token.rstrip('\n' ) __UpperCamelCase = index return vocab class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: str,A_: int,A_: str="[SEP]",A_: List[Any]="[SEP]",A_: str="[SEP]",A_: Any="[UNK]",A_: Optional[int]="[PAD]",A_: List[str]="[CLS]",A_: Dict="[MASK]",A_: Optional[Dict[str, Any]] = None,**A_: str,): '''simple docstring''' __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_,eos_token=A_,sep_token=A_,unk_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __UpperCamelCase = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): __UpperCamelCase = F'''[unused{i}]''' __UpperCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __UpperCamelCase = 12 __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self: List[Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self: List[Any],A_: str ): '''simple docstring''' return self.sp_model.encode(A_,out_type=A_ ) def snake_case_ ( self: Any,A_: Optional[int] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self: str,A_: int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self: Tuple,A_: int ): '''simple docstring''' __UpperCamelCase = ''.join(A_ ).replace(A_,' ' ).strip() return out_string def snake_case_ ( self: Optional[int],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_,'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
1
import random from .binary_exp_mod import bin_exp_mod def _A ( __snake_case :List[Any] , __snake_case :Union[str, Any]=1000 ) -> int: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __SCREAMING_SNAKE_CASE = n - 1 __SCREAMING_SNAKE_CASE = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __SCREAMING_SNAKE_CASE = 0 while count < prec: __SCREAMING_SNAKE_CASE = random.randint(2 , n - 1 ) __SCREAMING_SNAKE_CASE = bin_exp_mod(__snake_case , __snake_case , __snake_case ) if b != 1: __SCREAMING_SNAKE_CASE = True for _ in range(__snake_case ): if b == n - 1: __SCREAMING_SNAKE_CASE = False break __SCREAMING_SNAKE_CASE = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _snake_case : int = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
693
0
from __future__ import annotations __magic_name__ = list[list[int]] # assigning initial values to the grid __magic_name__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __magic_name__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if location := find_empty_location(_lowerCamelCase ): snake_case__ , snake_case__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): snake_case__ = digit if sudoku(_lowerCamelCase ) is not None: return grid snake_case__ = 0 return None def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): for row in grid: for cell in row: print(_lowerCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __magic_name__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
700
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): if len(__lowerCAmelCase ) == 0: return False snake_case__ = len(__lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , __lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = input('''Enter numbers separated by comma:\n''').strip() __magic_name__ = [int(item.strip()) for item in user_input.split(''',''')] __magic_name__ = int(input('''Enter the number to be found in the list:\n''').strip()) __magic_name__ = '''''' if binary_search(sequence, target) else '''not ''' print(F'''{target} was {not_str}found in {sequence}''')
530
0
from __future__ import annotations from functools import lru_cache from math import ceil __UpperCamelCase : List[str] = 100 __UpperCamelCase : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) __UpperCamelCase : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A ( _lowercase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE : set[int] = set() SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( _lowercase = 5_000 ): for number_to_partition in range(1 , _lowercase ): if len(partition(_lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
248
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = OmegaConf.load(_lowercase ) SCREAMING_SNAKE_CASE : int = torch.load(_lowercase , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE : int = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : List[str] = '''first_stage_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] SCREAMING_SNAKE_CASE : int = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE : Tuple = config.model.params.unet_config.params SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**_lowercase ).eval() vqvae.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = UNetLDMModel(**_lowercase ).eval() unet.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = LDMPipeline(_lowercase , _lowercase , _lowercase ) pipeline.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __UpperCamelCase : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
248
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def A ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : bool ,_UpperCAmelCase : Optional[Dict[int, int]] = None ,_UpperCAmelCase : bool = False ,) -> str: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase : str = new_id # turn into Numpy arrays __lowerCAmelCase : List[str] = np.array(_UpperCAmelCase ) __lowerCAmelCase : List[Any] = np.array(_UpperCAmelCase ) if reduce_labels: __lowerCAmelCase : Optional[int] = 2_5_5 __lowerCAmelCase : str = label - 1 __lowerCAmelCase : Tuple = 2_5_5 __lowerCAmelCase : int = label != ignore_index __lowerCAmelCase : Union[str, Any] = np.not_equal(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : Any = pred_label[mask] __lowerCAmelCase : Union[str, Any] = np.array(_UpperCAmelCase )[mask] __lowerCAmelCase : Optional[Any] = pred_label[pred_label == label] __lowerCAmelCase : Optional[int] = np.histogram(_UpperCAmelCase ,bins=_UpperCAmelCase ,range=(0, num_labels - 1) )[0] __lowerCAmelCase : Union[str, Any] = np.histogram(_UpperCAmelCase ,bins=_UpperCAmelCase ,range=(0, num_labels - 1) )[0] __lowerCAmelCase : Optional[int] = np.histogram(_UpperCAmelCase ,bins=_UpperCAmelCase ,range=(0, num_labels - 1) )[0] __lowerCAmelCase : Union[str, Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def A ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : bool ,_UpperCAmelCase : Optional[Dict[int, int]] = None ,_UpperCAmelCase : bool = False ,) -> List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = np.zeros((num_labels,) ,dtype=np.floataa ) __lowerCAmelCase : Optional[Any] = np.zeros((num_labels,) ,dtype=np.floataa ) __lowerCAmelCase : List[str] = np.zeros((num_labels,) ,dtype=np.floataa ) __lowerCAmelCase : Tuple = np.zeros((num_labels,) ,dtype=np.floataa ) for result, gt_seg_map in zip(_UpperCAmelCase ,_UpperCAmelCase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = intersect_and_union( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def A ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : bool ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : Optional[Dict[int, int]] = None ,_UpperCAmelCase : bool = False ,) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = total_intersect_and_union( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # compute metrics __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[Any] = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase : Tuple = total_area_intersect / total_area_union __lowerCAmelCase : List[str] = total_area_intersect / total_area_label __lowerCAmelCase : Any = np.nanmean(_UpperCAmelCase ) __lowerCAmelCase : Tuple = np.nanmean(_UpperCAmelCase ) __lowerCAmelCase : List[str] = all_acc __lowerCAmelCase : int = iou __lowerCAmelCase : int = acc if nan_to_num is not None: __lowerCAmelCase : Tuple = {metric: np.nan_to_num(_UpperCAmelCase ,nan=_UpperCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> Any: __lowerCAmelCase : Optional[int] = mean_iou( results=SCREAMING_SNAKE_CASE , gt_seg_maps=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , ignore_index=SCREAMING_SNAKE_CASE , nan_to_num=SCREAMING_SNAKE_CASE , label_map=SCREAMING_SNAKE_CASE , reduce_labels=SCREAMING_SNAKE_CASE , ) return iou_result
123
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = '''gpt_bigcode''' _snake_case = ['''past_key_values'''] _snake_case = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , SCREAMING_SNAKE_CASE=5_02_57 , SCREAMING_SNAKE_CASE=10_24 , SCREAMING_SNAKE_CASE=7_68 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="gelu_pytorch_tanh" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.0_2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=5_02_56 , SCREAMING_SNAKE_CASE=5_02_56 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: __lowerCAmelCase : str = vocab_size __lowerCAmelCase : List[Any] = n_positions __lowerCAmelCase : List[Any] = n_embd __lowerCAmelCase : Optional[Any] = n_layer __lowerCAmelCase : Any = n_head __lowerCAmelCase : int = n_inner __lowerCAmelCase : str = activation_function __lowerCAmelCase : Dict = resid_pdrop __lowerCAmelCase : Dict = embd_pdrop __lowerCAmelCase : Union[str, Any] = attn_pdrop __lowerCAmelCase : Dict = layer_norm_epsilon __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : int = scale_attn_weights __lowerCAmelCase : Dict = use_cache __lowerCAmelCase : Tuple = attention_softmax_in_fpaa __lowerCAmelCase : Tuple = scale_attention_softmax_in_fpaa __lowerCAmelCase : Optional[Any] = multi_query __lowerCAmelCase : List[str] = bos_token_id __lowerCAmelCase : Optional[Any] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
123
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : List[str] = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase : int = None lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Dict = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } lowerCamelCase : List[str] = '▁' # Segments (not really needed) lowerCamelCase : List[Any] = 0 lowerCamelCase : Optional[int] = 1 lowerCamelCase : int = 2 lowerCamelCase : Optional[int] = 3 lowerCamelCase : Optional[int] = 4 class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = """left""" _snake_case = XLNetTokenizer def __init__( self , A=None , A=None , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , **A , ) -> str: # Mask token behave like a normal word, i.e. include the space before it snake_case : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) snake_case : Optional[int] = 3 snake_case : str = do_lower_case snake_case : Tuple = remove_space snake_case : Optional[Any] = keep_accents snake_case : Optional[int] = vocab_file snake_case : List[str] = False if not self.vocab_file else True def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Optional[int] = [self.sep_token_id] snake_case : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Optional[int] = [self.sep_token_id] snake_case : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
587
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Dict = None , UpperCamelCase_ : str = None ): if start is None: _lowerCAmelCase : Dict = 0 if end is None: _lowerCAmelCase : Optional[int] = len(UpperCamelCase__ ) - 1 if start >= end: return _lowerCAmelCase : int = (start + end) // 2 slowsort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) slowsort(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) if sequence[end] < sequence[mid]: _lowerCAmelCase , _lowerCAmelCase : Dict = sequence[mid], sequence[end] slowsort(UpperCamelCase__ , UpperCamelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
703
def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : List[str] = [int(UpperCamelCase_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(UpperCamelCase_ ) == 4 and all(0 <= int(UpperCamelCase_ ) <= 254 for octet in octets ) if __name__ == "__main__": _lowerCamelCase : List[str] = input().strip() _lowerCamelCase : int = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
196
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCamelCase__ : Tuple = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : str = "" else: _lowerCAmelCase : Optional[int] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads _lowerCAmelCase : Dict = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase : Optional[int] = 1_000 _lowerCAmelCase : Optional[Any] = "huggingface/label-files" _lowerCAmelCase : Tuple = "imagenet-1k-id2label.json" _lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Dict = int(deit_name[-6:-4] ) _lowerCAmelCase : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): _lowerCAmelCase : List[str] = 192 _lowerCAmelCase : int = 768 _lowerCAmelCase : int = 12 _lowerCAmelCase : Any = 3 elif deit_name[9:].startswith("small" ): _lowerCAmelCase : int = 384 _lowerCAmelCase : Tuple = 1_536 _lowerCAmelCase : Dict = 12 _lowerCAmelCase : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): _lowerCAmelCase : List[str] = 1_024 _lowerCAmelCase : Tuple = 4_096 _lowerCAmelCase : Optional[Any] = 24 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : Any = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : Optional[Any] = timm_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model _lowerCAmelCase : Any = DeiTForImageClassificationWithTeacher(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor _lowerCAmelCase : Optional[int] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _lowerCAmelCase : Any = DeiTImageProcessor(size=_lowerCamelCase , crop_size=config.image_size ) _lowerCAmelCase : str = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : int = encoding["pixel_values"] _lowerCAmelCase : int = model(_lowerCamelCase ) _lowerCAmelCase : Tuple = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
500
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Optional[int]=3 , __lowercase : Any=32 , __lowercase : List[str]=3 , __lowercase : Tuple=10 , __lowercase : Dict=[8, 16, 32, 64] , __lowercase : int=[1, 1, 2, 1] , __lowercase : Any=True , __lowercase : Dict=True , __lowercase : Optional[int]="relu" , __lowercase : Any=3 , __lowercase : int=None , __lowercase : Tuple=["stage2", "stage3", "stage4"] , __lowercase : List[str]=[2, 3, 4] , __lowercase : Tuple=1 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = embeddings_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = scope snake_case_ = len(__lowercase ) snake_case_ = out_features snake_case_ = out_indices snake_case_ = num_groups def snake_case__ ( self : int ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : str ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def snake_case__ ( self : Dict , __lowercase : Dict , __lowercase : List[Any] , __lowercase : int ): """simple docstring""" snake_case_ = BitModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case__ ( self : Tuple , __lowercase : List[str] , __lowercase : List[Any] , __lowercase : Tuple ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = BitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ): """simple docstring""" snake_case_ = BitBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = BitBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : str ): """simple docstring""" snake_case_ = BitModelTester(self ) snake_case_ = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason="Bit does not output attentions" ) def snake_case__ ( self : str ): """simple docstring""" pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def snake_case__ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def snake_case__ ( self : Tuple ): """simple docstring""" pass def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__lowercase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowercase ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(config=__lowercase ) for name, module in model.named_modules(): if isinstance(__lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(__lowercase : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): snake_case_ = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__lowercase , __lowercase ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case_ = layer_type snake_case_ = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def snake_case__ ( self : str ): """simple docstring""" pass def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def snake_case__ ( self : Dict ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : List[str] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__ ( self : int ): """simple docstring""" snake_case_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowercase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__lowercase , return_tensors="pt" ).to(__lowercase ) # forward pass with torch.no_grad(): snake_case_ = model(**__lowercase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) snake_case_ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @require_torch class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (BitBackbone,) if is_torch_available() else () lowerCAmelCase_ = BitConfig lowerCAmelCase_ = False def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = BitModelTester(self )
139
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' snake_case_ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( _A , _A , _A=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ = "" else: snake_case_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_A , _A ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = dct.pop(_A ) snake_case_ = val def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A=False ): '''simple docstring''' snake_case_ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_A , ) snake_case_ = ViTHybridConfig(backbone_config=_A , image_size=384 , num_labels=1000 ) snake_case_ = False # load original model from timm snake_case_ = timm.create_model(_A , pretrained=_A ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = timm_model.state_dict() if base_model: remove_classification_head_(_A ) snake_case_ = create_rename_keys(_A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , _A ) snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-1k-id2label.json" snake_case_ = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(_A ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ = ViTHybridModel(_A ).eval() else: snake_case_ = ViTHybridForImageClassification(_A ).eval() model.load_state_dict(_A ) # create image processor snake_case_ = create_transform(**resolve_data_config({} , model=_A ) ) snake_case_ = transform.transforms snake_case_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } snake_case_ = ViTHybridImageProcessor( do_resize=_A , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_A , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ = prepare_img() snake_case_ = transform(_A ).unsqueeze(0 ) snake_case_ = processor(_A , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_A , _A ) # verify logits with torch.no_grad(): snake_case_ = model(_A ) snake_case_ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: snake_case_ = timm_model.forward_features(_A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_A , outputs.pooler_output , atol=1E-3 ) else: snake_case_ = timm_model(_A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_A , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) lowercase__ : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
139
1
from __future__ import annotations class __lowerCamelCase : def __init__( self: Optional[int],A_: str,A_: str ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = text, pattern __UpperCamelCase, __UpperCamelCase = len(A_ ), len(A_ ) def snake_case_ ( self: Tuple,A_: str ): '''simple docstring''' for i in range(self.patLen - 1,-1,-1 ): if char == self.pattern[i]: return i return -1 def snake_case_ ( self: List[str],A_: int ): '''simple docstring''' for i in range(self.patLen - 1,-1,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: __UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case = '''ABAABA''' __snake_case = '''AB''' __snake_case = BoyerMooreSearch(text, pattern) __snake_case = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
from collections.abc import Callable def _lowerCamelCase( lowerCAmelCase__ : Callable[[float], float] , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : float = a SCREAMING_SNAKE_CASE_ : float = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: SCREAMING_SNAKE_CASE_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: SCREAMING_SNAKE_CASE_ : Optional[int] = mid else: SCREAMING_SNAKE_CASE_ : Any = mid SCREAMING_SNAKE_CASE_ : Any = start + (end - start) / 2.0 return mid def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
97
import math def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): '''simple docstring''' return math.pow(lowerCAmelCase__ , 2 ) - a def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' return 2 * x def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE_ : str = math.pow(lowerCAmelCase__ , 2 ) return start def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 9999 , lowerCAmelCase__ : float = 0.00_000_000_000_001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_initial_point(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = value SCREAMING_SNAKE_CASE_ : Union[str, Any] = value - fx(lowerCAmelCase__ , lowerCAmelCase__ ) / fx_derivative(lowerCAmelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
97
1