code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowercase__( ): lowercase_ : Optional[Any] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' lowercase_ : str = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) return image def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : int = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : Any = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : int = val def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase_ : str = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase_ : List[str] = torch.cat((q_bias, torch.zeros_like(__SCREAMING_SNAKE_CASE , requires_grad=__SCREAMING_SNAKE_CASE ), v_bias) ) lowercase_ : List[Any] = qkv_bias def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : List[Any] = 3_64 if 'coco' in model_name else 2_24 lowercase_ : Union[str, Any] = InstructBlipVisionConfig(image_size=__SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase_ : List[Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase_ : Optional[int] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase_ : Union[str, Any] = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: lowercase_ : str = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_20_01 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase_ : int = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() lowercase_ : Any = InstructBlipConfig(vision_config=__SCREAMING_SNAKE_CASE , text_config=__SCREAMING_SNAKE_CASE , qformer_config=__SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: lowercase_ : Dict = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase_ : List[str] = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) lowercase_ , lowercase_ : Tuple = get_blipa_config(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = InstructBlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Optional[Any] = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } lowercase_ , lowercase_ : str = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase_ : List[Any] = 'cuda:1' if torch.cuda.is_available() else 'cpu' lowercase_ : Any = 'cuda:2' if torch.cuda.is_available() else 'cpu' lowercase_ , lowercase_ , lowercase_ : List[str] = load_model_and_preprocess( name=__SCREAMING_SNAKE_CASE , model_type=__SCREAMING_SNAKE_CASE , is_eval=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) original_model.eval() print('Done!' ) # update state dict keys lowercase_ : int = original_model.state_dict() lowercase_ : Union[str, Any] = create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase_ : Optional[int] = state_dict.pop(__SCREAMING_SNAKE_CASE ) if key.startswith('Qformer.bert' ): lowercase_ : str = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase_ : List[Any] = key.replace('self' , 'attention' ) if "llm_proj" in key: lowercase_ : int = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: lowercase_ : Any = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): lowercase_ : Any = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): lowercase_ : str = key.replace('t5' , 'language' ) lowercase_ : Any = val # read in qv biases read_in_q_v_bias(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) lowercase_ : int = load_demo_image() lowercase_ : Tuple = 'What is unusual about this image?' # create processor lowercase_ : int = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = InstructBlipProcessor( image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , qformer_tokenizer=__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[int] = processor(images=__SCREAMING_SNAKE_CASE , text=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values lowercase_ : str = vis_processors['eval'](__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) hf_model.to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "vicuna" in model_name: lowercase_ : Tuple = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits lowercase_ : List[str] = hf_model(**__SCREAMING_SNAKE_CASE ).logits else: lowercase_ : Optional[int] = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits lowercase_ : List[Any] = tokenizer('\n' , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) lowercase_ : str = hf_model(**__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase_ : Optional[int] = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) print('Looks ok!' ) print('Generating with original model...' ) lowercase_ : Tuple = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) lowercase_ : List[Any] = hf_model.generate( **__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase_ : Any = 2 print('Original generation:' , __SCREAMING_SNAKE_CASE ) lowercase_ : int = processor.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = [text.strip() for text in output_text] print('HF generation:' , __SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() __SCREAMING_SNAKE_CASE =[ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
425
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __SCREAMING_SNAKE_CASE =CLIPImageProcessor() __SCREAMING_SNAKE_CASE =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") __SCREAMING_SNAKE_CASE =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
425
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class lowercase ( __lowercase ): def __init__( self , *_a , **_a ) -> int: super().__init__(*_a , **_a ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , _a=None ) -> Dict: _A : Dict = {} if top_k is not None: _A : Optional[int] = top_k return {}, {}, postprocess_params def __call__( self , _a , **_a ) -> Dict: return super().__call__(_a , **_a ) def a__ ( self , _a ) -> Union[str, Any]: _A : int = load_image(_a ) _A : str = self.image_processor(images=_a , return_tensors=self.framework ) return model_inputs def a__ ( self , _a ) -> Dict: _A : Any = self.model(**_a ) return model_outputs def a__ ( self , _a , _a=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: _A : Dict = self.model.config.num_labels if self.framework == "pt": _A : Tuple = model_outputs.logits.softmax(-1 )[0] _A : int = probs.topk(_a ) elif self.framework == "tf": _A : Optional[int] = stable_softmax(model_outputs.logits , axis=-1 )[0] _A : Optional[Any] = tf.math.top_k(_a , k=_a ) _A : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _A : int = scores.tolist() _A : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_a , _a )]
705
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Union[str, Any] , ): A = parent A = 13 A = 7 A = True A = True A = True A = True A = True A = False A = False A = False A = 2 A = 99 A = 0 A = 32 A = 2 A = 4 A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = 'last' A = True A = None A = 0 def UpperCamelCase ( self : Any ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A = ids_tensor([self.batch_size] , self.num_choices ) A = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , ): A = TFFlaubertModel(config=__A ) A = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} A = model(__A ) A = [input_ids, input_mask] A = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , ): A = TFFlaubertWithLMHeadModel(__A ) A = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} A = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): A = TFFlaubertForQuestionAnsweringSimple(__A ) A = {'input_ids': input_ids, 'lengths': input_lengths} A = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , ): A = TFFlaubertForSequenceClassification(__A ) A = {'input_ids': input_ids, 'lengths': input_lengths} A = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , ): A = self.num_labels A = TFFlaubertForTokenClassification(config=__A ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , ): A = self.num_choices A = TFFlaubertForMultipleChoice(config=__A ) A = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Any ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class _UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def UpperCamelCase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase ( self : Optional[int] ): A = TFFlaubertModelTester(self ) A = ConfigTester(self , config_class=__A , emb_dim=37 ) def UpperCamelCase ( self : Any ): self.config_tester.run_common_tests() def UpperCamelCase ( self : Union[str, Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def UpperCamelCase ( self : Tuple ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def UpperCamelCase ( self : List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def UpperCamelCase ( self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def UpperCamelCase ( self : Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__A ) def UpperCamelCase ( self : str ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__A ) @slow def UpperCamelCase ( self : Any ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFFlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase ( self : List[Any] ): A = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) A = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A = model(__A )[0] A = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __A ) # compare the actual values for a slice. A = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
699
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase )-> bool: __UpperCAmelCase = len(_lowerCAmelCase ) # We need to create solution object to save path. __UpperCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] __UpperCAmelCase = run_maze(_lowerCAmelCase , 0 , 0 , _lowerCAmelCase ) if solved: print('\n'.join(str(_lowerCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> bool: __UpperCAmelCase = len(_lowerCAmelCase ) # Final check point. if i == j == (size - 1): __UpperCAmelCase = 1 return True __UpperCAmelCase = (not i < 0) and (not j < 0) # Check lower bounds __UpperCAmelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCAmelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCAmelCase = 1 # check for directions if ( run_maze(_lowerCAmelCase , i + 1 , _lowerCAmelCase , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , _lowerCAmelCase , j + 1 , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , i - 1 , _lowerCAmelCase , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , _lowerCAmelCase , j - 1 , _lowerCAmelCase ) ): return True __UpperCAmelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
126
0
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class __UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase_ = '''xlm-prophetnet''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self : List[Any] , _A : Optional[float] = 0.1 , _A : Optional[Union[str, Callable]] = "gelu" , _A : Optional[int] = 3_0522 , _A : Optional[int] = 1024 , _A : Optional[int] = 4096 , _A : Optional[int] = 12 , _A : Optional[int] = 16 , _A : Optional[int] = 4096 , _A : Optional[int] = 12 , _A : Optional[int] = 16 , _A : Optional[float] = 0.1 , _A : Optional[float] = 0.1 , _A : Optional[int] = 512 , _A : Optional[float] = 0.02 , _A : Optional[bool] = True , _A : Optional[bool] = True , _A : Optional[int] = 0 , _A : Optional[int] = 2 , _A : Optional[int] = 32 , _A : Optional[int] = 128 , _A : Optional[bool] = False , _A : Optional[float] = 0.0 , _A : Optional[bool] = True , _A : Optional[int] = 0 , _A : Optional[int] = 1 , _A : Optional[int] = 2 , **_A : List[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : Dict = num_encoder_layers __SCREAMING_SNAKE_CASE : Tuple = num_encoder_attention_heads __SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Optional[Any] = num_decoder_layers __SCREAMING_SNAKE_CASE : List[str] = num_decoder_attention_heads __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : str = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE : List[str] = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE : Any = ngram __SCREAMING_SNAKE_CASE : Optional[Any] = num_buckets __SCREAMING_SNAKE_CASE : int = relative_max_distance __SCREAMING_SNAKE_CASE : Optional[int] = disable_ngram_loss __SCREAMING_SNAKE_CASE : Optional[int] = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout __SCREAMING_SNAKE_CASE : int = activation_dropout __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , add_cross_attention=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCAmelCase__ ( self : Union[str, Any] , _A : Optional[Any] ): """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
718
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase_ = float("""nan""") class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = sys.stdout __SCREAMING_SNAKE_CASE : int = open(_A , '''a''' ) def __getattr__( self : int , _A : str ): """simple docstring""" return getattr(self.stdout , _A ) def UpperCAmelCase__ ( self : Dict , _A : Any ): """simple docstring""" self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , _A , 0 , re.M ) ) def a__ ( snake_case=80 , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] # deal with critical env vars __SCREAMING_SNAKE_CASE : List[Any] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __SCREAMING_SNAKE_CASE : Any = os.environ.get(snake_case , snake_case ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __SCREAMING_SNAKE_CASE : Optional[int] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(snake_case ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case ) == 0 or len(snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = '''''' return "\\\n".join(snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" # unwrap multi-line input __SCREAMING_SNAKE_CASE : Dict = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __SCREAMING_SNAKE_CASE : Any = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __SCREAMING_SNAKE_CASE : Any = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.run(snake_case , capture_output=snake_case , text=snake_case ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __SCREAMING_SNAKE_CASE : Optional[int] = variation.replace(''' ''' , '''-''' ) with open(Path(snake_case ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(snake_case ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Any = json.load(snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : str = F'''{id}: {variation:<{longest_variation_len}}''' __SCREAMING_SNAKE_CASE : Optional[int] = F'''{preamble}: ''' __SCREAMING_SNAKE_CASE : Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case ) , desc=snake_case , leave=snake_case ): __SCREAMING_SNAKE_CASE : str = process_run_single( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : List[str] = single_run_metrics[target_metric_key] if not math.isnan(snake_case ): metrics.append(snake_case ) results.append(snake_case ) outcome += "✓" else: outcome += "✘" __SCREAMING_SNAKE_CASE : str = F'''\33[2K\r{outcome}''' if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __SCREAMING_SNAKE_CASE : Optional[Any] = round(mean_metrics[target_metric_key] , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{outcome} {mean_target}''' if len(snake_case ) > 1: results_str += F''' {tuple(round(snake_case , 2 ) for x in results )}''' print(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = variation return mean_metrics else: print(snake_case ) return {variation_key: variation, target_metric_key: nan} def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = pd.DataFrame(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''diff_%''' __SCREAMING_SNAKE_CASE : str = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __SCREAMING_SNAKE_CASE : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case ): # as a fallback, use the minimal value as the sentinel __SCREAMING_SNAKE_CASE : Optional[Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = df.apply( lambda snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __SCREAMING_SNAKE_CASE : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] __SCREAMING_SNAKE_CASE : Union[str, Any] = df.reindex(snake_case , axis='''columns''' ) # reorder cols # capitalize __SCREAMING_SNAKE_CASE : str = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __SCREAMING_SNAKE_CASE : Any = df.rename(lambda snake_case : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : int = df.rename(lambda snake_case : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : int = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case , floatfmt='''.2f''' )] print('''\n\n'''.join(snake_case ) ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=snake_case , type=snake_case , required=snake_case , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=snake_case , type=snake_case , nargs='''+''' , required=snake_case , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=snake_case , type=snake_case , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=snake_case , type=snake_case , required=snake_case , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=snake_case , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=snake_case , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=snake_case , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=snake_case , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : str = args.output_dir Path(snake_case ).mkdir(exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : int = get_base_command(snake_case , snake_case ) # split each dimension into its --foo variations __SCREAMING_SNAKE_CASE : Optional[Any] = [list(map(str.strip , re.split(R'''\|''' , snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __SCREAMING_SNAKE_CASE : Union[str, Any] = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = max(len(snake_case ) for x in variations ) # split wanted keys __SCREAMING_SNAKE_CASE : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience __SCREAMING_SNAKE_CASE : Any = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __SCREAMING_SNAKE_CASE : str = Tee(snake_case ) print(F'''\n*** Running {len(snake_case )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case )}''' ) __SCREAMING_SNAKE_CASE : str = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for id, variation in enumerate(tqdm(snake_case , desc='''Total completion: ''' , leave=snake_case ) ): __SCREAMING_SNAKE_CASE : int = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case , snake_case , snake_case , snake_case , args.target_metric_key , snake_case , args.repeat_times , snake_case , args.verbose , ) ) process_results(snake_case , args.target_metric_key , snake_case , args.base_variation , snake_case ) if __name__ == "__main__": main()
131
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def __init__( self , *snake_case , **snake_case ): '''simple docstring''' warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
551
import numpy as np def UpperCamelCase_( _A :np.array )-> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
551
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = AltDiffusionPipeline __lowerCAmelCase : Tuple = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) lowercase = CLIPTextModel(lowerCamelCase__ ) lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase = 77 lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCAmelCase ( self : Tuple , a : Optional[int] , a : Tuple=0 ) -> Union[str, Any]: """simple docstring""" if str(lowerCamelCase__ ).startswith('''mps''' ): lowercase = torch.manual_seed(lowerCamelCase__ ) else: lowercase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) lowercase = text_encoder lowercase = AltDiffusionPipeline(**lowerCamelCase__ ) lowercase = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase = self.get_dummy_inputs(lowerCamelCase__ ) lowercase = '''A photo of an astronaut''' lowercase = alt_pipe(**lowerCamelCase__ ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) lowercase = text_encoder lowercase = AltDiffusionPipeline(**lowerCamelCase__ ) lowercase = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase = self.get_dummy_inputs(lowerCamelCase__ ) lowercase = alt_pipe(**lowerCamelCase__ ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=lowerCamelCase__ ) lowercase = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase = '''A painting of a squirrel eating a burger''' lowercase = torch.manual_seed(0 ) lowercase = alt_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) lowercase = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ ) lowercase = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase = '''A painting of a squirrel eating a burger''' lowercase = torch.manual_seed(0 ) lowercase = alt_pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='''numpy''' ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
718
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) lowercase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase = transform(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) return image def A_ ( __UpperCamelCase : str ): if "visual_encoder" in key: lowercase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __UpperCamelCase ) if "blocks" in key: lowercase = re.sub(R'''blocks''' , '''layers''' , __UpperCamelCase ) if "attn" in key: lowercase = re.sub(R'''attn''' , '''self_attn''' , __UpperCamelCase ) if "norm1" in key: lowercase = re.sub(R'''norm1''' , '''layer_norm1''' , __UpperCamelCase ) if "norm2" in key: lowercase = re.sub(R'''norm2''' , '''layer_norm2''' , __UpperCamelCase ) if "encoder.norm" in key: lowercase = re.sub(R'''encoder.norm''' , '''post_layernorm''' , __UpperCamelCase ) if "encoder.patch_embed.proj" in key: lowercase = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __UpperCamelCase ) if "encoder.pos_embed" in key: lowercase = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __UpperCamelCase ) if "encoder.cls_token" in key: lowercase = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , __UpperCamelCase ) if "self_attn" in key: lowercase = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , __UpperCamelCase ) return key @torch.no_grad() def A_ ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None ): if config_path is not None: lowercase = BlipConfig.from_pretrained(__UpperCamelCase ) else: lowercase = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowercase = BlipForConditionalGeneration(__UpperCamelCase ).eval() lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase = blip_decoder(pretrained=__UpperCamelCase , image_size=3_84 , vit='''base''' ) lowercase = pt_model.eval() lowercase = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value hf_model.load_state_dict(__UpperCamelCase ) lowercase = 3_84 lowercase = load_demo_image(image_size=__UpperCamelCase , device='''cpu''' ) lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase = tokenizer(['''a picture of'''] ).input_ids lowercase = hf_model.generate(__UpperCamelCase , __UpperCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowercase = hf_model.generate(__UpperCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__UpperCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase = blip_vqa(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='''base''' ) vqa_model.eval() lowercase = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value lowercase = BlipForQuestionAnswering(__UpperCamelCase ) hf_vqa_model.load_state_dict(__UpperCamelCase ) lowercase = ['''How many dogs are in this image?'''] lowercase = tokenizer(__UpperCamelCase , return_tensors='''pt''' ).input_ids lowercase = hf_vqa_model.generate(__UpperCamelCase , __UpperCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase = blip_itm(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='''base''' ) itm_model.eval() lowercase = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value lowercase = BlipForImageTextRetrieval(__UpperCamelCase ) lowercase = ['''A picture of a woman with a dog sitting in a beach'''] lowercase = tokenizer( __UpperCamelCase , return_tensors='''pt''' , padding='''max_length''' , truncation=__UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__UpperCamelCase ) hf_itm_model.eval() lowercase = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) lowercase = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
396
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCamelCase_ : Optional[Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase_ : Tuple = concatenate_datasets UpperCamelCase_ : Optional[int] = DownloadConfig UpperCamelCase_ : str = DownloadManager UpperCamelCase_ : int = DownloadMode UpperCamelCase_ : List[str] = DownloadConfig UpperCamelCase_ : Optional[Any] = DownloadMode UpperCamelCase_ : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
115
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : List[str] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
1
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' self.assertEqual(len(_UpperCAmelCase) , len(_UpperCAmelCase)) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(_UpperCAmelCase): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step , 3) self.assertEqual(len(accumulator.gradients) , 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = None ops.enable_eager_execution_internal() __A : Optional[int] = tf.config.list_physical_devices('CPU') if len(_UpperCAmelCase) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) __A : Tuple = tf.config.list_logical_devices(device_type='CPU') __A : int = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): __A : List[str] = GradientAccumulator() __A : Any = tf.Variable([4.0, 3.0]) __A : Dict = create_optimizer(5e-5 , 10 , 5) __A : Dict = tf.Variable([0.0, 0.0] , trainable=_UpperCAmelCase) def accumulate_on_replica(_UpperCAmelCase): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable]))) @tf.function def accumulate(_UpperCAmelCase , _UpperCAmelCase): with strategy.scope(): __A : int = strategy.experimental_local_results(_UpperCAmelCase) local_variables[0].assign(_UpperCAmelCase) local_variables[1].assign(_UpperCAmelCase) strategy.run(_UpperCAmelCase , args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_UpperCAmelCase) def _check_local_values(_UpperCAmelCase , _UpperCAmelCase): __A : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() , _UpperCAmelCase , tol=1e-2) self.assertListAlmostEqual(values[1].value() , _UpperCAmelCase , tol=1e-2) accumulate([1.0, 2.0] , [-1.0, 1.0]) accumulate([3.0, -1.0] , [-1.0, -1.0]) accumulate([-2.0, 2.0] , [3.0, -2.0]) self.assertEqual(accumulator.step , 3) _check_local_values([2.0, 3.0] , [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) _check_local_values([0.0, 0.0] , [0.0, 0.0])
701
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
338
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __A = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __A = logging.get_logger(__name__) class UpperCAmelCase (__UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "maskformer" _UpperCAmelCase :Tuple = {"hidden_size": "mask_feature_size"} _UpperCAmelCase :Optional[Any] = ["resnet", "swin"] _UpperCAmelCase :List[Any] = ["detr"] def __init__( self , _UpperCAmelCase = 256 , _UpperCAmelCase = 256 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.02 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = 20.0 , _UpperCAmelCase = None , **_UpperCAmelCase , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__: int = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(snake_case__ , snake_case__ ): lowercase__: Optional[Any] = backbone_config.pop('''model_type''' ) lowercase__: Tuple = CONFIG_MAPPING[backbone_model_type] lowercase__: Tuple = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__: Optional[int] = DetrConfig() else: # verify that the decoder is supported lowercase__: Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {','.join(self.decoders_supported )}""" ) if isinstance(snake_case__ , snake_case__ ): lowercase__: Dict = CONFIG_MAPPING[decoder_type] lowercase__: str = config_class.from_dict(snake_case__ ) lowercase__: Any = backbone_config lowercase__: Any = decoder_config # main feature dimension for the model lowercase__: Any = fpn_feature_size lowercase__: Union[str, Any] = mask_feature_size # initializer lowercase__: Tuple = init_std lowercase__: List[Any] = init_xavier_std # Hungarian matcher && loss lowercase__: Union[str, Any] = cross_entropy_weight lowercase__: Union[str, Any] = dice_weight lowercase__: Union[str, Any] = mask_weight lowercase__: Optional[Any] = use_auxiliary_loss lowercase__: Optional[int] = no_object_weight lowercase__: Tuple = output_auxiliary_logits lowercase__: Tuple = self.decoder_config.encoder_attention_heads lowercase__: int = self.decoder_config.num_hidden_layers super().__init__(**snake_case__ ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls( backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.backbone_config.to_dict() lowercase__: Optional[int] = self.decoder_config.to_dict() lowercase__: List[Any] = self.__class__.model_type return output
586
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( __UpperCAmelCase ): @require_torch def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[Any] = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase :Any = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase :Tuple = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase :str = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network lowercase :Union[str, Any] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase :Any = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase :List[Any] = '''1''' lowercase :List[str] = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase :Dict = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase :List[Any] = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase :str = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network lowercase :List[str] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase :str = self.get_env() lowercase :str = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __snake_case ( self : int ): '''simple docstring''' lowercase :str = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase :Union[str, Any] = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase :Optional[int] = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase :Optional[Any] = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase :Union[str, Any] = self.get_env() lowercase :str = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase :Tuple = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase :Any = '''1''' lowercase :Optional[Any] = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Dict = ''' from transformers import pipeline ''' lowercase :Optional[Any] = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase :Dict = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase :Tuple = self.get_env() lowercase :Optional[Any] = '''1''' lowercase :Optional[int] = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase :str = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :List[Any] = ''' from transformers import AutoModel ''' lowercase :Union[str, Any] = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase :Union[str, Any] = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase :List[str] = self.get_env() lowercase :Optional[int] = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase :List[Any] = '''1''' lowercase :Tuple = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
677
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a_ : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , *__a , __a=None , __a=None , __a=None , **__a ): '''simple docstring''' super().__init__(*__a , **__a ) lowerCamelCase = eval_examples lowerCamelCase = post_process_function lowerCamelCase = quant_trainer_args lowerCamelCase = 1_28 # default number of calibration samples def _a (self , __a=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) lowerCamelCase = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCamelCase = self._remove_unused_columns(__a , description="Calibration" ) return DataLoader( __a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__a , ) def _a (self , __a=None ): '''simple docstring''' lowerCamelCase = self.train_dataset if calib_dataset is None else calib_dataset lowerCamelCase = self.get_calib_dataloader(__a ) lowerCamelCase = self.model quant_trainer.configure_model(__a , self.quant_trainer_args , calib=__a ) model.eval() quant_trainer.enable_calibration(__a ) logger.info("***** Running calibration *****" ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(__a ): # Prediction step lowerCamelCase , lowerCamelCase , lowerCamelCase = self.prediction_step(__a , __a , prediction_loss_only=__a ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__a , self.quant_trainer_args ) lowerCamelCase = model def _a (self , __a=None , __a=None , __a=None , __a = "eval" ): '''simple docstring''' lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase = self.get_eval_dataloader(__a ) lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , ) finally: lowerCamelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCamelCase = self.post_process_function(__a , __a , output.predictions ) lowerCamelCase = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCamelCase = metrics.pop(__a ) self.log(__a ) else: lowerCamelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def _a (self , __a , __a , __a=None , __a = "test" ): '''simple docstring''' lowerCamelCase = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , ) finally: lowerCamelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase = self.post_process_function(__a , __a , output.predictions , "predict" ) lowerCamelCase = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCamelCase = metrics.pop(__a ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a ) def _a (self , __a="./" ): '''simple docstring''' lowerCamelCase = self.eval_dataset lowerCamelCase = self.get_eval_dataloader(__a ) lowerCamelCase = next(iter(__a ) ) # saving device - to make it consistent lowerCamelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple lowerCamelCase = tuple(v.to(__a ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer lowerCamelCase = True lowerCamelCase = self.model.to(__a ) model.eval() model.float() lowerCamelCase = model.module if hasattr(__a , "module" ) else model quant_trainer.configure_model(__a , self.quant_trainer_args ) lowerCamelCase = os.path.join(__a , "model.onnx" ) logger.info(F"""exporting model to {output_model_file}""" ) lowerCamelCase = {0: "batch_size", 1: "seq_len"} torch.onnx.export( __a , __a , __a , export_params=__a , opset_version=13 , do_constant_folding=__a , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=__a , ) logger.info("onnx export finished" )
484
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase__ : """simple docstring""" def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ): '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope lowerCamelCase = projection_dim def _a (self ): '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) lowerCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = TFDPRContextEncoder(config=__a ) lowerCamelCase = model(__a , attention_mask=__a , token_type_ids=__a ) lowerCamelCase = model(__a , token_type_ids=__a ) lowerCamelCase = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a (self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = TFDPRQuestionEncoder(config=__a ) lowerCamelCase = model(__a , attention_mask=__a , token_type_ids=__a ) lowerCamelCase = model(__a , token_type_ids=__a ) lowerCamelCase = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a (self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = TFDPRReader(config=__a ) lowerCamelCase = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _A = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} _A = False _A = False _A = False _A = False _A = False def _a (self ): '''simple docstring''' lowerCamelCase = TFDPRModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def _a (self ): '''simple docstring''' self.config_tester.run_common_tests() def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a ) @slow def _a (self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRQuestionEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRReader.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def _a (self ): '''simple docstring''' lowerCamelCase = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase = model(__a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
484
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : torch.FloatTensor lowerCAmelCase__ : Optional[torch.FloatTensor] = None def _SCREAMING_SNAKE_CASE (A , A=0.999 , A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase__ = [] for i in range(A ): lowercase__ = i / num_diffusion_timesteps lowercase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class __lowerCAmelCase (lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__(self : Union[str, Any] , UpperCamelCase : int = 1000 , UpperCamelCase : str = "fixed_small_log" , UpperCamelCase : bool = True , UpperCamelCase : Optional[float] = 1.0 , UpperCamelCase : str = "epsilon" , UpperCamelCase : str = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowercase__ = betas_for_alpha_bar(UpperCamelCase ) lowercase__ = 1.0 - self.betas lowercase__ = torch.cumprod(self.alphas , dim=0 ) lowercase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase__ = 1.0 # setable values lowercase__ = None lowercase__ = torch.from_numpy(np.arange(0 , UpperCamelCase )[::-1].copy() ) lowercase__ = variance_type def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[int] = None ): '''simple docstring''' return sample def UpperCamelCase__ (self : List[str] , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = num_inference_steps lowercase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase__ = torch.from_numpy(UpperCamelCase ).to(UpperCamelCase ) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Dict=None , UpperCamelCase : int=None , UpperCamelCase : Dict=None ): '''simple docstring''' if prev_timestep is None: lowercase__ = t - 1 lowercase__ = self.alphas_cumprod[t] lowercase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ = self.betas[t] else: lowercase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ = torch.log(torch.clamp(UpperCamelCase , min=1E-20 ) ) lowercase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ = variance.log() lowercase__ = beta.log() lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : bool = True , ): '''simple docstring''' lowercase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ ,lowercase__ = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowercase__ = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ = t - 1 lowercase__ = self.alphas_cumprod[t] lowercase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ = self.betas[t] lowercase__ = self.alphas[t] else: lowercase__ = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = torch.clamp( UpperCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ = 0 if t > 0: lowercase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase , device=model_output.device ) lowercase__ = self._get_variance( UpperCamelCase , predicted_variance=UpperCamelCase , prev_timestep=UpperCamelCase , ) if self.variance_type == "fixed_small_log": lowercase__ = variance elif self.variance_type == "learned_range": lowercase__ = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ''' for the UnCLIPScheduler.''' ) lowercase__ = variance * variance_noise lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.IntTensor , ): '''simple docstring''' lowercase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase__ = timesteps.to(original_samples.device ) lowercase__ = alphas_cumprod[timesteps] ** 0.5 lowercase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ = sqrt_alpha_prod.unsqueeze(-1 ) lowercase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
460
'''simple docstring''' from __future__ import annotations from typing import Any class __lowerCAmelCase : '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : int = 6 ): '''simple docstring''' lowercase__ = None lowercase__ = None self.create_linked_list(UpperCamelCase ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : int ): '''simple docstring''' lowercase__ = Node() lowercase__ = current_node lowercase__ = current_node lowercase__ = current_node for _ in range(1 , UpperCamelCase ): lowercase__ = Node() lowercase__ = current_node lowercase__ = previous_node lowercase__ = current_node lowercase__ = self.front lowercase__ = previous_node def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def UpperCamelCase__ (self : Any , UpperCamelCase : Any ): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__ = self.rear.next if self.rear: lowercase__ = data def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__ = self.front.data lowercase__ = None return data lowercase__ = self.front lowercase__ = old_front.next lowercase__ = old_front.data lowercase__ = None return data def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' if self.is_empty(): raise Exception('''Empty Queue''' ) def UpperCamelCase__ (self : int ): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __lowerCAmelCase : '''simple docstring''' def __init__(self : Any ): '''simple docstring''' lowercase__ = None lowercase__ = None lowercase__ = None if __name__ == "__main__": import doctest doctest.testmod()
460
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : str = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowerCAmelCase : Union[str, Any] = { """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = BartTokenizer def __init__( self , a_=None , a_=None , a_=None , a_="replace" , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=False , a_=True , **a_ , ) -> Optional[int]: super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowercase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowercase : str = getattr(a_ , pre_tok_state.pop("type" ) ) lowercase : Optional[Any] = add_prefix_space lowercase : Dict = pre_tok_class(**a_ ) lowercase : Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase : List[Any] = "post_processor" lowercase : int = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowercase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Optional[int] = tuple(state["sep"] ) if "cls" in state: lowercase : List[str] = tuple(state["cls"] ) lowercase : str = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowercase : Any = add_prefix_space lowercase : str = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowercase : int = trim_offsets lowercase : int = True if changes_to_apply: lowercase : Any = getattr(a_ , state.pop("type" ) ) lowercase : Optional[int] = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property def a__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self , a_ ) -> Any: lowercase : Tuple = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowercase : Tuple = value def a__ ( self , *a_ , **a_ ) -> BatchEncoding: lowercase : Union[str, Any] = kwargs.get("is_split_into_words" , a_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def a__ ( self , *a_ , **a_ ) -> BatchEncoding: lowercase : Optional[int] = kwargs.get("is_split_into_words" , a_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def a__ ( self , a_ , a_ = None ) -> Tuple[str]: lowercase : Optional[Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def a__ ( self , a_ , a_=None ) -> Optional[int]: lowercase : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self , a_ , a_ = None ) -> List[int]: lowercase : Optional[int] = [self.sep_token_id] lowercase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
425
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase : int = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) lowerCAmelCase : Any = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } lowerCAmelCase : List[str] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : int = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : Tuple = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } lowerCAmelCase : Optional[Any] = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : Tuple = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) lowerCAmelCase : List[str] = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : Optional[Any] = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) lowerCAmelCase : Dict = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : List[str] = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" lowerCAmelCase : int = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : List[str] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" lowerCAmelCase : Dict = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ lowerCAmelCase : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" lowerCAmelCase : Tuple = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ lowerCAmelCase : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" lowerCAmelCase : List[str] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ lowerCAmelCase : Optional[int] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" lowerCAmelCase : str = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" lowerCAmelCase : Union[str, Any] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ lowerCAmelCase : List[str] = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" lowerCAmelCase : Optional[int] = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : Optional[int] = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" lowerCAmelCase : Union[str, Any] = """""" lowerCAmelCase : Optional[int] = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" lowerCAmelCase : str = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCAmelCase : List[str] = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( "readme_md, expected_dict" ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def _A ( A ,A ) -> int: assert ReadMe.from_string(A ,A ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def _A ( A ,A ) -> int: with pytest.raises(A ,match=re.escape(expected_error.format(path="root" ) ) ): lowercase : str = ReadMe.from_string(A ,A ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def _A ( A ,A ) -> List[str]: with pytest.raises(A ,match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(A ,A ) @pytest.mark.parametrize( "readme_md," ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def _A ( A ) -> List[str]: ReadMe.from_string(A ,A ,suppress_parsing_errors=A ) @pytest.mark.parametrize( "readme_md, expected_dict" ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def _A ( A ,A ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[str] = Path(A ) / "README.md" with open(A ,"w+" ) as readme_file: readme_file.write(A ) lowercase : Optional[Any] = ReadMe.from_readme(A ,A ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def _A ( A ,A ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = Path(A ) / "README.md" with open(A ,"w+" ) as readme_file: readme_file.write(A ) lowercase : Tuple = expected_error.format(path=A ) with pytest.raises(A ,match=re.escape(A ) ): lowercase : Optional[Any] = ReadMe.from_readme(A ,A ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def _A ( A ,A ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict = Path(A ) / "README.md" with open(A ,"w+" ) as readme_file: readme_file.write(A ) lowercase : Dict = expected_error.format(path=A ) with pytest.raises(A ,match=re.escape(A ) ): ReadMe.from_readme(A ,A ) @pytest.mark.parametrize( "readme_md," ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def _A ( A ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Optional[Any] = Path(A ) / "README.md" with open(A ,"w+" ) as readme_file: readme_file.write(A ) ReadMe.from_readme(A ,A ,suppress_parsing_errors=A )
425
1
from ..utils import DummyObject, requires_backends class a ( metaclass=__lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = ['''torch''', '''scipy'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
202
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : str = logging.get_logger(__name__) class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Any = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = size if size is not None else {'''shortest_edge''': 384} __SCREAMING_SNAKE_CASE: List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = do_resize __SCREAMING_SNAKE_CASE: Optional[Any] = size # Default value set here for backwards compatibility where the value in config is None __SCREAMING_SNAKE_CASE: List[str] = crop_pct if crop_pct is not None else 224 / 256 __SCREAMING_SNAKE_CASE: List[Any] = resample __SCREAMING_SNAKE_CASE: Any = do_rescale __SCREAMING_SNAKE_CASE: Optional[Any] = rescale_factor __SCREAMING_SNAKE_CASE: Any = do_normalize __SCREAMING_SNAKE_CASE: Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE: Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE: str = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __SCREAMING_SNAKE_CASE: Dict = int(shortest_edge / crop_pct ) __SCREAMING_SNAKE_CASE: Any = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE: Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct __SCREAMING_SNAKE_CASE: Tuple = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE: Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE: Any = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE: Optional[int] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE: str = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE: List[Any] = size if size is not None else self.size __SCREAMING_SNAKE_CASE: Dict = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE: Tuple = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE: str = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE: Any = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE: int = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] __SCREAMING_SNAKE_CASE: str = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] __SCREAMING_SNAKE_CASE: List[str] = {'''pixel_values''': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
202
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__ : str = logging.getLogger() def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : List[str] ): UpperCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(a__ ) def __snake_case ( self : List[str] , a__ : Union[str, Any] ): UpperCAmelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(a__ , 0.666 ) @slow @require_torch_non_multi_gpu def __snake_case ( self : List[str] ): UpperCAmelCase = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(a__ ) UpperCAmelCase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(a__ ) UpperCAmelCase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(a__ )
570
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC a__ : Any = parse(importlib.metadata.version('torch')) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Version] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) UpperCAmelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = parse(importlib.metadata.version(SCREAMING_SNAKE_CASE_ ) ) return operation(SCREAMING_SNAKE_CASE_ , parse(SCREAMING_SNAKE_CASE_ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return compare_versions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
570
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _snake_case : Optional[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _snake_case : Dict = "UperNetConfig" class a (nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Union[int, Tuple[int, int]] , lowerCamelCase : Union[int, Tuple[int, int], str] = 0 , lowerCamelCase : bool = False , lowerCamelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() __snake_case : Union[str, Any] = nn.Convad( in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , padding=lowerCamelCase , bias=lowerCamelCase , dilation=lowerCamelCase , ) __snake_case : Dict = nn.BatchNormad(lowerCamelCase ) __snake_case : List[Any] = nn.ReLU() def __snake_case ( self : List[Any] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: __snake_case : Dict = self.conv(lowerCamelCase ) __snake_case : int = self.batch_norm(lowerCamelCase ) __snake_case : Optional[Any] = self.activation(lowerCamelCase ) return output class a (nn.Module ): """simple docstring""" def __init__( self : str , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> None: super().__init__() __snake_case : Tuple = [ nn.AdaptiveAvgPoolad(lowerCamelCase ), UperNetConvModule(lowerCamelCase , lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : Dict , lowerCamelCase : torch.Tensor ) -> torch.Tensor: __snake_case : List[str] = input for layer in self.layers: __snake_case : Tuple = layer(lowerCamelCase ) return hidden_state class a (nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase : Tuple[int, ...] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool ) -> None: super().__init__() __snake_case : Dict = pool_scales __snake_case : List[str] = align_corners __snake_case : List[Any] = in_channels __snake_case : str = channels __snake_case : Optional[Any] = [] for i, pool_scale in enumerate(lowerCamelCase ): __snake_case : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase , in_channels=lowerCamelCase , channels=lowerCamelCase ) self.blocks.append(lowerCamelCase ) self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : int , lowerCamelCase : torch.Tensor ) -> List[torch.Tensor]: __snake_case : Tuple = [] for ppm in self.blocks: __snake_case : Any = ppm(lowerCamelCase ) __snake_case : List[Any] = nn.functional.interpolate( lowerCamelCase , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase ) return ppm_outs class a (nn.Module ): """simple docstring""" def __init__( self : int , lowerCamelCase : str , lowerCamelCase : str ) -> List[str]: super().__init__() __snake_case : Dict = config __snake_case : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) __snake_case : Tuple = in_channels __snake_case : str = config.hidden_size __snake_case : List[str] = False __snake_case : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __snake_case : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __snake_case : List[str] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __snake_case : List[Any] = nn.ModuleList() __snake_case : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __snake_case : Union[str, Any] = UperNetConvModule(lowerCamelCase , self.channels , kernel_size=1 ) __snake_case : Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase ) self.fpn_convs.append(lowerCamelCase ) __snake_case : int = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __snake_case ( self : List[str] ) -> Optional[Any]: self.apply(self._init_weights ) def __snake_case ( self : Tuple , lowerCamelCase : List[Any] ) -> str: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : List[Any] , lowerCamelCase : Tuple ) -> Optional[int]: __snake_case : str = inputs[-1] __snake_case : int = [x] psp_outs.extend(self.psp_modules(lowerCamelCase ) ) __snake_case : Tuple = torch.cat(lowerCamelCase , dim=1 ) __snake_case : Union[str, Any] = self.bottleneck(lowerCamelCase ) return output def __snake_case ( self : int , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # build laterals __snake_case : Any = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase ) ) # build top-down path __snake_case : Dict = len(lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __snake_case : Union[str, Any] = laterals[i - 1].shape[2:] __snake_case : Optional[int] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase , mode="bilinear" , align_corners=self.align_corners ) # build outputs __snake_case : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __snake_case : Tuple = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) __snake_case : str = torch.cat(lowerCamelCase , dim=1 ) __snake_case : Optional[Any] = self.fpn_bottleneck(lowerCamelCase ) __snake_case : Tuple = self.classifier(lowerCamelCase ) return output class a (nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int = 2 , lowerCamelCase : int = 3 , lowerCamelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() __snake_case : List[Any] = config __snake_case : List[str] = config.auxiliary_in_channels __snake_case : List[Any] = config.auxiliary_channels __snake_case : Tuple = config.auxiliary_num_convs __snake_case : int = config.auxiliary_concat_input __snake_case : Optional[int] = in_index __snake_case : Tuple = (kernel_size // 2) * dilation __snake_case : Optional[int] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) if self.num_convs == 0: __snake_case : Union[str, Any] = nn.Identity() else: __snake_case : Any = nn.Sequential(*lowerCamelCase ) if self.concat_input: __snake_case : int = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase , padding=kernel_size // 2 ) __snake_case : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __snake_case ( self : Dict ) -> Optional[Any]: self.apply(self._init_weights ) def __snake_case ( self : Tuple , lowerCamelCase : Tuple ) -> Optional[int]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : Optional[int] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps __snake_case : List[str] = encoder_hidden_states[self.in_index] __snake_case : Optional[Any] = self.convs(lowerCamelCase ) if self.concat_input: __snake_case : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __snake_case : Union[str, Any] = self.classifier(lowerCamelCase ) return output class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = UperNetConfig __UpperCAmelCase : int = "pixel_values" __UpperCAmelCase : str = True def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> List[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __snake_case ( self : Optional[Any] ) -> List[str]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=False ) -> Dict: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = value _snake_case : Dict = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case : Tuple = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _lowerCAmelCase , ) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase : int ) -> Optional[int]: super().__init__(lowerCamelCase ) __snake_case : Any = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __snake_case : Union[str, Any] = UperNetHead(lowerCamelCase , in_channels=self.backbone.channels ) __snake_case : Any = UperNetFCNHead(lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: __snake_case : Any = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : str = output_attentions if output_attentions is not None else self.config.output_attentions __snake_case : Tuple = self.backbone.forward_with_filtered_kwargs( lowerCamelCase , output_hidden_states=lowerCamelCase , output_attentions=lowerCamelCase ) __snake_case : List[Any] = outputs.feature_maps __snake_case : List[Any] = self.decode_head(lowerCamelCase ) __snake_case : List[str] = nn.functional.interpolate(lowerCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=lowerCamelCase ) __snake_case : Optional[int] = None if self.auxiliary_head is not None: __snake_case : Dict = self.auxiliary_head(lowerCamelCase ) __snake_case : Dict = nn.functional.interpolate( lowerCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=lowerCamelCase ) __snake_case : int = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss __snake_case : Any = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __snake_case : Union[str, Any] = loss_fct(lowerCamelCase , lowerCamelCase ) __snake_case : Optional[Any] = loss_fct(lowerCamelCase , lowerCamelCase ) __snake_case : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __snake_case : Any = (logits,) + outputs[1:] else: __snake_case : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
81
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a (_lowerCAmelCase ): """simple docstring""" def __snake_case ( self : str ) -> str: __snake_case : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "num_attention_heads" ) ) class a : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Tuple=13 , lowerCamelCase : str=32 , lowerCamelCase : Dict=2 , lowerCamelCase : List[str]=3 , lowerCamelCase : Any=640 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Tuple="silu" , lowerCamelCase : int=3 , lowerCamelCase : Dict=32 , lowerCamelCase : str=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : int=None , ) -> str: __snake_case : Optional[Any] = parent __snake_case : Optional[Any] = batch_size __snake_case : Any = image_size __snake_case : List[Any] = patch_size __snake_case : Any = num_channels __snake_case : Union[str, Any] = last_hidden_size __snake_case : Any = num_attention_heads __snake_case : Any = hidden_act __snake_case : Tuple = conv_kernel_size __snake_case : Any = output_stride __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = classifier_dropout_prob __snake_case : Union[str, Any] = use_labels __snake_case : Optional[int] = is_training __snake_case : Dict = num_labels __snake_case : Any = initializer_range __snake_case : Optional[int] = scope def __snake_case ( self : str ) -> Union[str, Any]: __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case ( self : Any ) -> Union[str, Any]: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ) -> Dict: __snake_case : List[Any] = MobileViTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ) -> List[str]: __snake_case : str = self.num_labels __snake_case : List[Any] = MobileViTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ) -> Dict: __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = MobileViTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Tuple = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : Optional[int] ) -> List[Any]: __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Optional[Any] = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def __snake_case ( self : Optional[int] ) -> Dict: __snake_case : Tuple = MobileViTModelTester(self ) __snake_case : Any = MobileViTConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def __snake_case ( self : Dict ) -> Any: pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def __snake_case ( self : Dict ) -> List[Any]: pass @unittest.skip(reason="MobileViT does not output attentions" ) def __snake_case ( self : int ) -> Dict: pass def __snake_case ( self : int ) -> Union[str, Any]: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(lowerCamelCase ) __snake_case : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case ( self : int ) -> Tuple: pass def __snake_case ( self : Any ) -> Tuple: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : Any ) -> str: def check_hidden_states_output(lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any ): __snake_case : int = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : int = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : Union[str, Any] = outputs.hidden_states __snake_case : int = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : List[Any] = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __snake_case ( self : List[str] ) -> List[str]: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def __snake_case ( self : List[str] ) -> Any: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = MobileViTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( ): __snake_case : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : str ) -> Dict: return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : Tuple = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCamelCase ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Dict = model(**lowerCamelCase ) # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def __snake_case ( self : str ) -> Optional[int]: __snake_case : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : str = model.to(lowerCamelCase ) __snake_case : int = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : Optional[int] = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(**lowerCamelCase ) __snake_case : Union[str, Any] = outputs.logits # verify the logits __snake_case : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __snake_case : Union[str, Any] = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def __snake_case ( self : Union[str, Any] ) -> Optional[int]: __snake_case : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : Tuple = model.to(lowerCamelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : List[Any] = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(**lowerCamelCase ) __snake_case : Dict = outputs.logits.detach().cpu() __snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __snake_case : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __snake_case : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
81
1
from __future__ import annotations UpperCamelCase_ = [True] * 1_0_0_0_0_0_1 UpperCamelCase_ = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): UpperCamelCase_ = False i += 1 def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" return seive[n] def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" return any(digit in "02468" for digit in str(UpperCamelCase ) ) def _UpperCAmelCase ( UpperCamelCase: int = 1_0_0_0_0_0_0 ): """simple docstring""" __lowerCAmelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(UpperCamelCase ) and not contains_an_even_digit(UpperCamelCase ): __lowerCAmelCase = str(UpperCamelCase ) __lowerCAmelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(UpperCamelCase ) )] if all(is_prime(UpperCamelCase ) for i in list_nums ): result.append(UpperCamelCase ) return result def _UpperCAmelCase ( ): """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
376
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCamelCase_ = False class a ( unittest.TestCase ): pass @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( image=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images __lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
376
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> Dict: _lowercase : Optional[int] = 10 _lowercase : str = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _lowercase : Dict = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(SCREAMING_SNAKE_CASE ) ), } , features=SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files UpperCamelCase = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' _lowercase : int = FILE_CONTENT with open(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: import bza _lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _lowercase : Optional[int] = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with bza.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: import gzip _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _lowercase : Union[str, Any] = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with gzip.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: if datasets.config.LZ4_AVAILABLE: import lza.frame _lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _lowercase : Tuple = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with lza.frame.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: if datasets.config.PY7ZR_AVAILABLE: import pyazr _lowercase : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE , 'w' ) as archive: archive.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: import tarfile _lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: import lzma _lowercase : str = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _lowercase : Dict = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with lzma.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: import zipfile _lowercase : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _lowercase : List[Any] = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with zstd.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'file.xml' _lowercase : List[str] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename UpperCamelCase = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] UpperCamelCase = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] UpperCamelCase = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } UpperCamelCase = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] UpperCamelCase = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> Dict: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Dict = datasets.Dataset.from_dict(SCREAMING_SNAKE_CASE ) _lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con: _lowercase : Union[str, Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as f: _lowercase : Dict = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as f: _lowercase : Union[str, Any] = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: import bza _lowercase : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: _lowercase : str = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _lowercase : str = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(SCREAMING_SNAKE_CASE , 'wb' ) as f: _lowercase : List[Any] = pq.ParquetWriter(SCREAMING_SNAKE_CASE , schema=SCREAMING_SNAKE_CASE ) _lowercase : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=SCREAMING_SNAKE_CASE ) writer.write_table(SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowercase : Dict = {'data': DATA} with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowercase : Optional[Any] = {'data': DATA_DICT_OF_LISTS} with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA_312: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: import gzip _lowercase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , 'wb' ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: import gzip _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , 'wb' ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('nested' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.join('nested' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : str = ['0', '1', '2', '3'] _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[int] = ['0', '1', '2', '3'] _lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Tuple = ['0', '1', '2', '3'] _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename('unsupported.ext' ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _lowercase : str = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> Any: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> Optional[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Dict = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
66
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True _lowercase : Optional[Any] = 4 _lowercase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): _lowercase : Union[str, Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
66
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ) -> str: A_ : Union[str, Any] = parent A_ : Union[str, Any] = batch_size A_ : Optional[int] = seq_length A_ : Optional[Any] = is_training A_ : List[str] = use_attention_mask A_ : Optional[int] = use_token_type_ids A_ : str = use_labels A_ : Optional[Any] = vocab_size A_ : Any = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : int = num_attention_heads A_ : str = intermediate_size A_ : Dict = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Dict = type_vocab_size A_ : Optional[int] = type_sequence_label_size A_ : List[Any] = initializer_range A_ : Tuple = num_choices def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_attention_mask: A_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Tuple = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : Union[str, Any] = config_and_inputs A_ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Dict = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: A_ : Union[str, Any] = model_class_name.from_pretrained("""albert-base-v2""" ) A_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) A_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : Any = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A_ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A_ : Dict = (1, 11, 768) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Dict = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
385
'''simple docstring''' from manim import * class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) A_ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A_ : Union[str, Any] = Rectangle(height=0.25 , width=0.25 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Optional[Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Any = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Any = Text("""CPU""" , font_size=24 ) A_ : Any = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) A_ : Tuple = [mem.copy() for i in range(4 )] A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Union[str, Any] = Text("""GPU""" , font_size=24 ) A_ : List[str] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCamelCase ) A_ : Optional[int] = [mem.copy() for i in range(6 )] A_ : List[Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : str = Text("""Model""" , font_size=24 ) A_ : Any = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCamelCase ) A_ : List[Any] = [] A_ : str = [] for i, rect in enumerate(_lowerCamelCase ): A_ : Dict = fill.copy().set_fill(_lowerCamelCase , opacity=0.8 ) target.move_to(_lowerCamelCase ) model_arr.append(_lowerCamelCase ) A_ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCamelCase ) self.add(*_lowerCamelCase , *_lowerCamelCase ) A_ : Union[str, Any] = [meta_mem.copy() for i in range(6 )] A_ : Tuple = [meta_mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Any = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Dict = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Union[str, Any] = Text("""Disk""" , font_size=24 ) A_ : Union[str, Any] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) A_ : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Union[str, Any] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCamelCase ) A_ : List[str] = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase ) ) A_ : Optional[int] = Square(0.3 ) input.set_fill(_lowerCamelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCamelCase , buff=0.5 ) self.play(Write(_lowerCamelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCamelCase , buff=0.02 ) self.play(MoveToTarget(_lowerCamelCase ) ) self.play(FadeOut(_lowerCamelCase ) ) A_ : Optional[int] = Arrow(start=_lowerCamelCase , end=_lowerCamelCase , color=_lowerCamelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCamelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) A_ : Union[str, Any] = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=3 ) ) A_ : Any = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(_lowerCamelCase ) , Circumscribe(model_arr[0] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCamelCase , **_lowerCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) A_ : Tuple = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowerCamelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) A_ : List[str] = AnimationGroup( FadeOut(_lowerCamelCase , run_time=0.5 ) , MoveToTarget(_lowerCamelCase , run_time=0.5 ) , FadeIn(_lowerCamelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCamelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: A_ : Any = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCamelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCamelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCamelCase , **_lowerCamelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCamelCase , **_lowerCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) A_ : Any = a_c A_ : Dict = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowerCamelCase ) , FadeOut(_lowerCamelCase , run_time=0.5 ) , ) A_ : Tuple = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=3 ) , MoveToTarget(_lowerCamelCase ) ) self.wait()
385
1
'''simple docstring''' from math import pow, sqrt def lowercase_ ( *__A : float ) -> bool: """simple docstring""" lowercase : Dict =len(__A ) > 0 and all(value > 0.0 for value in values ) return result def lowercase_ ( __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
94
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[Any] ={ 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str =[ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
135
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): '''simple docstring''' if attention_mask is None: a_ =tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCAmelCase : '''simple docstring''' __magic_name__ : Tuple = OPTConfig __magic_name__ : Any = {} __magic_name__ : Tuple = "gelu" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1_3 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=9_9 , lowerCAmelCase_=1_6 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=2_0 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=1_6 , lowerCAmelCase_=1_6 , ) -> Optional[int]: """simple docstring""" a_ =parent a_ =batch_size a_ =seq_length a_ =is_training a_ =use_labels a_ =vocab_size a_ =hidden_size a_ =num_hidden_layers a_ =num_attention_heads a_ =intermediate_size a_ =hidden_act a_ =hidden_dropout_prob a_ =attention_probs_dropout_prob a_ =max_position_embeddings a_ =eos_token_id a_ =pad_token_id a_ =bos_token_id a_ =embed_dim a_ =word_embed_proj_dim a_ =False def lowercase_ ( self) -> Any: """simple docstring""" a_ =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) a_ =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) a_ =tf.concat([input_ids, eos_tensor] , axis=1) a_ =self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) a_ =prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_) -> Dict: """simple docstring""" a_ =TFOPTModel(config=lowerCAmelCase_) a_ =inputs_dict["input_ids"] a_ =input_ids[:1, :] a_ =inputs_dict["attention_mask"][:1, :] a_ =1 # first forward pass a_ =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_) a_ , a_ =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a_ =ids_tensor((self.batch_size, 3) , config.vocab_size) a_ =tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and a_ =tf.concat([input_ids, next_tokens] , axis=-1) a_ =tf.concat([attention_mask, next_attn_mask] , axis=-1) a_ =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_)[0] a_ =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice a_ =int(ids_tensor((1,) , output_from_past.shape[-1])) a_ =output_from_no_past[:, -3:, random_slice_idx] a_ =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3) @require_tf class UpperCAmelCase ( __a , __a , unittest.TestCase): '''simple docstring''' __magic_name__ : Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __magic_name__ : Dict = (TFOPTForCausalLM,) if is_tf_available() else () __magic_name__ : Tuple = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __magic_name__ : List[Any] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False __magic_name__ : Tuple = 10 def lowercase_ ( self) -> Tuple: """simple docstring""" a_ =TFOPTModelTester(self) a_ =ConfigTester(self , config_class=lowerCAmelCase_) def lowercase_ ( self) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self) -> List[str]: """simple docstring""" a_ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_) def lowercase_ ( self) -> Union[str, Any]: """simple docstring""" a_ , a_ =self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ , lowerCAmelCase_): if hasattr(lowerCAmelCase_ , "weight"): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , "weight"): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings a_ =model_class(config=lowerCAmelCase_) a_ =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings()) a_ =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_) a_ =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings()) a_ =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. a_ =size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_) # check that weights remain the same after resizing a_ =True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: a_ =False self.assertTrue(lowerCAmelCase_) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_) a_ =True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: a_ =False self.assertTrue(lowerCAmelCase_) def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' __magic_name__ : Optional[Any] = 99 def lowercase_ ( self) -> Optional[int]: """simple docstring""" a_ =tf.ones((4, 1) , dtype=tf.intaa) * 2 a_ =tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) a_ =input_ids.shape[0] a_ =OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' @slow def lowercase_ ( self) -> str: """simple docstring""" a_ =TFOPTModel.from_pretrained("facebook/opt-350m") a_ =_long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) a_ =tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id) with tf.GradientTape(): a_ =model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_).last_hidden_state a_ =(1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCAmelCase_) a_ =tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]]) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3)) a_ =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_) a_ =xla_generate(lowerCAmelCase_ , lowerCAmelCase_)[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2)) @require_tf @slow class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' def lowercase_ ( self) -> Optional[Any]: """simple docstring""" super().setUp() a_ ="facebook/opt-350m" def lowercase_ ( self) -> Union[str, Any]: """simple docstring""" a_ =TFOPTForCausalLM.from_pretrained(self.path_model) a_ =GPTaTokenizer.from_pretrained(self.path_model) a_ =[ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False a_ =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) a_ =tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) a_ =tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ]) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4)) a_ =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_) a_ =tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4)) @require_tf @slow class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' @property def lowercase_ ( self) -> int: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase_ ( self) -> Any: """simple docstring""" a_ ="facebook/opt-125m" a_ =[ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a_ =[] a_ =GPTaTokenizer.from_pretrained(lowerCAmelCase_) a_ =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_) for prompt in self.prompts: a_ =tokenizer(lowerCAmelCase_ , return_tensors="tf").input_ids a_ =model.generate(lowerCAmelCase_ , max_length=1_0) a_ =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def lowercase_ ( self) -> Union[str, Any]: """simple docstring""" a_ ="facebook/opt-350m" a_ =GPTaTokenizer.from_pretrained(lowerCAmelCase_) a_ =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_) a_ ="left" # use different length sentences to test batching a_ =[ "Hello, my dog is a little", "Today, I", ] a_ =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_) a_ =inputs["input_ids"] a_ =model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs["attention_mask"]) a_ =tokenizer(sentences[0] , return_tensors="tf").input_ids a_ =model.generate(input_ids=lowerCAmelCase_) a_ =inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa)) a_ =tokenizer(sentences[1] , return_tensors="tf").input_ids a_ =model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings) a_ =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) a_ =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_) a_ =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_) a_ =[ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence]) def lowercase_ ( self) -> List[str]: """simple docstring""" a_ ="facebook/opt-350m" a_ =[ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a_ =[] a_ =GPTaTokenizer.from_pretrained(lowerCAmelCase_) a_ =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_) for prompt in self.prompts: a_ =tokenizer(lowerCAmelCase_ , return_tensors="tf").input_ids a_ =model.generate(lowerCAmelCase_ , max_length=1_0) a_ =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
41
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase_ ( lowercase__ = None ): '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) a_ =nums[0] for i in range(1 , len(lowercase__ ) ): a_ =nums[i] a_ =max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase = int(input('''Enter number of elements : ''').strip()) lowercase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
41
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "blip_text_model" def __init__( self , _a=3_0_5_2_4 , _a=7_6_8 , _a=7_6_8 , _a=3_0_7_2 , _a=7_6_8 , _a=1_2 , _a=8 , _a=5_1_2 , _a="gelu" , _a=1e-1_2 , _a=0.0 , _a=0.0 , _a=0.02 , _a=3_0_5_2_2 , _a=2 , _a=0 , _a=1_0_2 , _a=True , _a=True , **_a , ) -> Union[str, Any]: super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) _a : Union[str, Any] = vocab_size _a : List[Any] = hidden_size _a : str = encoder_hidden_size _a : Any = intermediate_size _a : Tuple = projection_dim _a : List[str] = hidden_dropout_prob _a : int = num_hidden_layers _a : int = num_attention_heads _a : int = max_position_embeddings _a : Any = layer_norm_eps _a : Optional[int] = hidden_act _a : Union[str, Any] = initializer_range _a : Tuple = attention_probs_dropout_prob _a : Dict = is_decoder _a : Tuple = use_cache @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Optional[int] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": _a : Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "blip_vision_model" def __init__( self , _a=7_6_8 , _a=3_0_7_2 , _a=5_1_2 , _a=1_2 , _a=1_2 , _a=3_8_4 , _a=1_6 , _a="gelu" , _a=1e-5 , _a=0.0 , _a=1e-1_0 , **_a , ) -> Optional[Any]: super().__init__(**_a ) _a : str = hidden_size _a : List[str] = intermediate_size _a : Optional[int] = projection_dim _a : Dict = num_hidden_layers _a : Dict = num_attention_heads _a : Union[str, Any] = patch_size _a : List[Any] = image_size _a : Tuple = initializer_range _a : int = attention_dropout _a : Optional[Any] = layer_norm_eps _a : List[Any] = hidden_act @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Union[str, Any] = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": _a : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = "blip" UpperCAmelCase__ : str = True def __init__( self , _a=None , _a=None , _a=5_1_2 , _a=2.6592 , _a=2_5_6 , **_a , ) -> str: super().__init__(**_a ) if text_config is None: _a : List[str] = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: _a : str = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) _a : Optional[Any] = BlipTextConfig(**_a ) _a : Optional[int] = BlipVisionConfig(**_a ) _a : str = self.vision_config.hidden_size _a : Union[str, Any] = projection_dim _a : str = logit_scale_init_value _a : str = 1.0 _a : int = 0.02 _a : Optional[int] = image_text_hidden_size @classmethod def __lowercase ( cls , _a , _a , **_a ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def __lowercase ( self ) -> Optional[int]: _a : Tuple = copy.deepcopy(self.__dict__ ) _a : str = self.text_config.to_dict() _a : List[str] = self.vision_config.to_dict() _a : List[Any] = self.__class__.model_type return output
14
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
1
'''simple docstring''' __UpperCAmelCase = '''Alexander Joslin''' import operator as op from .stack import Stack def _snake_case ( A ) -> int: lowerCAmelCase__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowerCAmelCase__ = Stack() lowerCAmelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(A ) ) elif i in operators: # RULE 2 operator_stack.push(A ) elif i == ")": # RULE 4 lowerCAmelCase__ = operator_stack.peek() operator_stack.pop() lowerCAmelCase__ = operand_stack.peek() operand_stack.pop() lowerCAmelCase__ = operand_stack.peek() operand_stack.pop() lowerCAmelCase__ = operators[opr](A , A ) operand_stack.push(A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __UpperCAmelCase = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
713
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCAmelCase = logging.getLogger(__name__) class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ) -> Dict: super().__init__( lowerCamelCase_ , question_encoder_tokenizer=lowerCamelCase_ , generator_tokenizer=lowerCamelCase_ , index=lowerCamelCase_ , init_retrieval=lowerCamelCase_ , ) lowerCAmelCase__ = None def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually lowerCAmelCase__ = self._infer_socket_ifname() # avoid clash with the NCCL port lowerCAmelCase__ = str(distributed_port + 1 ) lowerCAmelCase__ = dist.new_group(ranks=lowerCamelCase_ , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=torch.floataa ) -> Union[str, Any]: lowerCAmelCase__ = torch.empty(lowerCamelCase_ , dtype=lowerCamelCase_ ) dist.scatter(lowerCamelCase_ , src=0 , scatter_list=lowerCamelCase_ , group=self.process_group ) return target_tensor def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowerCAmelCase__ = next((addr for addr in addrs if addr.startswith('''e''' )) , lowerCamelCase_ ) return ifname def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): lowerCAmelCase__ , lowerCAmelCase__ = self._main_retrieve(lowerCamelCase_ , lowerCamelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase_ ) # distributed training lowerCAmelCase__ = dist.get_world_size(group=self.process_group ) # gather logic lowerCAmelCase__ = None if self._is_main(): lowerCAmelCase__ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase_ )] dist.gather(torch.tensor(lowerCamelCase_ ) , dst=0 , gather_list=lowerCamelCase_ , group=self.process_group ) # scatter logic lowerCAmelCase__ = question_hidden_states.shape[0] lowerCAmelCase__ = [] lowerCAmelCase__ = [] if self._is_main(): assert len(lowerCamelCase_ ) == world_size lowerCAmelCase__ , lowerCAmelCase__ = self._main_retrieve(torch.cat(lowerCamelCase_ ).numpy() , lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = torch.tensor(lowerCamelCase_ ), torch.tensor(lowerCamelCase_ ) lowerCAmelCase__ = self._chunk_tensor(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self._chunk_tensor(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self._scattered(lowerCamelCase_ , [n_queries, n_docs] , target_type=torch.intaa ) lowerCAmelCase__ = self._scattered(lowerCamelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase_ )
98
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class a ( datasets.BeamBasedBuilder ): def lowerCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__UpperCamelCase , ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> Dict: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) class a ( datasets.BeamBasedBuilder ): def lowerCAmelCase_ ( self )-> str: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__UpperCamelCase , ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> List[str]: '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> str: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class a ( UpperCamelCase_ ): @require_beam def lowerCAmelCase_ ( self )-> Any: '''simple docstring''' A__ : List[Any] =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ : List[str] =DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) A__ : List[Any] =builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowerCAmelCase_ ( self )-> List[str]: '''simple docstring''' import apache_beam as beam A__ : Optional[Any] =beam.io.parquetio.WriteToParquet A__ : Optional[Any] =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ : Union[str, Any] =DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: A__ : Dict =partial(__UpperCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) A__ : int =builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowerCAmelCase_ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ : Tuple =DummyBeamDataset(cache_dir=__UpperCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowerCAmelCase_ ( self )-> int: '''simple docstring''' A__ : List[str] =len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ : int =NestedBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) A__ : str =builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
416
import math class a : def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> int: '''simple docstring''' A__ : str =0.0 A__ : Optional[Any] =0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> list[list[int | float]]: '''simple docstring''' for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE__ ( ) -> None: # Training Examples ( m, n ) A__ : List[Any] =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A__ : Any =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A__ : List[str] =SelfOrganizingMap() A__ : Dict =3 A__ : Optional[int] =0.5 for _ in range(snake_case_ ): for j in range(len(snake_case_ ) ): # training sample A__ : str =training_samples[j] # Compute the winning vector A__ : Tuple =self_organizing_map.get_winner(snake_case_, snake_case_ ) # Update the winning vector A__ : Optional[int] =self_organizing_map.update(snake_case_, snake_case_, snake_case_, snake_case_ ) # classify test sample A__ : Optional[int] =[0, 0, 0, 1] A__ : Any =self_organizing_map.get_winner(snake_case_, snake_case_ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
416
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = TextToVideoSDPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def A__ ( self): torch.manual_seed(0) _UpperCamelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _UpperCamelCase : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0) _UpperCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) _UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _UpperCamelCase : Any = CLIPTextModel(__snake_case) _UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCamelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def A__ ( self , __snake_case , __snake_case=0): if str(__snake_case).startswith('mps'): _UpperCamelCase : Optional[Any] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Dict = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def A__ ( self): _UpperCamelCase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : Optional[int] = TextToVideoSDPipeline(**__snake_case) _UpperCamelCase : Any = sd_pipe.to(__snake_case) sd_pipe.set_progress_bar_config(disable=__snake_case) _UpperCamelCase : Any = self.get_dummy_inputs(__snake_case) _UpperCamelCase : Dict = 'np' _UpperCamelCase : List[Any] = sd_pipe(**__snake_case).frames _UpperCamelCase : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _UpperCamelCase : Dict = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def A__ ( self): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__snake_case , expected_max_diff=3e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__snake_case , expected_max_diff=1e-2) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def A__ ( self): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def A__ ( self): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.') def A__ ( self): pass def A__ ( self): return super().test_progress_bar() @slow @skip_mps class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy') _UpperCamelCase : Any = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b') _UpperCamelCase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _UpperCamelCase : Optional[int] = pipe.to('cuda') _UpperCamelCase : List[str] = 'Spiderman is surfing' _UpperCamelCase : str = torch.Generator(device='cpu').manual_seed(0) _UpperCamelCase : Any = pipe(__snake_case , generator=__snake_case , num_inference_steps=25 , output_type='pt').frames _UpperCamelCase : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2 def A__ ( self): _UpperCamelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy') _UpperCamelCase : List[str] = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b') _UpperCamelCase : List[str] = pipe.to('cuda') _UpperCamelCase : List[Any] = 'Spiderman is surfing' _UpperCamelCase : Tuple = torch.Generator(device='cpu').manual_seed(0) _UpperCamelCase : int = pipe(__snake_case , generator=__snake_case , num_inference_steps=2 , output_type='pt').frames _UpperCamelCase : int = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''trocr''' UpperCamelCase_ : Optional[Any] = ['''past_key_values'''] UpperCamelCase_ : List[str] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : str , lowerCAmelCase__ : str=5_0_2_6_5 , lowerCAmelCase__ : Any=1_0_2_4 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : List[str]=4_0_9_6 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[Any]=5_1_2 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Optional[int]=2 , **lowerCAmelCase__ : List[str] , ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : List[str] = d_model _UpperCAmelCase : Dict = decoder_layers _UpperCAmelCase : Optional[int] = decoder_attention_heads _UpperCAmelCase : List[str] = decoder_ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : Any = init_std _UpperCAmelCase : List[str] = decoder_layerdrop _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : Dict = scale_embedding _UpperCAmelCase : Tuple = use_learned_position_embeddings _UpperCAmelCase : Union[str, Any] = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
494
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __a = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": __a = 'hopper-medium-v2' __a = gym.make(env_name) __a = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) __a = env.reset() __a = 0 __a = 0 __a = 1_000 __a = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __a = pipeline(obs, planning_horizon=32) # execute action in environment __a , __a , __a , __a = env.step(denorm_actions) __a = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) __a = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
494
1
"""simple docstring""" from __future__ import annotations __snake_case = list[tuple[int, int]] __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: '''simple docstring''' snake_case : int = pos_x snake_case : List[str] = pos_y snake_case : List[Any] = (pos_y, pos_x) snake_case : Optional[int] = goal_x snake_case : Dict = goal_y snake_case : Any = g_cost snake_case : List[Any] = parent snake_case : Union[str, Any] = self.calculate_heuristic() def lowerCamelCase ( self ) -> float: '''simple docstring''' snake_case : Optional[Any] = abs(self.pos_x - self.goal_x ) snake_case : Dict = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , UpperCamelCase__ ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase__ ) snake_case : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , UpperCamelCase__ ) snake_case : Tuple = [self.start] snake_case : list[Node] = [] snake_case : Dict = False def lowerCamelCase ( self ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case : Tuple = True return self.retrace_path(UpperCamelCase__ ) self.closed_nodes.append(UpperCamelCase__ ) snake_case : Optional[Any] = self.get_successors(UpperCamelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase__ ) else: # retrieve the best current path snake_case : Dict = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase__ ) else: self.open_nodes.append(UpperCamelCase__ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase ( self , UpperCamelCase__ ) -> list[Node]: '''simple docstring''' snake_case : Dict = [] for action in delta: snake_case : Union[str, Any] = parent.pos_x + action[1] snake_case : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase__ , UpperCamelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase__ , ) ) return successors def lowerCamelCase ( self , UpperCamelCase__ ) -> Path: '''simple docstring''' snake_case : Optional[int] = node snake_case : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Any = current_node.parent path.reverse() return path if __name__ == "__main__": __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") __snake_case = GreedyBestFirst(init, goal) __snake_case = greedy_bf.search() if path: for pos_x, pos_y in path: __snake_case = 2 for elem in grid: print(elem)
117
"""simple docstring""" from __future__ import annotations from cmath import sqrt def __lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) snake_case : Dict = b * b - 4 * a * c snake_case : Tuple = (-b + sqrt(lowercase )) / (2 * a) snake_case : Optional[int] = (-b - sqrt(lowercase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case ,snake_case : Optional[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
117
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = abs(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = abs(__UpperCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return sum(int(__UpperCAmelCase ) for c in str(abs(__UpperCAmelCase ) ) ) def __magic_name__ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__UpperCAmelCase , __UpperCAmelCase ) -> None: __SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" __SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup="""import __main__""" ) print(f"""{call:56} = {func(__UpperCAmelCase )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__UpperCAmelCase , __UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
109
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ComputeEnvironment.AMAZON_SAGEMAKER _snake_case = True _snake_case = """ml.p3.2xlarge""" _snake_case = """accelerate_sagemaker_execution_role""" _snake_case = """hf-sm""" _snake_case = """us-east-1""" _snake_case = 1 _snake_case = """accelerate-sagemaker-1""" _snake_case = """1.6""" _snake_case = """4.4""" _snake_case = """train.py""" _snake_case = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] _snake_case = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , A ) assert isinstance(converted_args["""do_train"""] , A ) assert isinstance(converted_args["""epochs"""] , A ) assert isinstance(converted_args["""learning_rate"""] , A ) assert isinstance(converted_args["""max_steps"""] , A ) with pytest.raises(A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
587
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss snake_case_ : Union[str, Any] = pytest.mark.integration @require_faiss class snake_case_ ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> int: lowerCamelCase_ : Dict = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__magic_name__ ) for x in np.arange(30 ).tolist()]} ) return dset def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: import faiss lowerCamelCase_ : Dataset = self._create_dummy_dataset() lowerCamelCase_ : int = dset.map( lambda __magic_name__ , __magic_name__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__magic_name__ , keep_in_memory=__magic_name__ ) lowerCamelCase_ : int = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: import faiss lowerCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: import faiss lowerCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__magic_name__ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: lowerCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__magic_name__ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: from elasticsearch import Elasticsearch lowerCamelCase_ : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ : List[Any] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ : str = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__magic_name__ ) lowerCamelCase_ , lowerCamelCase_ : List[str] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class snake_case_ ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: import faiss lowerCamelCase_ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ : Any = 1 lowerCamelCase_ , lowerCamelCase_ : str = index.search(__magic_name__ ) self.assertRaises(__magic_name__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ : str = index.search_batch(__magic_name__ ) self.assertRaises(__magic_name__ , index.search_batch , queries[0] ) lowerCamelCase_ : str = [scores[0] for scores in total_scores] lowerCamelCase_ : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(__magic_name__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: import faiss lowerCamelCase_ : Tuple = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ : List[str] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__magic_name__ ): lowerCamelCase_ : int = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: import faiss lowerCamelCase_ : int = faiss.IndexFlat(5 ) lowerCamelCase_ : List[Any] = FaissIndex(custom_index=__magic_name__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase_ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__magic_name__ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ : Tuple = 1 lowerCamelCase_ , lowerCamelCase_ : str = index.search(__magic_name__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __a ( __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" import faiss lowerCamelCase_ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ : Optional[Any] = "index.faiss" lowerCamelCase_ : List[Any] = f"mock://{index_name}" index.save(__UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase_ : Any = FaissIndex.load(__UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase_ : Dict = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ : Dict = 1 lowerCamelCase_ , lowerCamelCase_ : List[str] = index.search(__UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case_ ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ : Optional[Any] = Elasticsearch() lowerCamelCase_ : Tuple = {"acknowledged": True} lowerCamelCase_ : Optional[Any] = ElasticSearchIndex(es_client=__magic_name__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ : List[Any] = "foo" lowerCamelCase_ : List[str] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ : Any = index.search(__magic_name__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ : Tuple = "foo" lowerCamelCase_ : Optional[int] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ : Optional[int] = index.search(__magic_name__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ : Union[str, Any] = ["foo", "bar", "foobar"] lowerCamelCase_ : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = index.search_batch(__magic_name__ ) lowerCamelCase_ : int = [scores[0] for scores in total_scores] lowerCamelCase_ : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__magic_name__ ) , 0 ) self.assertListEqual([1, 1, 1] , __magic_name__ ) # batched queries with timeout lowerCamelCase_ : Union[str, Any] = ["foo", "bar", "foobar"] lowerCamelCase_ : str = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ : int = index.search_batch(__magic_name__ , request_timeout=30 ) lowerCamelCase_ : Union[str, Any] = [scores[0] for scores in total_scores] lowerCamelCase_ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__magic_name__ ) , 0 ) self.assertListEqual([1, 1, 1] , __magic_name__ )
253
import torch from torch import nn class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : List[str]=1 , __magic_name__ : List[Any]=False ) -> str: super().__init__() lowerCamelCase_ : List[Any] = n_token lowerCamelCase_ : Union[str, Any] = d_embed lowerCamelCase_ : List[str] = d_proj lowerCamelCase_ : Dict = cutoffs + [n_token] lowerCamelCase_ : Any = [0] + self.cutoffs lowerCamelCase_ : Tuple = div_val lowerCamelCase_ : Any = self.cutoffs[0] lowerCamelCase_ : List[str] = len(self.cutoffs ) - 1 lowerCamelCase_ : Dict = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCamelCase_ : List[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCamelCase_ : List[str] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCamelCase_ : Union[str, Any] = nn.ModuleList() lowerCamelCase_ : Optional[int] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__magic_name__ , __magic_name__ ) ) ) else: self.out_projs.append(__magic_name__ ) self.out_layers.append(nn.Linear(__magic_name__ , __magic_name__ ) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase_ , lowerCamelCase_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase_ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__magic_name__ , __magic_name__ ) ) ) self.out_layers.append(nn.Linear(__magic_name__ , r_idx - l_idx ) ) lowerCamelCase_ : Any = keep_order def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Tuple ) -> Any: if proj is None: lowerCamelCase_ : Tuple = nn.functional.linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCamelCase_ : Optional[Any] = nn.functional.linear(__magic_name__ , proj.t().contiguous() ) lowerCamelCase_ : int = nn.functional.linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[int]=None , __magic_name__ : Any=False ) -> Tuple: if labels is not None: # Shift so that tokens < n predict n lowerCamelCase_ : Union[str, Any] = hidden[..., :-1, :].contiguous() lowerCamelCase_ : Any = labels[..., 1:].contiguous() lowerCamelCase_ : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCamelCase_ : int = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: lowerCamelCase_ : str = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCamelCase_ : Optional[int] = self._compute_logit(__magic_name__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCamelCase_ : Union[str, Any] = labels != -100 lowerCamelCase_ : Optional[int] = torch.zeros_like(__magic_name__ , dtype=hidden.dtype , device=hidden.device ) lowerCamelCase_ : Optional[int] = ( -nn.functional.log_softmax(__magic_name__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCamelCase_ : int = nn.functional.log_softmax(__magic_name__ , dim=-1 ) else: # construct weights and biases lowerCamelCase_ , lowerCamelCase_ : Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCamelCase_ , lowerCamelCase_ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase_ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCamelCase_ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCamelCase_ : int = self.out_layers[i].weight lowerCamelCase_ : Dict = self.out_layers[i].bias if i == 0: lowerCamelCase_ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCamelCase_ : int = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__magic_name__ ) biases.append(__magic_name__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCamelCase_ : Tuple = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase_ : Tuple = nn.functional.log_softmax(__magic_name__ , dim=1 ) if labels is None: lowerCamelCase_ : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCamelCase_ : Dict = torch.zeros_like(__magic_name__ , dtype=hidden.dtype , device=hidden.device ) lowerCamelCase_ : str = 0 lowerCamelCase_ : Dict = [0] + self.cutoffs for i in range(len(__magic_name__ ) - 1 ): lowerCamelCase_ , lowerCamelCase_ : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCamelCase_ : List[str] = (labels >= l_idx) & (labels < r_idx) lowerCamelCase_ : Optional[int] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCamelCase_ : List[Any] = labels.index_select(0 , __magic_name__ ) - l_idx lowerCamelCase_ : int = head_logprob.index_select(0 , __magic_name__ ) lowerCamelCase_ : Tuple = hidden.index_select(0 , __magic_name__ ) else: lowerCamelCase_ : Optional[Any] = hidden if i == 0: if labels is not None: lowerCamelCase_ : Dict = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCamelCase_ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = weights[i], biases[i], self.out_projs[i] lowerCamelCase_ : Dict = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase_ : Tuple = nn.functional.log_softmax(__magic_name__ , dim=1 ) lowerCamelCase_ : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCamelCase_ : Optional[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCamelCase_ : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCamelCase_ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , __magic_name__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int ) -> List[str]: if self.n_clusters == 0: lowerCamelCase_ : Union[str, Any] = self._compute_logit(__magic_name__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__magic_name__ , dim=-1 ) else: # construct weights and biases lowerCamelCase_ , lowerCamelCase_ : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCamelCase_ , lowerCamelCase_ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase_ : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCamelCase_ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCamelCase_ : Optional[int] = self.out_layers[i].weight lowerCamelCase_ : List[Any] = self.out_layers[i].bias if i == 0: lowerCamelCase_ : str = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCamelCase_ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__magic_name__ ) biases.append(__magic_name__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = weights[0], biases[0], self.out_projs[0] lowerCamelCase_ : int = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase_ : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCamelCase_ : Optional[int] = nn.functional.log_softmax(__magic_name__ , dim=1 ) lowerCamelCase_ : Dict = [0] + self.cutoffs for i in range(len(__magic_name__ ) - 1 ): lowerCamelCase_ , lowerCamelCase_ : Tuple = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCamelCase_ : Tuple = head_logprob[:, : self.cutoffs[0]] else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCamelCase_ : Tuple = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase_ : Optional[Any] = nn.functional.log_softmax(__magic_name__ , dim=1 ) lowerCamelCase_ : Tuple = head_logprob[:, -i] + tail_logprob_i lowerCamelCase_ : Any = logprob_i return out
253
1
'''simple docstring''' import argparse import copy def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' _a = {} with open(UpperCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _a = [] _list.append([line.split()[1], line.split()[2]] ) _a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _a = [] _list.append([line.split()[0], line.split()[2]] ) _a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' with open(UpperCamelCase ) as f: _a = f.read(1 ) _a = start_node _a = [] _a = start_node _a = 0 while visiting not in first_solution: _a = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase ) and k[0] not in first_solution: _a = k[1] _a = k[0] first_solution.append(UpperCamelCase ) _a = distance_of_first_solution + int(UpperCamelCase ) _a = best_node first_solution.append(UpperCamelCase ) _a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' _a = [] for n in solution[1:-1]: _a = solution.index(UpperCamelCase ) for kn in solution[1:-1]: _a = solution.index(UpperCamelCase ) if n == kn: continue _a = copy.deepcopy(UpperCamelCase ) _a = kn _a = n _a = 0 for k in _tmp[:-1]: _a = _tmp[_tmp.index(UpperCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _a = distance + int(i[1] ) _tmp.append(UpperCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict ): '''simple docstring''' _a = 1 _a = first_solution _a = [] _a = distance_of_first_solution _a = solution while count <= iters: _a = find_neighborhood(UpperCamelCase , UpperCamelCase ) _a = 0 _a = neighborhood[index_of_best_solution] _a = len(UpperCamelCase ) - 1 _a = False while not found: _a = 0 while i < len(UpperCamelCase ): if best_solution[i] != solution[i]: _a = best_solution[i] _a = solution[i] break _a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _a = True _a = best_solution[:-1] _a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _a = cost _a = solution else: _a = index_of_best_solution + 1 _a = neighborhood[index_of_best_solution] if len(UpperCamelCase ) >= size: tabu_list.pop(0 ) _a = count + 1 return best_solution_ever, best_cost def snake_case_ (UpperCamelCase : str=None ): '''simple docstring''' _a = generate_neighbours(args.File ) _a , _a = generate_first_solution( args.File , UpperCamelCase ) _a , _a = tabu_search( UpperCamelCase , UpperCamelCase , UpperCamelCase , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
22
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , **UpperCAmelCase_ : List[Any]) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__(self : List[str] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] ={} if "candidate_labels" in kwargs: lowerCamelCase__: Tuple =kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCamelCase__: Tuple =kwargs["hypothesis_template"] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]="This is a photo of {}.") ->str: '''simple docstring''' lowerCamelCase__: int =load_image(UpperCAmelCase_) lowerCamelCase__: Any =self.image_processor(images=[image] , return_tensors=self.framework) lowerCamelCase__: Any =candidate_labels lowerCamelCase__: List[str] =[hypothesis_template.format(UpperCAmelCase_) for x in candidate_labels] lowerCamelCase__: int =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_) lowerCamelCase__: str =[text_inputs] return inputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: int =model_inputs.pop("candidate_labels") lowerCamelCase__: List[str] =model_inputs.pop("text_inputs") if isinstance(text_inputs[0] , UpperCAmelCase_): lowerCamelCase__: List[Any] =text_inputs[0] else: # Batching case. lowerCamelCase__: List[Any] =text_inputs[0][0] lowerCamelCase__: List[str] =self.model(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str ={ "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =model_outputs.pop("candidate_labels") lowerCamelCase__: Optional[int] =model_outputs["logits"][0] if self.framework == "pt": lowerCamelCase__: Optional[Any] =logits.softmax(dim=-1).squeeze(-1) lowerCamelCase__: Optional[Any] =probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =[scores] elif self.framework == "tf": lowerCamelCase__: List[str] =stable_softmax(UpperCAmelCase_ , axis=-1) lowerCamelCase__: Optional[int] =probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""") lowerCamelCase__: Optional[int] =[ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_) , key=lambda UpperCAmelCase_: -x[0]) ] return result
59
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _A : List[str] ={'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int =['''DPTFeatureExtractor'''] _A : Tuple =['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =[ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _A : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list: lowerCamelCase__ : Optional[int] = 0 # Number of processes finished lowerCamelCase__ : Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowerCamelCase__ : Tuple = [0] * no_of_process # List to include calculation results lowerCamelCase__ : List[str] = [0] * no_of_process # Sort by arrival time. lowerCamelCase__ : Union[str, Any] = [burst_time[i] for i in np.argsort(UpperCamelCase )] lowerCamelCase__ : List[Any] = [process_name[i] for i in np.argsort(UpperCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowerCamelCase__ : str = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowerCamelCase__ : Union[str, Any] = arrival_time[i] lowerCamelCase__ : Any = 0 # Index showing the location of the process being performed lowerCamelCase__ : Union[str, Any] = 0 # Saves the current response ratio. lowerCamelCase__ : Any = 0 for i in range(0 , UpperCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowerCamelCase__ : Optional[int] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowerCamelCase__ : int = temp lowerCamelCase__ : str = i # Calculate the turn around time lowerCamelCase__ : Optional[int] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowerCamelCase__ : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list: lowerCamelCase__ : int = [0] * no_of_process for i in range(0 , UpperCamelCase ): lowerCamelCase__ : Optional[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _A : List[str] =5 _A : Optional[Any] =['''A''', '''B''', '''C''', '''D''', '''E'''] _A : Optional[int] =[1, 2, 3, 4, 5] _A : Dict =[1, 2, 3, 4, 5] _A : Any =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _A : Optional[int] =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
631
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-bert''' SCREAMING_SNAKE_CASE__ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') SCREAMING_SNAKE_CASE__ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Tuple = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(SCREAMING_SNAKE_CASE__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'refs' , 'main' ) ) as f: __a : List[str] = f.read() self.assertEqual(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'snapshots' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(os.path.isfile(SCREAMING_SNAKE_CASE__ ) ) # File is cached at the same place the second time. __a : Any = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Using a specific revision to test the full commit hash. __a : Tuple = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , revision='9b8c223' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'snapshots' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid model identifier' ): __a : Union[str, Any] = cached_file('tiny-random-bert' , SCREAMING_SNAKE_CASE__ ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid git identifier' ): __a : List[str] = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , revision='aaaa' ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'does not appear to have a file named' ): __a : Dict = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'does not appear to have a file named' ): __a : Any = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'refs' , 'main' ) ) as f: __a : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , '.no_exist' , SCREAMING_SNAKE_CASE__ , 'conf' ) ) ) __a : List[Any] = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' , _raise_exceptions_for_missing_entries=SCREAMING_SNAKE_CASE__ ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' , local_files_only=SCREAMING_SNAKE_CASE__ , _raise_exceptions_for_missing_entries=SCREAMING_SNAKE_CASE__ ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) __a : int = mock.Mock() __a : List[Any] = 5_0_0 __a : Dict = {} __a : str = HTTPError __a : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=SCREAMING_SNAKE_CASE__ ) as mock_head: __a : Optional[int] = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' , _raise_exceptions_for_connection_errors=SCREAMING_SNAKE_CASE__ ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self : Dict ): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , SCREAMING_SNAKE_CASE__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , SCREAMING_SNAKE_CASE__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : int ): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , SCREAMING_SNAKE_CASE__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , SCREAMING_SNAKE_CASE__ , revision='ahaha' ) __a : Optional[Any] = get_file_from_repo('bert-base-cased' , SCREAMING_SNAKE_CASE__ ) # The name is the cached name which is not very easy to test, so instead we load the content. __a : Optional[Any] = json.loads(open(SCREAMING_SNAKE_CASE__ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 7_6_8 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __a : List[str] = Path(SCREAMING_SNAKE_CASE__ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(SCREAMING_SNAKE_CASE__ , 'a.txt' ) , str(SCREAMING_SNAKE_CASE__ ) ) self.assertIsNone(get_file_from_repo(SCREAMING_SNAKE_CASE__ , 'b.txt' ) )
47
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : str ={'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] =['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
434
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : List[Any] =RobertaTokenizer a_ : str =RobertaTokenizerFast a_ : List[str] =True a_ : Dict ={"""cls_token""": """<s>"""} def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _snake_case : List[str] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _snake_case : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : Union[str, Any] = {"""unk_token""": """<unk>"""} _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def UpperCamelCase_ ( self : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase_ ( self : int , **UpperCamelCase : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str ): '''simple docstring''' _snake_case : Tuple = """lower newer""" _snake_case : Dict = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : List[Any] = """lower newer""" _snake_case : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : Any = tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : Optional[Any] = tokens + [tokenizer.unk_token] _snake_case : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) _snake_case : Dict = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = self.get_tokenizer() _snake_case : List[Any] = """Encode this sequence.""" _snake_case : Any = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments _snake_case : Any = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : List[str] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case : Optional[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens _snake_case : Optional[Any] = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space _snake_case : int = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) _snake_case : str = """Encode <mask> sequence""" _snake_case : Union[str, Any] = """Encode <mask>sequence""" _snake_case : str = tokenizer.encode(_UpperCamelCase ) _snake_case : Optional[int] = encoded.index(_UpperCamelCase ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : Any = tokenizer.encode(_UpperCamelCase ) _snake_case : Any = encoded.index(_UpperCamelCase ) _snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _snake_case : Dict = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _snake_case : str = """A, <mask> AllenNLP sentence.""" _snake_case : int = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : str = f"""{text_of_1_token} {text_of_1_token}""" _snake_case : int = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[str] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Tuple = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
715
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __A( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(SCREAMING_SNAKE_CASE_ ) # standard deviation of the initial noise distribution UpperCamelCase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase__ = 4 # running values UpperCamelCase__ = [] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase__ = num_inference_steps UpperCamelCase__ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCamelCase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase__ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCamelCase__ = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase__ = (1.0 - self.betas**2) ** 0.5 UpperCamelCase__ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCamelCase__ = timesteps.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) UpperCamelCase__ = (self.timesteps == timestep).nonzero().item() UpperCamelCase__ = timestep_index + 1 UpperCamelCase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(SCREAMING_SNAKE_CASE_ ) if len(self.ets ) == 1: UpperCamelCase__ = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCamelCase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase__ = self._get_prev_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return sample def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.alphas[timestep_index] UpperCamelCase__ = self.betas[timestep_index] UpperCamelCase__ = self.alphas[prev_timestep_index] UpperCamelCase__ = self.betas[prev_timestep_index] UpperCamelCase__ = (sample - sigma * ets) / max(SCREAMING_SNAKE_CASE_ , 1E-8 ) UpperCamelCase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__(self ): return self.config.num_train_timesteps
513
from __future__ import annotations import time import numpy as np lowerCamelCase_ = [8, 5, 9, 7] lowerCamelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = claim_vector UpperCamelCase__ = allocated_resources_table UpperCamelCase__ = maximum_claim_table def UpperCAmelCase_ (self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ (self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ (self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ (self ): return {self.__need().index(SCREAMING_SNAKE_CASE_ ): i for i in self.__need()} def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.__need() UpperCamelCase__ = self.__allocated_resources_table UpperCamelCase__ = self.__available_resources() UpperCamelCase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: UpperCamelCase__ = False for each_need in need_list: UpperCamelCase__ = True for index, need in enumerate(SCREAMING_SNAKE_CASE_ ): if need > available_resources[index]: UpperCamelCase__ = False break if execution: UpperCamelCase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE_ ) # update available/freed resources stack UpperCamelCase__ = np.array(SCREAMING_SNAKE_CASE_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(SCREAMING_SNAKE_CASE_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase_ (self ): print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
513
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __lowerCAmelCase ( ) -> List[str]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def __lowerCAmelCase ( ) -> Dict: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def __lowerCAmelCase ( ) -> Any: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
702
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowerCAmelCase ( __lowerCamelCase : str = "laptop" ) -> DataFrame: __lowerCAmelCase =f"""https://www.amazon.in/laptop/s?k={product}""" __lowerCAmelCase ={ """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } __lowerCAmelCase =BeautifulSoup(requests.get(__lowerCamelCase , headers=__lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles __lowerCAmelCase =DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: __lowerCAmelCase =item.ha.text __lowerCAmelCase ="""https://www.amazon.in/""" + item.ha.a["""href"""] __lowerCAmelCase =item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: __lowerCAmelCase =item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: __lowerCAmelCase ="""Not available""" try: __lowerCAmelCase =( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: __lowerCAmelCase ="""""" try: __lowerCAmelCase =float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: __lowerCAmelCase =float("""nan""" ) except AttributeError: pass __lowerCAmelCase =[ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __lowerCAmelCase =""" """ __lowerCAmelCase =""" """ data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = '''headphones''' get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
456
0
import operator as op def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = lambda UpperCAmelCase__ ,UpperCAmelCase__ : int(x / y ) # noqa: E731 integer division operation _SCREAMING_SNAKE_CASE = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) ,'Action'.center(12 ) ,'Stack' ,sep=' | ' ) print('-' * (30 + len(UpperCAmelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCAmelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) ,('push(' + x + ')').ljust(12 ) ,','.join(UpperCAmelCase__ ) ,sep=' | ' ) else: _SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) ,('pop(' + b + ')').ljust(12 ) ,','.join(UpperCAmelCase__ ) ,sep=' | ' ) _SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) ,('pop(' + a + ')').ljust(12 ) ,','.join(UpperCAmelCase__ ) ,sep=' | ' ) stack.append( str(opr[x](int(UpperCAmelCase__ ) ,int(UpperCAmelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) ,('push(' + a + x + b + ')').ljust(12 ) ,','.join(UpperCAmelCase__ ) ,sep=' | ' ,) return int(stack[0] ) if __name__ == "__main__": snake_case : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
605
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" def merge(UpperCAmelCase__ ,UpperCAmelCase__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case : Any = input('Enter numbers separated by a comma:\n').strip() snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
605
1
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' a__ : Dict = git.Repo(search_parent_directories=lowerCAmelCase__ ) a__ : Optional[int] = { "repo_id": str(lowerCAmelCase__ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase__ , "git_log.json" ) , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=4 ) def lowercase__ ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' if params.n_gpu <= 0: a__ : Tuple = 0 a__ : Union[str, Any] = -1 a__ : List[Any] = True a__ : str = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 a__ : Optional[int] = int(os.environ["WORLD_SIZE"] ) a__ : Optional[int] = int(os.environ["N_GPU_NODE"] ) a__ : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID a__ : int = params.world_size // params.n_gpu_per_node a__ : List[Any] = params.global_rank // params.n_gpu_per_node a__ : Optional[int] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 a__ : Any = 1 a__ : Tuple = 0 a__ : Tuple = 0 a__ : Tuple = 0 a__ : List[str] = 1 a__ : Dict = 1 a__ : Optional[Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode a__ : List[Any] = params.node_id == 0 and params.local_rank == 0 a__ : Union[str, Any] = params.n_nodes > 1 # summary a__ : Tuple = F"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowercase__ ( lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
700
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Dict = CLIPTokenizer __lowerCamelCase : Optional[Any] = CLIPTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : Optional[int] = {} __lowerCamelCase : List[Any] = False def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off a__ : Tuple = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Union[str, Any] = {"unk_token": "<unk>"} a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def UpperCAmelCase ( self : Optional[Any] , **a_ : Tuple ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Tuple , **a_ : Any ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Tuple , a_ : Dict ) -> Tuple: '''simple docstring''' a__ : Optional[int] = "lower newer" a__ : Dict = "lower newer" return input_text, output_text def UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' a__ : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : Optional[Any] = "lower newer" a__ : Tuple = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Tuple = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) a__ : List[str] = tokens + [tokenizer.unk_token] a__ : str = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) @require_ftfy def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a__ : Dict = self.tokenizer_class.from_pretrained(a_ , **a_ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) a__ : Optional[int] = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : str = tokenizer_s.tokenize(a_ ) a__ : int = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Dict = "xa\u0303y" + " " + "x\xe3y" a__ : Any = tokenizer_s.tokenize(a_ ) a__ : Optional[int] = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : str = tokenizer_s.tokenize(a_ ) a__ : List[Any] = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of line break type a__ : int = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : Any = tokenizer_s.tokenize(a_ ) a__ : Dict = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a__ : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Union[str, Any] = F"{text_of_1_token} {text_of_1_token}" a__ : List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) a__ : List[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) a__ : List[Any] = F" {text}" a__ : List[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) a__ : Tuple = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' pass
251
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[int] = botoa.client("""iam""" ) UpperCAmelCase__ : Tuple = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase__ , AssumeRolePolicyDocument=json.dumps(lowercase__ , indent=2 ) ) UpperCAmelCase__ : str = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase__ , PolicyName=F"{role_name}_policy_permission" , PolicyDocument=json.dumps(lowercase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def _lowerCamelCase ( __lowerCamelCase ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowercase__ )["Role"]["Arn"] def _lowerCamelCase ( ) -> int: '''simple docstring''' UpperCAmelCase__ : Tuple = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowercase__ , ) UpperCAmelCase__ : str = None if credentials_configuration == 0: UpperCAmelCase__ : Union[str, Any] = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) UpperCAmelCase__ : Dict = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) UpperCAmelCase__ : Optional[Any] = _ask_field("""AWS Access Key ID: """ ) UpperCAmelCase__ : Tuple = aws_access_key_id UpperCAmelCase__ : str = _ask_field("""AWS Secret Access Key: """ ) UpperCAmelCase__ : List[str] = aws_secret_access_key UpperCAmelCase__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) UpperCAmelCase__ : List[Any] = aws_region UpperCAmelCase__ : List[str] = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowercase__ , ) if role_management == 0: UpperCAmelCase__ : Union[str, Any] = _ask_field("""Enter your IAM role name: """ ) else: UpperCAmelCase__ : Tuple = '''accelerate_sagemaker_execution_role''' print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(lowercase__ ) UpperCAmelCase__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : List[str] = None if is_custom_docker_image: UpperCAmelCase__ : Dict = _ask_field("""Enter your Docker image: """ , lambda __lowerCamelCase : str(lowercase__ ).lower() ) UpperCAmelCase__ : Any = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : Dict = None if is_sagemaker_inputs_enabled: UpperCAmelCase__ : Optional[int] = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __lowerCamelCase : str(lowercase__ ).lower() , ) UpperCAmelCase__ : Optional[Any] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : Any = None if is_sagemaker_metrics_enabled: UpperCAmelCase__ : Dict = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __lowerCamelCase : str(lowercase__ ).lower() , ) UpperCAmelCase__ : Union[str, Any] = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : int = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: UpperCAmelCase__ : Union[str, Any] = '''dynamo_''' UpperCAmelCase__ : Optional[Any] = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCAmelCase__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: UpperCAmelCase__ : Any = _ask_options( """Which mode do you want to use?""" , lowercase__ , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(lowercase__ )] , default="""default""" , ) UpperCAmelCase__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : Any = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: UpperCAmelCase__ : List[str] = _ask_options( lowercase__ , lowercase__ , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCAmelCase__ : Union[str, Any] = _ask_field(lowercase__ , lambda __lowerCamelCase : str(lowercase__ ).lower() , default="""ml.p3.2xlarge""" ) UpperCAmelCase__ : int = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCAmelCase__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , lowercase__ , default=1 , ) UpperCAmelCase__ : List[str] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowercase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase__ , use_cpu=lowercase__ , dynamo_config=lowercase__ , eca_instance_type=lowercase__ , profile=lowercase__ , region=lowercase__ , iam_role_name=lowercase__ , mixed_precision=lowercase__ , num_machines=lowercase__ , sagemaker_inputs_file=lowercase__ , sagemaker_metrics_file=lowercase__ , )
79
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=True ): model.train() lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = F.mse_loss(__lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any=False ): set_seed(42 ) lowerCamelCase__ = RegressionModel() lowerCamelCase__ = deepcopy(__lowerCAmelCase ) lowerCamelCase__ = RegressionDataset(length=80 ) lowerCamelCase__ = DataLoader(__lowerCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: lowerCamelCase__ = AdamW(params=model.parameters() , lr=1e-3 ) lowerCamelCase__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) lowerCamelCase__ = LambdaLR(__lowerCAmelCase , lr_lambda=lambda __lowerCAmelCase : epoch**0.65 ) lowerCamelCase__ = LambdaLR(__lowerCAmelCase , lr_lambda=lambda __lowerCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A__ ( __lowerCAmelCase : Any ): # Test when on a single CPU or GPU that the context manager does nothing lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_training_setup(__lowerCAmelCase ) # Use a single batch lowerCamelCase__ , lowerCamelCase__ = next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ , lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase__ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def A__ ( __lowerCAmelCase : Tuple ): # Test on distributed setup that context manager behaves properly lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_training_setup(__lowerCAmelCase ) # Use a single batch lowerCamelCase__ , lowerCamelCase__ = next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ , lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase__ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def A__ ( __lowerCAmelCase : int=False , __lowerCAmelCase : Optional[int]=False ): lowerCamelCase__ = Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_training_setup(__lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ , lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase__ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] GradientState._reset_state() def A__ ( __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_training_setup(__lowerCAmelCase , __lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ , lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowerCamelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def A__ ( ): lowerCamelCase__ = Accelerator() lowerCamelCase__ = RegressionDataset(length=80 ) lowerCamelCase__ = DataLoader(__lowerCAmelCase , batch_size=16 ) lowerCamelCase__ = RegressionDataset(length=96 ) lowerCamelCase__ = DataLoader(__lowerCAmelCase , batch_size=16 ) lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if iteration < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if batch_num < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A__ ( ): lowerCamelCase__ = Accelerator() lowerCamelCase__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(__lowerCAmelCase , __lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
61
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[str] = CodeGenTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] = CodeGenTokenizerFast SCREAMING_SNAKE_CASE_: Any = True SCREAMING_SNAKE_CASE_: str = {"""add_prefix_space""": True} SCREAMING_SNAKE_CASE_: Any = False def _UpperCAmelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] A__ = dict(zip(__a , range(len(__a ) ) ) ) A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = 'lower newer' A__ = 'lower newer' return input_text, output_text def _UpperCAmelCase ( self ): """simple docstring""" A__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = 'lower newer' A__ = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] A__ = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) A__ = tokens + [tokenizer.unk_token] A__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def _UpperCAmelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer(add_prefix_space=__a ) A__ = 'lower newer' # Testing tokenization A__ = tokenizer.tokenize(__a , add_prefix_space=__a ) A__ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens A__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) A__ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens A__ = self.get_rust_tokenizer(add_prefix_space=__a ) A__ = tokenizer.encode(__a , add_prefix_space=__a ) A__ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token A__ = tokens + [rust_tokenizer.unk_token] A__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def _UpperCAmelCase ( self , *__a , **__a ): """simple docstring""" pass def _UpperCAmelCase ( self , __a=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input looooooooong', 'This is a simple input'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] A__ = tokenizer.pad_token_id A__ = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) A__ = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) A__ = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) A__ = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = '$$$' A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = tokenizer.bos_token_id A__ = tokenizer(__a ) A__ = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) A__ = tokenizer.decode(out_s.input_ids ) A__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _UpperCAmelCase ( self ): """simple docstring""" A__ = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) A__ = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' A__ = '\nif len_a > len_b: result = a\nelse: result = b' A__ = tokenizer.encode(__a ) A__ = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] A__ = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" pass
260
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =(DDIMParallelScheduler,) SCREAMING_SNAKE_CASE_ : Union[str, Any] =(("eta", 0.0), ("num_inference_steps", 50)) def _lowerCamelCase ( self : Union[str, Any] , **__A : Optional[Any] ): __UpperCamelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**__A ) return config def _lowerCamelCase ( self : str , **__A : List[Any] ): __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(**__A ) __UpperCamelCase = scheduler_class(**__A ) __UpperCamelCase , __UpperCamelCase = 1_0, 0.0 __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(__A ) for t in scheduler.timesteps: __UpperCamelCase = model(__A , __A ) __UpperCamelCase = scheduler.step(__A , __A , __A , __A ).prev_sample return sample def _lowerCamelCase ( self : List[Any] ): for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def _lowerCamelCase ( self : Any ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(steps_offset=1 ) __UpperCamelCase = scheduler_class(**__A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def _lowerCamelCase ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _lowerCamelCase ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _lowerCamelCase ( self : Any ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _lowerCamelCase ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def _lowerCamelCase ( self : Tuple ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__A ) def _lowerCamelCase ( self : int ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__A ) def _lowerCamelCase ( self : str ): self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def _lowerCamelCase ( self : List[str] ): for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=__A ) def _lowerCamelCase ( self : List[str] ): for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=__A , num_inference_steps=__A ) def _lowerCamelCase ( self : Optional[Any] ): for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__A , eta=__A ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5 def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__A ) __UpperCamelCase , __UpperCamelCase = 1_0, 0.0 scheduler.set_timesteps(__A ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = self.dummy_sample_deter + 0.1 __UpperCamelCase = self.dummy_sample_deter - 0.1 __UpperCamelCase = samplea.shape[0] __UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCamelCase = torch.arange(__A )[0:3, None].repeat(1 , __A ) __UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCamelCase = scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A ) __UpperCamelCase = torch.sum(torch.abs(__A ) ) __UpperCamelCase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.full_loop() __UpperCamelCase = torch.sum(torch.abs(__A ) ) __UpperCamelCase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def _lowerCamelCase ( self : int ): __UpperCamelCase = self.full_loop(prediction_type='v_prediction' ) __UpperCamelCase = torch.sum(torch.abs(__A ) ) __UpperCamelCase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def _lowerCamelCase ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 __UpperCamelCase = self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) __UpperCamelCase = torch.sum(torch.abs(__A ) ) __UpperCamelCase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def _lowerCamelCase ( self : Optional[int] ): # We specify different beta, so that the first alpha is 0.99 __UpperCamelCase = self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) __UpperCamelCase = torch.sum(torch.abs(__A ) ) __UpperCamelCase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
712
'''simple docstring''' def lowercase__ ( __lowercase : list[int] , __lowercase : list[int] ) -> None: """simple docstring""" __UpperCamelCase = len(__lowercase ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(__lowercase , end=',' ) # Consider rest of the activities for j in range(__lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowercase , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() a__ : Any =[1, 3, 0, 5, 8, 5] a__ : Dict =[2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
434
0
import requests from bsa import BeautifulSoup def lowercase ( __A : str = "AAPL" ) -> str: '''simple docstring''' snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Dict = BeautifulSoup(requests.get(__A ).text , """html.parser""" ) snake_case : Optional[int] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
36
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowercase : List[str] = ['''text''', '''image''', '''audio'''] def lowercase ( __A : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__A , __A ): inputs.append(create_inputs(__A ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowercase ( __A : List ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = [] for output in outputs: if isinstance(__A , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__A , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__A , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class _A : '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) snake_case : Dict = self.tool.inputs for _input in inputs: if isinstance(_input ,SCREAMING_SNAKE_CASE_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : str = self.tool(*SCREAMING_SNAKE_CASE_ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : Union[str, Any] = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE_ ) ,self.tool.outputs ) def snake_case_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Any = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE_ ,self.tool.outputs ): snake_case : List[str] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = create_inputs(self.tool.inputs ) snake_case : Any = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE_ ,self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Tuple = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Union[str, Any] = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(self.tool.outputs ) )
36
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _lowerCAmelCase : def __init__( self , __UpperCAmelCase = "cpu" , __UpperCAmelCase = "openai/clip-vit-large-patch14" ): lowerCAmelCase__ : Union[str, Any] = device lowerCAmelCase__ : Optional[int] = CLIPTokenizerFast.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = [0.48145466, 0.4578275, 0.40821073] lowerCAmelCase__ : Optional[Any] = [0.26862954, 0.26130258, 0.27577711] lowerCAmelCase__ : Optional[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) lowerCAmelCase__ : Dict = torchvision.transforms.Resize(224 ) lowerCAmelCase__ : Any = torchvision.transforms.CenterCrop(224 ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = self.resize(__UpperCAmelCase ) lowerCAmelCase__ : str = self.center_crop(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.normalize(__UpperCAmelCase ) return images def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): lowerCAmelCase__ : Tuple = self.tokenizer(text=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.preprocess_img(__UpperCAmelCase ) lowerCAmelCase__ : Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase=10 , __UpperCAmelCase=0.01 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="image" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ): super().__init__() lowerCAmelCase__ : str = None lowerCAmelCase__ : str = device if device else get_device() if vqgan: lowerCAmelCase__ : Union[str, Any] = vqgan else: lowerCAmelCase__ : Dict = load_vqgan(self.device , conf_path=__UpperCAmelCase , ckpt_path=__UpperCAmelCase ) self.vqgan.eval() if clip: lowerCAmelCase__ : Optional[int] = clip else: lowerCAmelCase__ : Union[str, Any] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) lowerCAmelCase__ : Optional[Any] = ProcessorGradientFlow(device=self.device ) lowerCAmelCase__ : Tuple = iterations lowerCAmelCase__ : Tuple = lr lowerCAmelCase__ : Optional[int] = log lowerCAmelCase__ : Dict = make_grid lowerCAmelCase__ : Optional[Any] = return_val lowerCAmelCase__ : List[Any] = quantize lowerCAmelCase__ : List[str] = self.vqgan.decoder.z_shape def __magic_name__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=5 , __UpperCAmelCase=True ): lowerCAmelCase__ : Union[str, Any] = [] if output_path is None: lowerCAmelCase__ : Optional[Any] = '''./animation.gif''' if input_path is None: lowerCAmelCase__ : List[Any] = self.save_path lowerCAmelCase__ : List[str] = sorted(glob(input_path + '''/*''' ) ) if not len(__UpperCAmelCase ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__UpperCAmelCase ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) lowerCAmelCase__ : Optional[Any] = total_duration / len(__UpperCAmelCase ) lowerCAmelCase__ : Any = [frame_duration] * len(__UpperCAmelCase ) if extend_frames: lowerCAmelCase__ : Any = 1.5 lowerCAmelCase__ : Optional[int] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__UpperCAmelCase ) ) imageio.mimsave(__UpperCAmelCase , __UpperCAmelCase , duration=__UpperCAmelCase ) print(f"""gif saved to {output_path}""" ) def __magic_name__( self , __UpperCAmelCase=None , __UpperCAmelCase=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError lowerCAmelCase__ : int = preprocess(Image.open(__UpperCAmelCase ) , target_image_size=256 ).to(self.device ) lowerCAmelCase__ : Any = preprocess_vqgan(__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.vqgan.encode(__UpperCAmelCase ) return z def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = self.latent.detach().requires_grad_() lowerCAmelCase__ : int = base_latent + transform_vector if self.quantize: lowerCAmelCase__ : Union[str, Any] = self.vqgan.quantize(__UpperCAmelCase ) else: lowerCAmelCase__ : Tuple = trans_latent return self.vqgan.decode(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): lowerCAmelCase__ : List[str] = self.clip_preprocessor(text=__UpperCAmelCase , images=__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ) lowerCAmelCase__ : int = self.clip(**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = clip_outputs.logits_per_image if weights is not None: lowerCAmelCase__ : Dict = similarity_logits * weights return similarity_logits.sum() def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Dict = self._get_clip_similarity(pos_prompts['''prompts'''] , __UpperCAmelCase , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: lowerCAmelCase__ : Union[str, Any] = self._get_clip_similarity(neg_prompts['''prompts'''] , __UpperCAmelCase , weights=neg_prompts['''weights'''] ) else: lowerCAmelCase__ : Union[str, Any] = torch.tensor([1] , device=self.device ) lowerCAmelCase__ : Tuple = -torch.log(__UpperCAmelCase ) + torch.log(__UpperCAmelCase ) return loss def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Dict = torch.randn_like(self.latent , requires_grad=__UpperCAmelCase , device=self.device ) lowerCAmelCase__ : List[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowerCAmelCase__ : Union[str, Any] = self._add_vector(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = loop_post_process(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = self._get_CLIP_loss(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) print('''CLIP loss''' , __UpperCAmelCase ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__UpperCAmelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): wandb.init(reinit=__UpperCAmelCase , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: lowerCAmelCase__ : int = Image.open(__UpperCAmelCase ) lowerCAmelCase__ : int = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(__UpperCAmelCase ) ) def __magic_name__( self , __UpperCAmelCase ): if not prompts: return [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Tuple = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : List[str] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__UpperCAmelCase , (tuple, list) ): lowerCAmelCase__ : Dict = prompt[0] lowerCAmelCase__ : Optional[int] = float(prompt[1] ) elif ":" in prompt: lowerCAmelCase__ : List[Any] = prompt.split(''':''' ) lowerCAmelCase__ : Any = float(__UpperCAmelCase ) else: lowerCAmelCase__ : int = prompt lowerCAmelCase__ : Union[str, Any] = 1.0 processed_prompts.append(__UpperCAmelCase ) weights.append(__UpperCAmelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__UpperCAmelCase , device=self.device ), } def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , ): if image_path: lowerCAmelCase__ : Union[str, Any] = self._get_latent(__UpperCAmelCase ) else: lowerCAmelCase__ : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) assert pos_prompts, "You must provide at least one positive prompt." lowerCAmelCase__ : Optional[Any] = self.process_prompts(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.process_prompts(__UpperCAmelCase ) if save_final and save_path is None: lowerCAmelCase__ : List[Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) else: lowerCAmelCase__ : int = save_path + '''_''' + get_timestamp() os.makedirs(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = save_path lowerCAmelCase__ : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = loop_post_process(__UpperCAmelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ): if show_intermediate: show_pil(__UpperCAmelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'''Image''': wandb.Image(__UpperCAmelCase )} ) if show_final: show_pil(__UpperCAmelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
700
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( UpperCamelCase ) -> str: for param in module.parameters(): lowerCAmelCase__ : int = False def __lowerCAmelCase ( ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ : Optional[Any] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __lowerCAmelCase ( UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : str = plt.imshow(UpperCamelCase ) fig.axes.get_xaxis().set_visible(UpperCamelCase ) fig.axes.get_yaxis().set_visible(UpperCamelCase ) plt.show() def __lowerCAmelCase ( ) -> str: lowerCAmelCase__ : Dict = datetime.now() lowerCAmelCase__ : Optional[int] = current_time.strftime('''%H:%M:%S''' ) return timestamp
470
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=6_4 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = vocab_size - 1 def lowerCamelCase_ ( self ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = GPTNeoXModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = True __lowerCamelCase = GPTNeoXModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = GPTNeoXForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = GPTNeoXForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = GPTNeoXForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = True __lowerCamelCase = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) __lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase ) __lowerCamelCase = output_from_no_past["""hidden_states"""][0] __lowerCamelCase = model( UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["""hidden_states"""][0] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) A = (GPTNeoXForCausalLM,) if is_torch_available() else () A = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) A = False A = False A = False A = False def lowerCamelCase_ ( self ): __lowerCamelCase = GPTNeoXModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=6_4 , num_attention_heads=8 ) def lowerCamelCase_ ( self ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): # This regression test was failing with PyTorch < 1.3 __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def lowerCamelCase_ ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ids_tensor([1, 1_0] , config.vocab_size ) __lowerCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __lowerCamelCase = GPTNeoXModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() __lowerCamelCase = original_model(UpperCAmelCase ).last_hidden_state __lowerCamelCase = original_model(UpperCAmelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __lowerCamelCase = {"""type""": scaling_type, """factor""": 10.0} __lowerCamelCase = GPTNeoXModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() __lowerCamelCase = scaled_model(UpperCAmelCase ).last_hidden_state __lowerCamelCase = scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self ): __lowerCamelCase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: __lowerCamelCase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(UpperCAmelCase ) __lowerCamelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowerCamelCase = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" __lowerCamelCase = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=2_0 ) __lowerCamelCase = tokenizer.batch_decode(UpperCAmelCase )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase )
479
from __future__ import annotations _a : Dict = list[list[int]] # assigning initial values to the grid _a : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _a : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase__ ( _A: Matrix , _A: int , _A: int , _A: int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase__ ( _A: Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase__ ( _A: Matrix ): '''simple docstring''' if location := find_empty_location(_A ): __lowerCamelCase , __lowerCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_A , _A , _A , _A ): __lowerCamelCase = digit if sudoku(_A ) is not None: return grid __lowerCamelCase = 0 return None def UpperCamelCase__ ( _A: Matrix ): '''simple docstring''' for row in grid: for cell in row: print(_A , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') _a : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
479
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = '''gpt_neo''' _lowerCAmelCase : Tuple = ['''past_key_values'''] _lowerCAmelCase : str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowercase__=5_0_2_5_7 , lowercase__=2_0_4_8 , lowercase__=2_0_4_8 , lowercase__=2_4 , lowercase__=[[["global", "local"], 1_2]] , lowercase__=1_6 , lowercase__=None , lowercase__=2_5_6 , lowercase__="gelu_new" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=1e-5 , lowercase__=0.0_2 , lowercase__=True , lowercase__=5_0_2_5_6 , lowercase__=5_0_2_5_6 , **lowercase__ , ): __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Dict = num_layers __UpperCAmelCase : Union[str, Any] = num_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Optional[Any] = window_size __UpperCAmelCase : List[str] = activation_function __UpperCAmelCase : Union[str, Any] = resid_dropout __UpperCAmelCase : Any = embed_dropout __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : List[str] = classifier_dropout __UpperCAmelCase : Optional[int] = layer_norm_epsilon __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Tuple = bos_token_id __UpperCAmelCase : Optional[Any] = eos_token_id __UpperCAmelCase : List[Any] = attention_types __UpperCAmelCase : str = self.expand_attention_types_params(lowercase__) if len(self.attention_layers) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''') super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) @staticmethod def A( lowercase__): __UpperCAmelCase : int = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' import torch __UpperCAmelCase : Tuple = input.size() __UpperCAmelCase : Any = len(lowercase_ ) __UpperCAmelCase : str = shape[dimension] __UpperCAmelCase : List[str] = torch.arange(0 , lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = torch.div(sizedim - size , lowercase_ , rounding_mode='''floor''' ) + 1 __UpperCAmelCase : List[Any] = torch.arange(lowercase_ ) + low_indices[:min_length][:, None] __UpperCAmelCase : Tuple = [slice(lowercase_ )] * rank __UpperCAmelCase : str = indices __UpperCAmelCase : Any = input[s] __UpperCAmelCase : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' import torch __UpperCAmelCase : Optional[int] = torch.arange(1 , lowercase_ ) __UpperCAmelCase : Dict = torch.remainder(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = remainders == 0 __UpperCAmelCase : str = candidates[divisor_indices] __UpperCAmelCase : List[Any] = torch.max(lowercase_ ) return largest_divisor, torch.div(lowercase_ , lowercase_ , rounding_mode='''floor''' ) class lowerCamelCase ( _UpperCamelCase ): @property def A( self): __UpperCAmelCase : Dict = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='''inputs''') __UpperCAmelCase : Dict = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def A( self): return self._config.num_heads def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : Dict = super(lowercase__ , self).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCAmelCase , __UpperCAmelCase : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase : Optional[Any] = seqlen + 2 __UpperCAmelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase : Dict = [ (torch.zeros(lowercase__), torch.zeros(lowercase__)) for _ in range(self.num_layers) ] __UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase : Dict = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase : int = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__)] , dim=1) return ordered_inputs @property def A( self): return 1_3
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :List[str] , __A :str ) -> Optional[int]: """simple docstring""" with open(__A , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) SCREAMING_SNAKE_CASE__ = input_file.read() SCREAMING_SNAKE_CASE__ = regexp.search(__A ) return match def _snake_case ( self :Tuple , __A :str ) -> Optional[Any]: """simple docstring""" with open(__A , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) SCREAMING_SNAKE_CASE__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE__ = regexp.finditer(__A ) SCREAMING_SNAKE_CASE__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__A ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _snake_case ( self :str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__A ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
6
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE_: Any = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Tuple = False def __lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowerCAmelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) _lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" return "lower newer", "lower newer" def __lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = 'lower' _lowerCAmelCase = ['low', 'er</w>'] _lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = tokens + ['<unk>'] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : List[Any]=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # Simple input _lowerCAmelCase = 'This is a simple input' _lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase = ('This is a simple input', 'This is a pair') _lowerCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) def __lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' pass
580
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """gpt_bigcode""" UpperCAmelCase_ = ["""past_key_values"""] UpperCAmelCase_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :Optional[Any] , lowerCamelCase :Any=5_0257 , lowerCamelCase :int=1024 , lowerCamelCase :int=768 , lowerCamelCase :Optional[int]=12 , lowerCamelCase :List[Any]=12 , lowerCamelCase :Union[str, Any]=None , lowerCamelCase :Optional[int]="gelu_pytorch_tanh" , lowerCamelCase :Optional[int]=0.1 , lowerCamelCase :Any=0.1 , lowerCamelCase :List[Any]=0.1 , lowerCamelCase :str=1e-5 , lowerCamelCase :Dict=0.02 , lowerCamelCase :Any=True , lowerCamelCase :List[Any]=True , lowerCamelCase :int=5_0256 , lowerCamelCase :Union[str, Any]=5_0256 , lowerCamelCase :Optional[int]=True , lowerCamelCase :Optional[Any]=True , lowerCamelCase :Optional[Any]=True , **lowerCamelCase :Optional[Any] , ) -> Any: UpperCAmelCase__ = vocab_size UpperCAmelCase__ = n_positions UpperCAmelCase__ = n_embd UpperCAmelCase__ = n_layer UpperCAmelCase__ = n_head UpperCAmelCase__ = n_inner UpperCAmelCase__ = activation_function UpperCAmelCase__ = resid_pdrop UpperCAmelCase__ = embd_pdrop UpperCAmelCase__ = attn_pdrop UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scale_attn_weights UpperCAmelCase__ = use_cache UpperCAmelCase__ = attention_softmax_in_fpaa UpperCAmelCase__ = scale_attention_softmax_in_fpaa UpperCAmelCase__ = multi_query UpperCAmelCase__ = bos_token_id UpperCAmelCase__ = eos_token_id super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase )
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
0
__UpperCamelCase : Tuple = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } __UpperCamelCase : str = {value: key for key, value in encode_dict.items()} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def snake_case ( lowerCamelCase ): '''simple docstring''' if set(lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) __lowercase = """""" for word in coded.split(): while len(lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] __lowercase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
80
def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [[] for _ in range(lowerCamelCase )] __lowercase = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(lowerCamelCase ) <= key: return input_string for position, character in enumerate(lowerCamelCase ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCamelCase ) __lowercase = ["""""".join(lowerCamelCase ) for row in temp_grid] __lowercase = """""".join(lowerCamelCase ) return output_string def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string __lowercase = [[] for _ in range(lowerCamelCase )] # generates template for position in range(len(lowerCamelCase ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __lowercase = 0 for row in temp_grid: # fills in the characters __lowercase = input_string[counter : counter + len(lowerCamelCase )] grid.append(list(lowerCamelCase ) ) counter += len(lowerCamelCase ) __lowercase = """""" # reads as zigzag for position in range(len(lowerCamelCase ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} for key_guess in range(1 , len(lowerCamelCase ) ): # tries every key __lowercase = decrypt(lowerCamelCase , lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
80
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class snake_case ( _UpperCAmelCase ): UpperCAmelCase__ = '''wavlm''' def __init__(self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_="group" , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE_=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3_20 , SCREAMING_SNAKE_CASE_=8_00 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.05 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=3_20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1_00 , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="mean" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE_=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = feat_extract_norm SCREAMING_SNAKE_CASE_ = feat_extract_activation SCREAMING_SNAKE_CASE_ = list(A_ ) SCREAMING_SNAKE_CASE_ = list(A_ ) SCREAMING_SNAKE_CASE_ = list(A_ ) SCREAMING_SNAKE_CASE_ = conv_bias SCREAMING_SNAKE_CASE_ = num_buckets SCREAMING_SNAKE_CASE_ = max_bucket_distance SCREAMING_SNAKE_CASE_ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = feat_proj_dropout SCREAMING_SNAKE_CASE_ = final_dropout SCREAMING_SNAKE_CASE_ = layerdrop SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_ctc_classes SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = do_stable_layer_norm SCREAMING_SNAKE_CASE_ = use_weighted_layer_sum SCREAMING_SNAKE_CASE_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ = apply_spec_augment SCREAMING_SNAKE_CASE_ = mask_time_prob SCREAMING_SNAKE_CASE_ = mask_time_length SCREAMING_SNAKE_CASE_ = mask_time_min_masks SCREAMING_SNAKE_CASE_ = mask_feature_prob SCREAMING_SNAKE_CASE_ = mask_feature_length # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ = num_codevectors_per_group SCREAMING_SNAKE_CASE_ = num_codevector_groups SCREAMING_SNAKE_CASE_ = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ = num_negatives SCREAMING_SNAKE_CASE_ = codevector_dim SCREAMING_SNAKE_CASE_ = proj_codevector_dim SCREAMING_SNAKE_CASE_ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ = ctc_loss_reduction SCREAMING_SNAKE_CASE_ = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE_ = add_adapter SCREAMING_SNAKE_CASE_ = adapter_kernel_size SCREAMING_SNAKE_CASE_ = adapter_stride SCREAMING_SNAKE_CASE_ = num_adapter_layers SCREAMING_SNAKE_CASE_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ = list(A_ ) SCREAMING_SNAKE_CASE_ = list(A_ ) SCREAMING_SNAKE_CASE_ = list(A_ ) SCREAMING_SNAKE_CASE_ = xvector_output_dim @property def _lowercase (self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
705
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case ( __lowercase ): UpperCAmelCase__ = '''glpn''' def __init__(self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[8, 4, 2, 1] , SCREAMING_SNAKE_CASE_=[32, 64, 1_60, 2_56] , SCREAMING_SNAKE_CASE_=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[1, 2, 5, 8] , SCREAMING_SNAKE_CASE_=[4, 4, 4, 4] , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1e-6 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=-1 , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_encoder_blocks SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = sr_ratios SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = patch_sizes SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = mlp_ratios SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = decoder_hidden_size SCREAMING_SNAKE_CASE_ = max_depth SCREAMING_SNAKE_CASE_ = head_in_index
628
0
'''simple docstring''' from __future__ import annotations class _A : def __init__( self : Optional[int] , __magic_name__ : list[list[int]] ) -> str: """simple docstring""" __snake_case : str = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(__magic_name__ ) != 0: __snake_case : List[str] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__magic_name__ ) != cols: raise error for value in row: if not isinstance(__magic_name__ , (int, float) ): raise error __snake_case : Any = rows else: __snake_case : List[Any] = [] def lowercase__ ( self : int ) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.rows ) @property def lowercase__ ( self : Any ) -> int: """simple docstring""" return len(self.rows[0] ) @property def lowercase__ ( self : str ) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def lowercase__ ( self : Optional[int] ) -> bool: """simple docstring""" return self.order[0] == self.order[1] def lowercase__ ( self : List[str] ) -> Matrix: """simple docstring""" __snake_case : List[str] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__magic_name__ ) def lowercase__ ( self : str ) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase__ ( self : Any ) -> bool: """simple docstring""" return bool(self.determinant() ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" __snake_case : Optional[int] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__magic_name__ ).determinant() def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(__magic_name__ , __magic_name__ ) return -1 * self.get_minor(__magic_name__ , __magic_name__ ) def lowercase__ ( self : int ) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(__magic_name__ , __magic_name__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase__ ( self : List[str] ) -> Matrix: """simple docstring""" __snake_case : List[str] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__magic_name__ ) def lowercase__ ( self : Any ) -> Matrix: """simple docstring""" __snake_case : List[Any] = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self.rows ) def __str__( self : Optional[Any] ) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(__magic_name__ ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : list[int] , __magic_name__ : int | None = None ) -> None: """simple docstring""" __snake_case : Tuple = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(__magic_name__ , __magic_name__ ): raise type_error for value in row: if not isinstance(__magic_name__ , (int, float) ): raise type_error if len(__magic_name__ ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(__magic_name__ ) else: __snake_case : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:] def lowercase__ ( self : List[Any] , __magic_name__ : list[int] , __magic_name__ : int | None = None ) -> None: """simple docstring""" __snake_case : Tuple = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(__magic_name__ , __magic_name__ ): raise type_error for value in column: if not isinstance(__magic_name__ , (int, float) ): raise type_error if len(__magic_name__ ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: __snake_case : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __snake_case : List[Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __magic_name__ : object ) -> bool: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): return NotImplemented return self.rows == other.rows def __ne__( self : List[Any] , __magic_name__ : object ) -> bool: """simple docstring""" return not self == other def __neg__( self : Dict ) -> Matrix: """simple docstring""" return self * -1 def __add__( self : List[Any] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[Any] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Union[str, Any] , __magic_name__ : Matrix | int | float ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__magic_name__ , __magic_name__ ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(__magic_name__ , __magic_name__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : Tuple , __magic_name__ : int ) -> Matrix: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) __snake_case : int = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase__ ( cls : Dict , __magic_name__ : list[int] , __magic_name__ : list[int] ) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets UpperCamelCase_ = datasets.logging.get_logger(__name__) UpperCamelCase_ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCamelCase_ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCamelCase_ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE( datasets.Metric ): def __lowerCamelCase ( self : Tuple ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence' ), 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : List[str] ) -> Dict: if self.config_name == "default": SCREAMING_SNAKE_CASE__ :List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: SCREAMING_SNAKE_CASE__ :List[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowerCamelCase ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=False ) -> Any: if gpus is None: SCREAMING_SNAKE_CASE__ :Dict = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE__ :Dict = {'src': sources, 'mt': predictions, 'ref': references} SCREAMING_SNAKE_CASE__ :List[str] = [dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) for t in zip(*data.values() )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.scorer.predict(UpperCamelCase_ , gpus=UpperCamelCase_ , progress_bar=UpperCamelCase_ ) return {"mean_score": mean_score, "scores": scores}
209
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : int = patch_size UpperCamelCase__ : str = num_channels UpperCamelCase__ : List[str] = is_training UpperCamelCase__ : Union[str, Any] = use_labels UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : int = backbone_out_indices UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Union[str, Any] = num_labels UpperCamelCase__ : Union[str, Any] = backbone_featmap_shape UpperCamelCase__ : Any = scope UpperCamelCase__ : List[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Union[str, Any] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : int = None if self.use_labels: UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : int = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = self.num_labels UpperCamelCase__ : Union[str, Any] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.num_labels UpperCamelCase__ : Optional[Any] = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = config_and_inputs UpperCamelCase__ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = DPTModelTester(self ) UpperCamelCase__ : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Dict = [*signature.parameters.keys()] UpperCamelCase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase__ ,UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Union[str, Any] = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue UpperCamelCase__ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Optional[int] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase__ ,UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : List[str] = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase__ : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() UpperCamelCase__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Tuple = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone UpperCamelCase__ : Any = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase__ : str = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" pass @slow def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase__ : Dict = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Any = '''add''' with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCamelCase__ : Optional[int] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = prepare_img() UpperCamelCase__ : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = outputs.predicted_depth # verify the predicted depth UpperCamelCase__ : List[Any] = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
462
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=2 , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[int] = patch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : Optional[Any] = is_training UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : List[str] = scope UpperCamelCase__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase__ : Any = (image_size // patch_size) ** 2 UpperCamelCase__ : Any = num_patches + 2 def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Dict = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = TFDeiTModel(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = TFDeiTForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Any = TFDeiTForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.type_sequence_label_size UpperCamelCase__ : Optional[Any] = TFDeiTForImageClassification(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ : int = 1 UpperCamelCase__ : int = TFDeiTForImageClassification(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = config_and_inputs UpperCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = TFDeiTModelTester(self ) UpperCamelCase__ : str = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : str = [*signature.parameters.keys()] UpperCamelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Any = TFDeiTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) UpperCamelCase__ : str = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass UpperCamelCase__ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase__ : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
462
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (DEISMultistepScheduler,) SCREAMING_SNAKE_CASE_ = (('''num_inference_steps''', 25),) def __SCREAMING_SNAKE_CASE ( self , **__SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**__SCREAMING_SNAKE_CASE ) return config def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = dict(self.forward_default_kwargs ) UpperCamelCase__ : Dict = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.dummy_sample UpperCamelCase__ : Optional[int] = 0.1 * sample UpperCamelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Union[str, Any] = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCamelCase__ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCamelCase__ : int = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ ,UpperCamelCase__ : Any = sample, sample for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase__ : Union[str, Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : int = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] = dict(self.forward_default_kwargs ) UpperCamelCase__ : Tuple = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.dummy_sample UpperCamelCase__ : List[Any] = 0.1 * sample UpperCamelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Union[str, Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Dict = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if scheduler is None: UpperCamelCase__ : List[str] = self.scheduler_classes[0] UpperCamelCase__ : str = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.scheduler_classes[0] UpperCamelCase__ : Tuple = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = 1_0 UpperCamelCase__ : Tuple = self.dummy_model() UpperCamelCase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] = dict(self.forward_default_kwargs ) UpperCamelCase__ : List[Any] = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = self.dummy_sample UpperCamelCase__ : int = 0.1 * sample if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): UpperCamelCase__ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase__ : Dict = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase__ : int = scheduler.timesteps[5] UpperCamelCase__ : Optional[int] = scheduler.timesteps[6] UpperCamelCase__ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase__ : Tuple = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 UpperCamelCase__ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ : int = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ : Dict = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Any = self.full_loop( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : str = self.full_loop() UpperCamelCase__ : Optional[int] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = self.full_loop(prediction_type='''v_prediction''' ) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) UpperCamelCase__ : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = 1_0 UpperCamelCase__ : Dict = self.dummy_model() UpperCamelCase__ : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
285
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = parent UpperCamelCase__ : str = batch_size UpperCamelCase__ : List[Any] = seq_length UpperCamelCase__ : List[Any] = is_training UpperCamelCase__ : Any = use_input_mask UpperCamelCase__ : Dict = use_token_type_ids UpperCamelCase__ : List[str] = use_labels UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Union[str, Any] = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : int = type_sequence_label_size UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Optional[Any] = num_labels UpperCamelCase__ : List[str] = num_choices UpperCamelCase__ : Union[str, Any] = scope def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Tuple = None if self.use_input_mask: UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : int = None if self.use_token_type_ids: UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : int = None UpperCamelCase__ : Tuple = None if self.use_labels: UpperCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = BioGptForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # create attention mask UpperCamelCase__ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.seq_length // 2 UpperCamelCase__ : List[str] = 0 # first forward pass UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase__ : Tuple = ids_tensor((1,) , __SCREAMING_SNAKE_CASE ).item() + 1 UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase__ : int = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )] , dim=1 , ) # get two different outputs UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] # select random slice UpperCamelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = BioGptModel(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # first forward pass UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ ,UpperCamelCase__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[ '''last_hidden_state''' ] # select random slice UpperCamelCase__ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] = BioGptForCausalLM(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = BioGptModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.num_labels UpperCamelCase__ : Any = BioGptForTokenClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) , ) : List[str] = config_and_inputs UpperCamelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : Dict = BioGptModelTester(self ) UpperCamelCase__ : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ : Optional[Any] = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__SCREAMING_SNAKE_CASE , gradient_checkpointing=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Dict = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : Optional[Any] = '''left''' # Define PAD Token = EOS Token = 50256 UpperCamelCase__ : Optional[int] = tokenizer.eos_token UpperCamelCase__ : List[str] = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase__ : Optional[int] = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCamelCase__ : Dict = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = inputs['''input_ids'''].to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''].to(__SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = model.generate(input_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCamelCase__ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) UpperCamelCase__ : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[int] = BioGptModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : int = 3 UpperCamelCase__ : Tuple = input_dict['''input_ids'''] UpperCamelCase__ : List[Any] = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : List[str] = 3 UpperCamelCase__ : List[Any] = '''multi_label_classification''' UpperCamelCase__ : List[str] = input_dict['''input_ids'''] UpperCamelCase__ : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ : List[str] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : Union[str, Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ : Optional[Any] = 4_2_3_8_4 UpperCamelCase__ : List[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : List[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) UpperCamelCase__ : Dict = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = model.generate( **__SCREAMING_SNAKE_CASE , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
285
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :str=3 , __A :Optional[Any]=3 , __A :str=("DownEncoderBlock2D",) , __A :Tuple=(64,) , __A :List[Any]=2 , __A :List[str]=32 , __A :str="silu" , __A :Optional[int]=True , ) -> List[str]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = layers_per_block SCREAMING_SNAKE_CASE__ = torch.nn.Convad( __A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE__ = block_out_channels[0] for i, down_block_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = block_out_channels[i] SCREAMING_SNAKE_CASE__ = i == len(__A ) - 1 SCREAMING_SNAKE_CASE__ = get_down_block( __A , num_layers=self.layers_per_block , in_channels=__A , out_channels=__A , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , ) self.down_blocks.append(__A ) # mid SCREAMING_SNAKE_CASE__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , ) # out SCREAMING_SNAKE_CASE__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__A , eps=1E-6 ) SCREAMING_SNAKE_CASE__ = nn.SiLU() SCREAMING_SNAKE_CASE__ = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE__ = nn.Convad(block_out_channels[-1] , __A , 3 , padding=1 ) SCREAMING_SNAKE_CASE__ = False def _snake_case ( self :str , __A :int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = x SCREAMING_SNAKE_CASE__ = self.conv_in(__A ) if self.training and self.gradient_checkpointing: def create_custom_forward(__A :str ): def custom_forward(*__A :str ): return module(*__A ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__A ) , __A , use_reentrant=__A ) # middle SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , use_reentrant=__A ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A ) # middle SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __A ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE__ = down_block(__A ) # middle SCREAMING_SNAKE_CASE__ = self.mid_block(__A ) # post-process SCREAMING_SNAKE_CASE__ = self.conv_norm_out(__A ) SCREAMING_SNAKE_CASE__ = self.conv_act(__A ) SCREAMING_SNAKE_CASE__ = self.conv_out(__A ) return sample class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any]=3 , __A :Tuple=3 , __A :Optional[int]=("UpDecoderBlock2D",) , __A :int=(64,) , __A :int=2 , __A :Dict=32 , __A :Dict="silu" , __A :str="group" , ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = layers_per_block SCREAMING_SNAKE_CASE__ = nn.Convad( __A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , ) # up SCREAMING_SNAKE_CASE__ = list(reversed(__A ) ) SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE__ = i == len(__A ) - 1 SCREAMING_SNAKE_CASE__ = get_up_block( __A , num_layers=self.layers_per_block + 1 , in_channels=__A , out_channels=__A , prev_output_channel=__A , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , resnet_time_scale_shift=__A , ) self.up_blocks.append(__A ) SCREAMING_SNAKE_CASE__ = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE__ = SpatialNorm(block_out_channels[0] , __A ) else: SCREAMING_SNAKE_CASE__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__A , eps=1E-6 ) SCREAMING_SNAKE_CASE__ = nn.SiLU() SCREAMING_SNAKE_CASE__ = nn.Convad(block_out_channels[0] , __A , 3 , padding=1 ) SCREAMING_SNAKE_CASE__ = False def _snake_case ( self :List[str] , __A :Any , __A :Dict=None ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = z SCREAMING_SNAKE_CASE__ = self.conv_in(__A ) SCREAMING_SNAKE_CASE__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__A :str ): def custom_forward(*__A :Dict ): return module(*__A ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , __A , use_reentrant=__A ) SCREAMING_SNAKE_CASE__ = sample.to(__A ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__A ) , __A , __A , use_reentrant=__A ) else: # middle SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , __A ) SCREAMING_SNAKE_CASE__ = sample.to(__A ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A , __A ) else: # middle SCREAMING_SNAKE_CASE__ = self.mid_block(__A , __A ) SCREAMING_SNAKE_CASE__ = sample.to(__A ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE__ = up_block(__A , __A ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE__ = self.conv_norm_out(__A ) else: SCREAMING_SNAKE_CASE__ = self.conv_norm_out(__A , __A ) SCREAMING_SNAKE_CASE__ = self.conv_act(__A ) SCREAMING_SNAKE_CASE__ = self.conv_out(__A ) return sample class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :int=None , __A :Optional[Any]="random" , __A :int=False , __A :Any=True ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = n_e SCREAMING_SNAKE_CASE__ = vq_embed_dim SCREAMING_SNAKE_CASE__ = beta SCREAMING_SNAKE_CASE__ = legacy SCREAMING_SNAKE_CASE__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE__ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE__ = self.used.shape[0] SCREAMING_SNAKE_CASE__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE__ = self.re_embed SCREAMING_SNAKE_CASE__ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: SCREAMING_SNAKE_CASE__ = n_e SCREAMING_SNAKE_CASE__ = sane_index_shape def _snake_case ( self :str , __A :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = inds.shape assert len(__A ) > 1 SCREAMING_SNAKE_CASE__ = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE__ = self.used.to(__A ) SCREAMING_SNAKE_CASE__ = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE__ = match.argmax(-1 ) SCREAMING_SNAKE_CASE__ = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE__ = self.unknown_index return new.reshape(__A ) def _snake_case ( self :Dict , __A :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = inds.shape assert len(__A ) > 1 SCREAMING_SNAKE_CASE__ = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE__ = self.used.to(__A ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE__ = 0 # simply set to zero SCREAMING_SNAKE_CASE__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __A ) return back.reshape(__A ) def _snake_case ( self :Tuple , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE__ = torch.argmin(torch.cdist(__A , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE__ = self.embedding(__A ).view(z.shape ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE__ = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE__ = self.remap_to_used(__A ) SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _snake_case ( self :List[Any] , __A :Tuple , __A :List[str] ) -> List[Any]: """simple docstring""" if self.remap is not None: SCREAMING_SNAKE_CASE__ = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE__ = self.unmap_to_all(__A ) SCREAMING_SNAKE_CASE__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE__ = self.embedding(__A ) if shape is not None: SCREAMING_SNAKE_CASE__ = z_q.view(__A ) # reshape back to match original input shape SCREAMING_SNAKE_CASE__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :List[Any] , __A :List[Any] , __A :int=False ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = parameters SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torch.chunk(__A , 2 , dim=1 ) SCREAMING_SNAKE_CASE__ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) SCREAMING_SNAKE_CASE__ = deterministic SCREAMING_SNAKE_CASE__ = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE__ = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _snake_case ( self :Any , __A :Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" SCREAMING_SNAKE_CASE__ = randn_tensor( self.mean.shape , generator=__A , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE__ = self.mean + self.std * sample return x def _snake_case ( self :Union[str, Any] , __A :int=None ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _snake_case ( self :str , __A :Tuple , __A :int=[1, 2, 3] ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__A ) def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" return self.mean
59
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return image def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(UpperCamelCase__ , torch.Tensor ): return mask elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = mask[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = mask.astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return mask class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self :Any , __A :List[Any] , __A :Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules(unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self :str , __A :Union[torch.Tensor, PIL.Image.Image] , __A :Union[torch.Tensor, PIL.Image.Image] , __A :int = 250 , __A :float = 0.0 , __A :int = 10 , __A :int = 10 , __A :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A :Optional[str] = "pil" , __A :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ = image SCREAMING_SNAKE_CASE__ = _preprocess_image(__A ) SCREAMING_SNAKE_CASE__ = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = _preprocess_mask(__A ) SCREAMING_SNAKE_CASE__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__A , __A ) and len(__A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = original_image.shape SCREAMING_SNAKE_CASE__ = randn_tensor(__A , generator=__A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__A , __A , __A , self.device ) SCREAMING_SNAKE_CASE__ = eta SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE__ = generator[0] if isinstance(__A , __A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE__ = self.unet(__A , __A ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , __A , __A , __A ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE__ = self.scheduler.undo_step(__A , __A , __A ) SCREAMING_SNAKE_CASE__ = t SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
59
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = filter(lambda snake_case_ : p.requires_grad , model.parameters() ) UpperCAmelCase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE_: Tuple =logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if metric == "rouge2": UpperCAmelCase_ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCAmelCase_ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCAmelCase_ = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) UpperCAmelCase_ = ModelCheckpoint( dirpath=snake_case_ , filename=snake_case_ , monitor=f"""val_{metric}""" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ) -> Any: '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=snake_case_ , verbose=snake_case_ , ) class __A ( pl.Callback ): def _lowercase (self : Optional[Any] , __a : Optional[int] , __a : Any ): UpperCAmelCase_ = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def _lowercase (self : str , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[Any]=True ): logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCAmelCase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ = od / "test_results.txt" UpperCAmelCase_ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCAmelCase_ = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ = metrics[key] if isinstance(__a , torch.Tensor ): UpperCAmelCase_ = val.item() UpperCAmelCase_ = f"""{key}: {val:.6f}\n""" writer.write(__a ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def _lowercase (self : int , __a : Optional[int] , __a : List[Any] ): try: UpperCAmelCase_ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ = pl_module.model.num_parameters() UpperCAmelCase_ = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def _lowercase (self : Optional[Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def _lowercase (self : List[Any] , __a : pl.Trainer , __a : int ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
78
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : int = VideoToVideoSDPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} A_ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} A_ : Dict = False # No `output_type`. A_ : str = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) A = CLIPTextModel(__UpperCamelCase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=0 ) -> Optional[int]: # 3 frames A = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __UpperCamelCase ( self : Optional[int] ) -> str: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = VideoToVideoSDPipeline(**__UpperCamelCase ) A = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs(__UpperCamelCase ) A = 'np' A = sd_pipe(**__UpperCamelCase ).frames A = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self : int ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCamelCase , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self : Optional[int] ) -> Any: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self : str ) -> Any: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: pass def __UpperCamelCase ( self : Any ) -> Any: return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Dict: A = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A = torch.Generator(device='cpu' ).manual_seed(0 ) A = torch.randn((1, 10, 3, 1_024, 576) , generator=__UpperCamelCase ) A = video.to('cuda' ) A = 'Spiderman is surfing' A = pipe(__UpperCamelCase , video=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=3 , output_type='pt' ).frames A = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
106
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __a = logging.get_logger(__name__) __a = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "blenderbot-small" lowercase = ["past_key_values"] lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , snake_case_ : Optional[int]=50_265 , snake_case_ : Any=512 , snake_case_ : Dict=8 , snake_case_ : Any=2_048 , snake_case_ : Tuple=16 , snake_case_ : Any=8 , snake_case_ : Dict=2_048 , snake_case_ : List[Any]=16 , snake_case_ : Tuple=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : List[Any]="gelu" , snake_case_ : int=512 , snake_case_ : int=0.1 , snake_case_ : List[str]=0.0 , snake_case_ : str=0.0 , snake_case_ : str=0.02 , snake_case_ : Union[str, Any]=1 , snake_case_ : Optional[int]=False , snake_case_ : List[str]=0 , snake_case_ : List[Any]=1 , snake_case_ : Union[str, Any]=2 , snake_case_ : Tuple=2 , **snake_case_ : int , ): snake_case__ : Union[str, Any] = vocab_size snake_case__ : str = max_position_embeddings snake_case__ : List[Any] = d_model snake_case__ : Dict = encoder_ffn_dim snake_case__ : int = encoder_layers snake_case__ : Tuple = encoder_attention_heads snake_case__ : Any = decoder_ffn_dim snake_case__ : Tuple = decoder_layers snake_case__ : int = decoder_attention_heads snake_case__ : Any = dropout snake_case__ : Any = attention_dropout snake_case__ : Union[str, Any] = activation_dropout snake_case__ : Dict = activation_function snake_case__ : Dict = init_std snake_case__ : List[Any] = encoder_layerdrop snake_case__ : Optional[Any] = decoder_layerdrop snake_case__ : Any = use_cache snake_case__ : int = encoder_layers snake_case__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) class UpperCAmelCase_ ( _a ): """simple docstring""" @property def lowerCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case__ : List[str] = {0: """batch"""} snake_case__ : List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case__ : Any = {0: """batch""", 1: """decoder_sequence"""} snake_case__ : int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case__ , snake_case__ : Tuple = self.num_layers for i in range(snake_case_ ): snake_case__ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} snake_case__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case__ : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCamelCase ( self : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : int = super().outputs else: snake_case__ : str = super(snake_case_ , self ).outputs if self.use_past: snake_case__ , snake_case__ : List[Any] = self.num_layers for i in range(snake_case_ ): snake_case__ : Any = {0: """batch""", 2: """past_sequence + sequence"""} snake_case__ : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCamelCase ( self : Tuple , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): snake_case__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs snake_case__ : Union[str, Any] = seq_length if not self.use_past else 1 snake_case__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Any = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} snake_case__ : List[str] = dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case__ , snake_case__ : Union[str, Any] = common_inputs["""input_ids"""].shape snake_case__ : Union[str, Any] = common_inputs["""decoder_input_ids"""].shape[1] snake_case__ , snake_case__ : Union[str, Any] = self.num_attention_heads snake_case__ : Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : int = decoder_seq_length + 3 snake_case__ : Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : Union[str, Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) snake_case__ : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ , snake_case__ : Optional[Any] = self.num_layers snake_case__ : str = min(snake_case_ , snake_case_ ) snake_case__ : str = max(snake_case_ , snake_case_ ) - min_num_layers snake_case__ : Optional[Any] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. snake_case__ : Dict = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def lowerCamelCase ( self : Union[str, Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case__ , snake_case__ : Union[str, Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case__ : Any = seqlen + 2 snake_case__ , snake_case__ : Tuple = self.num_layers snake_case__ , snake_case__ : Tuple = self.num_attention_heads snake_case__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[Any] = common_inputs["""attention_mask"""].dtype snake_case__ : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) snake_case__ : List[str] = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def lowerCamelCase ( self : Tuple , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : List[Any] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : int = tokenizer.num_special_tokens_to_add(snake_case_ ) snake_case__ : Dict = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Tuple = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : List[Any] = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def lowerCamelCase ( self : List[Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) elif self.task == "causal-lm": snake_case__ : Dict = self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: snake_case__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def lowerCamelCase ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : List[str] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Union[str, Any] = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: snake_case__ : Any = super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ )
301
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = (UnCLIPScheduler,) def lowerCamelCase ( self : Optional[Any] , **snake_case_ : Dict ): snake_case__ : List[Any] = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**snake_case_ ) return config def lowerCamelCase ( self : Any ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowerCamelCase ( self : Dict ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=snake_case_ ) def lowerCamelCase ( self : int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=snake_case_ ) def lowerCamelCase ( self : Tuple ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=snake_case_ , prev_timestep=snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config(variance_type="""fixed_small_log""" ) snake_case__ : List[Any] = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) snake_case__ : Optional[Any] = scheduler_class(**snake_case_ ) snake_case__ : List[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=snake_case_ ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=snake_case_ ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=snake_case_ ) - -0.0010011 < 1E-5 def lowerCamelCase ( self : Optional[int] ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : int = self.get_scheduler_config() snake_case__ : int = scheduler_class(**snake_case_ ) snake_case__ : List[Any] = scheduler.timesteps snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Union[str, Any] = self.dummy_sample_deter snake_case__ : int = torch.manual_seed(0 ) for i, t in enumerate(snake_case_ ): # 1. predict noise residual snake_case__ : List[Any] = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 snake_case__ : Optional[Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample snake_case__ : List[Any] = pred_prev_sample snake_case__ : List[Any] = torch.sum(torch.abs(snake_case_ ) ) snake_case__ : str = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def lowerCamelCase ( self : List[str] ): snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : List[str] = self.get_scheduler_config() snake_case__ : Tuple = scheduler_class(**snake_case_ ) scheduler.set_timesteps(25 ) snake_case__ : Union[str, Any] = scheduler.timesteps snake_case__ : Optional[Any] = self.dummy_model() snake_case__ : int = self.dummy_sample_deter snake_case__ : List[str] = torch.manual_seed(0 ) for i, t in enumerate(snake_case_ ): # 1. predict noise residual snake_case__ : Union[str, Any] = model(snake_case_ , snake_case_ ) if i + 1 == timesteps.shape[0]: snake_case__ : int = None else: snake_case__ : List[Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 snake_case__ : Optional[Any] = scheduler.step( snake_case_ , snake_case_ , snake_case_ , prev_timestep=snake_case_ , generator=snake_case_ ).prev_sample snake_case__ : Optional[int] = pred_prev_sample snake_case__ : List[Any] = torch.sum(torch.abs(snake_case_ ) ) snake_case__ : Tuple = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def lowerCamelCase ( self : Any ): pass def lowerCamelCase ( self : Union[str, Any] ): pass
301
1
def lowerCAmelCase_ ( __a = 10 , __a = 1000 , __a = True ) -> Union[str, Any]: """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" return int((number_a + number_a) / 2 ) def lowerCAmelCase_ ( __a , __a , __a ) -> str: """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(__a ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) lowerCamelCase__: Any =lower lowerCamelCase__: Optional[Any] =higher lowerCamelCase__: Dict =[] while True: lowerCamelCase__: Optional[Any] =get_avg(UpperCAmelCase_ , UpperCAmelCase_ ) last_numbers.append(UpperCAmelCase_ ) if answer(UpperCAmelCase_ ) == "low": lowerCamelCase__: Tuple =number elif answer(UpperCAmelCase_ ) == "high": lowerCamelCase__: Any =number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Dict =int(input("Enter lower value : " ).strip() ) lowerCamelCase__: int =int(input("Enter high value : " ).strip() ) lowerCamelCase__: List[str] =int(input("Enter value to guess : " ).strip() ) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
59
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_: Any = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase_: List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
648
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """detr""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self ,lowercase=True ,lowercase=None ,lowercase=3 ,lowercase=100 ,lowercase=6 ,lowercase=2048 ,lowercase=8 ,lowercase=6 ,lowercase=2048 ,lowercase=8 ,lowercase=0.0 ,lowercase=0.0 ,lowercase=True ,lowercase="relu" ,lowercase=256 ,lowercase=0.1 ,lowercase=0.0 ,lowercase=0.0 ,lowercase=0.02 ,lowercase=1.0 ,lowercase=False ,lowercase="sine" ,lowercase="resnet50" ,lowercase=True ,lowercase=False ,lowercase=1 ,lowercase=5 ,lowercase=2 ,lowercase=1 ,lowercase=1 ,lowercase=5 ,lowercase=2 ,lowercase=0.1 ,**lowercase ,): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") UpperCAmelCase_ : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(lowercase ,lowercase): UpperCAmelCase_ : Optional[Any] = backbone_config.get("model_type") UpperCAmelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : int = config_class.from_dict(lowercase) # set timm attributes to None UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : List[str] = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : List[Any] = num_queries UpperCAmelCase_ : str = d_model UpperCAmelCase_ : int = encoder_ffn_dim UpperCAmelCase_ : Optional[int] = encoder_layers UpperCAmelCase_ : Dict = encoder_attention_heads UpperCAmelCase_ : Optional[int] = decoder_ffn_dim UpperCAmelCase_ : Any = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : Union[str, Any] = dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : Any = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Tuple = init_xavier_std UpperCAmelCase_ : int = encoder_layerdrop UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : List[Any] = auxiliary_loss UpperCAmelCase_ : List[str] = position_embedding_type UpperCAmelCase_ : List[Any] = backbone UpperCAmelCase_ : Union[str, Any] = use_pretrained_backbone UpperCAmelCase_ : Any = dilation # Hungarian matcher UpperCAmelCase_ : Dict = class_cost UpperCAmelCase_ : List[str] = bbox_cost UpperCAmelCase_ : Optional[int] = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : int = dice_loss_coefficient UpperCAmelCase_ : Optional[int] = bbox_loss_coefficient UpperCAmelCase_ : List[Any] = giou_loss_coefficient UpperCAmelCase_ : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase ,**lowercase) @property def A_ ( self): """simple docstring""" return self.encoder_attention_heads @property def A_ ( self): """simple docstring""" return self.d_model @classmethod def A_ ( cls ,lowercase ,**lowercase): """simple docstring""" return cls(backbone_config=lowercase ,**lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: UpperCAmelCase_ : Dict = self.backbone_config.to_dict() UpperCAmelCase_ : int = self.__class__.model_type return output class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = version.parse("""1.11""" ) @property def A_ ( self): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ]) @property def A_ ( self): """simple docstring""" return 1E-5 @property def A_ ( self): """simple docstring""" return 12
721
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ : List[str] = FunnelConfig.from_json_file(__snake_case ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ : str = FunnelBaseModel(__snake_case ) if base_model else FunnelModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
455
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart _SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } _SCREAMING_SNAKE_CASE = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def __lowerCamelCase ( ) -> Any: snake_case = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def __lowerCamelCase ( __lowerCAmelCase : Any ) -> int: snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class _lowerCAmelCase ( __lowercase ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any]="replace" , __snake_case : str="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : int="</s>" , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Any="<pad>" , __snake_case : Optional[int]="<mask>" , __snake_case : Optional[Any]=False , **__snake_case : Dict , )-> Any: snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: snake_case = json.load(_lowerCAmelCase ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: snake_case = merges_handle.read().split("""\n""" )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(r"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def lowerCAmelCase ( self : Union[str, Any] )-> Optional[Any]: return len(self.encoder ) def lowerCAmelCase ( self : Dict )-> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : List[str] , __snake_case : Tuple )-> Any: if token in self.cache: return self.cache[token] snake_case = tuple(_lowerCAmelCase ) snake_case = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: snake_case = min(_lowerCAmelCase , key=lambda __snake_case : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case = bigram snake_case = [] snake_case = 0 while i < len(_lowerCAmelCase ): try: snake_case = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(_lowerCAmelCase ) snake_case = new_word if len(_lowerCAmelCase ) == 1: break else: snake_case = get_pairs(_lowerCAmelCase ) snake_case = ''' '''.join(_lowerCAmelCase ) snake_case = word return word def lowerCAmelCase ( self : Dict , __snake_case : List[str] )-> Optional[int]: snake_case = [] for token in re.findall(self.pat , _lowerCAmelCase ): snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(""" """ ) ) return bpe_tokens def lowerCAmelCase ( self : int , __snake_case : str )-> Tuple: return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __snake_case : Union[str, Any] )-> List[Any]: return self.decoder.get(_lowerCAmelCase ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : Tuple )-> Optional[int]: snake_case = ''''''.join(_lowerCAmelCase ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCAmelCase ( self : Any , __snake_case : List[str] , __snake_case : List[str] = None )-> Any: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) snake_case = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) snake_case = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __snake_case : Optional[int] , __snake_case : Optional[Any] = None )-> Optional[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : List[str] , __snake_case : List[str] , __snake_case : Optional[Any] = None , __snake_case : int = False )-> str: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def lowerCAmelCase ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any = None )-> Dict: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , **__snake_case : Union[str, Any] )-> Any: snake_case = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case = ''' ''' + text return (text, kwargs)
369
import re def lowerCAmelCase ( UpperCamelCase__ : str ) -> bool: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": lowerCAmelCase : str = """0094702343221""" print(is_sri_lankan_phone_number(phone))
202
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = 11 _lowerCamelCase : str = int("1" + "0" * digit_len ) for num in range(_lowerCAmelCase , _lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCAmelCase , _lowerCAmelCase ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 _lowerCamelCase : Any = 10 return solutions def A_ ( _lowerCAmelCase : int = 2 ): """simple docstring""" _lowerCamelCase : int = 1.0 for fraction in fraction_list(_lowerCAmelCase ): _lowerCamelCase : List[Any] = Fraction(_lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A : str = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str = None , _UpperCAmelCase : list = None ) -> List[Any]: """simple docstring""" lowercase__ = None lowercase__ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowercase__ = os.path.abspath("""examples""" ) for item in os.listdir(_UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowercase__ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_UpperCAmelCase , feature_script=_UpperCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): lowercase__ = compare_against_test( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = """\n""".join(_UpperCAmelCase ) if special_strings is not None: for string in special_strings: lowercase__ = diff.replace(_UpperCAmelCase , """""" ) self.assertEqual(_UpperCAmelCase , """""" ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , _UpperCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowercase__ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = False @classmethod def lowerCamelCase__ (cls : Tuple ) -> int: """simple docstring""" super().setUpClass() lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowercase__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCamelCase__ (cls : List[Any] ) -> int: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() lowercase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() lowercase__ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) self.assertNotIn("""epoch 0:""" , _UpperCAmelCase ) self.assertIn("""epoch 1:""" , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() lowercase__ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() else: lowercase__ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _UpperCAmelCase ) self.assertIn("""epoch 1:""" , _UpperCAmelCase ) else: self.assertIn("""epoch 0:""" , _UpperCAmelCase ) self.assertIn("""epoch 1:""" , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowercase__ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) lowercase__ = re.findall("""({.+})""" , _UpperCAmelCase ) lowercase__ = [r for r in results if """accuracy""" in r][-1] lowercase__ = ast.literal_eval(_UpperCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowercase__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """tracking""" ) ) ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
15
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" __lowerCAmelCase = nn.Parameter(_lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" __lowerCAmelCase = nn.Parameter(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # set torch weights for 1-to-1 comparison __lowerCAmelCase = np.asarray(weights[0] ) __lowerCAmelCase = np.asarray(weights[1] ) __lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCAmelCase ).view(-1 , _lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # set torch weights for 1-to-1 comparison __lowerCAmelCase = np.asarray(weights[0] ) __lowerCAmelCase = np.asarray(weights[1] ) __lowerCAmelCase = np.asarray(weights[2] ) __lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCAmelCase ).view(-1 , _lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # layernorm 1 __lowerCAmelCase = weights[0][0][0] __lowerCAmelCase = np.asarray(layer_norm_a[0] ) __lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowerCAmelCase ) , torch.tensor(_lowerCAmelCase ) , ) # lsh weights + output __lowerCAmelCase = weights[0][1] if len(_lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(_lowerCAmelCase , torch_block.attention , _lowerCAmelCase ) else: set_layer_weights_in_torch_local(_lowerCAmelCase , torch_block.attention , _lowerCAmelCase ) # intermediate weighs __lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(_lowerCAmelCase ) == 4: __lowerCAmelCase = intermediate_weights[2] # layernorm 2 __lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) __lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowerCAmelCase ) , torch.tensor(_lowerCAmelCase ) , ) # intermediate dense __lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) __lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCAmelCase ) , ) # intermediate out __lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) __lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCAmelCase ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # reformer model __lowerCAmelCase = torch_model.reformer # word embeds __lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowerCAmelCase ) , ) if isinstance(weights[3] , _lowerCAmelCase ): __lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" __lowerCAmelCase = nn.Parameter(torch.tensor(_lowerCAmelCase ) ) __lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # output layer norm __lowerCAmelCase = np.asarray(weights[7][0] ) __lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowerCAmelCase ) , torch.tensor(_lowerCAmelCase ) , ) # output embeddings __lowerCAmelCase = np.asarray(weights[9][0] ) __lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCAmelCase ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # Initialise PyTorch model __lowerCAmelCase = ReformerConfig.from_json_file(_lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) __lowerCAmelCase = ReformerModelWithLMHead(_lowerCAmelCase ) with open(_lowerCAmelCase , """rb""" ) as f: __lowerCAmelCase = pickle.load(_lowerCAmelCase )["""weights"""] set_model_weights_in_torch(_lowerCAmelCase , _lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
465
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class a ( nn.Module ): """simple docstring""" lowerCamelCase :int lowerCamelCase :int lowerCamelCase :float = 0.0 lowerCamelCase :int = 1 lowerCamelCase :int = 1 lowerCamelCase :bool = True lowerCamelCase :bool = False lowerCamelCase :bool = False lowerCamelCase :bool = False lowerCamelCase :jnp.dtype = jnp.floataa def UpperCAmelCase ( self ) -> Union[str, Any]: _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> List[Any]: _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _A = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class a ( nn.Module ): """simple docstring""" lowerCamelCase :int lowerCamelCase :int lowerCamelCase :float = 0.0 lowerCamelCase :int = 1 lowerCamelCase :bool = True lowerCamelCase :jnp.dtype = jnp.floataa def UpperCAmelCase ( self ) -> Optional[int]: _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Union[str, Any]: _A = () for resnet in self.resnets: _A = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class a ( nn.Module ): """simple docstring""" lowerCamelCase :int lowerCamelCase :int lowerCamelCase :int lowerCamelCase :float = 0.0 lowerCamelCase :int = 1 lowerCamelCase :int = 1 lowerCamelCase :bool = True lowerCamelCase :bool = False lowerCamelCase :bool = False lowerCamelCase :bool = False lowerCamelCase :jnp.dtype = jnp.floataa def UpperCAmelCase ( self ) -> Optional[int]: _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Optional[int]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _A = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: _A = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class a ( nn.Module ): """simple docstring""" lowerCamelCase :int lowerCamelCase :int lowerCamelCase :int lowerCamelCase :float = 0.0 lowerCamelCase :int = 1 lowerCamelCase :bool = True lowerCamelCase :jnp.dtype = jnp.floataa def UpperCAmelCase ( self ) -> Tuple: _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Union[str, Any]: for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: _A = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class a ( nn.Module ): """simple docstring""" lowerCamelCase :int lowerCamelCase :float = 0.0 lowerCamelCase :int = 1 lowerCamelCase :int = 1 lowerCamelCase :bool = False lowerCamelCase :bool = False lowerCamelCase :jnp.dtype = jnp.floataa def UpperCAmelCase ( self ) -> Optional[Any]: # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _A = resnets _A = attentions def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> List[str]: _A = self.resnets[0](lowerCAmelCase_ , lowerCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _A = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) return hidden_states
83
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = '''philschmid/bart-large-cnn-samsum''' lowerCamelCase :Tuple = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) lowerCamelCase :List[Any] = '''summarizer''' lowerCamelCase :List[str] = AutoTokenizer lowerCamelCase :Dict = AutoModelForSeqaSeqLM lowerCamelCase :int = ['''text'''] lowerCamelCase :List[Any] = ['''text'''] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: return self.pre_processor(lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: return self.model.generate(**lowerCAmelCase_ )[0] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return self.pre_processor.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ )
83
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list ): if any(not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCamelCase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
6
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") UpperCamelCase , UpperCamelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") UpperCamelCase = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: UpperCamelCase = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
590
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) // 2 # choose the middle 3 elements __UpperCAmelCase : Optional[Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = GPTSanJapaneseTokenizer _UpperCAmelCase = False _UpperCAmelCase = {'''do_clean_text''': False, '''add_prefix_space''': False} def lowerCamelCase_ ( self ) -> Tuple: super().setUp() # fmt: off _UpperCAmelCase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(snake_case ) ) def lowerCamelCase_ ( self , **snake_case ) -> Tuple: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = 'こんにちは、世界。 \nこんばんは、㔺界。😀' _UpperCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case ) return text, ids def lowerCamelCase_ ( self ) -> Dict: pass # TODO add if relevant def lowerCamelCase_ ( self ) -> Dict: pass # TODO add if relevant def lowerCamelCase_ ( self ) -> Optional[int]: pass # TODO add if relevant def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.get_tokenizer() # Testing tokenization _UpperCAmelCase = 'こんにちは、世界。 こんばんは、㔺界。' _UpperCAmelCase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] _UpperCAmelCase = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) # Testing conversion to ids without special tokens _UpperCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case , snake_case ) # Testing conversion to ids with special tokens _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_tokenizer() # Testing tokenization _UpperCAmelCase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' _UpperCAmelCase = 'こんにちは、、、、世界。こんばんは、、、、世界。' _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) self.assertEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _UpperCAmelCase = 'こんにちは、世界。' _UpperCAmelCase = 'こんばんは、㔺界。😀' _UpperCAmelCase = 'こんにちは、世界。こんばんは、世界。😀' _UpperCAmelCase = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text ) _UpperCAmelCase = tokenizer.encode(snake_case , prefix_text=snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _UpperCAmelCase = 'こんにちは、世界。' _UpperCAmelCase = 'こんばんは、㔺界。😀' _UpperCAmelCase = len(tokenizer.encode(snake_case ) ) - 2 _UpperCAmelCase = len(tokenizer.encode(snake_case ) ) - 2 _UpperCAmelCase = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase = tokenizer(snake_case , prefix_text=snake_case ).token_type_ids self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _UpperCAmelCase = tokenizer.encode('あンいワ' ) _UpperCAmelCase = tokenizer.encode('' , prefix_text='あンいワ' ) _UpperCAmelCase = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(snake_case ) , tokenizer.decode(snake_case ) ) self.assertEqual(tokenizer.decode(snake_case ) , tokenizer.decode(snake_case ) ) self.assertNotEqual(snake_case , snake_case ) self.assertNotEqual(snake_case , snake_case ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _UpperCAmelCase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] _UpperCAmelCase = tokenizer(snake_case , padding=snake_case ) _UpperCAmelCase = tokenizer.batch_encode_plus(snake_case , padding=snake_case ) # fmt: off _UpperCAmelCase = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] _UpperCAmelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case ) self.assertListEqual(x_token.token_type_ids , snake_case ) self.assertListEqual(x_token.attention_mask , snake_case ) self.assertListEqual(x_token_a.input_ids , snake_case ) self.assertListEqual(x_token_a.token_type_ids , snake_case ) self.assertListEqual(x_token_a.attention_mask , snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase_ ( self ) -> int: # tokenizer has no padding token pass
573
"""simple docstring""" def UpperCAmelCase ( A : list[int] , A : list[int] ): '''simple docstring''' if not len(A ) == len(A ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
573
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = SMALL_MODEL_IDENTIFIER lowerCamelCase = "pt" lowerCamelCase = "tf" def _a (self , __a ): '''simple docstring''' lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = "mock_framework" # Framework provided - return whatever the user provides lowerCamelCase = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def _a (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
484
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase__ : """simple docstring""" def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ): '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope lowerCamelCase = projection_dim def _a (self ): '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) lowerCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = TFDPRContextEncoder(config=__a ) lowerCamelCase = model(__a , attention_mask=__a , token_type_ids=__a ) lowerCamelCase = model(__a , token_type_ids=__a ) lowerCamelCase = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a (self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = TFDPRQuestionEncoder(config=__a ) lowerCamelCase = model(__a , attention_mask=__a , token_type_ids=__a ) lowerCamelCase = model(__a , token_type_ids=__a ) lowerCamelCase = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a (self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = TFDPRReader(config=__a ) lowerCamelCase = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _A = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} _A = False _A = False _A = False _A = False _A = False def _a (self ): '''simple docstring''' lowerCamelCase = TFDPRModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def _a (self ): '''simple docstring''' self.config_tester.run_common_tests() def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a ) @slow def _a (self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRQuestionEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFDPRReader.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def _a (self ): '''simple docstring''' lowerCamelCase = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase = model(__a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
484
1
import re from filelock import FileLock try: import nltk UpperCamelCase__ = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' re.sub("<n>", "", _UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
486
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = (3_2, 3_2) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(snake_case__ ) @property def UpperCamelCase ( self : Dict ): """simple docstring""" def extract(*snake_case__ : List[Any] , **snake_case__ : Union[str, Any] ): class UpperCamelCase : def __init__( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.ones([0] ) def UpperCamelCase ( self : Any , snake_case__ : List[str] ): """simple docstring""" self.pixel_values.to(snake_case__ ) return self return Out() return extract def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE = 7_7 SCREAMING_SNAKE_CASE = self.dummy_image.to(snake_case__ ) SCREAMING_SNAKE_CASE = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=snake_case__ , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=snake_case__ , return_dict=snake_case__ , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) SCREAMING_SNAKE_CASE = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE = 7_7 SCREAMING_SNAKE_CASE = self.dummy_image.to(snake_case__ ) # put models in fp16 SCREAMING_SNAKE_CASE = unet.half() SCREAMING_SNAKE_CASE = vae.half() SCREAMING_SNAKE_CASE = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=snake_case__ , num_inference_steps=2 , output_type='np' , image=snake_case__ , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE = init_image.resize((7_6_0, 5_0_4) ) SCREAMING_SNAKE_CASE = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) SCREAMING_SNAKE_CASE = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE = init_image.resize((7_6_8, 5_1_2) ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
439
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" _lowerCAmelCase : List[str] = '''biogpt''' def __init__( self , lowerCAmelCase=4_23_84 , lowerCAmelCase=10_24 , lowerCAmelCase=24 , lowerCAmelCase=16 , lowerCAmelCase=40_96 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=10_24 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , **lowerCAmelCase , ): """simple docstring""" snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = scale_embedding snake_case = use_cache snake_case = layerdrop snake_case = activation_dropout super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
705
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed SCREAMING_SNAKE_CASE__ = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" if args.student_type == "roberta": snake_case = False elif args.student_type == "gpt2": snake_case = False def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict ) -> Tuple: """simple docstring""" if args.student_type == "roberta": snake_case = False def lowerCAmelCase__ ( ) -> Optional[int]: """simple docstring""" snake_case = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_UpperCamelCase , required=_UpperCamelCase , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_UpperCamelCase , choices=['distilbert', 'roberta', 'gpt2'] , required=_UpperCamelCase , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_UpperCamelCase , type=_UpperCamelCase , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_UpperCamelCase , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_UpperCamelCase , required=_UpperCamelCase , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_UpperCamelCase , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_UpperCamelCase , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_UpperCamelCase , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_UpperCamelCase , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_UpperCamelCase , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_UpperCamelCase , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_UpperCamelCase , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_UpperCamelCase , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_UpperCamelCase , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_UpperCamelCase , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_UpperCamelCase , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_UpperCamelCase , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_UpperCamelCase , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_UpperCamelCase , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_UpperCamelCase , default=5_0 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_UpperCamelCase , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_UpperCamelCase , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=_UpperCamelCase , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=_UpperCamelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_UpperCamelCase , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_UpperCamelCase , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_UpperCamelCase , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_UpperCamelCase , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_UpperCamelCase , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_UpperCamelCase , default=5_6 , help='Random seed' ) parser.add_argument('--log_interval' , type=_UpperCamelCase , default=5_0_0 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_UpperCamelCase , default=4_0_0_0 , help='Checkpoint interval.' ) snake_case = parser.parse_args() sanity_checks(_UpperCamelCase ) # ARGS # init_gpu_params(_UpperCamelCase ) set_seed(_UpperCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_UpperCamelCase ) , _UpperCamelCase , indent=4 ) git_log(args.dump_path ) snake_case ,snake_case ,snake_case = MODEL_CLASSES[args.student_type] snake_case ,snake_case ,snake_case = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case = tokenizer.all_special_tokens.index(_UpperCamelCase ) snake_case = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) snake_case = special_tok_ids snake_case = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , 'rb' ) as fp: snake_case = pickle.load(_UpperCamelCase ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , 'rb' ) as fp: snake_case = pickle.load(_UpperCamelCase ) snake_case = np.maximum(_UpperCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case = 0.0 # do not predict special tokens snake_case = torch.from_numpy(_UpperCamelCase ) else: snake_case = None snake_case = LmSeqsDataset(params=_UpperCamelCase , data=_UpperCamelCase ) logger.info('Data loader created.' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) snake_case = student_config_class.from_pretrained(args.student_config ) snake_case = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) snake_case = student_model_class.from_pretrained(args.student_pretrained_weights , config=_UpperCamelCase ) else: snake_case = student_model_class(_UpperCamelCase ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('Student loaded.' ) # TEACHER # snake_case = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_UpperCamelCase ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_UpperCamelCase , _UpperCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_UpperCamelCase , _UpperCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case = Distiller( params=_UpperCamelCase , dataset=_UpperCamelCase , token_probs=_UpperCamelCase , student=_UpperCamelCase , teacher=_UpperCamelCase ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
104
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :int = KandinskyVaaControlnetImgaImgPipeline __magic_name__ :Tuple = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __magic_name__ :List[Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __magic_name__ :List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __magic_name__ :Any = False @property def snake_case ( self ): '''simple docstring''' return 3_2 @property def snake_case ( self ): '''simple docstring''' return 3_2 @property def snake_case ( self ): '''simple docstring''' return self.time_input_dim @property def snake_case ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case ( self ): '''simple docstring''' return 1_0_0 @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ :int = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def snake_case ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Any = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.dummy_unet lowerCAmelCase__ :List[str] = self.dummy_movq lowerCAmelCase__ :List[Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase__ :Union[str, Any] = DDIMScheduler(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image lowerCAmelCase__ :int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ :Optional[int] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCAmelCase__ :str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = 'cpu' lowerCAmelCase__ :Optional[Any] = self.get_dummy_components() lowerCAmelCase__ :str = self.pipeline_class(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Dict = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = output.images lowerCAmelCase__ :Optional[Any] = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] lowerCAmelCase__ :Any = image[0, -3:, -3:, -1] lowerCAmelCase__ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase__ :List[Any] = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCAmelCase__ :Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ :Dict = init_image.resize((5_1_2, 5_1_2) ) lowerCAmelCase__ :int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCAmelCase__ :Tuple = torch.from_numpy(np.array(__UpperCAmelCase ) ).float() / 2_55.0 lowerCAmelCase__ :Union[str, Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase__ :List[Any] = 'A robot, 4k photo' lowerCAmelCase__ :int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCAmelCase__ :int = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ :Any = pipe_prior( __UpperCAmelCase , image=__UpperCAmelCase , strength=0.85 , generator=__UpperCAmelCase , negative_prompt='' , ).to_tuple() lowerCAmelCase__ :int = pipeline( image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) lowerCAmelCase__ :Any = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
93
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class lowerCAmelCase__ ( __A ): """simple docstring""" __UpperCAmelCase : List[str] = '''swinv2''' __UpperCAmelCase : int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , a_=224 , a_=4 , a_=3 , a_=96 , a_=[2, 2, 6, 2] , a_=[3, 6, 12, 24] , a_=7 , a_=4.0 , a_=True , a_=0.0 , a_=0.0 , a_=0.1 , a_="gelu" , a_=False , a_=0.02 , a_=1E-5 , a_=32 , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : int = image_size lowerCamelCase_ : Any = patch_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Optional[int] = embed_dim lowerCamelCase_ : List[str] = depths lowerCamelCase_ : Tuple = len(a_ ) lowerCamelCase_ : List[Any] = num_heads lowerCamelCase_ : List[str] = window_size lowerCamelCase_ : Union[str, Any] = mlp_ratio lowerCamelCase_ : List[Any] = qkv_bias lowerCamelCase_ : List[Any] = hidden_dropout_prob lowerCamelCase_ : Optional[int] = attention_probs_dropout_prob lowerCamelCase_ : Tuple = drop_path_rate lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : List[str] = use_absolute_embeddings lowerCamelCase_ : List[str] = layer_norm_eps lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ : str = int(embed_dim * 2 ** (len(a_ ) - 1) ) lowerCamelCase_ : str = (0, 0, 0, 0)
708
__magic_name__ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase_ : List[Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(lowerCAmelCase_)}""" ) raise ValueError(lowerCAmelCase_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
73
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[str] = XLNetTokenizer A__ : str = XLNetTokenizerFast A__ : int = True A__ : List[str] = True def _a ( self : Optional[int] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = XLNetTokenizer(_snake_case , keep_accents=_snake_case ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Any ): """simple docstring""" A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(_snake_case ) , 10_06 ) def _a ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def _a ( self : List[Any] ): """simple docstring""" A__ = XLNetTokenizer(_snake_case , keep_accents=_snake_case ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [2_85, 46, 10, 1_70, 3_82] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A__ = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual(_snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) A__ = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _a ( self : List[Any] ): """simple docstring""" A__ = XLNetTokenizer(_snake_case , do_lower_case=_snake_case ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def _a ( self : Tuple ): """simple docstring""" A__ = XLNetTokenizer(_snake_case , do_lower_case=_snake_case ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) A__ = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _a ( self : str ): """simple docstring""" A__ = {'input_ids': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __snake_case : Optional[int] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __snake_case : str = logging.WARNING def A ( ): """simple docstring""" UpperCAmelCase__ :Optional[int] = os.getenv('DATASETS_VERBOSITY' , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def A ( ): """simple docstring""" return __name__.split('.' )[0] def A ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def A ( ): """simple docstring""" UpperCAmelCase__ :Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def A ( ): """simple docstring""" UpperCAmelCase__ :List[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def A ( SCREAMING_SNAKE_CASE = None ): """simple docstring""" if name is None: UpperCAmelCase__ :Optional[Any] = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE ) def A ( ): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def A ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def A ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def A ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def A ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def A ( ): """simple docstring""" UpperCAmelCase__ :List[Any] = False def A ( ): """simple docstring""" UpperCAmelCase__ :Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class UpperCamelCase__ : '''simple docstring''' def __init__( self , *A , **A ) ->int: # pylint: disable=unused-argument UpperCAmelCase__ :int = args[0] if args else None def __iter__( self ) ->Any: return iter(self._iterator ) def __getattr__( self , A ) ->Dict: def empty_fn(*A , **A ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) ->List[Any]: return self def __exit__( self , A , A , A ) ->str: return __snake_case : Dict = True class UpperCamelCase__ : '''simple docstring''' def __call__( self , *A , A=False , **A ) ->Optional[int]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCamelCase_ , **lowerCamelCase_ ) else: return EmptyTqdm(*lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , *A , **A ) ->Dict: UpperCAmelCase__ :Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self ) ->Any: if _tqdm_active: return tqdm_lib.tqdm.get_lock() __snake_case : Tuple = _tqdm_cls() def A ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A ( ): """simple docstring""" global _tqdm_active UpperCAmelCase__ :Dict = True def A ( ): """simple docstring""" global _tqdm_active UpperCAmelCase__ :str = False
710
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case : Dict = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2 def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :List[str] = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase__ :int = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' pass class UpperCamelCase__ ( nn.Module): '''simple docstring''' def __init__( self , A ) ->Union[str, Any]: super().__init__() UpperCAmelCase__ :Dict = DiffusionAttnUnetaD(A , n_attn_layers=4 ) UpperCAmelCase__ :Optional[Any] = deepcopy(self.diffusion ) UpperCAmelCase__ :str = torch.quasirandom.SobolEngine(1 , scramble=A ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Dict = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" __snake_case : Union[str, Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __snake_case : Tuple = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __snake_case : Optional[int] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __snake_case : str = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __snake_case : Optional[int] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __snake_case : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif name.startswith(SCREAMING_SNAKE_CASE ): return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 ): """simple docstring""" UpperCAmelCase__ :Any = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) UpperCAmelCase__ :List[Any] = 0 if string.startswith('net.3.' ): depth += 1 UpperCAmelCase__ :int = string[6:] elif string.startswith('net.' ): UpperCAmelCase__ :Union[str, Any] = string[4:] while string.startswith('main.7.' ): depth += 1 UpperCAmelCase__ :List[str] = string[7:] if string.startswith('main.' ): UpperCAmelCase__ :Tuple = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase__ :int = string[:2] UpperCAmelCase__ :List[Any] = string[2:] else: UpperCAmelCase__ :Dict = string[0] UpperCAmelCase__ :Union[str, Any] = string[1:] if depth == max_depth: UpperCAmelCase__ :Dict = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :int = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7: UpperCAmelCase__ :List[Any] = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :Any = f"""down_blocks.{depth}""" elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7: UpperCAmelCase__ :Union[str, Any] = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :Union[str, Any] = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: UpperCAmelCase__ :List[str] = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase__ :List[str] = f"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) UpperCAmelCase__ :int = string_left[1:] if "resnets" in new_layer: UpperCAmelCase__ :Optional[Any] = convert_resconv_naming(SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: UpperCAmelCase__ :Any = convert_attn_naming(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = new_string_left if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = prefix + '.' + new_layer + '.' + string_left else: UpperCAmelCase__ :int = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :str = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase__ :Tuple = rename(SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ :Union[str, Any] = v return new_state_dict def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase__ :List[str] = v[:, :, 0] else: # bias UpperCAmelCase__ :Union[str, Any] = v else: # qkv matrices UpperCAmelCase__ :Optional[int] = v.shape[0] UpperCAmelCase__ :str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase__ :Optional[int] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase__ :Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase__ :List[Any] = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" UpperCAmelCase__ :List[str] = download(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = MODELS_MAP[model_name]['sample_rate'] UpperCAmelCase__ :Tuple = MODELS_MAP[model_name]['sample_size'] UpperCAmelCase__ :Optional[Any] = Object() UpperCAmelCase__ :int = sample_size UpperCAmelCase__ :Any = sample_rate UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :Union[str, Any] = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = diffusers_model.state_dict() UpperCAmelCase__ :Dict = DiffusionUncond(SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )['state_dict'] ) UpperCAmelCase__ :Dict = orig_model.diffusion_ema.eval() UpperCAmelCase__ :Optional[Any] = orig_model.state_dict() UpperCAmelCase__ :Tuple = rename_orig_weights(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase__ :Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": UpperCAmelCase__ :List[Any] = value.squeeze() UpperCAmelCase__ :List[Any] = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = 100 UpperCAmelCase__ :Any = 33 UpperCAmelCase__ :int = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :int = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1] UpperCAmelCase__ :List[Any] = get_crash_schedule(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[Any] = torch.manual_seed(33 ) UpperCAmelCase__ :List[str] = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios UpperCAmelCase__ :Any = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} ) UpperCAmelCase__ :List[Any] = generated.clamp(-1 , 1 ) UpperCAmelCase__ :int = (generated - audio).abs().sum() UpperCAmelCase__ :Optional[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE ) print('Diff max' , SCREAMING_SNAKE_CASE ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __snake_case : Union[str, Any] = parser.parse_args() main(args)
433
0
def _UpperCAmelCase (UpperCamelCase__ : str = 50 ): _A : Optional[Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
503
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] ="levit" def __init__( self : Optional[int] , a : int=2_24 , a : Union[str, Any]=3 , a : List[Any]=3 , a : Dict=2 , a : Tuple=1 , a : Optional[int]=16 , a : Optional[Any]=[1_28, 2_56, 3_84] , a : Dict=[4, 8, 12] , a : Optional[Any]=[4, 4, 4] , a : Optional[int]=[16, 16, 16] , a : Any=0 , a : List[Any]=[2, 2, 2] , a : Optional[Any]=[2, 2, 2] , a : Union[str, Any]=0.02 , **a : Optional[int] , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = kernel_size __lowerCamelCase = stride __lowerCamelCase = padding __lowerCamelCase = hidden_sizes __lowerCamelCase = num_attention_heads __lowerCamelCase = depths __lowerCamelCase = key_dim __lowerCamelCase = drop_path_rate __lowerCamelCase = patch_size __lowerCamelCase = attention_ratio __lowerCamelCase = mlp_ratio __lowerCamelCase = initializer_range __lowerCamelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple =version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return 1e-4
546
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
def lowerCAmelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) __magic_name__ : List[str] = [True] * (num + 1) __magic_name__ : List[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, UpperCAmelCase ): __magic_name__ : Any = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
336
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _a , _a , _a ) -> int: '''simple docstring''' return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def UpperCamelCase ( _a , _a , _a , _a="attention" ) -> Optional[int]: '''simple docstring''' lowercase_ :str = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) lowercase_ :List[str] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ :Tuple = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) lowercase_ :Any = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ :Any = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) lowercase_ :int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ :Dict = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) lowercase_ :str = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase ( _a , _a , _a , _a=False ) -> int: '''simple docstring''' if split_mlp_wi: lowercase_ :Dict = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] lowercase_ :Optional[Any] = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] lowercase_ :int = (wi_a, wi_a) else: lowercase_ :Optional[Any] = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] lowercase_ :Optional[int] = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def UpperCamelCase ( _a , _a , _a , _a ) -> List[Any]: '''simple docstring''' return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def UpperCamelCase ( _a , *, _a , _a , _a = False ) -> Optional[Any]: '''simple docstring''' lowercase_ :List[str] = traverse_util.flatten_dict(variables['''target'''] ) lowercase_ :Any = {'''/'''.join(A_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ :Optional[Any] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , A_ ) lowercase_ :List[str] = collections.OrderedDict() # Shared embeddings. lowercase_ :List[Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(A_ ): # Block i, layer 0 (Self Attention). lowercase_ :Optional[Any] = tax_layer_norm_lookup(A_ , A_ , '''encoder''' , '''pre_attention_layer_norm''' ) lowercase_ , lowercase_ , lowercase_ , lowercase_ :List[Any] = tax_attention_lookup(A_ , A_ , '''encoder''' , '''attention''' ) lowercase_ :int = layer_norm lowercase_ :Optional[int] = k.T lowercase_ :Union[str, Any] = o.T lowercase_ :Any = q.T lowercase_ :int = v.T # Block i, layer 1 (MLP). lowercase_ :Optional[int] = tax_layer_norm_lookup(A_ , A_ , '''encoder''' , '''pre_mlp_layer_norm''' ) lowercase_ , lowercase_ :Optional[int] = tax_mlp_lookup(A_ , A_ , '''encoder''' , A_ ) lowercase_ :Union[str, Any] = layer_norm if split_mlp_wi: lowercase_ :Optional[Any] = wi[0].T lowercase_ :List[str] = wi[1].T else: lowercase_ :List[Any] = wi.T lowercase_ :Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ :List[Any] = tax_relpos_bias_lookup( A_ , A_ , '''encoder''' ).T lowercase_ :str = old['''encoder/encoder_norm/scale'''] if not scalable_attention: lowercase_ :str = tax_relpos_bias_lookup( A_ , 0 , '''encoder''' ).T lowercase_ :str = tax_relpos_bias_lookup( A_ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(A_ ): # Block i, layer 0 (Self Attention). lowercase_ :Optional[int] = tax_layer_norm_lookup(A_ , A_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowercase_ , lowercase_ , lowercase_ , lowercase_ :Union[str, Any] = tax_attention_lookup(A_ , A_ , '''decoder''' , '''self_attention''' ) lowercase_ :Union[str, Any] = layer_norm lowercase_ :int = k.T lowercase_ :Any = o.T lowercase_ :List[Any] = q.T lowercase_ :List[Any] = v.T # Block i, layer 1 (Cross Attention). lowercase_ :Optional[int] = tax_layer_norm_lookup(A_ , A_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowercase_ , lowercase_ , lowercase_ , lowercase_ :Optional[Any] = tax_attention_lookup(A_ , A_ , '''decoder''' , '''encoder_decoder_attention''' ) lowercase_ :Union[str, Any] = layer_norm lowercase_ :Union[str, Any] = k.T lowercase_ :str = o.T lowercase_ :str = q.T lowercase_ :Dict = v.T # Block i, layer 2 (MLP). lowercase_ :int = tax_layer_norm_lookup(A_ , A_ , '''decoder''' , '''pre_mlp_layer_norm''' ) lowercase_ , lowercase_ :Tuple = tax_mlp_lookup(A_ , A_ , '''decoder''' , A_ ) lowercase_ :List[Any] = layer_norm if split_mlp_wi: lowercase_ :Dict = wi[0].T lowercase_ :str = wi[1].T else: lowercase_ :Any = wi.T lowercase_ :Any = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ :int = tax_relpos_bias_lookup(A_ , A_ , '''decoder''' ).T lowercase_ :str = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ :List[Any] = old['''decoder/logits_dense/kernel'''].T return new def UpperCamelCase ( _a , _a ) -> Union[str, Any]: '''simple docstring''' lowercase_ :int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ :str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ :Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowercase_ :Optional[Any] = state_dict['''shared.weight'''] return state_dict def UpperCamelCase ( _a , _a , _a , _a , _a ) -> Any: '''simple docstring''' lowercase_ :Dict = checkpoints.load_tax_checkpoint(A_ ) lowercase_ :Any = convert_tax_to_pytorch( A_ , num_layers=config.num_layers , is_encoder_only=A_ , scalable_attention=A_ ) lowercase_ :str = make_state_dict(A_ , A_ ) model.load_state_dict(A_ , strict=A_ ) def UpperCamelCase ( _a , _a , _a , _a = False , _a = False , ) -> List[str]: '''simple docstring''' lowercase_ :int = MTaConfig.from_json_file(A_ ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ :List[Any] = UMTaEncoderModel(A_ ) else: lowercase_ :Optional[Any] = UMTaForConditionalGeneration(A_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(A_ , A_ , A_ , A_ , A_ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(A_ ) # Verify that we can load the checkpoint. model.from_pretrained(A_ ) print('''Done''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
257
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : Any = logging.get_logger(__name__) def A__ ( A_ , A_ ) -> List[Any]: _lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def A__ ( A_ , A_ ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowercase = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) _lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] _lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def A__ ( A_ , A_ , A_ ) -> str: _lowercase = dct.pop(A_ ) _lowercase = val def A__ ( A_ ) -> Optional[int]: if "handwritten" in checkpoint_url: _lowercase = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowercase = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _lowercase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) return im @torch.no_grad() def A__ ( A_ , A_ ) -> str: _lowercase = ViTConfig(image_size=384 , qkv_bias=A_ ) _lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowercase = 768 elif "large" in checkpoint_url: # use ViT-large encoder _lowercase = 1_024 _lowercase = 4_096 _lowercase = 24 _lowercase = 16 _lowercase = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowercase = False _lowercase = "relu" _lowercase = 1_024 _lowercase = True _lowercase = False _lowercase = False # load HuggingFace model _lowercase = ViTModel(A_ , add_pooling_layer=A_ ) _lowercase = TrOCRForCausalLM(A_ ) _lowercase = VisionEncoderDecoderModel(encoder=A_ , decoder=A_ ) model.eval() # load state_dict of original model, rename some keys _lowercase = torch.hub.load_state_dict_from_url(A_ , map_location="cpu" , check_hash=A_ )["model"] _lowercase = create_rename_keys(A_ , A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowercase = state_dict.pop(A_ ) if key.startswith("decoder" ) and "output_projection" not in key: _lowercase = val else: _lowercase = val # load state dict model.load_state_dict(A_ ) # Check outputs on an image _lowercase = ViTImageProcessor(size=encoder_config.image_size ) _lowercase = RobertaTokenizer.from_pretrained("roberta-large" ) _lowercase = TrOCRProcessor(A_ , A_ ) _lowercase = processor(images=prepare_img(A_ ) , return_tensors="pt" ).pixel_values # verify logits _lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowercase = model(pixel_values=A_ , decoder_input_ids=A_ ) _lowercase = outputs.logits _lowercase = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: _lowercase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _lowercase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _lowercase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _lowercase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , A_ , atol=1e-3 ), "First elements of logits not as expected" Path(A_ ).mkdir(exist_ok=A_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(A_ ) if __name__ == "__main__": __magic_name__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __magic_name__ : List[Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
497
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A_ : List[str] = logging.get_logger('transformers.models.speecht5') A_ : List[str] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } A_ : int = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } A_ : str = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } A_ : Any = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } A_ : Any = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } A_ : int = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } A_ : Any = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } A_ : Optional[Any] = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } A_ : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A_ : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ : int = [] A_ : Optional[Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] A_ : Optional[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] A_ : Union[str, Any] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] A_ : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def UpperCamelCase (lowercase_: List[str] , lowercase_: str , lowercase_: str , lowercase_: Union[str, Any] , lowercase_: Optional[int] ) -> int: for attribute in key.split(""".""" ): A__ : Dict = getattr(lowercase_ , lowercase_ ) if weight_type is not None: A__ : Tuple = getattr(lowercase_ , lowercase_ ).shape else: A__ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ : Any = value elif weight_type == "weight_g": A__ : Union[str, Any] = value elif weight_type == "weight_v": A__ : Optional[Any] = value elif weight_type == "bias": A__ : str = value elif weight_type == "running_mean": A__ : List[Any] = value elif weight_type == "running_var": A__ : str = value elif weight_type == "num_batches_tracked": A__ : List[Any] = value else: A__ : Optional[Any] = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Optional[int] ) -> str: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A__ , A__ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase (lowercase_: Dict , lowercase_: List[str] , lowercase_: Optional[Any] ) -> Optional[int]: A__ : Any = [] if task == "s2t": A__ : Any = hf_model.speechta.encoder.prenet.feature_encoder A__ : Optional[Any] = MAPPING_S2T A__ : List[Any] = IGNORE_KEYS_S2T elif task == "t2s": A__ : Any = None A__ : Optional[int] = MAPPING_T2S A__ : Optional[int] = IGNORE_KEYS_T2S elif task == "s2s": A__ : Tuple = hf_model.speechta.encoder.prenet.feature_encoder A__ : List[str] = MAPPING_S2S A__ : Dict = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowercase_ , lowercase_ ): logger.info(f"""{name} was ignored""" ) continue A__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , ) A__ : Any = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A__ , A__ : Tuple = key.split(""".*.""" ) if prefix in name and suffix in name: A__ : Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A__ : Dict = True if "*" in mapped_key: A__ : int = name.split(lowercase_ )[0].split(""".""" )[-2] A__ : List[str] = mapped_key.replace("""*""" , lowercase_ ) if "weight_g" in name: A__ : Optional[Any] = """weight_g""" elif "weight_v" in name: A__ : List[Any] = """weight_v""" elif "bias" in name: A__ : int = """bias""" elif "weight" in name: A__ : Any = """weight""" elif "running_mean" in name: A__ : Optional[Any] = """running_mean""" elif "running_var" in name: A__ : Tuple = """running_var""" elif "num_batches_tracked" in name: A__ : Dict = """num_batches_tracked""" else: A__ : Union[str, Any] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: Any , lowercase_: Optional[Any] , lowercase_: str , lowercase_: Any ) -> List[str]: A__ : int = full_name.split("""conv_layers.""" )[-1] A__ : Optional[int] = name.split(""".""" ) A__ : Any = int(items[0] ) A__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) A__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: int , lowercase_: str , lowercase_: List[Any]=None , lowercase_: Tuple=None , lowercase_: Dict=None , ) -> Union[str, Any]: if config_path is not None: A__ : Tuple = SpeechTaConfig.from_pretrained(lowercase_ ) else: A__ : Tuple = SpeechTaConfig() if task == "s2t": A__ : Optional[int] = config.max_text_positions A__ : Any = SpeechTaForSpeechToText(lowercase_ ) elif task == "t2s": A__ : List[Any] = 1876 A__ : str = 600 A__ : List[Any] = config.max_speech_positions A__ : Tuple = SpeechTaForTextToSpeech(lowercase_ ) elif task == "s2s": A__ : Dict = 1876 A__ : int = config.max_speech_positions A__ : Any = SpeechTaForSpeechToSpeech(lowercase_ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: A__ : Any = SpeechTaTokenizer(lowercase_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A__ : Optional[Any] = AddedToken("""<mask>""" , lstrip=lowercase_ , rstrip=lowercase_ ) A__ : List[Any] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) A__ : Dict = SpeechTaFeatureExtractor() A__ : List[Any] = SpeechTaProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(lowercase_ ) A__ : List[Any] = torch.load(lowercase_ ) recursively_load_weights(fairseq_checkpoint["""model"""] , lowercase_ , lowercase_ ) model.save_pretrained(lowercase_ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) A_ : List[str] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
64
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A_ : Dict = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def UpperCamelCase (lowercase_: Optional[Any] ) -> Optional[int]: A__ : List[Any] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) A_ : Any = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def UpperCamelCase (lowercase_: str ) -> Any: A__ : Dict = list(s_dict.keys() ) for key in keys: A__ : List[str] = key for k, v in WHISPER_MAPPING.items(): if k in key: A__ : List[Any] = new_key.replace(lowercase_ , lowercase_ ) print(f"""{key} -> {new_key}""" ) A__ : Tuple = s_dict.pop(lowercase_ ) return s_dict def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: A__ , A__ : Any = emb.weight.shape A__ : str = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) A__ : Union[str, Any] = emb.weight.data return lin_layer def UpperCamelCase (lowercase_: str , lowercase_: str ) -> bytes: os.makedirs(lowercase_ , exist_ok=lowercase_ ) A__ : Tuple = os.path.basename(lowercase_ ) A__ : int = url.split("""/""" )[-2] A__ : Dict = os.path.join(lowercase_ , lowercase_ ) if os.path.exists(lowercase_ ) and not os.path.isfile(lowercase_ ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(lowercase_ ): A__ : Optional[Any] = open(lowercase_ , """rb""" ).read() if hashlib.shaaaa(lowercase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(lowercase_ ) as source, open(lowercase_ , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowercase_ , unit_divisor=1024 ) as loop: while True: A__ : Any = source.read(8192 ) if not buffer: break output.write(lowercase_ ) loop.update(len(lowercase_ ) ) A__ : Dict = open(lowercase_ , """rb""" ).read() if hashlib.shaaaa(lowercase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def UpperCamelCase (lowercase_: List[Any] , lowercase_: Tuple ) -> Optional[Any]: if ".pt" not in checkpoint_path: A__ : Tuple = _download(_MODELS[checkpoint_path] ) else: A__ : Optional[int] = torch.load(lowercase_ , map_location="""cpu""" ) A__ : str = original_checkpoint["""dims"""] A__ : List[Any] = original_checkpoint["""model_state_dict"""] A__ : Optional[Any] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(lowercase_ ) rename_keys(lowercase_ ) A__ : List[str] = True A__ : Optional[Any] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] A__ : List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowercase_ , decoder_ffn_dim=lowercase_ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) A__ : Optional[Any] = WhisperForConditionalGeneration(lowercase_ ) A__ , A__ : List[Any] = model.model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0 and not set(lowercase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f""" but all the following weights are missing {missing}""" ) if tie_embeds: A__ : Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ : str = proj_out_weights model.save_pretrained(lowercase_ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A_ : Tuple = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
64
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ), F"""{len(lowerCamelCase__ )} != {len(lowerCamelCase__ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowerCAmelCase__ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowerCAmelCase__ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" try: lowercase__ : Union[str, Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(lowerCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = "student" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" lowercase__ : Union[str, Any] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCamelCase__ , lowerCamelCase__ ): AutoTokenizer.from_pretrained(lowerCamelCase__ ).save_pretrained(lowerCamelCase__ ) # purely for convenience lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ).eval() else: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), F"""teacher must be a model or string got type {type(lowerCamelCase__ )}""" lowercase__ : Union[str, Any] = teacher.config.to_diff_dict() try: lowercase__ , lowercase__ : Dict = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowercase__ : List[str] = teacher_e if d is None: lowercase__ : Tuple = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): lowercase__ , lowercase__ : Any = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowercase__ , lowercase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowercase__ : int = teacher_e if d is None: lowercase__ : List[str] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCamelCase__ ) # Copy weights lowercase__ : int = teacher.config_class(**lowerCamelCase__ ) lowercase__ : Dict = AutoModelForSeqaSeqLM.from_config(lowerCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowercase__ : Dict = student.load_state_dict(teacher.state_dict() , strict=lowerCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowercase__ , lowercase__ : Any = list(range(lowerCamelCase__ ) ), list(range(lowerCamelCase__ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(lowerCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowercase__ : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) if d_layers_to_copy is None: lowercase__ : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) try: if hasattr( lowerCamelCase__ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCamelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCamelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCamelCase__ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) lowercase__ : Tuple = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
496
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """CLIPImageProcessor""" lowercase_ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Tuple , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , **SCREAMING_SNAKE_CASE : Any ): lowercase__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE , ) lowercase__ : int = kwargs.pop("feature_extractor" ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : str=None , **SCREAMING_SNAKE_CASE : Tuple ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase__ : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if images is not None: lowercase__ : Dict = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE ) , tensor_type=SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Optional[int] ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def snake_case ( self : int ): lowercase__ : List[Any] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self : str ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def snake_case ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor
496
1
"""simple docstring""" import math from datetime import datetime, timedelta def A( snake_case_ ): """simple docstring""" lowercase__: Union[str, Any] = year % 19 lowercase__: Optional[int] = year % 4 lowercase__: List[str] = year % 7 lowercase__: List[str] = math.floor(year / 100 ) lowercase__: Any = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowercase__: Any = leap_day_inhibits / 4 lowercase__: Optional[int] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowercase__: Optional[int] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase__: List[str] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowercase__: List[str] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__SCREAMING_SNAKE_CASE , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__SCREAMING_SNAKE_CASE , 4 , 18 ) else: return datetime(__SCREAMING_SNAKE_CASE , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): UpperCamelCase = """will be""" if year > datetime.now().year else """was""" print(F"Easter in {year} {tense} {gauss_easter(year)}")
701
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """scipy"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch", "scipy"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"])
120
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = ShapEPipeline A__ : int = ['prompt'] A__ : Dict = ['prompt'] A__ : Union[str, Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A__ : Any = False @property def _lowercase ( self ) -> str: return 32 @property def _lowercase ( self ) -> str: return 32 @property def _lowercase ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def _lowercase ( self ) -> Optional[Any]: return 8 @property def _lowercase ( self ) -> List[Any]: _UpperCamelCase : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _lowercase ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_snake_case ) @property def _lowercase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase : Tuple = PriorTransformer(**_snake_case ) return model @property def _lowercase ( self ) -> int: torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase : List[Any] = ShapERenderer(**_snake_case ) return model def _lowercase ( self ) -> str: _UpperCamelCase : Dict = self.dummy_prior _UpperCamelCase : int = self.dummy_text_encoder _UpperCamelCase : Any = self.dummy_tokenizer _UpperCamelCase : Union[str, Any] = self.dummy_renderer _UpperCamelCase : Union[str, Any] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_snake_case , clip_sample=_snake_case , clip_sample_range=1.0 , ) _UpperCamelCase : Dict = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _lowercase ( self , _snake_case , _snake_case=0 ) -> Optional[int]: if str(_snake_case ).startswith('''mps''' ): _UpperCamelCase : List[Any] = torch.manual_seed(_snake_case ) else: _UpperCamelCase : Any = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCamelCase : int = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _lowercase ( self ) -> str: _UpperCamelCase : Tuple = '''cpu''' _UpperCamelCase : Optional[int] = self.get_dummy_components() _UpperCamelCase : int = self.pipeline_class(**_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = pipe(**self.get_dummy_inputs(_snake_case ) ) _UpperCamelCase : int = output.images[0] _UpperCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase : Tuple = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowercase ( self ) -> Union[str, Any]: _UpperCamelCase : List[str] = torch_device == '''cpu''' _UpperCamelCase : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_snake_case , relax_max_difference=_snake_case , ) def _lowercase ( self ) -> List[str]: _UpperCamelCase : int = self.get_dummy_components() _UpperCamelCase : Optional[Any] = self.pipeline_class(**_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = 1 _UpperCamelCase : str = 2 _UpperCamelCase : Optional[int] = self.get_dummy_inputs(_snake_case ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase : Any = batch_size * [inputs[key]] _UpperCamelCase : List[Any] = pipe(**_snake_case , num_images_per_prompt=_snake_case )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: _UpperCamelCase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase : Dict = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCamelCase : int = pipe( '''a shark''' , generator=_snake_case , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
683
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _UpperCAmelCase : Dict = """bart""" _UpperCAmelCase : List[str] = True @st.cache(allow_output_mutation=UpperCamelCase ) def snake_case__ ( ) -> int: if LOAD_DENSE_INDEX: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase : Tuple = qar_model.eval() else: _UpperCamelCase, _UpperCamelCase : Optional[Any] = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase : Any = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase : Dict = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase : Tuple = sas_model.eval() else: _UpperCamelCase, _UpperCamelCase : Optional[Any] = make_qa_sas_model( model_name='''t5-small''' ,from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' ,device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=UpperCamelCase ) def snake_case__ ( ) -> List[Any]: if LOAD_DENSE_INDEX: _UpperCamelCase : str = faiss.StandardGpuResources() _UpperCamelCase : Optional[int] = datasets.load_dataset(path='''wiki_snippets''' ,name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase : List[str] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' ,dtype='''float32''' ,mode='''r''' ,shape=(wikiaab_passages.num_rows, 1_28) ,) _UpperCamelCase : Any = faiss.IndexFlatIP(1_28 ) _UpperCamelCase : str = faiss.index_cpu_to_gpu(UpperCamelCase ,1 ,UpperCamelCase ) wikiaab_gpu_index_flat.add(UpperCamelCase ) # TODO fix for larger GPU else: _UpperCamelCase, _UpperCamelCase : Optional[int] = (None, None) _UpperCamelCase : int = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=UpperCamelCase ) def snake_case__ ( ) -> Optional[int]: _UpperCamelCase : List[Any] = datasets.load_dataset('''eli5''' ,name='''LFQA_reddit''' ) _UpperCamelCase : Optional[int] = elia['''train_eli5'''] _UpperCamelCase : Any = np.memmap( '''eli5_questions_reps.dat''' ,dtype='''float32''' ,mode='''r''' ,shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase : Optional[Any] = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(UpperCamelCase ) return (elia_train, eli5_train_q_index) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = load_indexes() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = load_models() _UpperCAmelCase , _UpperCAmelCase : int = load_train_data() def snake_case__ ( UpperCamelCase ,UpperCamelCase=10 ) -> Optional[Any]: _UpperCamelCase : Optional[int] = embed_questions_for_retrieval([question] ,UpperCamelCase ,UpperCamelCase ) _UpperCamelCase, _UpperCamelCase : Optional[Any] = eli5_train_q_index.search(UpperCamelCase ,UpperCamelCase ) _UpperCamelCase : Optional[Any] = [elia_train[int(UpperCamelCase )] for i in I[0]] return nn_examples def snake_case__ ( UpperCamelCase ,UpperCamelCase="wiki40b" ,UpperCamelCase="dense" ,UpperCamelCase=10 ) -> Optional[int]: if source == "none": _UpperCamelCase, _UpperCamelCase : Dict = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase, _UpperCamelCase : str = query_qa_dense_index( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) else: _UpperCamelCase, _UpperCamelCase : str = query_es_index( UpperCamelCase ,UpperCamelCase ,index_name='''english_wiki40b_snippets_100w''' ,n_results=UpperCamelCase ,) _UpperCamelCase : Optional[int] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase : Optional[Any] = '''question: {} context: {}'''.format(UpperCamelCase ,UpperCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCamelCase : None), } ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=64 ,UpperCamelCase=2_56 ,UpperCamelCase=False ,UpperCamelCase=2 ,UpperCamelCase=0.95 ,UpperCamelCase=0.8 ) -> Optional[Any]: with torch.no_grad(): _UpperCamelCase : Any = qa_sas_generate( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,num_answers=1 ,num_beams=UpperCamelCase ,min_len=UpperCamelCase ,max_len=UpperCamelCase ,do_sample=UpperCamelCase ,temp=UpperCamelCase ,top_p=UpperCamelCase ,top_k=UpperCamelCase ,max_input_length=10_24 ,device='''cuda:0''' ,)[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _UpperCAmelCase : str = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _UpperCAmelCase : Tuple = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _UpperCAmelCase : Dict = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _UpperCAmelCase : List[str] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _UpperCAmelCase : Optional[int] = st.sidebar.checkbox("""Demo options""") if demo_options: _UpperCAmelCase : List[str] = st.sidebar.selectbox( """""", action_list, index=3, ) _UpperCAmelCase : List[Any] = action_list.index(action_st) _UpperCAmelCase : Tuple = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _UpperCAmelCase : Optional[Any] = show_type == """Show full text of passages""" else: _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : str = True _UpperCAmelCase : str = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _UpperCAmelCase : Optional[Any] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _UpperCAmelCase : str = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _UpperCAmelCase : Optional[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _UpperCAmelCase : Dict = """wiki40b""" _UpperCAmelCase : str = """dense""" _UpperCAmelCase : List[str] = """beam""" _UpperCAmelCase : Dict = 2 _UpperCAmelCase : List[str] = 64 _UpperCAmelCase : List[Any] = 256 _UpperCAmelCase : Tuple = None _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = st.sidebar.checkbox("""Generation options""") if generate_options: _UpperCAmelCase : Union[str, Any] = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _UpperCAmelCase : str = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _UpperCAmelCase : Dict = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _UpperCAmelCase : List[Any] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _UpperCAmelCase : List[str] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _UpperCAmelCase : Optional[Any] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _UpperCAmelCase : Optional[Any] = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _UpperCAmelCase : Optional[int] = None # start main text _UpperCAmelCase : Union[str, Any] = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _UpperCAmelCase : int = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _UpperCAmelCase : Any = st.text_input("""Enter your question here:""", """""") else: _UpperCAmelCase : Tuple = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _UpperCAmelCase , _UpperCAmelCase : str = make_support(question, source=wiki_source, method="""dense""", n_results=10) _UpperCAmelCase , _UpperCAmelCase : List[Any] = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _UpperCAmelCase : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _UpperCAmelCase : int = support_list[:10] _UpperCAmelCase : Tuple = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _UpperCAmelCase , _UpperCAmelCase : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _UpperCAmelCase : Tuple = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _UpperCAmelCase : List[Any] = res[1].strip() if sec_titles == "": _UpperCAmelCase : Optional[int] = """[{}]({})""".format(res[0], wiki_url) else: _UpperCAmelCase : Optional[int] = sec_titles.split(""" & """) _UpperCAmelCase : Tuple = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _UpperCAmelCase : Dict = find_nearest_training(question) _UpperCAmelCase : List[Any] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _UpperCAmelCase : List[Any] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _UpperCAmelCase : List[Any] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
683
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase = re.compile(R"""\s+""") def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return {"hash": hashlib.mda(re.sub(_SCREAMING_SNAKE_CASE , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = [len(_SCREAMING_SNAKE_CASE ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_SCREAMING_SNAKE_CASE ), "line_max": max(_SCREAMING_SNAKE_CASE )} def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str=5 ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = ["auto-generated", "autogenerated", "automatically generated"] UpperCAmelCase_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int]=5 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.05 ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ["unit tests", "test file", "configuration file"] UpperCAmelCase_ : Dict = example["content"].splitlines() UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = 0 # first test for _, line in zip(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCAmelCase_ : Tuple = example["content"].count("\n" ) UpperCAmelCase_ : Dict = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = ["def ", "class ", "for ", "while "] UpperCAmelCase_ : Dict = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any=4 ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = example["content"].splitlines() UpperCAmelCase_ : int = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = tokenizer(example["content"] , truncation=_SCREAMING_SNAKE_CASE )["input_ids"] UpperCAmelCase_ : str = len(example["content"] ) / len(_SCREAMING_SNAKE_CASE ) return {"ratio": ratio} def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = {} results.update(get_hash(_SCREAMING_SNAKE_CASE ) ) results.update(line_stats(_SCREAMING_SNAKE_CASE ) ) results.update(alpha_stats(_SCREAMING_SNAKE_CASE ) ) results.update(char_token_ratio(_SCREAMING_SNAKE_CASE ) ) results.update(is_autogenerated(_SCREAMING_SNAKE_CASE ) ) results.update(is_config_or_test(_SCREAMING_SNAKE_CASE ) ) results.update(has_no_keywords(_SCREAMING_SNAKE_CASE ) ) results.update(has_few_assignments(_SCREAMING_SNAKE_CASE ) ) return results def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" if not check_uniques(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , "rb" ) as f_in: with gzip.open(str(_SCREAMING_SNAKE_CASE ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) os.unlink(_SCREAMING_SNAKE_CASE ) # Settings _lowerCamelCase = HfArgumentParser(PreprocessingArguments) _lowerCamelCase = parser.parse_args() if args.num_workers is None: _lowerCamelCase = multiprocessing.cpu_count() _lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase = time.time() _lowerCamelCase = load_dataset(args.dataset_name, split="""train""") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _lowerCamelCase = time.time() _lowerCamelCase = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _lowerCamelCase = set(ds.unique("""hash""")) _lowerCamelCase = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _lowerCamelCase = time.time() _lowerCamelCase = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase = time.time() _lowerCamelCase , _lowerCamelCase = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _lowerCamelCase = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) _lowerCamelCase = output_dir / """data""" data_dir.mkdir(exist_ok=True) _lowerCamelCase = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase = str(data_dir / f"""file-{file_number+1:012}.json""") _lowerCamelCase = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
323
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
1
"""simple docstring""" lowercase__ = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
630
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=64 , lowercase=5 , lowercase=4 , lowercase=64 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : List[Any] = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Optional[int] = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : int = scope def A_ ( self ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def A_ ( self ): _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Dict = None if self.use_input_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : int = None _lowerCamelCase : List[str] = None _lowerCamelCase : Any = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = MPNetModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Tuple = model(lowercase , lowercase ) _lowerCamelCase : Tuple = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = MPNetForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : int = MPNetForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : List[str] = MPNetForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Any = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = self.num_labels _lowerCamelCase : Union[str, Any] = MPNetForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Union[str, Any] = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self ): _lowerCamelCase : Dict = self.prepare_config_and_inputs() ((_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase)) : List[Any] = config_and_inputs _lowerCamelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = True def A_ ( self ): _lowerCamelCase : Union[str, Any] = MPNetModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCamelCase : Any = model(lowercase )[0] _lowerCamelCase : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
630
1
from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase__ ( a__ = 2_000_000 ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = [0] _UpperCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _UpperCamelCase = 0 # the area corresponding to the grid that gives the product closest to target _UpperCamelCase = 0 # an estimate of b, using the quadratic formula _UpperCamelCase = 42 # the largest integer less than b_estimate _UpperCamelCase = 42 # the largest integer less than b_estimate _UpperCamelCase = 42 # the triangle number corresponding to b_floor _UpperCamelCase = 42 # the triangle number corresponding to b_ceil _UpperCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _UpperCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _UpperCamelCase = floor(lowercase__ ) _UpperCamelCase = ceil(lowercase__ ) _UpperCamelCase = triangle_numbers[b_floor] _UpperCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _UpperCamelCase = triangle_b_first_guess * triangle_a _UpperCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _UpperCamelCase = triangle_b_second_guess * triangle_a _UpperCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
719
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = 1.5 _UpperCamelCase = int(factor * num_class_images ) _UpperCamelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=a__ , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=a__ ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: _UpperCamelCase = client.query(text=a__ ) if len(a__ ) >= factor * num_class_images or num_images > 1e4: break else: _UpperCamelCase = int(factor * num_images ) _UpperCamelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=a__ , aesthetic_weight=0.1 , ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = tqdm(desc="downloading real regularization images" , total=a__ ) with open(f'{class_data_dir}/caption.txt' , "w" ) as fa, open(f'{class_data_dir}/urls.txt' , "w" ) as fa, open( f'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: _UpperCamelCase = class_images[count] count += 1 try: _UpperCamelCase = requests.get(images["url"] ) if img.status_code == 200: _UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase__ ( ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser("" , add_help=a__ ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=a__ , type=a__ ) parser.add_argument("--class_data_dir" , help="path to save images" , required=a__ , type=a__ ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=a__ ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
82
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str ="pix2struct_text_model" SCREAMING_SNAKE_CASE_ : Optional[Any] =["past_key_values"] SCREAMING_SNAKE_CASE_ : Dict ={ "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[str]=5_02_44 , SCREAMING_SNAKE_CASE__ : List[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=64 , SCREAMING_SNAKE_CASE__ : int=20_48 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : List[Any]=1_28 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu_new" , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : Any , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = d_kv UpperCamelCase = d_ff UpperCamelCase = num_layers UpperCamelCase = num_heads UpperCamelCase = relative_attention_num_buckets UpperCamelCase = relative_attention_max_distance UpperCamelCase = dropout_rate UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_factor UpperCamelCase = use_cache UpperCamelCase = eos_token_id UpperCamelCase = decoder_start_token_id # for backwards compatibility UpperCamelCase = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , is_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @classmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) UpperCamelCase , UpperCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCamelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] ="pix2struct_vision_model" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=7_68 , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=20_48 , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu_new" , SCREAMING_SNAKE_CASE__ : Dict=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Any=1e-10 , SCREAMING_SNAKE_CASE__ : str=1.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=40_96 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_28 , **SCREAMING_SNAKE_CASE__ : str , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = hidden_size UpperCamelCase = patch_embed_hidden_size UpperCamelCase = d_ff UpperCamelCase = dropout_rate UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = initializer_range UpperCamelCase = initializer_factor UpperCamelCase = attention_dropout UpperCamelCase = layer_norm_eps UpperCamelCase = dense_act_fn UpperCamelCase = seq_len UpperCamelCase = relative_attention_num_buckets UpperCamelCase = relative_attention_max_distance UpperCamelCase = d_kv @classmethod def __lowerCAmelCase ( cls : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) UpperCamelCase , UpperCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="pix2struct" SCREAMING_SNAKE_CASE_ : str =True def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Any=True , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text_config is None: UpperCamelCase = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCamelCase = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCamelCase = PixaStructTextConfig(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.text_config.decoder_start_token_id UpperCamelCase = self.text_config.pad_token_id UpperCamelCase = self.text_config.eos_token_id UpperCamelCase = initializer_factor UpperCamelCase = initializer_range UpperCamelCase = self.initializer_range UpperCamelCase = self.initializer_range UpperCamelCase = is_vqa @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : PixaStructTextConfig , SCREAMING_SNAKE_CASE__ : PixaStructVisionConfig , **SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.text_config.to_dict() UpperCamelCase = self.vision_config.to_dict() UpperCamelCase = self.__class__.model_type return output
282
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _snake_case = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') _snake_case , _snake_case = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') _snake_case = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: _snake_case = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _snake_case = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
282
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
536
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase__( enum.Enum ): lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[Any] = 2 @add_end_docstrings(__A ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params ) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( __UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) A__ = handle_long_generation preprocess_params.update(__UpperCAmelCase ) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Dict: A__ = self.tokenizer( prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs['max_new_tokens'] else: A__ = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) A__ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs['attention_mask'][:, -keep_length:] return inputs def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: A__ = model_inputs['input_ids'] A__ = model_inputs.get('attention_mask' ,__UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop('prefix_length' ,0 ) if prefix_length > 0: A__ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": A__ = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str: A__ = model_outputs['generated_sequence'][0] A__ = model_outputs['input_ids'] A__ = model_outputs['prompt_text'] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( __UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) ) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {'generated_text': all_text} records.append(__UpperCAmelCase ) return records
536
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu SCREAMING_SNAKE_CASE_ = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowercase__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=None ) -> Tuple: """simple docstring""" UpperCAmelCase = True while ask_again: UpperCAmelCase = input(lowerCAmelCase ) try: if default is not None and len(lowerCAmelCase ) == 0: return default return convert_value(lowerCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCAmelCase ) def lowercase__ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=[] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Tuple=0 ) -> str: """simple docstring""" UpperCAmelCase = BulletMenu(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = menu.run(default_choice=lowerCAmelCase ) return convert_value(lowerCAmelCase ) if convert_value is not None else result def lowercase__ ( lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = int(lowerCAmelCase ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def lowercase__ ( lowerCAmelCase : List[str] ) -> int: """simple docstring""" UpperCAmelCase = int(lowerCAmelCase ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def lowercase__ ( lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase = int(lowerCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase__ ( lowerCAmelCase : List[Any] ) -> str: """simple docstring""" UpperCAmelCase = int(lowerCAmelCase ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def lowercase__ ( lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase = int(lowerCAmelCase ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def lowercase__ ( lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class _UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: UpperCAmelCase = super()._format_usage(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = usage.replace('<command> [<args>] ' , '' ) return usage
373
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput SCREAMING_SNAKE_CASE_ = '''scheduler_config.json''' class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[Any] = 1 __SCREAMING_SNAKE_CASE : Dict = 2 __SCREAMING_SNAKE_CASE : List[Any] = 3 __SCREAMING_SNAKE_CASE : Any = 4 __SCREAMING_SNAKE_CASE : Any = 5 __SCREAMING_SNAKE_CASE : Union[str, Any] = 6 __SCREAMING_SNAKE_CASE : str = 7 __SCREAMING_SNAKE_CASE : Any = 8 __SCREAMING_SNAKE_CASE : Tuple = 9 __SCREAMING_SNAKE_CASE : int = 1_0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_2 __SCREAMING_SNAKE_CASE : Dict = 1_3 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_4 @dataclass class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : torch.FloatTensor class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : str = SCHEDULER_CONFIG_NAME __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = True @classmethod def a_ ( cls , lowercase_ = None , lowercase_ = None , lowercase_=False , **lowercase_ , ) -> List[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=lowercase_ , subfolder=lowercase_ , return_unused_kwargs=lowercase_ , return_commit_hash=lowercase_ , **lowercase_ , ) return cls.from_config(lowercase_ , return_unused_kwargs=lowercase_ , **lowercase_ ) def a_ ( self , lowercase_ , lowercase_ = False , **lowercase_ ) -> str: self.save_config(save_directory=lowercase_ , push_to_hub=lowercase_ , **lowercase_ ) @property def a_ ( self ) -> Union[str, Any]: return self._get_compatibles() @classmethod def a_ ( cls ) -> Any: UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCAmelCase = [ getattr(lowercase_ , lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ , lowercase_ ) ] return compatible_classes
373
1
'''simple docstring''' import math import tensorflow as tf from packaging import version def _lowercase ( UpperCamelCase__ : Union[str, Any] ): __A : Dict = tf.convert_to_tensor(UpperCamelCase__ ) __A : Optional[int] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) )) return x * cdf def _lowercase ( UpperCamelCase__ : Any ): __A : int = tf.convert_to_tensor(UpperCamelCase__ ) __A : List[Any] = tf.cast(math.pi, x.dtype ) __A : Dict = tf.cast(0.044715, x.dtype ) __A : Dict = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCamelCase__, 3 )) )) return x * cdf def _lowercase ( UpperCamelCase__ : Optional[int] ): __A : List[Any] = tf.convert_to_tensor(UpperCamelCase__ ) return x * tf.tanh(tf.math.softplus(UpperCamelCase__ ) ) def _lowercase ( UpperCamelCase__ : Union[str, Any] ): __A : Any = tf.convert_to_tensor(UpperCamelCase__ ) __A : Union[str, Any] = tf.cast(0.044715, x.dtype ) __A : List[Any] = tf.cast(0.7978845608, x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _lowercase ( UpperCamelCase__ : Optional[int] ): __A : Any = tf.convert_to_tensor(UpperCamelCase__ ) __A : int = tf.cast(1.702, x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _lowercase ( UpperCamelCase__ : Union[str, Any] ): return tf.clip_by_value(_gelu(UpperCamelCase__ ), -10, 10 ) def _lowercase ( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int]=-1 ): __A ,__A : Dict = tf.split(UpperCamelCase__, 2, axis=UpperCamelCase__ ) return a * tf.math.sigmoid(UpperCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def _lowercase ( UpperCamelCase__ : Tuple ): return tf.keras.activations.gelu(UpperCamelCase__, approximate=UpperCamelCase__ ) UpperCAmelCase_ : Any = tf.keras.activations.gelu UpperCAmelCase_ : List[str] = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : List[str] = _gelu_new UpperCAmelCase_ : str = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def _lowercase ( UpperCamelCase__ : Optional[int] ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
540
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ): """simple docstring""" __A : Optional[int] = parent __A : Tuple = batch_size __A : Optional[int] = seq_length __A : Tuple = is_training __A : Optional[Any] = use_input_mask __A : Optional[Any] = use_token_type_ids __A : Optional[int] = use_labels __A : str = vocab_size __A : Dict = hidden_size __A : Tuple = num_hidden_layers __A : Optional[int] = num_attention_heads __A : str = intermediate_size __A : List[Any] = hidden_act __A : List[str] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : int = max_position_embeddings __A : int = type_vocab_size __A : int = type_sequence_label_size __A : str = initializer_range __A : str = num_labels __A : str = num_choices __A : Any = scope def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Union[str, Any] = None if self.use_input_mask: __A : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __A : str = None if self.use_token_type_ids: __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Union[str, Any] = None __A : Optional[int] = None __A : List[str] = None if self.use_labels: __A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __A : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , use_stable_embedding=__lowercase , ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" __A : List[str] = OpenLlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Any = model(__lowercase , attention_mask=__lowercase ) __A : Dict = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" __A : List[str] = True __A : int = OpenLlamaModel(__lowercase ) model.to(__lowercase ) model.eval() __A : List[Any] = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __A : Optional[Any] = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) __A : Optional[Any] = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" __A : Dict = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" __A : List[Any] = True __A : Optional[int] = True __A : Dict = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass __A : List[str] = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) __A : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) __A : Tuple = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] __A : Any = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] # select random slice __A : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def snake_case__ ( self ): """simple docstring""" __A : int = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Optional[Any] = config_and_inputs __A : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowercase : List[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowercase : Optional[int] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = OpenLlamaModelTester(self ) __A : List[str] = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def snake_case__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ): """simple docstring""" __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : List[str] = type self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = 3 __A : int = input_dict['input_ids'] __A : int = input_ids.ne(1 ).to(__lowercase ) __A : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[Any] = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[int] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self ): """simple docstring""" __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = 3 __A : List[str] = 'single_label_classification' __A : Dict = input_dict['input_ids'] __A : Dict = input_ids.ne(1 ).to(__lowercase ) __A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Union[str, Any] = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Dict = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self ): """simple docstring""" __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = 3 __A : int = 'multi_label_classification' __A : Union[str, Any] = input_dict['input_ids'] __A : str = input_ids.ne(1 ).to(__lowercase ) __A : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A : int = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def snake_case__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__ ( self , __lowercase ): """simple docstring""" __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __A : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : Union[str, Any] = OpenLlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() __A : Optional[int] = original_model(__lowercase ).last_hidden_state __A : int = original_model(__lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : List[Any] = {'type': scaling_type, 'factor': 1_0.0} __A : str = OpenLlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() __A : Dict = scaled_model(__lowercase ).last_hidden_state __A : List[str] = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) )
540
1
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : int, lowercase__ : List[Any] ): '''simple docstring''' __lowercase =OmegaConf.load(__lowerCamelCase ) __lowercase =torch.load(__lowerCamelCase, map_location='cpu' )['''model'''] __lowercase =list(state_dict.keys() ) # extract state_dict for VQVAE __lowercase ={} __lowercase ='''first_stage_model.''' for key in keys: if key.startswith(__lowerCamelCase ): __lowercase =state_dict[key] # extract state_dict for UNetLDM __lowercase ={} __lowercase ='''model.diffusion_model.''' for key in keys: if key.startswith(__lowerCamelCase ): __lowercase =state_dict[key] __lowercase =config.model.params.first_stage_config.params __lowercase =config.model.params.unet_config.params __lowercase =VQModel(**__lowerCamelCase ).eval() vqvae.load_state_dict(__lowerCamelCase ) __lowercase =UNetLDMModel(**__lowerCamelCase ).eval() unet.load_state_dict(__lowerCamelCase ) __lowercase =DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule='scaled_linear', beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=__lowerCamelCase, ) __lowercase =LDMPipeline(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) pipeline.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) UpperCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
119
"""simple docstring""" lowerCAmelCase_ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602176634E-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.3_5_5_8_1_8, } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase__ : Optional[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
560
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase_ ( _lowercase : Any , _lowercase : List[Any]=False ): '''simple docstring''' UpperCAmelCase : str = OmegaConf.load(_lowercase ) if display: print(yaml.dump(OmegaConf.to_container(_lowercase ) ) ) return config def lowercase_ ( _lowercase : Optional[int] , _lowercase : int=None , _lowercase : Tuple=None ): '''simple docstring''' if conf_path is None: UpperCAmelCase : Optional[Any] = "./model_checkpoints/vqgan_only.yaml" UpperCAmelCase : Union[str, Any] = load_config(_lowercase , display=_lowercase ) UpperCAmelCase : int = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase : Tuple = "./model_checkpoints/vqgan_only.pt" UpperCAmelCase : int = torch.load(_lowercase , map_location=_lowercase ) if ".ckpt" in ckpt_path: UpperCAmelCase : List[str] = sd["state_dict"] model.load_state_dict(_lowercase , strict=_lowercase ) model.to(_lowercase ) del sd return model def lowercase_ ( _lowercase : List[Any] , _lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = model.encode(_lowercase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCAmelCase : List[str] = model.decode(_lowercase ) return xrec def lowercase_ ( _lowercase : Dict , _lowercase : List[str]=False ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: UpperCAmelCase : Optional[int] = importlib.import_module(_lowercase ) importlib.reload(_lowercase ) return getattr(importlib.import_module(_lowercase , package=_lowercase ) , cls ) def lowercase_ ( _lowercase : int ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def lowercase_ ( _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Optional[int]=True , _lowercase : str=True ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = instantiate_from_config(_lowercase ) if sd is not None: model.load_state_dict(_lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase_ ( _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Dict ): '''simple docstring''' if ckpt: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="cpu" ) UpperCAmelCase : List[str] = pl_sd["global_step"] print(F"""loaded model from global step {global_step}.""" ) else: UpperCAmelCase : Union[str, Any] = {"state_dict": None} UpperCAmelCase : Any = None UpperCAmelCase : List[str] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowercase , eval_mode=_lowercase )["model"] return model, global_step
292
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case_ : Union[str, Any] = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def lowercase_ ( _lowercase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowercase , id=_lowercase ) def lowercase_ ( _lowercase : str , _lowercase : Dict ): '''simple docstring''' if exitstatus == 5: UpperCAmelCase : List[str] = 0 # Doctest custom flag to ignore output. snake_case_ : Union[str, Any] = doctest.register_optionflag("""IGNORE_RESULT""") snake_case_ : Optional[int] = doctest.OutputChecker class snake_case__ ( lowerCAmelCase_ ): def __lowerCAmelCase ( self : List[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase , lowercase , lowercase ) snake_case_ : List[str] = CustomOutputChecker snake_case_ : Optional[Any] = HfDoctestModule snake_case_ : List[str] = HfDocTestParser
292
1
import math import os import sys def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = '' try: with open(_UpperCAmelCase , 'rb') as binary_file: SCREAMING_SNAKE_CASE = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible') sys.exit() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): lexicon.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = last_match_id if math.loga(_UpperCAmelCase).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE = '0' + lexicon[curr_key] SCREAMING_SNAKE_CASE = bin(_UpperCAmelCase)[2:] def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = {'0': '0', '1': '1'} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = '', '' SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) for i in range(len(_UpperCAmelCase)): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) index += 1 SCREAMING_SNAKE_CASE = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = os.path.getsize(_UpperCAmelCase) SCREAMING_SNAKE_CASE = bin(_UpperCAmelCase)[2:] SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 8 try: with open(_UpperCAmelCase , 'wb') as opened_file: SCREAMING_SNAKE_CASE = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase) , _UpperCAmelCase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append('10000000') else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2).to_bytes(1 , byteorder='big')) except OSError: print('File not accessible') sys.exit() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = read_file_binary(_UpperCAmelCase) SCREAMING_SNAKE_CASE = compress_data(_UpperCAmelCase) SCREAMING_SNAKE_CASE = add_file_length(_UpperCAmelCase , _UpperCAmelCase) write_file_binary(_UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
73
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ : Any = 'true' def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16): set_seed(42) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(_UpperCAmelCase) SCREAMING_SNAKE_CASE = RegressionDataset(length=_UpperCAmelCase) SCREAMING_SNAKE_CASE = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase) model.to(accelerator.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return model, ddp_model, dataloader def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased') SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation') def tokenize_function(_UpperCAmelCase): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(_UpperCAmelCase): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt') return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt') return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase) SCREAMING_SNAKE_CASE = get_dataloader(_UpperCAmelCase , not dispatch_batches) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase) targs.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(_UpperCAmelCase), torch.cat(_UpperCAmelCase) return logits, targs def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) assert ( len(_UpperCAmelCase) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase)}''' def lowerCamelCase__ (_UpperCAmelCase = False , _UpperCAmelCase = False): SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(_UpperCAmelCase) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels']) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key]), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''') test_mrpc(_UpperCAmelCase , _UpperCAmelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''') test_torch_metrics(_UpperCAmelCase , 99) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**') SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(_UpperCAmelCase , 512) accelerator.state._reset_state() def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
73
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class _a ( unittest.TestCase ): def _UpperCamelCase ( self : int ): if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=_A , ) assert hasattr(self , 'env' ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = { 'enabled': True, 'processes_per_host': 8, } lowerCamelCase__ = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } lowerCamelCase__ = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} lowerCamelCase__ = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_A , py_version='py36' , ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): TrainingJobAnalytics(_A ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self.create_estimator(_A ) # run training estimator.fit() # result dataframe lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _A )
716
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
444
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase (_A ): """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCAmelCase : Optional[int] = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @staticmethod def a ( snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=snake_case__ , required=snake_case__ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=snake_case__ , required=snake_case__ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=snake_case__ , required=snake_case__ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=snake_case__ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=snake_case__ , default=snake_case__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=snake_case__ ) def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , ): '''simple docstring''' _lowerCAmelCase : str = logging.get_logger('transformers-cli/converting' ) self._logger.info(F'Loading model {model_type}' ) _lowerCAmelCase : Any = model_type _lowerCAmelCase : Any = tf_checkpoint _lowerCAmelCase : List[str] = pytorch_dump_output _lowerCAmelCase : int = config _lowerCAmelCase : str = finetuning_task_name def a ( self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCAmelCase : List[Any] = self._tf_checkpoint _lowerCAmelCase : Optional[int] = '' else: _lowerCAmelCase : int = self._tf_checkpoint _lowerCAmelCase : Dict = '' convert_transfo_xl_checkpoint_to_pytorch( snake_case__ , self._config , self._pytorch_dump_output , snake_case__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
444
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: super().__init__() self.register_modules(vqvae=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> Union[Tuple, ImagePipelineOutput]: snake_case_ : List[str] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_SCREAMING_SNAKE_CASE , ) snake_case_ : int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case_ : Optional[Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature snake_case_ : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ : Tuple = {} if accepts_eta: snake_case_ : Dict = eta for t in self.progress_bar(self.scheduler.timesteps ): snake_case_ : Any = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual snake_case_ : Tuple = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VAE snake_case_ : Dict = self.vqvae.decode(_SCREAMING_SNAKE_CASE ).sample snake_case_ : int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Any = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
114
def lowerCAmelCase__ ( _a : int ): snake_case_ : str = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCAmelCase__ ( _a : int ): snake_case_ : List[str] = 0 while number > 0: snake_case_ : Dict = number % 10 sum_of_digits += last_digit snake_case_ : List[Any] = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase__ ( _a : int = 1_00 ): snake_case_ : Optional[Any] = factorial(_a ) snake_case_ : Optional[int] = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
114
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : int = emb.weight.shape A_ : int = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) A_ : int = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): A_ : Optional[Any] = {} for old_key in state_dict.keys(): A_ : Optional[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: A_ : Dict = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: A_ : List[str] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: A_ : List[Any] = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: A_ : List[Any] = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: A_ : Any = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: A_ : Optional[int] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: A_ : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: A_ : Optional[Any] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) A_ : List[Any] = state_dict[old_key] return new_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): A_ : Dict = [] A_ : int = 0 os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) for expert in range(__UpperCAmelCase ): A_ : Optional[int] = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__UpperCAmelCase ): A_ : str = torch.load(__UpperCAmelCase )['model'] remove_ignore_keys_(__UpperCAmelCase ) A_ : Union[str, Any] = rename_fairseq_keys(__UpperCAmelCase , __UpperCAmelCase ) A_ : Dict = os.path.join( __UpperCAmelCase , weights_name.replace('''.bin''' , f'''-{len(__UpperCAmelCase )+1:05d}-of-???.bin''' ) ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__UpperCAmelCase )[0]].dtype ) # Add the last block A_ : Any = os.path.join(__UpperCAmelCase , weights_name.replace('''.bin''' , f'''-{len(__UpperCAmelCase )+1:05d}-of-???.bin''' ) ) A_ : Dict = torch.load(switch_checkpoint_path + '''-shared.pt''' )['model'] remove_ignore_keys_(__UpperCAmelCase ) A_ : Optional[int] = rename_fairseq_keys(__UpperCAmelCase , __UpperCAmelCase ) A_ : Optional[int] = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__UpperCAmelCase ) == 1: A_ : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__UpperCAmelCase , __UpperCAmelCase ) # Otherwise, let's build the index A_ : Any = {} for idx, shard in enumerate(__UpperCAmelCase ): A_ : List[Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(__UpperCAmelCase ):05d}.bin''' ) A_ : Any = os.path.join(__UpperCAmelCase , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) for key in shard: A_ : int = shard_file # Add the metadata A_ : Dict = {'total_size': total_size} A_ : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f: A_ : Optional[Any] = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '\n' f.write(__UpperCAmelCase ) return metadata, index if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) UpperCamelCase = parser.parse_args() UpperCamelCase , UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
590
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __snake_case : Dict = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , x.transpose() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : str = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) __snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : List[str] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : Any = np.random.randn(3 , 4 ) __snake_case : Dict = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) __snake_case : int = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , np.asarray(transpose(_UpperCAmelCase ) ) ) ) __snake_case : List[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ): __snake_case : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.reshape(_UpperCAmelCase , (4, 3) ) ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.reshape(_UpperCAmelCase , (12, 5) ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Optional[int] = np.random.randn(3 , 4 ) __snake_case : Optional[int] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) __snake_case : int = np.random.randn(3 , 4 , 5 ) __snake_case : int = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : Optional[int] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) __snake_case : List[str] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : int = np.random.randn(3 , 4 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.asarray(reshape(_UpperCAmelCase , (4, 3) ) ) ) ) __snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.asarray(reshape(_UpperCAmelCase , (12, 5) ) ) ) ) def lowercase_ ( self ): __snake_case : Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.squeeze(_UpperCAmelCase ) ) ) __snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.squeeze(_UpperCAmelCase , axis=2 ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Tuple = np.random.randn(1 , 3 , 4 ) __snake_case : int = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) __snake_case : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Tuple = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : List[Any] = np.random.randn(1 , 3 , 4 ) __snake_case : Optional[Any] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) __snake_case : Dict = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Dict = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : List[str] = np.random.randn(1 , 3 , 4 ) __snake_case : Optional[Any] = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.asarray(squeeze(_UpperCAmelCase ) ) ) ) __snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Dict = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.asarray(squeeze(_UpperCAmelCase , axis=2 ) ) ) ) def lowercase_ ( self ): __snake_case : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.expand_dims(_UpperCAmelCase , axis=1 ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Dict = np.random.randn(3 , 4 ) __snake_case : List[str] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : int = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : Union[str, Any] = np.random.randn(3 , 4 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(_UpperCAmelCase , axis=1 ) ) ) )
576
0
"""simple docstring""" import math def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 ) ->str: UpperCAmelCase__ = end or len(A_ ) for i in range(A_ , A_ ): UpperCAmelCase__ = i UpperCAmelCase__ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase__ = array[temp_index - 1] temp_index -= 1 UpperCAmelCase__ = temp_index_value return array def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: # Max Heap UpperCAmelCase__ = index UpperCAmelCase__ = 2 * index + 1 # Left Node UpperCAmelCase__ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase__ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase__ = right_index if largest != index: UpperCAmelCase__ , UpperCAmelCase__ = array[largest], array[index] heapify(A_ , A_ , A_ ) def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Dict: UpperCAmelCase__ = len(A_ ) for i in range(n // 2 , -1 , -1 ): heapify(A_ , A_ , A_ ) for i in range(n - 1 , 0 , -1 ): UpperCAmelCase__ , UpperCAmelCase__ = array[0], array[i] heapify(A_ , 0 , A_ ) return array def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: UpperCAmelCase__ = low UpperCAmelCase__ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase__ , UpperCAmelCase__ = array[j], array[i] i += 1 def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Tuple: if len(A_ ) == 0: return array UpperCAmelCase__ = 2 * math.ceil(math.loga(len(A_ ) ) ) UpperCAmelCase__ = 1_6 return intro_sort(A_ , 0 , len(A_ ) , A_ , A_ ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: while end - start > size_threshold: if max_depth == 0: return heap_sort(A_ ) max_depth -= 1 UpperCAmelCase__ = median_of_a(A_ , A_ , start + ((end - start) // 2) + 1 , end - 1 ) UpperCAmelCase__ = partition(A_ , A_ , A_ , A_ ) intro_sort(A_ , A_ , A_ , A_ , A_ ) UpperCAmelCase__ = p return insertion_sort(A_ , A_ , A_ ) if __name__ == "__main__": import doctest doctest.testmod() a : str = input('''Enter numbers separated by a comma : ''').strip() a : List[Any] = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
710
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset a : Tuple = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __lowercase ): super().__init__() UpperCAmelCase__ = torchvision.models.resnetaaa(pretrained=__lowercase ) UpperCAmelCase__ = list(model.children() )[:-2] UpperCAmelCase__ = nn.Sequential(*__lowercase ) UpperCAmelCase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def A__ ( self , __lowercase ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase__ = self.pool(self.model(__lowercase ) ) UpperCAmelCase__ = torch.flatten(__lowercase , start_dim=2 ) UpperCAmelCase__ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = [json.loads(__lowercase ) for l in open(__lowercase )] UpperCAmelCase__ = os.path.dirname(__lowercase ) UpperCAmelCase__ = tokenizer UpperCAmelCase__ = labels UpperCAmelCase__ = len(__lowercase ) UpperCAmelCase__ = max_seq_length UpperCAmelCase__ = transforms def __len__( self ): return len(self.data ) def __getitem__( self , __lowercase ): UpperCAmelCase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=__lowercase ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase__ = sentence[: self.max_seq_length] UpperCAmelCase__ = torch.zeros(self.n_classes ) UpperCAmelCase__ = 1 UpperCAmelCase__ = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) UpperCAmelCase__ = self.transforms(__lowercase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def A__ ( self ): UpperCAmelCase__ = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->List[str]: UpperCAmelCase__ = [len(row["""sentence"""] ) for row in batch] UpperCAmelCase__ , UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) UpperCAmelCase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ = input_row["""sentence"""] UpperCAmelCase__ = 1 UpperCAmelCase__ = torch.stack([row["""image"""] for row in batch] ) UpperCAmelCase__ = torch.stack([row["""label"""] for row in batch] ) UpperCAmelCase__ = torch.stack([row["""image_start_token"""] for row in batch] ) UpperCAmelCase__ = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case__ ( ) ->int: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case__ ( ) ->str: return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
422
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = """Hello world! cécé herlolip""" SCREAMING_SNAKE_CASE__ : Any = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ : Any = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) UpperCAmelCase__ : int = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() UpperCAmelCase__ : Tuple = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ : List[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Any = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) UpperCAmelCase__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Dict = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ : List[str] = encoder_input_ids UpperCAmelCase__ : List[str] = decoder_input_ids UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ : Any = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : List[str] = original.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : int = new_model.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : Any = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : str = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
79
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase_ = get_logger(__name__) def _UpperCAmelCase ( A , A , A , A , A=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase__ =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase__ =F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase__ =os.path.join(A , A ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase__ =( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase__ =os.path.join(A , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(F"""Saving model to {ckpt_dir}""" ) UpperCAmelCase__ ={"model": state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _UpperCAmelCase ( A , A , A , A , A=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return UpperCAmelCase__ =F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCAmelCase__ =torch.load(A ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase__ =( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCAmelCase__ =torch.load(A ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase__ =( os.path.join(A , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) UpperCAmelCase__ ={"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase__ =state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(A ) def _UpperCAmelCase ( A , A , A , A , A , A=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase__ =FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase__ =( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(A , A ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase__ =os.path.join(A , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _UpperCAmelCase ( A , A , A , A , A , A=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase__ =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase__ =( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase__ =torch.load(A ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase__ =( os.path.join(A , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase__ =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase__ =optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase__ =FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
625
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : Dict=None, UpperCAmelCase__ : Dict=None, UpperCAmelCase__ : Union[str, Any]=None, ) ->Optional[Any]: if attention_mask is None: A__ : Optional[int] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: A__ : List[Any] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: A__ : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Dict , snake_case : int=13 , snake_case : Any=7 , snake_case : Optional[Any]=True , snake_case : Dict=False , snake_case : Optional[Any]=99 , snake_case : Any=16 , snake_case : List[Any]=2 , snake_case : int=4 , snake_case : Tuple=4 , snake_case : int="gelu" , snake_case : int=0.1 , snake_case : Optional[int]=0.1 , snake_case : List[Any]=32 , snake_case : List[str]=2 , snake_case : List[str]=1 , snake_case : Union[str, Any]=0 , snake_case : Any=0.02 , ): '''simple docstring''' A__ : List[Any] = parent A__ : Optional[int] = batch_size A__ : Any = seq_length A__ : Optional[int] = is_training A__ : int = use_labels A__ : Optional[int] = vocab_size A__ : Tuple = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Any = intermediate_size A__ : Dict = hidden_act A__ : Any = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : List[str] = eos_token_id A__ : Union[str, Any] = pad_token_id A__ : List[Any] = bos_token_id A__ : Any = initializer_range def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A__ : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A__ : int = shift_tokens_right(_A , 1 , 2 ) A__ : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_A , ) A__ : Optional[int] = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ , A__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : str , snake_case : Tuple ): '''simple docstring''' A__ : Union[str, Any] = 20 A__ : Dict = model_class_name(_A ) A__ : Any = model.encode(inputs_dict["""input_ids"""] ) A__ , A__ : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) A__ : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) A__ : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ : str = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) A__ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ : List[str] = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) A__ : Union[str, Any] = model.decode(_A , _A ) A__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _UpperCamelCase ( self : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : Optional[Any] ): '''simple docstring''' A__ : Tuple = 20 A__ : Union[str, Any] = model_class_name(_A ) A__ : List[Any] = model.encode(inputs_dict["""input_ids"""] ) A__ , A__ : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A__ : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A__ : Any = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) A__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ : Tuple = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) A__ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ : List[str] = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) A__ : Optional[Any] = model.decode(_A , _A , decoder_attention_mask=_A ) A__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = 99 def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A__ : Optional[Any] = input_ids.shape[0] A__ : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ , A__ , A__ : str = self._get_config_and_data() A__ : Any = FlaxBlenderbotSmallForConditionalGeneration(_A ) A__ : List[Any] = lm_model(input_ids=_A ) A__ : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _A ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A__ : Tuple = FlaxBlenderbotSmallForConditionalGeneration(_A ) A__ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A__ : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A__ : List[str] = lm_model(input_ids=_A , decoder_input_ids=_A ) A__ : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _A ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A__ : Optional[Any] = shift_tokens_right(_A , 1 , 2 ) A__ : List[str] = np.equal(_A , 1 ).astype(np.floataa ).sum() A__ : str = np.equal(_A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase , __lowercase ): snake_case_ = True snake_case_ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Union[str, Any] = FlaxBlenderbotSmallModelTester(self ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ : str = self._prepare_for_class(_A , _A ) A__ : Union[str, Any] = model_class(_A ) @jax.jit def encode_jitted(snake_case : Optional[int] , snake_case : Any=None , **snake_case : str ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest("""JIT Enabled""" ): A__ : Any = encode_jitted(**_A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A__ : Union[str, Any] = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ : Dict = model_class(_A ) A__ : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) A__ : int = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(snake_case : Optional[Any] , snake_case : Dict , snake_case : List[str] ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest("""JIT Enabled""" ): A__ : Union[str, Any] = decode_jitted(**_A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A__ : int = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: A__ : str = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A__ : Dict = np.ones((1, 1) ) * model.config.eos_token_id A__ : List[Any] = model(_A ) self.assertIsNotNone(_A )
705
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->str: A__ : Tuple = {} A__ : Union[str, Any] = tokenizer(example["""content"""], truncation=UpperCAmelCase__ )["""input_ids"""] A__ : Any = len(example["""content"""] ) / len(output["""input_ids"""] ) return output A_ = HfArgumentParser(PretokenizationArguments) A_ = parser.parse_args() if args.num_workers is None: A_ = multiprocessing.cpu_count() A_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) A_ = time.time() A_ = load_dataset(args.dataset_name, split='''train''') print(F'Dataset loaded in {time.time()-t_start:.2f}s') A_ = time.time() A_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') A_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
498
0
A_ : Any = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
456
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase_ ( _lowercase , _lowercase=() , _lowercase=None , _lowercase="no" , _lowercase="29500" ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : List[Any] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCamelCase_ : Dict = True elif "IPython" in sys.modules: lowerCamelCase_ : List[Any] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCamelCase_ : Optional[Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , _lowercase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCamelCase_ : Optional[Any] = 8 lowerCamelCase_ : str = PrepareForLaunch(_lowercase , distributed_type='''TPU''' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_lowercase , args=_lowercase , nprocs=_lowercase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*_lowercase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowercase , master_addr='''127.0.01''' , master_port=_lowercase , mixed_precision=_lowercase ): lowerCamelCase_ : Union[str, Any] = PrepareForLaunch(_lowercase , distributed_type='''MULTI_GPU''' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_lowercase , args=_lowercase , nprocs=_lowercase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase_ : Tuple = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*_lowercase ) def lowercase_ ( _lowercase , _lowercase=() , _lowercase=2 ) -> Dict: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowercase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): lowerCamelCase_ : int = PrepareForLaunch(_lowercase , debug=_lowercase ) start_processes(_lowercase , args=_lowercase , nprocs=_lowercase , start_method='''fork''' )
717
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = 5 # Realm tok lowerCamelCase_ : Any = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : Optional[int] = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(A , exist_ok=A ) lowerCamelCase_ : str = os.path.join(A , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : List[Any] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(A , exist_ok=A ) def UpperCAmelCase__ (self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=A , ) return block_records def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.get_config() lowerCamelCase_ : List[Any] = self.get_dummy_retriever() lowerCamelCase_ : Dict = retriever.tokenizer lowerCamelCase_ : List[Any] = np.array([0, 3] , dtype='''long''' ) lowerCamelCase_ : int = tokenizer(['''Test question'''] ).input_ids lowerCamelCase_ : Any = tokenizer( ['''the fourth'''] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids lowerCamelCase_ : Any = config.reader_seq_len lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Tuple = retriever( A , A , answer_ids=A , max_length=A , return_tensors='''np''' ) self.assertEqual(len(A ) , 2 ) self.assertEqual(len(A ) , 2 ) self.assertEqual(len(A ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_config() lowerCamelCase_ : Optional[Any] = self.get_dummy_retriever() lowerCamelCase_ : Optional[int] = retriever.tokenizer lowerCamelCase_ : int = np.array([0, 3, 5] , dtype='''long''' ) lowerCamelCase_ : List[Any] = tokenizer(['''Test question'''] ).input_ids lowerCamelCase_ : int = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids lowerCamelCase_ : Tuple = config.reader_seq_len lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : int = retriever( A , A , answer_ids=A , max_length=A , return_tensors='''np''' ) self.assertEqual([False, True, True] , A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path lowerCamelCase_ : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowerCamelCase_ : Dict = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowerCamelCase_ : str = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
357
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self : Any , _A : str , _A : Tuple=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self._test_save_load_local() def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
74
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.ndarray: __lowerCamelCase : Optional[Any] = cva.getAffineTransform(lowerCamelCase__ , lowerCamelCase__ ) return cva.warpAffine(lowerCamelCase__ , lowerCamelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image a =cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value a =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a , a =gray_img.shape # set different points to rotate image a =np.array([[50, 50], [200, 50], [50, 200]], np.floataa) a =np.array([[10, 100], [200, 50], [100, 250]], np.floataa) a =np.array([[50, 50], [150, 50], [120, 200]], np.floataa) a =np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list a =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a =plt.figure(1) a =["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
652
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a ={ 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __UpperCAmelCase ( __lowerCAmelCase ): A__ : List[Any] = '''albert''' def __init__( self , _lowerCamelCase=30000 , _lowerCamelCase=128 , _lowerCamelCase=4096 , _lowerCamelCase=12 , _lowerCamelCase=1 , _lowerCamelCase=64 , _lowerCamelCase=16384 , _lowerCamelCase=1 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1E-12 , _lowerCamelCase=0.1 , _lowerCamelCase="absolute" , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=3 , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =vocab_size lowerCamelCase__ =embedding_size lowerCamelCase__ =hidden_size lowerCamelCase__ =num_hidden_layers lowerCamelCase__ =num_hidden_groups lowerCamelCase__ =num_attention_heads lowerCamelCase__ =inner_group_num lowerCamelCase__ =hidden_act lowerCamelCase__ =intermediate_size lowerCamelCase__ =hidden_dropout_prob lowerCamelCase__ =attention_probs_dropout_prob lowerCamelCase__ =max_position_embeddings lowerCamelCase__ =type_vocab_size lowerCamelCase__ =initializer_range lowerCamelCase__ =layer_norm_eps lowerCamelCase__ =classifier_dropout_prob lowerCamelCase__ =position_embedding_type class __UpperCAmelCase ( __lowerCAmelCase ): @property def _a ( self ): if self.task == "multiple-choice": lowerCamelCase__ ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
132
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a =logging.getLogger(__name__) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> str: '''simple docstring''' lowerCamelCase__ =bnb_quantization_config.load_in_abit lowerCamelCase__ =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) lowerCamelCase__ =[] # custom device map if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(device_map.keys() ) > 1: lowerCamelCase__ =[key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__ =get_keys_to_not_convert(__lowerCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCAmelCase ) lowerCamelCase__ =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__ =[] lowerCamelCase__ =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCAmelCase ) # compatibility with peft lowerCamelCase__ =load_in_abit lowerCamelCase__ =load_in_abit lowerCamelCase__ =get_parameter_device(__lowerCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) lowerCamelCase__ =replace_with_bnb_layers(__lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) # convert param to the right dtype lowerCamelCase__ =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__ =name.replace(".weight" , "" ).replace(".bias" , "" ) lowerCamelCase__ =getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCAmelCase ): param.to(__lowerCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowerCamelCase__ =replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) lowerCamelCase__ =get_quantized_model_device_map( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_memory=__lowerCAmelCase , no_split_module_classes=__lowerCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__ =True lowerCamelCase__ =any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCAmelCase , offload_state_dict=__lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCAmelCase , device_map=__lowerCAmelCase , offload_dir=__lowerCAmelCase ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Dict: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowerCamelCase__ ={"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) lowerCamelCase__ ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__ ={} lowerCamelCase__ =special_dtypes lowerCamelCase__ =no_split_module_classes lowerCamelCase__ =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__ =get_balanced_memory( __lowerCAmelCase , low_zero=(device_map == "balanced_low_0") , max_memory=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ =max_memory lowerCamelCase__ =infer_auto_device_map(__lowerCAmelCase , **__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # check if don't have any quantized module on the cpu lowerCamelCase__ =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__ ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[Any]: '''simple docstring''' if modules_to_not_convert is None: lowerCamelCase__ =[] lowerCamelCase__ , lowerCamelCase__ =_replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' lowerCamelCase__ =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ =[] current_key_name.append(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__ =".".join(__lowerCAmelCase ) lowerCamelCase__ =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__ =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__ =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__ =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) lowerCamelCase__ =module.weight.data if module.bias is not None: lowerCamelCase__ =module.bias.data bnb_module.requires_grad_(__lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ =_replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase_ ( __lowerCAmelCase ) -> List[str]: '''simple docstring''' with init_empty_weights(): lowerCamelCase__ =deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__ =find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ =sum(__lowerCAmelCase , [] ) lowerCamelCase__ =len(__lowerCAmelCase ) > 0 # Check if it is a base model lowerCamelCase__ =False if hasattr(__lowerCAmelCase , "base_model_prefix" ): lowerCamelCase__ =not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ =list(model.named_children() ) lowerCamelCase__ =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ =set(__lowerCAmelCase ) - set(__lowerCAmelCase ) lowerCamelCase__ =list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys lowerCamelCase__ =[".weight", ".bias"] lowerCamelCase__ =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ =name.replace(__lowerCAmelCase , "" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' for m in model.modules(): if isinstance(__lowerCAmelCase , bnb.nn.Linearabit ): return True return False def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return next(parameter.parameters() ).device def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , 0 , dtype=__lowerCAmelCase , value=__lowerCAmelCase ) lowerCamelCase__ =param_name lowerCamelCase__ =model if "." in tensor_name: lowerCamelCase__ =tensor_name.split("." ) for split in splits[:-1]: lowerCamelCase__ =getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowerCamelCase__ =new_module lowerCamelCase__ =splits[-1] # offload weights lowerCamelCase__ =False offload_weight(module._parameters[tensor_name] , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __lowerCAmelCase , index=__lowerCAmelCase , ) else: offload_weight(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) offload_weight(__lowerCAmelCase , param_name.replace("weight" , "SCB" ) , __lowerCAmelCase , index=__lowerCAmelCase ) set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , "meta" , dtype=__lowerCAmelCase , value=torch.empty(*param.size() ) )
132
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =42 class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : str=3 , a__ : Optional[int]=3 , a__ : str=("DownEncoderBlock2D",) , a__ : Optional[int]=(64,) , a__ : List[Any]=2 , a__ : Tuple=32 , a__ : List[Any]="silu" , a__ : Dict=True , ): super().__init__() UpperCAmelCase = layers_per_block UpperCAmelCase = torch.nn.Convad( a__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) # down UpperCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(a__ ): UpperCAmelCase = output_channel UpperCAmelCase = block_out_channels[i] UpperCAmelCase = i == len(a__ ) - 1 UpperCAmelCase = get_down_block( a__ , num_layers=self.layers_per_block , in_channels=a__ , out_channels=a__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , ) self.down_blocks.append(a__ ) # mid UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # out UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a__ , eps=1e-6 ) UpperCAmelCase = nn.SiLU() UpperCAmelCase = 2 * out_channels if double_z else out_channels UpperCAmelCase = nn.Convad(block_out_channels[-1] , a__ , 3 , padding=1 ) UpperCAmelCase = False def __snake_case ( self : Any , a__ : Optional[int] ): UpperCAmelCase = x UpperCAmelCase = self.conv_in(a__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(a__ : Dict ): def custom_forward(*a__ : Union[str, Any] ): return module(*a__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , use_reentrant=a__ ) # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , use_reentrant=a__ ) else: for down_block in self.down_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ ) # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a__ ) else: # down for down_block in self.down_blocks: UpperCAmelCase = down_block(a__ ) # middle UpperCAmelCase = self.mid_block(a__ ) # post-process UpperCAmelCase = self.conv_norm_out(a__ ) UpperCAmelCase = self.conv_act(a__ ) UpperCAmelCase = self.conv_out(a__ ) return sample class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , a__ : Optional[int]=3 , a__ : List[str]=3 , a__ : Dict=("UpDecoderBlock2D",) , a__ : List[str]=(64,) , a__ : Union[str, Any]=2 , a__ : Optional[Any]=32 , a__ : Union[str, Any]="silu" , a__ : str="group" , ): super().__init__() UpperCAmelCase = layers_per_block UpperCAmelCase = nn.Convad( a__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) UpperCAmelCase = in_channels if norm_type == '''spatial''' else None # mid UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # up UpperCAmelCase = list(reversed(a__ ) ) UpperCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(a__ ): UpperCAmelCase = output_channel UpperCAmelCase = reversed_block_out_channels[i] UpperCAmelCase = i == len(a__ ) - 1 UpperCAmelCase = get_up_block( a__ , num_layers=self.layers_per_block + 1 , in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , resnet_time_scale_shift=a__ , ) self.up_blocks.append(a__ ) UpperCAmelCase = output_channel # out if norm_type == "spatial": UpperCAmelCase = SpatialNorm(block_out_channels[0] , a__ ) else: UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a__ , eps=1e-6 ) UpperCAmelCase = nn.SiLU() UpperCAmelCase = nn.Convad(block_out_channels[0] , a__ , 3 , padding=1 ) UpperCAmelCase = False def __snake_case ( self : Dict , a__ : Optional[Any] , a__ : Any=None ): UpperCAmelCase = z UpperCAmelCase = self.conv_in(a__ ) UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a__ : Optional[int] ): def custom_forward(*a__ : Tuple ): return module(*a__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ , use_reentrant=a__ ) UpperCAmelCase = sample.to(a__ ) # up for up_block in self.up_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , a__ , use_reentrant=a__ ) else: # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ ) UpperCAmelCase = sample.to(a__ ) # up for up_block in self.up_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ , a__ ) else: # middle UpperCAmelCase = self.mid_block(a__ , a__ ) UpperCAmelCase = sample.to(a__ ) # up for up_block in self.up_blocks: UpperCAmelCase = up_block(a__ , a__ ) # post-process if latent_embeds is None: UpperCAmelCase = self.conv_norm_out(a__ ) else: UpperCAmelCase = self.conv_norm_out(a__ , a__ ) UpperCAmelCase = self.conv_act(a__ ) UpperCAmelCase = self.conv_out(a__ ) return sample class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , a__ : Optional[int] , a__ : Optional[int] , a__ : str , a__ : List[str]=None , a__ : str="random" , a__ : List[str]=False , a__ : Tuple=True ): super().__init__() UpperCAmelCase = n_e UpperCAmelCase = vq_embed_dim UpperCAmelCase = beta UpperCAmelCase = legacy UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase = self.used.shape[0] UpperCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase = self.re_embed UpperCAmelCase = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: UpperCAmelCase = n_e UpperCAmelCase = sane_index_shape def __snake_case ( self : str , a__ : Dict ): UpperCAmelCase = inds.shape assert len(a__ ) > 1 UpperCAmelCase = inds.reshape(ishape[0] , -1 ) UpperCAmelCase = self.used.to(a__ ) UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase = match.argmax(-1 ) UpperCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase = self.unknown_index return new.reshape(a__ ) def __snake_case ( self : Optional[int] , a__ : Optional[int] ): UpperCAmelCase = inds.shape assert len(a__ ) > 1 UpperCAmelCase = inds.reshape(ishape[0] , -1 ) UpperCAmelCase = self.used.to(a__ ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase = 0 # simply set to zero UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a__ ) return back.reshape(a__ ) def __snake_case ( self : List[Any] , a__ : Optional[Any] ): # reshape z -> (batch, height, width, channel) and flatten UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase = torch.argmin(torch.cdist(a__ , self.embedding.weight ) , dim=1 ) UpperCAmelCase = self.embedding(a__ ).view(z.shape ) UpperCAmelCase = None UpperCAmelCase = None # compute loss for embedding if not self.legacy: UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase = self.remap_to_used(a__ ) UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __snake_case ( self : str , a__ : Any , a__ : str ): # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase = self.unmap_to_all(a__ ) UpperCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase = self.embedding(a__ ) if shape is not None: UpperCAmelCase = z_q.view(a__ ) # reshape back to match original input shape UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , a__ : Union[str, Any] , a__ : Union[str, Any]=False ): UpperCAmelCase = parameters UpperCAmelCase, UpperCAmelCase = torch.chunk(a__ , 2 , dim=1 ) UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase = deterministic UpperCAmelCase = torch.exp(0.5 * self.logvar ) UpperCAmelCase = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase = UpperCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __snake_case ( self : Optional[Any] , a__ : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype UpperCAmelCase = randn_tensor( self.mean.shape , generator=a__ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase = self.mean + self.std * sample return x def __snake_case ( self : List[Any] , a__ : str=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __snake_case ( self : Tuple , a__ : str , a__ : List[Any]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a__ ) def __snake_case ( self : Optional[int] ): return self.mean
51
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ): '''simple docstring''' __A : Tuple = parent __A : Union[str, Any] = batch_size __A : List[Any] = image_size __A : Union[str, Any] = patch_size __A : List[Any] = num_channels __A : Optional[Any] = is_training __A : str = use_labels __A : Tuple = hidden_size __A : int = num_hidden_layers __A : Dict = num_attention_heads __A : List[Any] = intermediate_size __A : Tuple = hidden_act __A : Tuple = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Optional[Any] = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : Optional[Any] = mask_ratio __A : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __A : Optional[int] = (image_size // patch_size) ** 2 __A : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase ) __A : List[str] = (self.image_size // self.patch_size) ** 2 __A : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __A : List[str] = 1 __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : int = model(lowerCamelCase ) __A : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = self.prepare_config_and_inputs() __A ,__A ,__A : List[Any] = config_and_inputs __A : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = ViTMAEModelTester(self ) __A : Tuple = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) __A : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[Any] = [*signature.parameters.keys()] __A : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' np.random.seed(2 ) __A : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __A : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __A : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __A : Tuple = outputs[0].cpu().numpy() __A : List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __A : List[Any] = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans __A : List[Any] = after_outputs[0].cpu().numpy() __A : List[str] = 0 __A : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowercase (): '''simple docstring''' __A : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): '''simple docstring''' np.random.seed(2 ) __A : Dict = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) __A : str = self.default_image_processor __A : List[Any] = prepare_img() __A : Union[str, Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __A : Optional[Any] = ViTMAEConfig() __A : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __A : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __A : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits __A : Union[str, Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __A : int = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
111
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0