code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' lowerCAmelCase : Any = ['pixel_values'] def __init__( self : Tuple , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : List[str] , ): super().__init__(**__snake_case ) UpperCAmelCase_ = size if size is not None else {'''height''': 3_84, '''width''': 3_84} UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ = do_convert_rgb def lowerCamelCase_ ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : str , ): UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) UpperCAmelCase_ = (size['''height'''], size['''width''']) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : str , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Any , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : int , __snake_case : ImageInput , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : PILImageResampling = None , __snake_case : Optional[bool] = None , __snake_case : Optional[float] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : bool = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[str] , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ = BatchFeature(data={'''pixel_values''': images} , tensor_type=__snake_case ) return encoded_outputs
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "running_mean": lowercase__ = value elif weight_type == "running_var": lowercase__ = value elif weight_type == "num_batches_tracked": lowercase__ = value elif weight_type == "inv_freq": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "pos_bias_u" in name: lowercase__ = None elif "pos_bias_v" in name: lowercase__ = None elif "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = '''weight''' elif "running_mean" in name: lowercase__ = '''running_mean''' elif "inv_freq" in name: lowercase__ = '''inv_freq''' elif "running_var" in name: lowercase__ = '''running_var''' elif "num_batches_tracked" in name: lowercase__ = '''num_batches_tracked''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): """simple docstring""" if config_path is not None: lowercase__ = WavaVecaConformerConfig.from_pretrained(SCREAMING_SNAKE_CASE , hidden_act='''swish''' ) else: lowercase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase__ = '''rotary''' if is_finetuned: if dict_path: lowercase__ = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 0 lowercase__ = 1 with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) lowercase__ = True if config.feat_extract_norm == '''layer''' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) lowercase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = WavaVecaConformerForCTC(SCREAMING_SNAKE_CASE ) else: lowercase__ = WavaVecaConformerForPreTraining(SCREAMING_SNAKE_CASE ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase__ = argparse.Namespace(task='''audio_pretraining''' ) lowercase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE ) lowercase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
429
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: GenericTensor ) -> np.ndarray: """simple docstring""" if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase_ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def lowerCamelCase_ ( self: str , UpperCamelCase_: GenericTensor ) -> np.ndarray: """simple docstring""" lowercase__ = self.get_masked_index(UpperCamelCase_ ) lowercase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: GenericTensor ) -> int: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: Optional[Any] ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: lowercase__ = self.framework lowercase__ = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.ensure_exactly_one_mask_token(UpperCamelCase_ ) return model_inputs def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str ) -> Dict: """simple docstring""" lowercase__ = self.model(**UpperCamelCase_ ) lowercase__ = model_inputs['''input_ids'''] return model_outputs def lowerCamelCase_ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: Optional[Any]=None ) -> Optional[Any]: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ = target_ids.shape[0] lowercase__ = model_outputs['''input_ids'''][0] lowercase__ = model_outputs['''logits'''] if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ = outputs.numpy() lowercase__ = outputs[0, masked_index, :] lowercase__ = stable_softmax(UpperCamelCase_ , axis=-1 ) if target_ids is not None: lowercase__ = tf.gather_nd(tf.squeeze(UpperCamelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) lowercase__ = tf.expand_dims(UpperCamelCase_ , 0 ) lowercase__ = tf.math.top_k(UpperCamelCase_ , k=UpperCamelCase_ ) lowercase__ , lowercase__ = topk.values.numpy(), topk.indices.numpy() else: lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ = outputs[0, masked_index, :] lowercase__ = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ = probs[..., target_ids] lowercase__ , lowercase__ = probs.topk(UpperCamelCase_ ) lowercase__ = [] lowercase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowercase__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowercase__ = input_ids.numpy().copy() if target_ids is not None: lowercase__ = target_ids[p].tolist() lowercase__ = p # Filter padding out: lowercase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) lowercase__ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(UpperCamelCase_ ) result.append(UpperCamelCase_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None ) -> int: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [targets] try: lowercase__ = self.tokenizer.get_vocab() except Exception: lowercase__ = {} lowercase__ = [] for target in targets: lowercase__ = vocab.get(UpperCamelCase_ , UpperCamelCase_ ) if id_ is None: lowercase__ = self.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , max_length=1 , truncation=UpperCamelCase_ , )['''input_ids'''] if len(UpperCamelCase_ ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) lowercase__ = list(set(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__ = np.array(UpperCamelCase_ ) return target_ids def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" lowercase__ = {} if targets is not None: lowercase__ = self.get_target_ids(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = target_ids if top_k is not None: lowercase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self: List[str] , UpperCamelCase_: int , *UpperCamelCase_: int , **UpperCamelCase_: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1: return outputs[0] return outputs
429
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case: str = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: List[Any] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __snake_case: str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
577
'''simple docstring''' def _snake_case ( A_ : str , A_ : str ): """simple docstring""" if not (isinstance(A_ , A_ ) and isinstance(A_ , A_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) a_ : Optional[int] = len(A_ ) a_ : Dict = len(A_ ) a_ : Tuple = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] a_ : str = 0 a_ : Union[str, Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: a_ : int = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: a_ : Tuple = i a_ : Union[str, Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
577
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow a : Dict = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Union[str, Any] , a_ : List[Any]=32 ): """simple docstring""" set_seed(0 ) __snake_case = UNetaDModel(sample_size=a_ , in_channels=3 , out_channels=3 ) __snake_case = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def A ( self : Optional[int] ): """simple docstring""" __snake_case = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __snake_case = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=a_ , ) __snake_case = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=a_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __snake_case = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(a_ ) for _ in range(4 )] __snake_case = [torch.randn((4, 3, 32, 32) ).to(a_ ) for _ in range(4 )] __snake_case = [torch.randint(0 , 1_000 , (4,) ).long().to(a_ ) for _ in range(4 )] # train with a DDPM scheduler __snake_case , __snake_case = self.get_model_optimizer(resolution=32 ) model.train().to(a_ ) for i in range(4 ): optimizer.zero_grad() __snake_case = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __snake_case = model(a_ , timesteps[i] ).sample __snake_case = torch.nn.functional.mse_loss(a_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __snake_case , __snake_case = self.get_model_optimizer(resolution=32 ) model.train().to(a_ ) for i in range(4 ): optimizer.zero_grad() __snake_case = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __snake_case = model(a_ , timesteps[i] ).sample __snake_case = torch.nn.functional.mse_loss(a_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(a_ , a_ , atol=1e-5 ) ) self.assertTrue(torch.allclose(a_ , a_ , atol=1e-5 ) )
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _A ,unittest.TestCase ): _a = UnCLIPImageVariationPipeline _a = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} _a = IMAGE_VARIATION_BATCH_PARAMS _a = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] _a = False @property def UpperCAmelCase__ ( self : Optional[Any]): return 3_2 @property def UpperCAmelCase__ ( self : Union[str, Any]): return 3_2 @property def UpperCAmelCase__ ( self : Dict): return self.time_input_dim @property def UpperCAmelCase__ ( self : Any): return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : Dict): return 1_0_0 @property def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def UpperCAmelCase__ ( self : Dict): torch.manual_seed(0) lowerCAmelCase_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_a) @property def UpperCAmelCase__ ( self : int): torch.manual_seed(0) lowerCAmelCase_ : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(_a) @property def UpperCAmelCase__ ( self : Tuple): torch.manual_seed(0) lowerCAmelCase_ : Optional[int] = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } lowerCAmelCase_ : Any = UnCLIPTextProjModel(**_a) return model @property def UpperCAmelCase__ ( self : Union[str, Any]): torch.manual_seed(0) lowerCAmelCase_ : Optional[int] = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } lowerCAmelCase_ : int = UNetaDConditionModel(**_a) return model @property def UpperCAmelCase__ ( self : str): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCAmelCase__ ( self : Optional[Any]): torch.manual_seed(0) lowerCAmelCase_ : str = UNetaDModel(**self.dummy_super_res_kwargs) return model @property def UpperCAmelCase__ ( self : List[Any]): torch.manual_seed(1) lowerCAmelCase_ : Dict = UNetaDModel(**self.dummy_super_res_kwargs) return model def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Optional[int] = self.dummy_decoder lowerCAmelCase_ : Any = self.dummy_text_proj lowerCAmelCase_ : List[Any] = self.dummy_text_encoder lowerCAmelCase_ : Union[str, Any] = self.dummy_tokenizer lowerCAmelCase_ : Tuple = self.dummy_super_res_first lowerCAmelCase_ : Dict = self.dummy_super_res_last lowerCAmelCase_ : List[Any] = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) lowerCAmelCase_ : Tuple = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) lowerCAmelCase_ : List[Any] = CLIPImageProcessor(crop_size=3_2 , size=3_2) lowerCAmelCase_ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : List[Any]=0 , A_ : str=True): lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_a)).to(_a) if str(_a).startswith('''mps'''): lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(_a) else: lowerCAmelCase_ : Optional[int] = torch.Generator(device=_a).manual_seed(_a) if pil_image: lowerCAmelCase_ : List[str] = input_image * 0.5 + 0.5 lowerCAmelCase_ : int = input_image.clamp(0 , 1) lowerCAmelCase_ : Optional[Any] = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() lowerCAmelCase_ : Dict = DiffusionPipeline.numpy_to_pil(_a)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : str = '''cpu''' lowerCAmelCase_ : Any = self.get_dummy_components() lowerCAmelCase_ : List[Any] = self.pipeline_class(**_a) lowerCAmelCase_ : Union[str, Any] = pipe.to(_a) pipe.set_progress_bar_config(disable=_a) lowerCAmelCase_ : Dict = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : int = pipe(**_a) lowerCAmelCase_ : Optional[int] = output.images lowerCAmelCase_ : Dict = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : str = pipe( **_a , return_dict=_a , )[0] lowerCAmelCase_ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ : List[str] = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Optional[int] = '''cpu''' lowerCAmelCase_ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase_ : int = self.pipeline_class(**_a) lowerCAmelCase_ : Optional[Any] = pipe.to(_a) pipe.set_progress_bar_config(disable=_a) lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : List[Any] = pipe(**_a) lowerCAmelCase_ : Dict = output.images lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : Any = pipe( **_a , return_dict=_a , )[0] lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ : List[Any] = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = '''cpu''' lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : Any = self.pipeline_class(**_a) lowerCAmelCase_ : Optional[Any] = pipe.to(_a) pipe.set_progress_bar_config(disable=_a) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : List[str] = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] lowerCAmelCase_ : Union[str, Any] = pipe(**_a) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : Optional[int] = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] lowerCAmelCase_ : List[str] = pipe( **_a , return_dict=_a , )[0] lowerCAmelCase_ : str = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) lowerCAmelCase_ : Dict = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : int = torch.device('''cpu''') class __snake_case : _a = 1 lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**_a) lowerCAmelCase_ : List[Any] = pipe.to(_a) pipe.set_progress_bar_config(disable=_a) lowerCAmelCase_ : List[str] = torch.Generator(device=_a).manual_seed(0) lowerCAmelCase_ : Tuple = pipe.decoder.dtype lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Any = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase_ : Optional[Any] = pipe.prepare_latents( _a , dtype=_a , device=_a , generator=_a , latents=_a , scheduler=DummyScheduler()) lowerCAmelCase_ : str = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase_ : Union[str, Any] = pipe.prepare_latents( _a , dtype=_a , device=_a , generator=_a , latents=_a , scheduler=DummyScheduler()) lowerCAmelCase_ : str = self.get_dummy_inputs(_a , pil_image=_a) lowerCAmelCase_ : str = pipe( **_a , decoder_latents=_a , super_res_latents=_a).images lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(_a , pil_image=_a) # Don't pass image, instead pass embedding lowerCAmelCase_ : Optional[Any] = pipeline_inputs.pop('''image''') lowerCAmelCase_ : Any = pipe.image_encoder(_a).image_embeds lowerCAmelCase_ : List[Any] = pipe( **_a , decoder_latents=_a , super_res_latents=_a , image_embeddings=_a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a).max() < 1e-4 @skip_mps def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Optional[int] = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase_ : Optional[int] = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=_a , expected_max_diff=_a) @skip_mps def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : List[str] = torch_device == '''cpu''' lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Dict = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=_a , relax_max_difference=_a , additional_params_copy_to_batched_inputs=_a , ) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase_ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=_a , additional_params_copy_to_batched_inputs=_a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_a) @skip_mps def UpperCAmelCase__ ( self : Optional[int]): return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase__ ( self : List[Any]): return super().test_save_load_local() @skip_mps def UpperCAmelCase__ ( self : List[Any]): return super().test_save_load_optional_components() @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : int): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''') lowerCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''') lowerCAmelCase_ : Union[str, Any] = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa) lowerCAmelCase_ : List[Any] = pipeline.to(_a) pipeline.set_progress_bar_config(disable=_a) lowerCAmelCase_ : List[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[int] = pipeline( _a , generator=_a , output_type='''np''' , ) lowerCAmelCase_ : List[str] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(_a , _a , 1_5)
171
'''simple docstring''' from math import sqrt def lowerCAmelCase_ ( a : int = 1000000 ): a__ = 0 a__ = 0 a__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
394
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = {} lowercase_ = job['''started_at'''] lowercase_ = job['''completed_at'''] lowercase_ = date_parser.parse(snake_case__ ) lowercase_ = date_parser.parse(snake_case__ ) lowercase_ = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) lowercase_ = start lowercase_ = end lowercase_ = duration_in_min return job_info def a ( snake_case__: Any , snake_case__: Dict=None ): '''simple docstring''' lowercase_ = None if token is not None: lowercase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} lowercase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowercase_ = requests.get(snake_case__ , headers=snake_case__ ).json() lowercase_ = {} try: job_time.update({job['''name''']: extract_time_from_single_job(snake_case__ ) for job in result['''jobs''']} ) lowercase_ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(snake_case__ ): lowercase_ = requests.get(url + F'''&page={i + 2}''' , headers=snake_case__ ).json() job_time.update({job['''name''']: extract_time_from_single_job(snake_case__ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') __a = parser.parse_args() __a = get_job_time(args.workflow_run_id) __a = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
409
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = PegasusTokenizer a :Any = PegasusTokenizerFast a :Optional[Any] = True a :int = True def _lowercase ( self : Any ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowercase_ = PegasusTokenizer(SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self : List[str] ) -> Any: return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def _lowercase ( self : Any , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: return ("This is a test", "This is a test") def _lowercase ( self : str ) -> Optional[Any]: lowercase_ = '''</s>''' lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> str: lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_1_0_3 ) def _lowercase ( self : Tuple ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def _lowercase ( self : Optional[Any] ) -> Tuple: lowercase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowercase_ = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ).input_ids[0] lowercase_ = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> List[str]: lowercase_ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase_ = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowercase_ = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowercase_ = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Union[str, Any]: lowercase_ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowercase_ = '''To ensure a smooth flow of bank resolutions.''' lowercase_ = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowercase_ = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase ( self : int ) -> Tuple: lowercase_ = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowercase_ = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase_ = self._large_tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) lowercase_ = self._large_tokenizer( text_target=SCREAMING_SNAKE_CASE_ , max_length=5 , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(SCREAMING_SNAKE_CASE_ ) == 2 # input_ids, attention_mask. @slow def _lowercase ( self : int ) -> Tuple: # fmt: off lowercase_ = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = PegasusTokenizer a :List[Any] = PegasusTokenizerFast a :Union[str, Any] = True a :List[Any] = True def _lowercase ( self : Optional[Any] ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing lowercase_ = PegasusTokenizer(SCREAMING_SNAKE_CASE_ , offset=0 , mask_token_sent=SCREAMING_SNAKE_CASE_ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self : Optional[Any] ) -> Optional[Any]: return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def _lowercase ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: return ("This is a test", "This is a test") def _lowercase ( self : List[Any] ) -> Union[str, Any]: lowercase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowercase_ = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ).input_ids[0] lowercase_ = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_torch def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowercase_ = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase_ = self._large_tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) lowercase_ = self._large_tokenizer( text_target=SCREAMING_SNAKE_CASE_ , max_length=5 , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(SCREAMING_SNAKE_CASE_ ) == 2 # input_ids, attention_mask. def _lowercase ( self : Optional[int] ) -> Any: lowercase_ = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowercase_ = self._large_tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual( SCREAMING_SNAKE_CASE_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
409
1
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE__ : List[Any] = n - k # Calculate C(n,k) for i in range(_snake_case ): result *= n - i result //= i + 1 return result def lowercase_ ( _snake_case ): return binomial_coefficient(2 * node_count ,_snake_case ) // (node_count + 1) def lowercase_ ( _snake_case ): if n < 0: raise ValueError("""factorial() not defined for negative values""" ) SCREAMING_SNAKE_CASE__ : int = 1 for i in range(1 ,n + 1 ): result *= i return result def lowercase_ ( _snake_case ): return catalan_number(_snake_case ) * factorial(_snake_case ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
223
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = '''Hello world! cécé herlolip''' _lowerCAmelCase = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=UpperCamelCase , large=UpperCamelCase , share_emb=UpperCamelCase , use_bert_emb=UpperCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase__ : int = torch.load(UpperCamelCase , lambda UpperCamelCase , UpperCamelCase : storage ) lowerCAmelCase__ : List[str] = AbsSummarizer(UpperCamelCase , torch.device("""cpu""" ) , UpperCamelCase ) original.eval() lowerCAmelCase__ : Optional[Any] = BertAbsSummarizer(UpperCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) lowerCAmelCase__ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs lowerCAmelCase__ : Optional[int] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase )) ) lowerCAmelCase__ : List[Any] = torch.tensor(UpperCamelCase ).unsqueeze(0 ) lowerCAmelCase__ : str = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase )) ) lowerCAmelCase__ : List[str] = torch.tensor(UpperCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase__ : Dict = encoder_input_ids lowerCAmelCase__ : Tuple = decoder_input_ids lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : List[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase__ : Optional[Any] = original(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )[0] lowerCAmelCase__ : Optional[Any] = original.generator(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = new_model( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )[0] lowerCAmelCase__ : int = new_model.generator(UpperCamelCase ) lowerCAmelCase__ : str = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase ) ) lowerCAmelCase__ : Dict = torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) _lowerCAmelCase = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
565
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowercase ( A_ )-> Any: '''simple docstring''' if isinstance(A_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _A : """simple docstring""" def __snake_case ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]): pass def __snake_case ( self : Any): pass def __snake_case ( self : int): pass def __snake_case ( self : Optional[int] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : float): a : Dict = np.abs((a - b)).max() self.assertLessEqual(__UpperCAmelCase , __UpperCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''') def __snake_case ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : str=None , **__UpperCAmelCase : Dict): a : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = FlaxVisionTextDualEncoderModel(__UpperCAmelCase) a : Optional[Any] = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim)) def __snake_case ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Union[str, Any]): a , a : Optional[int] = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase) a : str = {"vision_model": vision_model, "text_model": text_model} a : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase) a : Union[str, Any] = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim)) def __snake_case ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=None , **__UpperCAmelCase : List[Any]): a , a : List[str] = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} a : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase) a : Dict = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase) a : List[Any] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase) a : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase) a : int = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase) a : Dict = after_output[0] a : Optional[int] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__UpperCAmelCase , 1e-3) def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : str): a , a : Union[str, Any] = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = {"vision_model": vision_model, "text_model": text_model} a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase) a : int = model( input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase) a : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(__UpperCAmelCase) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a : int = to_atuple(vision_model.config.image_size) a : Optional[Any] = to_atuple(vision_model.config.patch_size) a : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a : Dict = output.text_model_output.attentions self.assertEqual(len(__UpperCAmelCase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __snake_case ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict): pt_model.to(__UpperCAmelCase) pt_model.eval() # prepare inputs a : List[str] = inputs_dict a : Tuple = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): a : List[str] = pt_model(**__UpperCAmelCase).to_tuple() a : int = fx_model(**__UpperCAmelCase).to_tuple() self.assertEqual(len(__UpperCAmelCase) , len(__UpperCAmelCase) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase) a : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase) a : str = fx_model_loaded(**__UpperCAmelCase).to_tuple() self.assertEqual(len(__UpperCAmelCase) , len(__UpperCAmelCase) , "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase) a : Optional[int] = VisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase) pt_model_loaded.to(__UpperCAmelCase) pt_model_loaded.eval() with torch.no_grad(): a : Dict = pt_model_loaded(**__UpperCAmelCase).to_tuple() self.assertEqual(len(__UpperCAmelCase) , len(__UpperCAmelCase) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(__UpperCAmelCase , pt_output_loaded.numpy() , 4e-2) def __snake_case ( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str]): a : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = VisionTextDualEncoderModel(__UpperCAmelCase) a : Any = FlaxVisionTextDualEncoderModel(__UpperCAmelCase) a : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase) a : Optional[Any] = fx_state self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple): a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase) a : int = VisionTextDualEncoderModel(__UpperCAmelCase) a : List[Any] = FlaxVisionTextDualEncoderModel(__UpperCAmelCase) a : Optional[int] = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params) self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Dict): a : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCAmelCase) def __snake_case ( self : str): a : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCAmelCase) def __snake_case ( self : Optional[int]): a : Tuple = self.prepare_config_and_inputs() self.check_save_load(**__UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCAmelCase) @is_pt_flax_cross_test def __snake_case ( self : Optional[int]): a : List[str] = self.prepare_config_and_inputs() a : Any = config_inputs_dict.pop("vision_config") a : Optional[Any] = config_inputs_dict.pop("text_config") a : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.check_equivalence_flax_to_pt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) @slow def __snake_case ( self : int): a , a : str = self.get_pretrained_model_and_inputs() a : str = model_a(**__UpperCAmelCase) a : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCAmelCase) a : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase) a : Optional[Any] = model_a(**__UpperCAmelCase) a : Any = after_outputs[0] a : List[str] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__UpperCAmelCase , 1e-5) @require_flax class _A ( _a ,unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[str]): a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , ) a : List[Any] = 13 a : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) a : Optional[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) a : str = random_attention_mask([batch_size, 4]) a : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Dict): a : int = FlaxViTModel(__UpperCAmelCase) a : Optional[Any] = FlaxBertModel(__UpperCAmelCase) return vision_model, text_model def __snake_case ( self : Union[str, Any]): a : str = FlaxViTModelTester(self) a : Any = FlaxBertModelTester(self) a : List[str] = vit_model_tester.prepare_config_and_inputs() a : str = bert_model_tester.prepare_config_and_inputs() a , a : Dict = vision_config_and_inputs a , a , a , a : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _A ( _a ,unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple): a : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , ) a : List[str] = 13 a : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) a : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) a : List[str] = random_attention_mask([batch_size, 4]) a : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __snake_case ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str]): a : int = FlaxCLIPVisionModel(__UpperCAmelCase) a : List[str] = FlaxBertModel(__UpperCAmelCase) return vision_model, text_model def __snake_case ( self : Union[str, Any]): a : Tuple = FlaxCLIPVisionModelTester(self) a : int = FlaxBertModelTester(self) a : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() a : List[str] = bert_model_tester.prepare_config_and_inputs() a , a : List[str] = vision_config_and_inputs a , a , a , a : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _A ( unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self : Any): a : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0) a : int = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") a : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") a : List[Any] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="np") a : int = model(**__UpperCAmelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a : List[Any] = np.array([[1.2_284_727, 0.3_104_122]]) self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCAmelCase , atol=1e-3))
135
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = """poolformer""" def __init__( self : Union[str, Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Optional[int]=4.0 , __UpperCAmelCase : Tuple=[2, 2, 6, 2] , __UpperCAmelCase : Union[str, Any]=[64, 128, 320, 512] , __UpperCAmelCase : Any=[7, 3, 3, 3] , __UpperCAmelCase : Dict=[4, 2, 2, 2] , __UpperCAmelCase : List[str]=[2, 1, 1, 1] , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : int=1e-5 , __UpperCAmelCase : Dict=0.02 , **__UpperCAmelCase : Any , ): a : str = num_channels a : Dict = patch_size a : List[Any] = stride a : Tuple = padding a : str = pool_size a : List[str] = hidden_sizes a : List[str] = mlp_ratio a : Optional[int] = depths a : str = patch_sizes a : Optional[Any] = strides a : List[Any] = num_encoder_blocks a : int = drop_path_rate a : Any = hidden_act a : Optional[Any] = use_layer_scale a : str = layer_scale_init_value a : int = initializer_range super().__init__(**__UpperCAmelCase) class _A ( _a ): """simple docstring""" UpperCAmelCase : List[Any] = version.parse("""1.11""" ) @property def __snake_case ( self : List[Any]): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def __snake_case ( self : Union[str, Any]): return 2e-3
135
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowercase_ ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = ["image_processor"] __lowerCAmelCase = "SamImageProcessor" def __init__( self : List[str], UpperCamelCase__ : Tuple ) -> Tuple: super().__init__(UpperCamelCase__ ) _A = self.image_processor _A = -10 _A = self.image_processor.size['longest_edge'] def __call__( self : Tuple, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Any=None, UpperCamelCase__ : Optional[Union[str, TensorType]] = None, **UpperCamelCase__ : Dict, ) -> BatchEncoding: _A = self.image_processor( UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__, ) # pop arguments that are not used in the foward but used nevertheless _A = encoding_image_processor['original_sizes'] if hasattr(UpperCamelCase__, 'numpy' ): # Checks if Torch or TF tensor _A = original_sizes.numpy() _A , _A , _A = self._check_and_preprocess_points( input_points=UpperCamelCase__, input_labels=UpperCamelCase__, input_boxes=UpperCamelCase__, ) _A = self._normalize_and_convert( UpperCamelCase__, UpperCamelCase__, input_points=UpperCamelCase__, input_labels=UpperCamelCase__, input_boxes=UpperCamelCase__, return_tensors=UpperCamelCase__, ) return encoding_image_processor def __UpperCAmelCase ( self : str, UpperCamelCase__ : int, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Any="pt", ) -> str: if input_points is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): _A = [ self._normalize_coordinates(self.target_size, UpperCamelCase__, original_sizes[0] ) for point in input_points ] else: _A = [ self._normalize_coordinates(self.target_size, UpperCamelCase__, UpperCamelCase__ ) for point, original_size in zip(UpperCamelCase__, UpperCamelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _A , _A = self._pad_points_and_labels(UpperCamelCase__, UpperCamelCase__ ) _A = np.array(UpperCamelCase__ ) if input_labels is not None: _A = np.array(UpperCamelCase__ ) if input_boxes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): _A = [ self._normalize_coordinates(self.target_size, UpperCamelCase__, original_sizes[0], is_bounding_box=UpperCamelCase__ ) for box in input_boxes ] else: _A = [ self._normalize_coordinates(self.target_size, UpperCamelCase__, UpperCamelCase__, is_bounding_box=UpperCamelCase__ ) for box, original_size in zip(UpperCamelCase__, UpperCamelCase__ ) ] _A = np.array(UpperCamelCase__ ) if input_boxes is not None: if return_tensors == "pt": _A = torch.from_numpy(UpperCamelCase__ ) # boxes batch size of 1 by default _A = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _A = tf.convert_to_tensor(UpperCamelCase__ ) # boxes batch size of 1 by default _A = tf.expand_dims(UpperCamelCase__, 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": _A = torch.from_numpy(UpperCamelCase__ ) # point batch size of 1 by default _A = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _A = tf.convert_to_tensor(UpperCamelCase__ ) # point batch size of 1 by default _A = tf.expand_dims(UpperCamelCase__, 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": _A = torch.from_numpy(UpperCamelCase__ ) # point batch size of 1 by default _A = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _A = tf.convert_to_tensor(UpperCamelCase__ ) # point batch size of 1 by default _A = tf.expand_dims(UpperCamelCase__, 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : List[str], UpperCamelCase__ : int ) -> List[Any]: _A = max([point.shape[0] for point in input_points] ) _A = [] for i, point in enumerate(UpperCamelCase__ ): if point.shape[0] != expected_nb_points: _A = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value], axis=0 ) _A = np.append(input_labels[i], [self.point_pad_value] ) processed_input_points.append(UpperCamelCase__ ) _A = processed_input_points return input_points, input_labels def __UpperCAmelCase ( self : str, UpperCamelCase__ : int, UpperCamelCase__ : np.ndarray, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any=False ) -> np.ndarray: _A , _A = original_size _A , _A = self.image_processor._get_preprocess_shape(UpperCamelCase__, longest_edge=UpperCamelCase__ ) _A = deepcopy(UpperCamelCase__ ).astype(UpperCamelCase__ ) if is_bounding_box: _A = coords.reshape(-1, 2, 2 ) _A = coords[..., 0] * (new_w / old_w) _A = coords[..., 1] * (new_h / old_h) if is_bounding_box: _A = coords.reshape(-1, 4 ) return coords def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Optional[int]=None, ) -> str: if input_points is not None: if hasattr(UpperCamelCase__, 'numpy' ): # Checks for TF or Torch tensor _A = input_points.numpy().tolist() if not isinstance(UpperCamelCase__, UpperCamelCase__ ) or not isinstance(input_points[0], UpperCamelCase__ ): raise ValueError('Input points must be a list of list of floating points.' ) _A = [np.array(UpperCamelCase__ ) for input_point in input_points] else: _A = None if input_labels is not None: if hasattr(UpperCamelCase__, 'numpy' ): _A = input_labels.numpy().tolist() if not isinstance(UpperCamelCase__, UpperCamelCase__ ) or not isinstance(input_labels[0], UpperCamelCase__ ): raise ValueError('Input labels must be a list of list integers.' ) _A = [np.array(UpperCamelCase__ ) for label in input_labels] else: _A = None if input_boxes is not None: if hasattr(UpperCamelCase__, 'numpy' ): _A = input_boxes.numpy().tolist() if ( not isinstance(UpperCamelCase__, UpperCamelCase__ ) or not isinstance(input_boxes[0], UpperCamelCase__ ) or not isinstance(input_boxes[0][0], UpperCamelCase__ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) _A = [np.array(UpperCamelCase__ ).astype(np.floataa ) for box in input_boxes] else: _A = None return input_points, input_labels, input_boxes @property def __UpperCAmelCase ( self : int ) -> Optional[Any]: _A = self.image_processor.model_input_names return list(dict.fromkeys(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Optional[Any], *UpperCamelCase__ : int, **UpperCamelCase__ : Any ) -> Dict: return self.image_processor.post_process_masks(*UpperCamelCase__, **UpperCamelCase__ )
107
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a__ : _A = PegasusConfig _A = {} _A = "gelu" def __init__( self : int , A_ : int , A_ : List[str]=13 , A_ : Optional[Any]=7 , A_ : Optional[Any]=True , A_ : Optional[int]=False , A_ : int=99 , A_ : List[Any]=32 , A_ : Optional[int]=2 , A_ : Tuple=4 , A_ : Optional[Any]=37 , A_ : List[Any]=0.1 , A_ : Any=0.1 , A_ : Optional[Any]=40 , A_ : str=2 , A_ : Optional[Any]=1 , A_ : Tuple=0 , ) -> Optional[int]: """simple docstring""" lowerCamelCase_: str = parent lowerCamelCase_: int = batch_size lowerCamelCase_: Any = seq_length lowerCamelCase_: Optional[int] = is_training lowerCamelCase_: Union[str, Any] = use_labels lowerCamelCase_: List[Any] = vocab_size lowerCamelCase_: Dict = hidden_size lowerCamelCase_: str = num_hidden_layers lowerCamelCase_: List[str] = num_attention_heads lowerCamelCase_: List[Any] = intermediate_size lowerCamelCase_: List[Any] = hidden_dropout_prob lowerCamelCase_: Any = attention_probs_dropout_prob lowerCamelCase_: int = max_position_embeddings lowerCamelCase_: int = eos_token_id lowerCamelCase_: Optional[int] = pad_token_id lowerCamelCase_: str = bos_token_id def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_: Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_: str = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_: List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase_: List[Any] = prepare_pegasus_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def lowerCAmelCase ( self : List[str] , A_ : Optional[Any] , A_ : str ) -> List[Any]: """simple docstring""" lowerCamelCase_: Tuple = TFPegasusModel(config=A_ ).get_decoder() lowerCamelCase_: Union[str, Any] = inputs_dict["""input_ids"""] lowerCamelCase_: int = input_ids[:1, :] lowerCamelCase_: List[Any] = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase_: Union[str, Any] = inputs_dict["""head_mask"""] lowerCamelCase_: Tuple = 1 # first forward pass lowerCamelCase_: Optional[int] = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_: Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_: Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_: Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_: Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_: Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_: int = model(A_ , attention_mask=A_ )[0] lowerCamelCase_: Optional[int] = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_: Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_: Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if attention_mask is None: lowerCamelCase_: Optional[int] = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_: List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_: int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_: List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_: List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _A = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _A = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _A = True _A = False _A = False def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_: Tuple = TFPegasusModelTester(self ) lowerCamelCase_: Optional[int] = ConfigTester(self , config_class=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_sentencepiece @require_tokenizers @require_tf class a__ ( unittest.TestCase ): _A = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _A = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers _A = "google/pegasus-xsum" @cached_property def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase ( self : str , **A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_: Union[str, Any] = self.translate_src_text(**A_ ) assert self.expected_text == generated_words def lowerCAmelCase ( self : str , **A_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: List[Any] = self.tokenizer(self.src_text , **A_ , padding=A_ , return_tensors="""tf""" ) lowerCamelCase_: str = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A_ , ) lowerCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ ) return generated_words @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
423
0
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase = 200 ) -> int: '''simple docstring''' lowerCamelCase__ =[1, 2, 5, 10, 20, 50, 100, 200] lowerCamelCase__ =[0] * (pence + 1) lowerCamelCase__ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
132
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=24 , _lowerCamelCase=2 , _lowerCamelCase=6 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=1000 , ): lowerCamelCase__ =parent lowerCamelCase__ =batch_size lowerCamelCase__ =seq_length lowerCamelCase__ =is_training lowerCamelCase__ =use_input_mask lowerCamelCase__ =use_token_type_ids lowerCamelCase__ =use_labels lowerCamelCase__ =vocab_size lowerCamelCase__ =hidden_size lowerCamelCase__ =num_hidden_layers lowerCamelCase__ =num_attention_heads lowerCamelCase__ =intermediate_size lowerCamelCase__ =hidden_act lowerCamelCase__ =hidden_dropout_prob lowerCamelCase__ =attention_probs_dropout_prob lowerCamelCase__ =max_position_embeddings lowerCamelCase__ =type_vocab_size lowerCamelCase__ =type_sequence_label_size lowerCamelCase__ =initializer_range lowerCamelCase__ =num_labels lowerCamelCase__ =scope lowerCamelCase__ =range_bbox def _a ( self ): lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ =bbox[i, j, 3] lowerCamelCase__ =bbox[i, j, 1] lowerCamelCase__ =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ =bbox[i, j, 2] lowerCamelCase__ =bbox[i, j, 0] lowerCamelCase__ =t lowerCamelCase__ =None if self.use_input_mask: lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCamelCase__ =None if self.use_token_type_ids: lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ =None lowerCamelCase__ =None if self.use_labels: lowerCamelCase__ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ =LiltModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCamelCase__ =model(_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) lowerCamelCase__ =model(_lowerCamelCase , bbox=_lowerCamelCase , token_type_ids=_lowerCamelCase ) lowerCamelCase__ =model(_lowerCamelCase , bbox=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ =self.num_labels lowerCamelCase__ =LiltForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCamelCase__ =model( _lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ =LiltForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCamelCase__ =model( _lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ): lowerCamelCase__ =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) =config_and_inputs lowerCamelCase__ ={ "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): A__ : Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ : int = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) A__ : Any = False A__ : int = False def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return True def _a ( self ): lowerCamelCase__ =LiltModelTester(self ) lowerCamelCase__ =ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ =type self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @slow def _a ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ =LiltModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch @slow class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): lowerCamelCase__ =LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_lowerCamelCase ) lowerCamelCase__ =torch.tensor([[1, 2]] , device=_lowerCamelCase ) lowerCamelCase__ =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ =model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase ) lowerCamelCase__ =torch.Size([1, 2, 768] ) lowerCamelCase__ =torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=_lowerCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _lowerCamelCase , atol=1E-3 ) )
132
1
"""simple docstring""" import os def lowerCAmelCase_ () -> List[str]: a_ : List[Any] = os.path.join(os.path.dirname(_SCREAMING_SNAKE_CASE ) , "num.txt" ) with open(_SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(_SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
473
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = """Speech2TextFeatureExtractor""" lowerCAmelCase__ : Union[str, Any] = """Speech2TextTokenizer""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ : str = self.feature_extractor a_ : Dict = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) a_ : Any = kwargs.pop("raw_speech" ) else: a_ : Tuple = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE ) a_ : int = kwargs.pop("sampling_rate" , _SCREAMING_SNAKE_CASE ) a_ : Dict = kwargs.pop("text" , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: a_ : List[Any] = args[0] a_ : List[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: a_ : int = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: a_ : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: a_ : Any = encodings["input_ids"] return inputs def A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def A ( self ) -> List[Any]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) a_ : Tuple = True a_ : Tuple = self.tokenizer yield a_ : int = self.feature_extractor a_ : str = False
473
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __magic_name__ : int = logging.get_logger(__name__) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None) -> int: """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('.') for split in splits[:-1]: UpperCamelCase = getattr(_lowercase , _lowercase) if new_module is None: raise ValueError(F'{module} has no attribute {split}.') UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.') UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase , _lowercase) if old_value.device == torch.device('meta') and device not in ["meta", torch.device('meta')] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.') UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn , 'Params4bit') and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit) UpperCamelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase) elif isinstance(_lowercase , torch.Tensor): UpperCamelCase = value.to('cpu') if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('bitsandbytes')) > version.parse( '0.37.2') if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.') else: UpperCamelCase = torch.tensor(_lowercase , device='cpu') # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowercase) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase , requires_grad=_lowercase , **_lowercase).to(_lowercase) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase , requires_grad=_lowercase , **_lowercase).to(_lowercase) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(_lowercase)) else: if value is None: UpperCamelCase = old_value.to(_lowercase) elif isinstance(_lowercase , torch.Tensor): UpperCamelCase = value.to(_lowercase) else: UpperCamelCase = torch.tensor(_lowercase , device=_lowercase) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase , requires_grad=old_value.requires_grad) UpperCamelCase = new_value def lowercase__ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False) -> Union[str, Any]: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase) if (isinstance(_lowercase , nn.Linear) or isinstance(_lowercase , _lowercase)) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(_lowercase) for key in modules_to_not_convert): with init_empty_weights(): if isinstance(_lowercase , _lowercase): UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase , _lowercase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase , _lowercase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase) if len(list(module.children())) > 0: UpperCamelCase = _replace_with_bnb_linear( _lowercase , _lowercase , _lowercase , _lowercase , has_been_replaced=_lowercase , ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def lowercase__ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None) -> List[str]: """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase = _replace_with_bnb_linear( _lowercase , _lowercase , _lowercase , _lowercase) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.') return model def lowercase__ ( *_UpperCamelCase , **_UpperCamelCase) -> Tuple: """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _lowercase , ) return replace_with_bnb_linear(*_lowercase , **_lowercase) def lowercase__ ( *_UpperCamelCase , **_UpperCamelCase) -> Union[str, Any]: """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _lowercase , ) return set_module_quantized_tensor_to_device(*_lowercase , **_lowercase) def lowercase__ ( _UpperCamelCase) -> Union[str, Any]: """simple docstring""" UpperCamelCase = deepcopy(_lowercase) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase , _lowercase): UpperCamelCase = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: UpperCamelCase = sum(_lowercase , []) UpperCamelCase = len(_lowercase) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children()) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase) - set(_lowercase) UpperCamelCase = list(set(_lowercase)) + list(_lowercase) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase , '') filtered_module_names.append(_lowercase) return filtered_module_names
712
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = MvpTokenizer snake_case__ = MvpTokenizerFast snake_case__ = True snake_case__ = filter_roberta_detectors def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().setUp() UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : int , **_SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return "lower newer", "lower newer" @cached_property def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCamelCase = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , _SCREAMING_SNAKE_CASE ) self.assertIn('attention_mask' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('labels' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_attention_mask' , _SCREAMING_SNAKE_CASE ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = ['A long paragraph for summarization.'] UpperCamelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE , text_target=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = 'A, <mask> AllenNLP sentence.' UpperCamelCase = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
410
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
611
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a ( unittest.TestCase , __UpperCAmelCase ): def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = load_tool("text-to-speech" ) self.tool.setup() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = self.tool("hey" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = self.tool("hey" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
611
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Optional[int] = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class snake_case_ ( _UpperCAmelCase): lowerCamelCase :Any = """xlm-prophetnet""" lowerCamelCase :Union[str, Any] = ["""past_key_values"""] lowerCamelCase :Optional[int] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self , __lowercase = 0.1 , __lowercase = "gelu" , __lowercase = 3_0_5_2_2 , __lowercase = 1_0_2_4 , __lowercase = 4_0_9_6 , __lowercase = 1_2 , __lowercase = 1_6 , __lowercase = 4_0_9_6 , __lowercase = 1_2 , __lowercase = 1_6 , __lowercase = 0.1 , __lowercase = 0.1 , __lowercase = 5_1_2 , __lowercase = 0.0_2 , __lowercase = True , __lowercase = True , __lowercase = 0 , __lowercase = 2 , __lowercase = 3_2 , __lowercase = 1_2_8 , __lowercase = False , __lowercase = 0.0 , __lowercase = True , __lowercase = 0 , __lowercase = 1 , __lowercase = 2 , **__lowercase , ) -> Dict: lowerCamelCase : Dict =vocab_size lowerCamelCase : Optional[int] =hidden_size lowerCamelCase : Tuple =encoder_ffn_dim lowerCamelCase : Optional[Any] =num_encoder_layers lowerCamelCase : Dict =num_encoder_attention_heads lowerCamelCase : Dict =decoder_ffn_dim lowerCamelCase : Union[str, Any] =num_decoder_layers lowerCamelCase : Tuple =num_decoder_attention_heads lowerCamelCase : Optional[int] =max_position_embeddings lowerCamelCase : str =init_std # Normal(0, this parameter) lowerCamelCase : Optional[Any] =activation_function # parameters for xlmprophetnet lowerCamelCase : Dict =ngram lowerCamelCase : List[Any] =num_buckets lowerCamelCase : Union[str, Any] =relative_max_distance lowerCamelCase : Optional[int] =disable_ngram_loss lowerCamelCase : Optional[int] =eps # 3 Types of Dropout lowerCamelCase : Optional[Any] =attention_dropout lowerCamelCase : Optional[int] =activation_dropout lowerCamelCase : Any =dropout lowerCamelCase : Tuple =use_cache super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , add_cross_attention=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) @property def __lowercase ( self ) -> Union[str, Any]: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __lowercase ( self , __lowercase ) -> Dict: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
704
def A__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCamelCase : Optional[Any] =[int(SCREAMING_SNAKE_CASE_ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE_ ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE_ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": snake_case_ = input().strip() snake_case_ = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
262
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __a : int = StableDiffusionXLImgaImgPipeline __a : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __a : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} __a : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __a : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self ): torch.manual_seed(0 ) __lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) __lowerCamelCase : List[Any] = CLIPTextModel(__a ) __lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__a ) __lowerCamelCase : List[Any] = CLIPTextModelWithProjection(__a ) __lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__a ) __lowerCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case_ ( self , __a , __a=0 ): __lowerCamelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __lowerCamelCase : Any = image / 2 + 0.5 if str(__a ).startswith('mps' ): __lowerCamelCase : Dict = torch.manual_seed(__a ) else: __lowerCamelCase : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) __lowerCamelCase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case_ ( self ): __lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Tuple = self.get_dummy_components() __lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a ) __lowerCamelCase : Dict = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Any = self.get_dummy_inputs(__a ) __lowerCamelCase : Tuple = sd_pipe(**__a ).images __lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase : List[str] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case_ ( self ): pass def snake_case_ ( self ): __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a ) __lowerCamelCase : List[Any] = sd_pipe.to(__a ) __lowerCamelCase : Optional[int] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) # forward without prompt embeds __lowerCamelCase : Tuple = self.get_dummy_inputs(__a ) __lowerCamelCase : Dict = 3 * ['this is a negative prompt'] __lowerCamelCase : Optional[int] = negative_prompt __lowerCamelCase : List[str] = 3 * [inputs['prompt']] __lowerCamelCase : Any = sd_pipe(**__a ) __lowerCamelCase : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCamelCase : Dict = self.get_dummy_inputs(__a ) __lowerCamelCase : str = 3 * ['this is a negative prompt'] __lowerCamelCase : List[str] = 3 * [inputs.pop('prompt' )] ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : List[str] = sd_pipe.encode_prompt(__a , negative_prompt=__a ) __lowerCamelCase : Union[str, Any] = sd_pipe( **__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , ) __lowerCamelCase : Any = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __a , __a="cpu" , __a=torch.floataa , __a=0 ): __lowerCamelCase : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowerCamelCase : List[str] = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) __lowerCamelCase : Tuple = torch.from_numpy(__a ).to(device=__a , dtype=__a ) __lowerCamelCase : Optional[int] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Dict = self.get_inputs(__a ) __lowerCamelCase : Optional[Any] = pipe(**__a ).images __lowerCamelCase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowerCamelCase : str = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
594
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase( lowercase__ ): '''simple docstring''' __a : List[Any] = ['image_processor', 'tokenizer'] __a : List[Any] = 'BlipImageProcessor' __a : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __a , __a ): __lowerCamelCase : str = False super().__init__(__a , __a ) __lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self , __a = None , __a = None , __a = True , __a = False , __a = None , __a = None , __a = 0 , __a = None , __a = None , __a = False , __a = False , __a = False , __a = False , __a = False , __a = True , __a = None , **__a , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCamelCase : List[Any] = self.tokenizer __lowerCamelCase : List[str] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values __lowerCamelCase : Any = self.image_processor(__a , return_tensors=__a ) if text is not None: __lowerCamelCase : Tuple = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: __lowerCamelCase : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def snake_case_ ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case_ ( self ): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
594
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): '''simple docstring''' _lowercase = MODEL_FOR_MASKED_LM_MAPPING _lowercase = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case__ : List[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) snake_case__ : Any = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) snake_case__ : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) snake_case__ : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __lowerCAmelCase ( self : List[str] )-> str: snake_case__ : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) snake_case__ : Any = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case__ : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case__ : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) snake_case__ : List[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __lowerCAmelCase ( self : Dict )-> Tuple: snake_case__ : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() snake_case__ : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow @require_torch def __lowerCAmelCase ( self : Union[str, Any] )-> int: snake_case__ : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(lowerCamelCase ) @slow @require_tf def __lowerCAmelCase ( self : Any )-> Tuple: snake_case__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(lowerCamelCase ) def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : Tuple )-> List[Any]: snake_case__ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) snake_case__ : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) snake_case__ : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __lowerCAmelCase ( self : Any )-> List[str]: snake_case__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) snake_case__ : Optional[Any] = None snake_case__ : Dict = None self.run_pipeline_test(lowerCamelCase , [] ) @require_tf def __lowerCAmelCase ( self : Optional[Any] )-> int: snake_case__ : List[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) snake_case__ : Dict = None snake_case__ : str = None self.run_pipeline_test(lowerCamelCase , [] ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] )-> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) snake_case__ : List[Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) snake_case__ : Any = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __lowerCAmelCase ( self : int , lowerCamelCase : Any , lowerCamelCase : List[Any] )-> Union[str, Any]: snake_case__ : int = fill_masker.tokenizer snake_case__ : Optional[int] = fill_masker.model snake_case__ : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( lowerCamelCase , [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ] , ) snake_case__ : List[Any] = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( lowerCamelCase , [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ] , ) snake_case__ : Tuple = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( lowerCamelCase , [ [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ], [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ], ] , ) with self.assertRaises(lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCamelCase ): fill_masker("""This is""" ) self.run_test_top_k(lowerCamelCase , lowerCamelCase ) self.run_test_targets(lowerCamelCase , lowerCamelCase ) self.run_test_top_k_targets(lowerCamelCase , lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCamelCase , lowerCamelCase ) self.fill_mask_with_multiple_masks(lowerCamelCase , lowerCamelCase ) def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] )-> Dict: snake_case__ : List[Any] = tokenizer.get_vocab() snake_case__ : List[Any] = sorted(vocab.keys() )[:2] # Pipeline argument snake_case__ : Union[str, Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase , targets=lowerCamelCase ) snake_case__ : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( lowerCamelCase , [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ] , ) snake_case__ : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowerCamelCase ) snake_case__ : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowerCamelCase ) ) # Call argument snake_case__ : int = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) snake_case__ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ] , ) snake_case__ : str = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowerCamelCase ) snake_case__ : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowerCamelCase ) ) # Score equivalence snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowerCamelCase ) snake_case__ : str = [top_mask["""token_str"""] for top_mask in outputs] snake_case__ : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase ) == set(lowerCamelCase ): snake_case__ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowerCamelCase ) snake_case__ : List[Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCamelCase ) , nested_simplify(lowerCamelCase ) ) # Raises with invalid with self.assertRaises(lowerCamelCase ): snake_case__ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCamelCase ): snake_case__ : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""""""] ) with self.assertRaises(lowerCamelCase ): snake_case__ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="""""" ) def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] )-> int: snake_case__ : Optional[Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase , top_k=2 ) snake_case__ : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( lowerCamelCase , [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ] , ) snake_case__ : Union[str, Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) snake_case__ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( lowerCamelCase , [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(lowerCamelCase ) , nested_simplify(lowerCamelCase ) ) def __lowerCAmelCase ( self : str , lowerCamelCase : List[str] , lowerCamelCase : Tuple )-> Dict: snake_case__ : str = tokenizer.get_vocab() snake_case__ : Optional[Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) # top_k=2, ntargets=3 snake_case__ : Tuple = sorted(vocab.keys() )[:3] snake_case__ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case__ : Dict = [el["""token_str"""] for el in sorted(lowerCamelCase , key=lambda lowerCamelCase : x["score"] , reverse=lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase ).issubset(lowerCamelCase ): snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCamelCase ) , nested_simplify(lowerCamelCase ) ) def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : int )-> Dict: snake_case__ : Optional[Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) snake_case__ : str = tokenizer.get_vocab() # String duplicates + id duplicates snake_case__ : List[str] = sorted(vocab.keys() )[:3] snake_case__ : Optional[int] = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case__ : Optional[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCamelCase ) , 3 ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Dict )-> List[str]: snake_case__ : Optional[Any] = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) snake_case__ : str = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( lowerCamelCase , [ [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ], [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ], [ {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, {"""sequence""": ANY(lowerCamelCase ), """score""": ANY(lowerCamelCase ), """token""": ANY(lowerCamelCase ), """token_str""": ANY(lowerCamelCase )}, ], ] , )
701
'''simple docstring''' class _A : '''simple docstring''' def __init__( self : List[Any] )-> List[str]: snake_case__ : List[str] = """""" snake_case__ : Dict = """""" snake_case__ : Union[str, Any] = [] def __lowerCAmelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : int )-> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: snake_case__ : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: snake_case__ : List[Any] = self.__min_dist_top_down_dp(lowerCamelCase , n - 1 ) snake_case__ : Any = self.__min_dist_top_down_dp(m - 1 , lowerCamelCase ) snake_case__ : Optional[int] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) snake_case__ : Dict = 1 + min(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self.dp[m][n] def __lowerCAmelCase ( self : List[str] , lowerCamelCase : str , lowerCamelCase : str )-> int: snake_case__ : Optional[int] = worda snake_case__ : List[str] = worda snake_case__ : List[str] = [[-1 for _ in range(len(lowerCamelCase ) )] for _ in range(len(lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(lowerCamelCase ) - 1 , len(lowerCamelCase ) - 1 ) def __lowerCAmelCase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : str )-> int: snake_case__ : List[str] = worda snake_case__ : int = worda snake_case__ : Any = len(lowerCamelCase ) snake_case__ : List[str] = len(lowerCamelCase ) snake_case__ : List[str] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty snake_case__ : Union[str, Any] = j elif j == 0: # second string is empty snake_case__ : List[str] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal snake_case__ : Tuple = self.dp[i - 1][j - 1] else: snake_case__ : int = self.dp[i][j - 1] snake_case__ : List[Any] = self.dp[i - 1][j] snake_case__ : List[str] = self.dp[i - 1][j - 1] snake_case__ : Tuple = 1 + min(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": lowerCAmelCase__ = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() lowerCAmelCase__ = input('Enter the first string: ').strip() lowerCAmelCase__ = input('Enter the second string: ').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
172
0
from __future__ import annotations def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> int | float: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_SCREAMING_SNAKE_CASE ) or left < -len(_SCREAMING_SNAKE_CASE ) or right >= len(_SCREAMING_SNAKE_CASE ) or right < -len(_SCREAMING_SNAKE_CASE ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] snake_case : Optional[Any] = (left + right) >> 1 # the middle snake_case : Tuple = find_max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # find max in range[left, mid] snake_case : List[str] = find_max(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
598
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spm_char.model"""} lowercase_ = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } lowercase_ = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , a : Any , a : Any="<s>" , a : List[Any]="</s>" , a : List[str]="<unk>" , a : Any="<pad>" , a : Optional[Dict[str, Any]] = None , **a : Optional[Any] , )-> None: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )-> str: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Dict , a : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : str )-> List[str]: """simple docstring""" return self.sp_model.encode(a , out_type=a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] )-> str: """simple docstring""" return self.sp_model.piece_to_id(a ) def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] )-> Dict: """simple docstring""" lowercase__ = self.sp_model.IdToPiece(a ) return token def SCREAMING_SNAKE_CASE_ ( self : str , a : Dict )-> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token lowercase__ = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] , a : Optional[Any]=None )-> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : int , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(a )) + suffix_ones return ([0] * len(a )) + ([0] * len(a )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
235
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off UpperCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] UpperCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class a ( lowercase ): UpperCamelCase : Optional[Any] = """whisper""" UpperCamelCase : Optional[Any] = ["""past_key_values"""] UpperCamelCase : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , UpperCamelCase_=51_865 , UpperCamelCase_=80 , UpperCamelCase_=6 , UpperCamelCase_=4 , UpperCamelCase_=6 , UpperCamelCase_=4 , UpperCamelCase_=1_536 , UpperCamelCase_=1_536 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=50_257 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_="gelu" , UpperCamelCase_=256 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=False , UpperCamelCase_=1_500 , UpperCamelCase_=448 , UpperCamelCase_=50_256 , UpperCamelCase_=50_256 , UpperCamelCase_=50_256 , UpperCamelCase_=None , UpperCamelCase_=[220, 50_256] , UpperCamelCase_=False , UpperCamelCase_=256 , UpperCamelCase_=False , UpperCamelCase_=0.05 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_=7 , **UpperCamelCase_ , ): UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Union[str, Any] = num_mel_bins UpperCAmelCase__ : Dict = d_model UpperCAmelCase__ : List[str] = encoder_layers UpperCAmelCase__ : Union[str, Any] = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_layers UpperCAmelCase__ : List[Any] = decoder_attention_heads UpperCAmelCase__ : Optional[int] = decoder_ffn_dim UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : Tuple = dropout UpperCAmelCase__ : Dict = attention_dropout UpperCAmelCase__ : int = activation_dropout UpperCAmelCase__ : int = activation_function UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Dict = decoder_layerdrop UpperCAmelCase__ : Optional[int] = use_cache UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase__ : Optional[Any] = max_source_positions UpperCAmelCase__ : Optional[int] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ : List[str] = classifier_proj_size UpperCAmelCase__ : Union[str, Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ : Union[str, Any] = apply_spec_augment UpperCAmelCase__ : Tuple = mask_time_prob UpperCAmelCase__ : Optional[int] = mask_time_length UpperCAmelCase__ : List[str] = mask_time_min_masks UpperCAmelCase__ : List[str] = mask_feature_prob UpperCAmelCase__ : Any = mask_feature_length UpperCAmelCase__ : str = mask_feature_min_masks UpperCAmelCase__ : Dict = median_filter_width super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , suppress_tokens=UpperCamelCase_ , begin_suppress_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) class a ( lowercase ): @property def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase__ : Tuple = {0: 'batch'} else: UpperCAmelCase__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='inputs' ) return common_inputs def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = 22_050 , UpperCamelCase_ = 5.0 , UpperCamelCase_ = 220 , ): UpperCAmelCase__ : Union[str, Any] = OrderedDict() UpperCAmelCase__ : Optional[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCamelCase_ , framework=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , time_duration=UpperCamelCase_ , frequency=UpperCamelCase_ , ) UpperCAmelCase__ : str = encoder_inputs['input_features'].shape[2] UpperCAmelCase__ : Dict = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase__ : str = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase__ : Union[str, Any] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase__ : Tuple = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __snake_case ( self ): return 1E-3
254
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a ( lowercase ): UpperCamelCase : Dict = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **UpperCamelCase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ : int = deprecated_arg[3:] UpperCAmelCase__ : Tuple = not kwargs.pop(UpperCamelCase_ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase__ : Dict = kwargs.pop('tpu_name' , self.tpu_name ) UpperCAmelCase__ : Tuple = kwargs.pop('device_idx' , self.device_idx ) UpperCAmelCase__ : List[str] = kwargs.pop('eager_mode' , self.eager_mode ) UpperCAmelCase__ : Any = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**UpperCamelCase_ ) UpperCamelCase : str = field( default=lowercase , metadata={"""help""": """Name of TPU"""} , ) UpperCamelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) UpperCamelCase : bool = field(default=lowercase , metadata={"""help""": """Benchmark models in eager model."""} ) UpperCamelCase : bool = field( default=lowercase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __snake_case ( self ): requires_backends(self , ['tf'] ) UpperCAmelCase__ : Optional[Any] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase__ : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase__ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase__ : Tuple = None return tpu @cached_property def __snake_case ( self ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase__ : Union[str, Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) UpperCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU UpperCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __snake_case ( self ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __snake_case ( self ): return self.n_gpu > 0
254
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case__ , unittest.TestCase ): """simple docstring""" _a : Union[str, Any] = None _a : Optional[Any] = BloomTokenizerFast _a : Optional[int] = BloomTokenizerFast _a : str = True _a : Any = False _a : str = '''tokenizer_file''' _a : str = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def UpperCAmelCase__( self ) -> Union[str, Any]: super().setUp() lowercase__ : Optional[int] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> int: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : int = self.get_rust_tokenizer() lowercase__ : List[str] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowercase__ : List[str] = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase__ : List[str] = tokenizer.batch_encode_plus(lowerCAmelCase__ )["input_ids"] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__=6 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ : Optional[Any] = "This is a simple input" lowercase__ : Any = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : Dict = ("This is a simple input", "This is a pair") lowercase__ : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.batch_encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.encode(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.batch_encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase__ : List[str] = None # Hotfixing padding = None self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , ) def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : Any = self.get_rust_tokenizer() lowercase__ : Dict = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=lowerCAmelCase__ ) lowercase__ : Optional[Any] = next(iter(lowerCAmelCase__ ) )["premise"] # pick up one data lowercase__ : List[str] = list(sample_data.values() ) lowercase__ : str = list(map(tokenizer.encode , lowerCAmelCase__ ) ) lowercase__ : Optional[int] = [tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) for x in output_tokens] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__( self ) -> List[str]: self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
200
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _lowercase = True from torch.cuda.amp import autocast _lowercase = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) UpperCamelCase_ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) UpperCamelCase_ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) UpperCamelCase_ = field( default=0.99_99_95 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def UpperCamelCase ( snake_case__ , snake_case__): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) lowerCAmelCase_ : str = logging.WARNING if model_args.verbose_logging: lowerCAmelCase_ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): lowerCAmelCase_ : Any = logging.INFO logger.setLevel(snake_case__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCamelCase_ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) UpperCamelCase_ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) UpperCamelCase_ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase_ = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = "longest" UpperCamelCase_ = None UpperCamelCase_ = None def __call__( self : str ,lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.feature_extractor.pad( lowerCAmelCase__ ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowerCAmelCase_ : List[str] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCAmelCase_ : Tuple = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowerCAmelCase_ : Optional[Any] = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCAmelCase_ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=lowerCAmelCase__ ,min_masks=2 ,) return batch class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : List[str] ,*lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple=1 ,lowerCAmelCase__ : Optional[int]=0 ,lowerCAmelCase__ : Optional[Any]=1.0 ,**lowerCAmelCase__ : Any ) -> str: '''simple docstring''' super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : int = max_gumbel_temp lowerCAmelCase_ : Union[str, Any] = min_gumbel_temp lowerCAmelCase_ : str = gumbel_temp_decay def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : nn.Module ,lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() lowerCAmelCase_ : str = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) else: lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase_ : List[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase_ : Optional[Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase_ : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses() configure_logger(snake_case__ , snake_case__) # Downloading and loading a dataset from the hub. lowerCAmelCase_ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Any = DatasetDict() lowerCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Union[str, Any] = DatasetDict() lowerCAmelCase_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCAmelCase_ : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=snake_case__) def prepare_dataset(snake_case__): # check that all files have the correct sampling rate lowerCAmelCase_ , lowerCAmelCase_ : str = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays lowerCAmelCase_ : int = datasets.map( snake_case__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names) # filter audio files that are too long lowerCAmelCase_ : int = vectorized_datasets.filter( lambda snake_case__: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)) def normalize(snake_case__): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` lowerCAmelCase_ : str = vectorized_datasets.map( snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCAmelCase_ : Optional[Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'") lowerCAmelCase_ : Dict = WavaVecaForPreTraining(snake_case__) lowerCAmelCase_ : int = DataCollatorForWavaVecaPretraining(model=snake_case__ , feature_extractor=snake_case__) lowerCAmelCase_ : List[Any] = WavaVecaPreTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=snake_case__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
659
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Dict = 384 __UpperCamelCase : List[str] = 7 if "tiny" in model_name: __UpperCamelCase : List[Any] = 96 __UpperCamelCase : Union[str, Any] = (2, 2, 6, 2) __UpperCamelCase : int = (3, 6, 12, 24) elif "small" in model_name: __UpperCamelCase : List[Any] = 96 __UpperCamelCase : List[Any] = (2, 2, 18, 2) __UpperCamelCase : int = (3, 6, 12, 24) elif "base" in model_name: __UpperCamelCase : List[str] = 128 __UpperCamelCase : Any = (2, 2, 18, 2) __UpperCamelCase : Any = (4, 8, 16, 32) __UpperCamelCase : int = 12 __UpperCamelCase : Dict = 512 elif "large" in model_name: __UpperCamelCase : List[Any] = 192 __UpperCamelCase : Any = (2, 2, 18, 2) __UpperCamelCase : str = (6, 12, 24, 48) __UpperCamelCase : str = 12 __UpperCamelCase : int = 768 # set label information __UpperCamelCase : Dict = 150 __UpperCamelCase : List[str] = "huggingface/label-files" __UpperCamelCase : Tuple = "ade20k-id2label.json" __UpperCamelCase : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="dataset" ) , "r" ) ) __UpperCamelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCamelCase : str = {v: k for k, v in idalabel.items()} __UpperCamelCase : int = SwinConfig( embed_dim=snake_case__ , depths=snake_case__ , num_heads=snake_case__ , window_size=snake_case__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) __UpperCamelCase : Tuple = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.stages.{i}.downsample.reduction.weight", F"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.weight", F"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.bias", F"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCamelCase : int = val def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase : Union[str, Any] = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) __UpperCamelCase : List[Any] = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase : Optional[int] = in_proj_weight[:dim, :] __UpperCamelCase : Any = in_proj_bias[: dim] __UpperCamelCase : Optional[int] = in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase : Optional[Any] = in_proj_bias[ dim : dim * 2 ] __UpperCamelCase : Dict = in_proj_weight[ -dim :, : ] __UpperCamelCase : int = in_proj_bias[-dim :] # fmt: on def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase , __UpperCamelCase : List[str] = x.shape __UpperCamelCase : Any = x.reshape(snake_case__ , 4 , in_channel // 4 ) __UpperCamelCase : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) return x def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase , __UpperCamelCase : List[str] = x.shape __UpperCamelCase : Dict = x.reshape(snake_case__ , in_channel // 4 , 4 ) __UpperCamelCase : int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) return x def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : List[Any] = x.shape[0] __UpperCamelCase : List[str] = x.reshape(4 , in_channel // 4 ) __UpperCamelCase : Any = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case__ ) return x def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : List[str] = x.shape[0] __UpperCamelCase : List[Any] = x.reshape(in_channel // 4 , 4 ) __UpperCamelCase : List[str] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case__ ) return x def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : str = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } __UpperCamelCase : int = model_name_to_url[model_name] __UpperCamelCase : str = torch.hub.load_state_dict_from_url(snake_case__ , map_location="cpu" , file_name=snake_case__ )[ "state_dict" ] for name, param in state_dict.items(): print(snake_case__ , param.shape ) __UpperCamelCase : Optional[int] = get_upernet_config(snake_case__ ) __UpperCamelCase : Union[str, Any] = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCamelCase : List[Any] = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCamelCase : str = key.replace("bn" , "batch_norm" ) __UpperCamelCase : Dict = val # rename keys __UpperCamelCase : List[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __UpperCamelCase : Tuple = reverse_correct_unfold_reduction_order(snake_case__ ) if "norm" in key: __UpperCamelCase : List[str] = reverse_correct_unfold_norm_order(snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCamelCase : Optional[Any] = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCamelCase : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) __UpperCamelCase : Union[str, Any] = SegformerImageProcessor() __UpperCamelCase : int = processor(snake_case__ , return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCamelCase : int = model(snake_case__ ) __UpperCamelCase : str = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __UpperCamelCase : str = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": __UpperCamelCase : Dict = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": __UpperCamelCase : int = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": __UpperCamelCase : List[str] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
399
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
399
1
from math import pi def _snake_case (_snake_case : int , _snake_case : int) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
181
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : str ='''mra''' def __init__( self :Any, snake_case :List[str]=5_0265, snake_case :List[Any]=768, snake_case :Optional[Any]=12, snake_case :Optional[Any]=12, snake_case :str=3072, snake_case :Tuple="gelu", snake_case :Optional[int]=0.1, snake_case :int=0.1, snake_case :Any=512, snake_case :Union[str, Any]=1, snake_case :Union[str, Any]=0.0_2, snake_case :List[Any]=1e-5, snake_case :Optional[int]="absolute", snake_case :Optional[int]=4, snake_case :str="full", snake_case :Optional[int]=0, snake_case :List[Any]=0, snake_case :int=1, snake_case :List[Any]=0, snake_case :Dict=2, **snake_case :Dict, ): """simple docstring""" super().__init__(pad_token_id=snake_case, bos_token_id=snake_case, eos_token_id=snake_case, **snake_case) _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =type_vocab_size _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =block_per_row _lowercase =approx_mode _lowercase =initial_prior_first_n_blocks _lowercase =initial_prior_diagonal_n_blocks
181
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' ,__UpperCAmelCase ,) class _A ( __UpperCAmelCase ): UpperCamelCase__ : Dict = RobertaConfig UpperCamelCase__ : Optional[Any] = '''roberta''' def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) __a = RobertaEmbeddings(__SCREAMING_SNAKE_CASE) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' ,__UpperCAmelCase ,) class _A ( __UpperCAmelCase ): UpperCamelCase__ : Dict = RobertaConfig UpperCamelCase__ : Tuple = '''roberta''' def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) __a = config.num_labels __a = config.num_hidden_layers __a = DeeRobertaModel(__SCREAMING_SNAKE_CASE) __a = nn.Dropout(config.hidden_dropout_prob) __a = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=-1 , __SCREAMING_SNAKE_CASE : List[Any]=False , ): '''simple docstring''' __a = self.num_layers try: __a = self.roberta( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , ) __a = outputs[1] __a = self.dropout(__SCREAMING_SNAKE_CASE) __a = self.classifier(__SCREAMING_SNAKE_CASE) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(__SCREAMING_SNAKE_CASE) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1) , labels.view(-1)) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(__SCREAMING_SNAKE_CASE) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(__SCREAMING_SNAKE_CASE) if train_highway: __a = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
60
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __snake_case :Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __snake_case :Optional[int] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __snake_case ( _UpperCAmelCase ): __a = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __snake_case ( _UpperCAmelCase ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: __a = _readaa(_UpperCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __a = _readaa(_UpperCAmelCase ) __a = _readaa(_UpperCAmelCase ) __a = _readaa(_UpperCAmelCase ) __a = bytestream.read(rows * cols * num_images ) __a = numpy.frombuffer(_UpperCAmelCase , dtype=numpy.uinta ) __a = data.reshape(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , 1 ) return data @deprecated(_UpperCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = labels_dense.shape[0] __a = numpy.arange(_UpperCAmelCase ) * num_classes __a = numpy.zeros((num_labels, num_classes) ) __a = 1 return labels_one_hot @deprecated(_UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: __a = _readaa(_UpperCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __a = _readaa(_UpperCAmelCase ) __a = bytestream.read(_UpperCAmelCase ) __a = numpy.frombuffer(_UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase , _UpperCAmelCase ) return labels class _A : @deprecated( __SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Any=dtypes.floataa , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Any=None , ): '''simple docstring''' __a , __a = random_seed.get_seed(__SCREAMING_SNAKE_CASE) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) __a = dtypes.as_dtype(__SCREAMING_SNAKE_CASE).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype) if fake_data: __a = 10_000 __a = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' __a = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __a = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __a = images.astype(numpy.floataa) __a = numpy.multiply(__SCREAMING_SNAKE_CASE , 1.0 / 2_55.0) __a = images __a = labels __a = 0 __a = 0 @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self._images @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self._labels @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return self._num_examples @property def _lowerCamelCase ( self : str): '''simple docstring''' return self._epochs_completed def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Optional[int]=True): '''simple docstring''' if fake_data: __a = [1] * 784 __a = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__SCREAMING_SNAKE_CASE)], [fake_label for _ in range(__SCREAMING_SNAKE_CASE)], ) __a = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __a = numpy.arange(self._num_examples) numpy.random.shuffle(__SCREAMING_SNAKE_CASE) __a = self.images[perma] __a = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __a = self._num_examples - start __a = self._images[start : self._num_examples] __a = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __a = numpy.arange(self._num_examples) numpy.random.shuffle(__SCREAMING_SNAKE_CASE) __a = self.images[perm] __a = self.labels[perm] # Start next epoch __a = 0 __a = batch_size - rest_num_examples __a = self._index_in_epoch __a = self._images[start:end] __a = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size __a = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase , '''Please write your own downloading logic.''' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) __a = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase , _UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: __a = f.size() print('''Successfully downloaded''' , _UpperCAmelCase , _UpperCAmelCase , '''bytes.''' ) return filepath @deprecated( _UpperCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=dtypes.floataa , _UpperCAmelCase=True , _UpperCAmelCase=5000 , _UpperCAmelCase=None , _UpperCAmelCase=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_UpperCAmelCase , one_hot=_UpperCAmelCase , dtype=_UpperCAmelCase , seed=_UpperCAmelCase ) __a = fake() __a = fake() __a = fake() return _Datasets(train=_UpperCAmelCase , validation=_UpperCAmelCase , test=_UpperCAmelCase ) if not source_url: # empty string check __a = DEFAULT_SOURCE_URL __a = '''train-images-idx3-ubyte.gz''' __a = '''train-labels-idx1-ubyte.gz''' __a = '''t10k-images-idx3-ubyte.gz''' __a = '''t10k-labels-idx1-ubyte.gz''' __a = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + train_images_file ) with gfile.Open(_UpperCAmelCase , '''rb''' ) as f: __a = _extract_images(_UpperCAmelCase ) __a = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase , '''rb''' ) as f: __a = _extract_labels(_UpperCAmelCase , one_hot=_UpperCAmelCase ) __a = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + test_images_file ) with gfile.Open(_UpperCAmelCase , '''rb''' ) as f: __a = _extract_images(_UpperCAmelCase ) __a = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase , '''rb''' ) as f: __a = _extract_labels(_UpperCAmelCase , one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): __a = ( '''Validation size should be between 0 and ''' f'{len(_UpperCAmelCase )}. Received: {validation_size}.' ) raise ValueError(_UpperCAmelCase ) __a = train_images[:validation_size] __a = train_labels[:validation_size] __a = train_images[validation_size:] __a = train_labels[validation_size:] __a = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __a = _DataSet(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) __a = _DataSet(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) __a = _DataSet(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase , validation=_UpperCAmelCase , test=_UpperCAmelCase )
60
1
from __future__ import annotations import math from collections.abc import Callable def a__ ( A__, A__, A__, A__ = 1_0_0, ): SCREAMING_SNAKE_CASE_ : Tuple = x_start SCREAMING_SNAKE_CASE_ : Dict = fnc(A__ ) SCREAMING_SNAKE_CASE_ : Tuple = 0.0 for _ in range(A__ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE_ : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE_ : Any = fnc(A__ ) length += math.hypot(xa - xa, fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE_ : int = xa SCREAMING_SNAKE_CASE_ : Optional[int] = fxa return length if __name__ == "__main__": def a__ ( A__ ): return math.sin(1_0 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') lowerCAmelCase__ : Union[str, Any] =10 while i <= 10_00_00: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
101
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase__ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = {F"funnel-transformer/{name}": 512 for name in _model_names} lowerCAmelCase__ = {F"funnel-transformer/{name}": {'do_lower_case': True} for name in _model_names} class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = FunnelTokenizer __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = 2 def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<sep>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<cls>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_="##" , **lowerCAmelCase_ , ): super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , clean_text=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , wordpieces_prefix=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowercase = getattr(lowerCAmelCase_ , normalizer_state.pop("type" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**lowerCAmelCase_ ) __lowercase = do_lower_case def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
321
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Dict: if attention_mask is None: SCREAMING_SNAKE_CASE : Any = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase : '''simple docstring''' UpperCAmelCase : Dict = OPTConfig UpperCAmelCase : List[Any] = {} UpperCAmelCase : Tuple = 'gelu' def __init__( self : Optional[Any] , snake_case : List[str] , snake_case : Union[str, Any]=13 , snake_case : int=7 , snake_case : List[Any]=True , snake_case : Tuple=False , snake_case : List[str]=99 , snake_case : Optional[Any]=16 , snake_case : List[Any]=2 , snake_case : str=4 , snake_case : Dict=4 , snake_case : str="gelu" , snake_case : str=0.1 , snake_case : Optional[int]=0.1 , snake_case : Union[str, Any]=20 , snake_case : Union[str, Any]=2 , snake_case : Any=1 , snake_case : Tuple=0 , snake_case : str=16 , snake_case : Optional[int]=16 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = eos_token_id SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : Optional[int] = bos_token_id SCREAMING_SNAKE_CASE : str = embed_dim SCREAMING_SNAKE_CASE : Tuple = word_embed_proj_dim SCREAMING_SNAKE_CASE : Optional[Any] = False def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case , **self.config_updates , ) SCREAMING_SNAKE_CASE : str = prepare_opt_inputs_dict(snake_case , snake_case ) return config, inputs_dict def lowerCamelCase_ ( self : Dict , snake_case : Union[str, Any] , snake_case : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TFOPTModel(config=snake_case ) SCREAMING_SNAKE_CASE : Dict = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE : Optional[Any] = input_ids[:1, :] SCREAMING_SNAKE_CASE : Tuple = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE : Tuple = 1 # first forward pass SCREAMING_SNAKE_CASE : List[Any] = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : Dict = model(snake_case , attention_mask=snake_case )[0] SCREAMING_SNAKE_CASE : Tuple = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case , snake_case , rtol=1E-3 ) @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCAmelCase : List[Any] = (TFOPTForCausalLM,) if is_tf_available() else () UpperCAmelCase : int = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) UpperCAmelCase : str = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = 10 def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case : int , snake_case : List[str] ): if hasattr(snake_case , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE : Optional[Any] = model_class(config=snake_case ) SCREAMING_SNAKE_CASE : str = _get_word_embedding_weight(snake_case , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE : int = _get_word_embedding_weight(snake_case , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case ) SCREAMING_SNAKE_CASE : Dict = _get_word_embedding_weight(snake_case , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE : Optional[Any] = _get_word_embedding_weight(snake_case , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE : Optional[int] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE : Optional[Any] = False self.assertTrue(snake_case ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case ) SCREAMING_SNAKE_CASE : List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE : List[str] = False self.assertTrue(snake_case ) def __a ( __lowerCAmelCase ) -> int: return tf.constant(__lowerCAmelCase , dtype=tf.intaa ) @require_tf class lowercase ( unittest.TestCase): '''simple docstring''' UpperCAmelCase : Tuple = 99 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE : Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = input_ids.shape[0] SCREAMING_SNAKE_CASE : List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase ( unittest.TestCase): '''simple docstring''' @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFOPTModel.from_pretrained('facebook/opt-350m' ) SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) SCREAMING_SNAKE_CASE : int = tf.not_equal(snake_case , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE : int = model(input_ids=snake_case , attention_mask=snake_case ).last_hidden_state SCREAMING_SNAKE_CASE : Union[str, Any] = (1, 11, 512) self.assertEqual(output.shape , snake_case ) SCREAMING_SNAKE_CASE : List[str] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=4E-3 ) ) SCREAMING_SNAKE_CASE : Any = tf.function(snake_case , jit_compile=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = xla_generate(snake_case , snake_case )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=4E-2 ) ) @require_tf @slow class lowercase ( unittest.TestCase): '''simple docstring''' def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = 'facebook/opt-350m' def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE : Optional[Any] = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(snake_case , return_tensors='tf' , padding=snake_case , add_special_tokens=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE : int = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-4 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.function(snake_case , jit_compile=snake_case ) SCREAMING_SNAKE_CASE : Tuple = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-4 ) ) @require_tf @slow class lowercase ( unittest.TestCase): '''simple docstring''' @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'facebook/opt-125m' SCREAMING_SNAKE_CASE : Optional[Any] = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : int = TFOPTForCausalLM.from_pretrained(snake_case ) for prompt in self.prompts: SCREAMING_SNAKE_CASE : Tuple = tokenizer(snake_case , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(snake_case , max_length=10 ) SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) predicted_outputs += generated_string self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 'facebook/opt-350m' SCREAMING_SNAKE_CASE : int = GPTaTokenizer.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = TFOPTForCausalLM.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : str = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] SCREAMING_SNAKE_CASE : List[Any] = tokenizer(snake_case , return_tensors='tf' , padding=snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs['input_ids'] SCREAMING_SNAKE_CASE : List[Any] = model.generate(input_ids=snake_case , attention_mask=inputs['attention_mask'] ) SCREAMING_SNAKE_CASE : int = tokenizer(sentences[0] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : List[str] = model.generate(input_ids=snake_case ) SCREAMING_SNAKE_CASE : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) SCREAMING_SNAKE_CASE : int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) SCREAMING_SNAKE_CASE : int = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) SCREAMING_SNAKE_CASE : str = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'facebook/opt-350m' SCREAMING_SNAKE_CASE : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = GPTaTokenizer.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = TFOPTForCausalLM.from_pretrained(snake_case ) for prompt in self.prompts: SCREAMING_SNAKE_CASE : str = tokenizer(snake_case , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : Tuple = model.generate(snake_case , max_length=10 ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) predicted_outputs += generated_string self.assertListEqual(snake_case , snake_case )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : List[str] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
308
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : List[str] = TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (UpperCamelCase : List[DatasetType] , UpperCamelCase : Optional[List[float]] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[DatasetInfo] = None , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(UpperCamelCase ): if not isinstance(UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(UpperCamelCase )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase ).__name__}.' ) if i == 0: _a , _a = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase , UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase , UpperCamelCase , UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , stopping_strategy=UpperCamelCase ) else: return _interleave_iterable_datasets( UpperCamelCase , UpperCamelCase , UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , stopping_strategy=UpperCamelCase ) def snake_case_ (UpperCamelCase : List[DatasetType] , UpperCamelCase : Optional[DatasetInfo] = None , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(UpperCamelCase ): if not isinstance(UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(UpperCamelCase )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase ).__name__}.' ) if i == 0: _a , _a = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase , UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , axis=UpperCamelCase ) else: return _concatenate_iterable_datasets(UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , axis=UpperCamelCase )
22
from __future__ import annotations class lowerCAmelCase : def __init__( self :Union[str, Any] , _lowercase :List[Any]=None ): '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self :Dict ): '''simple docstring''' lowercase__ = [] lowercase__ = self while temp: string_rep.append(f'''{temp.data}''' ) lowercase__ = temp.next return "->".join(_lowercase ) def _A ( __magic_name__ ): if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ = lowercase__ = Node(elements_list[0] ) for i in range(1 , len(__magic_name__ ) ): lowercase__ = Node(elements_list[i] ) lowercase__ = current.next return head def _A ( __magic_name__ ): if head_node is not None and isinstance(__magic_name__ , __magic_name__ ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): from doctest import testmod testmod() lowercase__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(__magic_name__ ) print("Elements in Reverse:" ) print_reverse(__magic_name__ ) if __name__ == "__main__": main()
655
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _a ( unittest.TestCase ): a_ : Dict = StableDiffusionLDMaDPipeline a_ : int = TEXT_TO_IMAGE_PARAMS a_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self : List[Any] ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCamelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = StableDiffusionLDMaDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe.to(SCREAMING_SNAKE_CASE__ ) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = rgb[0, -3:, -3:, -1] lowerCamelCase__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ = np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) lowerCamelCase__ = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = StableDiffusionLDMaDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe.to(SCREAMING_SNAKE_CASE__ ) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 3 * [inputs['prompt']] # forward lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ = depth_slice_a[0, -3:, -1] lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 3 * [inputs.pop('prompt' )] lowerCamelCase__ = ldmad_pipe.tokenizer( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) lowerCamelCase__ = text_inputs['input_ids'].to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe.text_encoder(SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = prompt_embeds # forward lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = StableDiffusionLDMaDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe.to(SCREAMING_SNAKE_CASE__ ) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'french fries' lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = rgb[0, -3:, -3:, -1] lowerCamelCase__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ = np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) lowerCamelCase__ = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]="cpu" , SCREAMING_SNAKE_CASE__ : int=torch.floataa , SCREAMING_SNAKE_CASE__ : Tuple=0 ): lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = np.random.RandomState(SCREAMING_SNAKE_CASE__ ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self : str ): lowerCamelCase__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) lowerCamelCase__ = ldmad_pipe.to(SCREAMING_SNAKE_CASE__ ) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = rgb[0, -3:, -3:, -1].flatten() lowerCamelCase__ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) lowerCamelCase__ = np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) lowerCamelCase__ = np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]="cpu" , SCREAMING_SNAKE_CASE__ : Dict=torch.floataa , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ): lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = np.random.RandomState(SCREAMING_SNAKE_CASE__ ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(SCREAMING_SNAKE_CASE__ ) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = 0.49_55_86 lowerCamelCase__ = 0.33_79_55_15 lowerCamelCase__ = 1_12.4_85_18 lowerCamelCase__ = 98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def _UpperCamelCase ( self : Any ): lowerCamelCase__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(SCREAMING_SNAKE_CASE__ ) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = output.rgb, output.depth lowerCamelCase__ = 0.4_19_41_27 lowerCamelCase__ = 0.35_37_55_86 lowerCamelCase__ = 0.5_63_85_02 lowerCamelCase__ = 0.34_68_61_03 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
659
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 200 ) -> int: '''simple docstring''' snake_case_ = [1, 2, 5, 10, 20, 50, 100, 200] snake_case_ = [0] * (pence + 1) snake_case_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCAmelCase, pence + 1, 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
640
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class a : def __init__( self : Tuple , lowercase_ : Any , ): snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 2 snake_case_ = 99 snake_case_ = 0 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 512 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = '''last''' snake_case_ = True snake_case_ = None snake_case_ = 0 def A_ ( self : Union[str, Any] ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : int , lowercase_ : str , lowercase_ : int , ): snake_case_ = TFFlaubertModel(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} snake_case_ = model(lowercase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[Any] , ): snake_case_ = TFFlaubertWithLMHeadModel(lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : str , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : str , ): snake_case_ = TFFlaubertForQuestionAnsweringSimple(lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''lengths''': input_lengths} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int , lowercase_ : Dict , ): snake_case_ = TFFlaubertForSequenceClassification(lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''lengths''': input_lengths} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Union[str, Any] , ): snake_case_ = self.num_labels snake_case_ = TFFlaubertForTokenClassification(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Any , ): snake_case_ = self.num_choices snake_case_ = TFFlaubertForMultipleChoice(config=lowercase_ ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Dict ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case_ = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def A_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self : int ): snake_case_ = TFFlaubertModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , emb_dim=37 ) def A_ ( self : List[str] ): self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowercase_ ) @slow def A_ ( self : Optional[int] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFFlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @slow def A_ ( self : int ): snake_case_ = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) snake_case_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" snake_case_ = model(lowercase_ )[0] snake_case_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice. snake_case_ = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
640
1
'''simple docstring''' def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : str = [int(_lowercase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_lowercase ) == 4 and all(0 <= int(_lowercase ) <= 254 for octet in octets ) if __name__ == "__main__": __UpperCAmelCase :int = input().strip() __UpperCAmelCase :Dict = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
715
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : int = int(number**0.5 ) return number == sq * sq def _a ( _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : int ): '''simple docstring''' __UpperCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __UpperCAmelCase : int = x_den * y_den * z_den __UpperCAmelCase : int = gcd(_lowercase , _lowercase ) top //= hcf bottom //= hcf return top, bottom def _a ( _lowercase : int = 35 ): '''simple docstring''' __UpperCAmelCase : set = set() __UpperCAmelCase : int __UpperCAmelCase : Fraction = Fraction(0 ) __UpperCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __UpperCAmelCase : Optional[int] = x_num * y_den + x_den * y_num __UpperCAmelCase : Dict = x_den * y_den __UpperCAmelCase : List[Any] = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCAmelCase : Dict = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 __UpperCAmelCase : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __UpperCAmelCase : Any = x_den * x_den * y_den * y_den if is_sq(_lowercase ) and is_sq(_lowercase ): __UpperCAmelCase : List[Any] = int(sqrt(_lowercase ) ) __UpperCAmelCase : Tuple = int(sqrt(_lowercase ) ) __UpperCAmelCase : Union[str, Any] = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCAmelCase : Union[str, Any] = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=-1 __UpperCAmelCase : Union[str, Any] = x_num * y_num __UpperCAmelCase : List[Any] = x_den * y_num + x_num * y_den __UpperCAmelCase : Any = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCAmelCase : Optional[Any] = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 __UpperCAmelCase : Optional[Any] = x_num * x_num * y_num * y_num __UpperCAmelCase : Dict = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowercase ) and is_sq(_lowercase ): __UpperCAmelCase : Any = int(sqrt(_lowercase ) ) __UpperCAmelCase : List[Any] = int(sqrt(_lowercase ) ) __UpperCAmelCase : Any = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCAmelCase : int = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) for num, den in unique_s: total += Fraction(_lowercase , _lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
266
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase__ : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__) class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Any , **lowercase_ : Optional[Any] ): super().__init__(**lowercase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image", List["Image"]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def _snake_case ( self : Optional[int] , **lowercase_ : List[Any] ): snake_case_ : Optional[Any] = {} if "candidate_labels" in kwargs: snake_case_ : Dict = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: snake_case_ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _snake_case ( self : Any , lowercase_ : Tuple , lowercase_ : str=None , lowercase_ : str="This is a photo of {}." ): snake_case_ : Any = load_image(lowercase_ ) snake_case_ : Optional[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) snake_case_ : Dict = candidate_labels snake_case_ : Union[str, Any] = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] snake_case_ : Tuple = self.tokenizer(lowercase_ , return_tensors=self.framework , padding=lowercase_ ) snake_case_ : Optional[int] = [text_inputs] return inputs def _snake_case ( self : List[Any] , lowercase_ : List[str] ): snake_case_ : List[Any] = model_inputs.pop('''candidate_labels''' ) snake_case_ : List[str] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowercase_ ): snake_case_ : List[str] = text_inputs[0] else: # Batching case. snake_case_ : Optional[int] = text_inputs[0][0] snake_case_ : Optional[Any] = self.model(**lowercase_ , **lowercase_ ) snake_case_ : Optional[Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _snake_case ( self : Union[str, Any] , lowercase_ : Optional[Any] ): snake_case_ : Dict = model_outputs.pop('''candidate_labels''' ) snake_case_ : Dict = model_outputs['''logits'''][0] if self.framework == "pt": snake_case_ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case_ : Tuple = probs.tolist() if not isinstance(lowercase_ , lowercase_ ): snake_case_ : Dict = [scores] elif self.framework == "tf": snake_case_ : Optional[int] = stable_softmax(lowercase_ , axis=-1 ) snake_case_ : str = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) snake_case_ : int = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_ , lowercase_ ) , key=lambda lowercase_ : -x[0] ) ] return result
123
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase__ : str = datasets.logging.get_logger(__name__) lowercase__ : List[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowercase__ : Optional[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowercase__ : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowercase ( _a , _a , _a=False , _a=False , _a=True , _a=False , _a="dummy_doc" ): snake_case_ : Union[str, Any] = {doc: key_lines} snake_case_ : int = {doc: sys_lines} snake_case_ : Optional[Any] = {} snake_case_ : Dict = 0 snake_case_ : List[Any] = 0 snake_case_ : str = 0 snake_case_ : Dict = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 snake_case_, snake_case_ : Dict = reader.get_doc_mentions(_a , key_doc_lines[doc] , _a ) key_singletons_num += singletons_num if NP_only or min_span: snake_case_ : List[Any] = reader.set_annotated_parse_trees(_a , key_doc_lines[doc] , _a , _a ) snake_case_, snake_case_ : str = reader.get_doc_mentions(_a , sys_doc_lines[doc] , _a ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case_ : Optional[Any] = reader.set_annotated_parse_trees(_a , key_doc_lines[doc] , _a , _a ) if remove_nested: snake_case_, snake_case_ : Union[str, Any] = reader.remove_nested_coref_mentions(_a , _a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case_, snake_case_ : Optional[int] = reader.remove_nested_coref_mentions(_a , _a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case_ : List[Any] = reader.get_mention_assignments(_a , _a ) snake_case_ : Optional[Any] = reader.get_mention_assignments(_a , _a ) snake_case_ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def __lowercase ( _a , _a , _a , _a , _a , _a , _a ): snake_case_ : str = get_coref_infos(_a , _a , _a , _a , _a , _a ) snake_case_ : Any = {} snake_case_ : List[str] = 0 snake_case_ : Any = 0 for name, metric in metrics: snake_case_, snake_case_, snake_case_ : Union[str, Any] = evaluator.evaluate_documents(_a , _a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 100:.2f}" , f" Precision: {precision * 100:.2f}" , f" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: snake_case_ : Optional[Any] = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def __lowercase ( _a ): snake_case_ : Any = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: snake_case_ : List[str] = line.split()[5] if not parse_col == "-": snake_case_ : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def _snake_case ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _snake_case ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[Any]=True , lowercase_ : Tuple=False , lowercase_ : Any=False , lowercase_ : List[Any]=False ): snake_case_ : Optional[int] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: snake_case_ : str = util.check_gold_parse_annotation(lowercase_ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case_ : Optional[Any] = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
123
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case__ ) -> bool: __UpperCAmelCase =str(snake_case__ ) return len(snake_case__ ) == 9 and set(snake_case__ ) == set('''123456789''' ) def SCREAMING_SNAKE_CASE ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): __UpperCAmelCase =10_0002 * base_num if is_9_pandigital(snake_case__ ): return candidate for base_num in range(333 , 99 , -1 ): __UpperCAmelCase =100_2003 * base_num if is_9_pandigital(snake_case__ ): return candidate return None if __name__ == "__main__": print(f'{solution() = }')
142
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase_ = get_logger() UpperCamelCase_ = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' super().__init__(features=UpperCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCAmelCase)}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''') __UpperCAmelCase =device if isinstance(UpperCAmelCase , UpperCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default """ f"""device: {str(jax.devices()[0])}.""") __UpperCAmelCase =str(jax.devices()[0]) __UpperCAmelCase =jnp_array_kwargs @staticmethod def A__ (): '''simple docstring''' import jax return {str(UpperCAmelCase): device for device in jax.devices()} def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase) and column: if all( isinstance(UpperCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(UpperCAmelCase , axis=0) return column def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase))): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __UpperCAmelCase ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __UpperCAmelCase ={'''dtype''': jnp.intaa} else: __UpperCAmelCase ={'''dtype''': jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __UpperCAmelCase ={'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image): __UpperCAmelCase =np.asarray(UpperCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def A__ (self , UpperCAmelCase): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(UpperCAmelCase , '''__array__''') and not isinstance(UpperCAmelCase , jax.Array): __UpperCAmelCase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) elif isinstance(UpperCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) return self._tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_row(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_row(UpperCAmelCase) return self.recursive_tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_column(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0]) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) __UpperCAmelCase =self._consolidate(UpperCAmelCase) return column def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_batch(UpperCAmelCase) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) for column_name in batch: __UpperCAmelCase =self._consolidate(batch[column_name]) return batch
142
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } __UpperCAmelCase = '▁' class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : str = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : List[str] = ['''input_ids''', '''attention_mask'''] _snake_case : str = BarthezTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , **_UpperCamelCase , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : List[Any] = vocab_file UpperCAmelCase_ : Dict = False if not self.vocab_file else True def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] UpperCAmelCase_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : Any = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ): copyfile(self.vocab_file , _UpperCamelCase ) return (out_vocab_file,)
406
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
1
def _SCREAMING_SNAKE_CASE ( __lowercase : float , __lowercase : list[float] ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __A = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowercase ) ) return round(__lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
199
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 class __lowercase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[Any] , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase_ : Tuple[int] = (64,) , UpperCamelCase_ : int = 1 , UpperCamelCase_ : str = "silu" , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : int = 256 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : float = 0.18215 , UpperCamelCase_ : str = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder __A = Encoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , ) __A = vq_embed_dim if vq_embed_dim is not None else latent_channels __A = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) __A = VectorQuantizer(UpperCamelCase_ , UpperCamelCase_ , beta=0.25 , remap=UpperCamelCase_ , sane_index_shape=UpperCamelCase_ ) __A = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) # pass init params to Decoder __A = Decoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , norm_type=UpperCamelCase_ , ) @apply_forward_hook def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ): """simple docstring""" __A = self.encoder(UpperCamelCase_ ) __A = self.quant_conv(UpperCamelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase_ ) @apply_forward_hook def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True ): """simple docstring""" if not force_not_quantize: __A , __A , __A = self.quantize(UpperCamelCase_ ) else: __A = h __A = self.post_quant_conv(UpperCamelCase_ ) __A = self.decoder(UpperCamelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ): """simple docstring""" __A = sample __A = self.encode(UpperCamelCase_ ).latents __A = self.decode(UpperCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ )
199
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : Optional[Any] = 250_004 a : List[Any] = 250_020 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = MBartaaTokenizer __SCREAMING_SNAKE_CASE = MBartaaTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Dict ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = MBartaaTokenizer(a_ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Tuple ): """simple docstring""" __snake_case = "<s>" __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def A ( self : int ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(a_ ) , 1_054 ) def A ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def A ( self : Any ): """simple docstring""" __snake_case = MBartaaTokenizer(a_ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=a_ ) __snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __snake_case = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def A ( self : List[str] ): """simple docstring""" __snake_case = {"input_ids": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def A ( self : Tuple ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __snake_case = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) __snake_case = self.tokenizer_class.from_pretrained(a_ , **a_ ) __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(a_ ) __snake_case = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __snake_case = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a_ , a_ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(a_ ) __snake_case = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=True __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(a_ , legacy_format=a_ ) __snake_case = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files self.assertSequenceEqual(a_ , a_ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(a_ ) __snake_case = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=False __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(a_ , legacy_format=a_ ) __snake_case = tokenizer_p.save_pretrained(a_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(a_ ) __snake_case = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = """facebook/mbart-large-50-one-to-many-mmt""" __SCREAMING_SNAKE_CASE = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __SCREAMING_SNAKE_CASE = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __SCREAMING_SNAKE_CASE = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def A ( cls : List[Any] ): """simple docstring""" __snake_case = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __snake_case = 1 return cls def A ( self : Tuple ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250_038 ) def A ( self : str ): """simple docstring""" __snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a_ ) def A ( self : Dict ): """simple docstring""" self.assertIn(a_ , self.tokenizer.all_special_ids ) __snake_case = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __snake_case = self.tokenizer.decode(a_ , skip_special_tokens=a_ ) __snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ ) self.assertNotIn(self.tokenizer.eos_token , a_ ) def A ( self : str ): """simple docstring""" __snake_case = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , a_ ) __snake_case = 10 __snake_case = self.tokenizer(a_ , max_length=a_ , truncation=a_ ).input_ids[0] self.assertEqual(ids[0] , a_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(a_ ) , a_ ) def A ( self : str ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_053, 250_001] ) def A ( self : Dict ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) __snake_case = MBartaaTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a_ ) @require_torch def A ( self : Dict ): """simple docstring""" __snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a_ , return_tensors="pt" ) __snake_case = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def A ( self : int ): """simple docstring""" __snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __snake_case = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a_ , a_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def A ( self : Dict ): """simple docstring""" __snake_case = self.tokenizer(self.src_text , padding=a_ , truncation=a_ , max_length=3 , return_tensors="pt" ) __snake_case = self.tokenizer( text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=10 , return_tensors="pt" ) __snake_case = targets["input_ids"] __snake_case = shift_tokens_right(a_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A ( self : Any ): """simple docstring""" __snake_case = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(a_ ) , { # en_XX, A, test, EOS "input_ids": [[250_004, 62, 3_034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
69
'''simple docstring''' import argparse import os import re __snake_case : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. __snake_case : Optional[Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. __snake_case : Tuple = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __snake_case : Dict = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. __snake_case : Union[str, Any] = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __snake_case : Any = re.compile(r'\[([^\]]+)\]') def __lowerCamelCase ( __snake_case : Optional[int] ) -> Any: """simple docstring""" A__ : Optional[int] =_re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any]="", __snake_case : Tuple=None, __snake_case : Tuple=None ) -> List[str]: """simple docstring""" A__ : str =0 A__ : List[Any] =code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 A__ : Union[str, Any] =["""\n""".join(lines[:index] )] else: A__ : Tuple =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ : int =[lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__snake_case ) ) if index < len(__snake_case ) - 1: A__ : Any =[lines[index + 1]] index += 1 else: A__ : List[str] =[] else: blocks.append("""\n""".join(__snake_case ) ) A__ : Any =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append("""\n""".join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __lowerCamelCase ( __snake_case : Dict ) -> Dict: """simple docstring""" def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace("""_""", """""" ) return _inner def __lowerCamelCase ( __snake_case : List[str], __snake_case : Union[str, Any]=None ) -> List[Any]: """simple docstring""" def noop(__snake_case : int ): return x if key is None: A__ : Optional[int] =noop # Constants are all uppercase, they go first. A__ : Tuple =[obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ : List[str] =[obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. A__ : Union[str, Any] =[obj for obj in objects if not key(__snake_case )[0].isupper()] A__ : Union[str, Any] =ignore_underscore(__snake_case ) return sorted(__snake_case, key=__snake_case ) + sorted(__snake_case, key=__snake_case ) + sorted(__snake_case, key=__snake_case ) def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" def _replace(__snake_case : Any ): A__ : str =match.groups()[0] if "," not in imports: return f"[{imports}]" A__ : Tuple =[part.strip().replace("""\"""", """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : int =keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(__snake_case )] ) + "]" A__ : int =import_statement.split("""\n""" ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ : Optional[int] =2 if lines[1].strip() == """[""" else 1 A__ : Optional[int] =[(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ : List[str] =sort_objects(__snake_case, key=lambda __snake_case : x[1] ) A__ : Tuple =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ : List[Any] =_re_bracket_content.sub(_replace, lines[1] ) else: A__ : List[str] =[part.strip().replace("""\"""", """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : List[Any] =keys[:-1] A__ : List[Any] =get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line A__ : Union[str, Any] =_re_bracket_content.sub(_replace, __snake_case ) return import_statement def __lowerCamelCase ( __snake_case : List[str], __snake_case : str=True ) -> Optional[int]: """simple docstring""" with open(__snake_case, """r""" ) as f: A__ : str =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ : Any =split_code_in_indented_blocks( __snake_case, start_prompt="""_import_structure = {""", end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ : Optional[Any] =main_blocks[block_idx] A__ : Optional[Any] =block.split("""\n""" ) # Get to the start of the imports. A__ : Optional[Any] =0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ : Dict =len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. A__ : str ="""\n""".join(block_lines[line_idx:-1] ) A__ : Dict =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ : Dict =split_code_in_indented_blocks(__snake_case, indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend A__ : int =_re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ : int =[(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ : str =[(i, key) for i, key in enumerate(__snake_case ) if key is not None] A__ : Optional[int] =[x[0] for x in sorted(__snake_case, key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ : Optional[Any] =0 A__ : int =[] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A__ : Union[str, Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. A__ : Any ="""\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f"Overwriting {file}." ) with open(__snake_case, """w""" ) as f: f.write("""\n""".join(__snake_case ) ) def __lowerCamelCase ( __snake_case : Dict=True ) -> Any: """simple docstring""" A__ : Optional[Any] =[] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: A__ : Tuple =sort_imports(os.path.join(__snake_case, """__init__.py""" ), check_only=__snake_case ) if result: A__ : str =[os.path.join(__snake_case, """__init__.py""" )] if len(__snake_case ) > 0: raise ValueError(f"Would overwrite {len(__snake_case )} files, run `make style`." ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __snake_case : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
215
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> List[Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase : Tuple = mf_knapsack(i - 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: UpperCAmelCase : List[Any] = max( mf_knapsack(i - 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , mf_knapsack(i - 1 , _lowerCAmelCase , _lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) UpperCAmelCase : List[str] = val return f[i][j] def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ) -> int: UpperCAmelCase : List[str] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase : Optional[int] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCAmelCase : List[str] = dp[i - 1][w_] return dp[n][w_], dp def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : list , _lowerCAmelCase : list ) -> Tuple: if not (isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(_lowerCAmelCase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) UpperCAmelCase : List[str] = len(_lowerCAmelCase ) if num_items != len(_lowerCAmelCase ): UpperCAmelCase : List[str] = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(_lowerCAmelCase )} values""" ) raise ValueError(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): if not isinstance(wt[i] , _lowerCAmelCase ): UpperCAmelCase : Any = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = knapsack(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : set = set() _construct_solution(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return optimal_val, example_optional_set def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : set ) -> List[Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCAmelCase , _lowerCAmelCase , i - 1 , _lowerCAmelCase , _lowerCAmelCase ) else: optimal_set.add(_lowerCAmelCase ) _construct_solution(_lowerCAmelCase , _lowerCAmelCase , i - 1 , j - wt[i - 1] , _lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Tuple = [3, 2, 4, 4] UpperCamelCase__: Any = [4, 3, 2, 3] UpperCamelCase__: str = 4 UpperCamelCase__: Tuple = 6 UpperCamelCase__: int = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCamelCase__ , UpperCamelCase__: List[str] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
528
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ) -> Union[str, Any]: # Return True if there is node that has not iterated. UpperCAmelCase : Optional[Any] = [False] * len(_lowerCAmelCase ) UpperCAmelCase : Dict = [] queue.append(_lowerCAmelCase ) UpperCAmelCase : str = True while queue: UpperCAmelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[int] = u return visited[t] def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ) -> Any: # This array is filled by BFS and to store path UpperCAmelCase : Dict = [-1] * (len(_lowerCAmelCase )) UpperCAmelCase : Any = 0 while bfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : List[str] = float('''Inf''' ) UpperCAmelCase : str = sink while s != source: # Find the minimum value in select path UpperCAmelCase : int = min(_lowerCAmelCase , graph[parent[s]][s] ) UpperCAmelCase : Tuple = parent[s] max_flow += path_flow UpperCAmelCase : Optional[Any] = sink while v != source: UpperCAmelCase : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Dict = parent[v] return max_flow UpperCamelCase__: Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase__ , UpperCamelCase__: int = 0, 5 print(ford_fulkerson(graph, source, sink))
528
1
import random def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ = 1024 ): """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(lowerCamelCase__ ): return num if __name__ == "__main__": snake_case : List[str] = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
605
"""simple docstring""" from __future__ import annotations import bisect def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int, lowerCamelCase__ : int = 0, lowerCamelCase__ : int = -1 ) -> int: if hi < 0: _SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase__ ) while lo < hi: _SCREAMING_SNAKE_CASE : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _SCREAMING_SNAKE_CASE : int = mid + 1 else: _SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int, lowerCamelCase__ : int = 0, lowerCamelCase__ : int = -1 ) -> int: if hi < 0: _SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase__ ) while lo < hi: _SCREAMING_SNAKE_CASE : str = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: _SCREAMING_SNAKE_CASE : int = mid return lo def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int, lowerCamelCase__ : int = 0, lowerCamelCase__ : int = -1 ) -> None: sorted_collection.insert(bisect_left(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int, lowerCamelCase__ : int = 0, lowerCamelCase__ : int = -1 ) -> None: sorted_collection.insert(bisect_right(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int ) -> int | None: _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : int = len(lowerCamelCase__ ) - 1 while left <= right: _SCREAMING_SNAKE_CASE : Union[str, Any] = left + (right - left) // 2 _SCREAMING_SNAKE_CASE : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _SCREAMING_SNAKE_CASE : Optional[int] = midpoint - 1 else: _SCREAMING_SNAKE_CASE : Optional[Any] = midpoint + 1 return None def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int ) -> int | None: _SCREAMING_SNAKE_CASE : List[str] = bisect.bisect_left(lowerCamelCase__, lowerCamelCase__ ) if index != len(lowerCamelCase__ ) and sorted_collection[index] == item: return index return None def _lowerCAmelCase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> int | None: if right < left: return None _SCREAMING_SNAKE_CASE : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, midpoint - 1 ) else: return binary_search_by_recursion(lowerCamelCase__, lowerCamelCase__, midpoint + 1, lowerCamelCase__ ) if __name__ == "__main__": lowercase_ : Tuple = input('''Enter numbers separated by comma:\n''').strip() lowercase_ : Any = sorted(int(item) for item in user_input.split(''',''')) lowercase_ : str = int(input('''Enter a single number to be found in the list:\n''')) lowercase_ : List[str] = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
572
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : str = "markuplm" def __init__( self : List[str] , snake_case : Dict=30522 , snake_case : Optional[int]=768 , snake_case : Tuple=12 , snake_case : List[str]=12 , snake_case : Tuple=3072 , snake_case : Tuple="gelu" , snake_case : Union[str, Any]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : int=512 , snake_case : Any=2 , snake_case : Optional[int]=0.02 , snake_case : Any=1E-12 , snake_case : int=0 , snake_case : Dict=0 , snake_case : Optional[int]=2 , snake_case : List[str]=256 , snake_case : Tuple=1024 , snake_case : str=216 , snake_case : Union[str, Any]=1001 , snake_case : Tuple=32 , snake_case : Union[str, Any]=50 , snake_case : List[Any]="absolute" , snake_case : List[str]=True , snake_case : str=None , **snake_case : Tuple , ): super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout # additional properties __UpperCamelCase = max_depth __UpperCamelCase = max_xpath_tag_unit_embeddings __UpperCamelCase = max_xpath_subs_unit_embeddings __UpperCamelCase = tag_pad_id __UpperCamelCase = subs_pad_id __UpperCamelCase = xpath_unit_hidden_size
705
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = "rwkv" lowerCAmelCase__ : Union[str, Any] = {"max_position_embeddings": "context_length"} def __init__( self : Optional[int] , snake_case : Optional[Any]=50277 , snake_case : str=1024 , snake_case : str=4096 , snake_case : Optional[Any]=32 , snake_case : Union[str, Any]=None , snake_case : Optional[Any]=None , snake_case : Optional[Any]=1E-5 , snake_case : List[str]=0 , snake_case : Optional[Any]=0 , snake_case : Union[str, Any]=6 , snake_case : Tuple=False , snake_case : Any=True , **snake_case : List[str] , ): __UpperCamelCase = vocab_size __UpperCamelCase = context_length __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size __UpperCamelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = rescale_every __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( tie_word_embeddings=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
375
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
630
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: __A : str = 3_84 if "tiny" in model_name: __A : Union[str, Any] = [3, 3, 9, 3] __A : Any = [96, 1_92, 3_84, 7_68] if "small" in model_name: __A : str = [3, 3, 27, 3] __A : Dict = [96, 1_92, 3_84, 7_68] if "base" in model_name: __A : Any = [3, 3, 27, 3] __A : str = [1_28, 2_56, 5_12, 10_24] __A : Optional[Any] = 5_12 if "large" in model_name: __A : Dict = [3, 3, 27, 3] __A : Any = [1_92, 3_84, 7_68, 15_36] __A : str = 7_68 if "xlarge" in model_name: __A : int = [3, 3, 27, 3] __A : Optional[Any] = [2_56, 5_12, 10_24, 20_48] __A : Optional[Any] = 10_24 # set label information __A : int = 1_50 __A : int = 'huggingface/label-files' __A : Any = 'ade20k-id2label.json' __A : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) __A : List[Any] = {int(a ): v for k, v in idalabel.items()} __A : List[Any] = {v: k for k, v in idalabel.items()} __A : int = ConvNextConfig( depths=a , hidden_sizes=a , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __A : Tuple = UperNetConfig( backbone_config=a , auxiliary_in_channels=a , num_labels=a , idalabel=a , labelaid=a , ) return config def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : str = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Tuple: __A : int = dct.pop(a ) __A : int = val def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Any: __A : List[Any] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } __A : List[str] = model_name_to_url[model_name] __A : Tuple = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] __A : List[str] = get_upernet_config(a ) __A : Dict = UperNetForSemanticSegmentation(a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __A : str = state_dict.pop(a ) if "bn" in key: __A : str = key.replace('bn' , 'batch_norm' ) __A : Optional[int] = val # rename keys __A : str = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) model.load_state_dict(a ) # verify on image __A : Union[str, Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __A : str = Image.open(requests.get(a , stream=a ).raw ).convert('RGB' ) __A : List[Any] = SegformerImageProcessor() __A : str = processor(a , return_tensors='pt' ).pixel_values with torch.no_grad(): __A : Tuple = model(a ) if model_name == "upernet-convnext-tiny": __A : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": __A : Dict = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": __A : List[Any] = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": __A : Union[str, Any] = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": __A : List[Any] = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
239
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ ( _a ): """simple docstring""" __UpperCAmelCase =(CMStochasticIterativeScheduler,) __UpperCAmelCase =10 def A__ ( self , **_A ): __lowerCAmelCase = { 'num_train_timesteps': 2_0_1, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**_A ) return config def A__ ( self ): __lowerCAmelCase = 1_0 __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = self.scheduler_classes[0](**_A ) scheduler.set_timesteps(_A ) __lowerCAmelCase = scheduler.timesteps[0] __lowerCAmelCase = scheduler.timesteps[1] __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = scheduler.step(_A , _A , _A ).prev_sample __lowerCAmelCase = scheduler.step(_A , _A , _A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def A__ ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_A ) def A__ ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = 1 scheduler.set_timesteps(_A ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_A ): # 1. scale model input __lowerCAmelCase = scheduler.scale_model_input(_A , _A ) # 2. predict noise residual __lowerCAmelCase = model(_A , _A ) # 3. predict previous sample x_t-1 __lowerCAmelCase = scheduler.step(_A , _A , _A , generator=_A ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(_A ) ) __lowerCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def A__ ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = [1_0_6, 0] scheduler.set_timesteps(timesteps=_A ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __lowerCAmelCase = scheduler.scale_model_input(_A , _A ) # 2. predict noise residual __lowerCAmelCase = model(_A , _A ) # 3. predict previous sample x_t-1 __lowerCAmelCase = scheduler.step(_A , _A , _A , generator=_A ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(_A ) ) __lowerCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def A__ ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(_A , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def A__ ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = [3_9, 3_0, 1_2, 1, 0] __lowerCAmelCase = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def A__ ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
707
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCamelCase = logging.getLogger(__name__) lowerCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case_ : """simple docstring""" __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_a )} , ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCAmelCase =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def A__ ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class snake_case_ : """simple docstring""" __UpperCAmelCase =field( default=_a , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase =field(default=_a , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCAmelCase =field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCAmelCase =field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def A__ ( self ): if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" with open(UpperCAmelCase__ , 'r' , encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(UpperCAmelCase__ ) for line in f.read().splitlines() if (len(UpperCAmelCase__ ) > 0 and not line.isspace())] assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(UpperCAmelCase__ ) def __lowercase ( ): """simple docstring""" __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(UpperCAmelCase__ , data_files=UpperCAmelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(UpperCAmelCase__ ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase__ ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(UpperCAmelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=UpperCAmelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def __lowercase ( UpperCAmelCase__ ): """simple docstring""" main() if __name__ == "__main__": main()
102
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE__ : Tuple = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowercase__ ) DownloadCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) RunCommand.register_subcommand(lowercase__ ) ServeCommand.register_subcommand(lowercase__ ) UserCommands.register_subcommand(lowercase__ ) AddNewModelCommand.register_subcommand(lowercase__ ) AddNewModelLikeCommand.register_subcommand(lowercase__ ) LfsCommands.register_subcommand(lowercase__ ) PTtoTFCommand.register_subcommand(lowercase__ ) # Let's go SCREAMING_SNAKE_CASE__ : str = parser.parse_args() if not hasattr(lowercase__ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE__ : str = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
85
def lowerCAmelCase ( ) ->Dict: """simple docstring""" __magic_name__ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __magic_name__ : Optional[Any] = 6 __magic_name__ : Dict = 1 __magic_name__ : Union[str, Any] = 1901 __magic_name__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __magic_name__ : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __magic_name__ : Optional[int] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __magic_name__ : Any = day - days_per_month[month - 2] if month > 12: year += 1 __magic_name__ : int = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
154
0
from __future__ import annotations def lowercase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : list[list[int]] =[] snake_case__ : list[int] =[] snake_case__ : Union[str, Any] =0 snake_case__ : Optional[Any] =sum(SCREAMING_SNAKE_CASE ) create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result def lowercase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int , ): """simple docstring""" if sum(SCREAMING_SNAKE_CASE ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE )) < max_sum: return if sum(SCREAMING_SNAKE_CASE ) == max_sum: result.append(SCREAMING_SNAKE_CASE ) return for index in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): create_state_space_tree( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE , remaining_nums_sum - nums[index] , ) lowerCamelCase__ = [3, 34, 4, 12, 5, 2] lowerCamelCase__ = 9 lowerCamelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
408
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase__ = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowerCamelCase__ = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowerCamelCase__ = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def lowercase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return float((preds == labels).mean() ) def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : Tuple =simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : int =float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : Dict =float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) snake_case__ : Dict =float(spearmanr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif self.config_name == "stsb": return pearson_and_spearman(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
408
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _lowerCAmelCase ( __snake_case ): """simple docstring""" snake_case_ = "M-CLIP" def __init__( self : Dict , __snake_case : str=10_24 , __snake_case : List[str]=7_68 , **__snake_case : Any )-> int: snake_case = transformerDimSize snake_case = imageDimSize super().__init__(**_lowercase ) class _lowerCAmelCase ( __snake_case ): """simple docstring""" snake_case_ = MCLIPConfig def __init__( self : Dict , __snake_case : Any , *__snake_case : Optional[Any] , **__snake_case : int )-> Union[str, Any]: super().__init__(_lowercase , *_lowercase , **_lowercase ) snake_case = XLMRobertaModel(_lowercase ) snake_case = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : Dict , __snake_case : str )-> str: snake_case = self.transformer(input_ids=_lowercase , attention_mask=_lowercase )[0] snake_case = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowercase ), embs
369
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowercase__ = spec.loader.load_module() lowercase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase__ = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowercase__ = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __magic_name__ ( ): __a : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): __a : Dict = False # source code of `config_class` __a : List[str] = inspect.getsource(_lowerCamelCase ) __a : int = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __a , __a : Union[str, Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link __a : Optional[Any] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: __a : Optional[int] = True break __a : List[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __a : Any = """\n""".join(sorted(_lowerCamelCase ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
581
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A__ ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' snake_case__ : Optional[Any] = OmegaConf.load(_UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(_UpperCAmelCase ) ) ) return config def A__ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None ) -> List[str]: '''simple docstring''' if conf_path is None: snake_case__ : Tuple = "./model_checkpoints/vqgan_only.yaml" snake_case__ : List[str] = load_config(_UpperCAmelCase , display=_UpperCAmelCase ) snake_case__ : Any = VQModel(**config.model.params ) if ckpt_path is None: snake_case__ : Any = "./model_checkpoints/vqgan_only.pt" snake_case__ : Dict = torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase ) if ".ckpt" in ckpt_path: snake_case__ : Tuple = sd["state_dict"] model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.to(_UpperCAmelCase ) del sd return model def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> int: '''simple docstring''' snake_case__, snake_case__, snake_case__ : List[str] = model.encode(_UpperCAmelCase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) snake_case__ : Optional[Any] = model.decode(_UpperCAmelCase ) return xrec def A__ ( _UpperCAmelCase : str , _UpperCAmelCase : Any=False ) -> Tuple: '''simple docstring''' snake_case__, snake_case__ : Union[str, Any] = string.rsplit("." , 1 ) if reload: snake_case__ : Union[str, Any] = importlib.import_module(_UpperCAmelCase ) importlib.reload(_UpperCAmelCase ) return getattr(importlib.import_module(_UpperCAmelCase , package=_UpperCAmelCase ) , cls ) def A__ ( _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A__ ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]=True ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = instantiate_from_config(_UpperCAmelCase ) if sd is not None: model.load_state_dict(_UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A__ ( _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if ckpt: snake_case__ : Optional[Any] = torch.load(_UpperCAmelCase , map_location="cpu" ) snake_case__ : Any = pl_sd["global_step"] print(F"""loaded model from global step {global_step}.""" ) else: snake_case__ : int = {"state_dict": None} snake_case__ : Optional[int] = None snake_case__ : Any = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_UpperCAmelCase , eval_mode=_UpperCAmelCase )["model"] return model, global_step
150
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) __SCREAMING_SNAKE_CASE = [] for char_count in range(__UpperCAmelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__UpperCAmelCase ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
109
from __future__ import annotations import numpy as np def __UpperCamelCase ( _lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" A , A : int = np.shape(_lowerCAmelCase ) if rows != columns: A : Union[str, Any] = ( """'table' has to be of square shaped array but got a """ f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(_lowerCAmelCase ) A : Union[str, Any] = np.zeros((rows, columns) ) A : Dict = np.zeros((rows, columns) ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): A : Any = sum(lower[i][k] * upper[k][j] for k in range(_lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) A : Any = (table[i][j] - total) / upper[j][j] A : Union[str, Any] = 1 for j in range(_lowerCAmelCase , _lowerCAmelCase ): A : Any = sum(lower[i][k] * upper[k][j] for k in range(_lowerCAmelCase ) ) A : str = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
662
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class lowercase( __a ): '''simple docstring''' lowercase__ = "mgp-str" def __init__( self: Union[str, Any], a_: Optional[int]=[32, 128], a_: Tuple=4, a_: Any=3, a_: int=27, a_: Union[str, Any]=38, a_: List[Any]=50_257, a_: List[Any]=30_522, a_: Optional[int]=768, a_: List[str]=12, a_: List[str]=12, a_: Optional[Any]=4.0, a_: List[Any]=True, a_: List[Any]=False, a_: Tuple=1E-5, a_: Any=0.0, a_: List[Any]=0.0, a_: List[Any]=0.0, a_: Optional[Any]=False, a_: List[Any]=0.02, **a_: Optional[Any], ): '''simple docstring''' super().__init__(**__A ) _snake_case : Any = image_size _snake_case : Optional[int] = patch_size _snake_case : List[str] = num_channels _snake_case : List[Any] = max_token_length _snake_case : str = num_character_labels _snake_case : Dict = num_bpe_labels _snake_case : Optional[Any] = num_wordpiece_labels _snake_case : List[Any] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : List[str] = mlp_ratio _snake_case : List[str] = distilled _snake_case : Tuple = layer_norm_eps _snake_case : str = drop_rate _snake_case : Optional[int] = qkv_bias _snake_case : Dict = attn_drop_rate _snake_case : Union[str, Any] = drop_path_rate _snake_case : List[Any] = output_aa_attentions _snake_case : Tuple = initializer_range
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: Union[str, Any] =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Tuple ) -> str: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True elif name.split("." )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : str , snake_case_ : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : Any ) -> List[Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(" " )[0] for line in lines] UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[int] , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(snake_case_ ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , snake_case_ ) UpperCAmelCase_ = SpeechaTextaForCausalLM(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ , "vocab.json" ) , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(snake_case_ , "vocab.json" ) ) tokenizer.save_pretrained(snake_case_ ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = "speech_to_text_2" UpperCAmelCase_ = "wav2vec2" UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') SCREAMING_SNAKE_CASE_: Tuple =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
78
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("RGB" ) UpperCAmelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase_ = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) return image def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase_ = re.sub("visual_encoder*" , "vision_model.encoder" , snake_case_ ) if "blocks" in key: UpperCAmelCase_ = re.sub(R"blocks" , "layers" , snake_case_ ) if "attn" in key: UpperCAmelCase_ = re.sub(R"attn" , "self_attn" , snake_case_ ) if "norm1" in key: UpperCAmelCase_ = re.sub(R"norm1" , "layer_norm1" , snake_case_ ) if "norm2" in key: UpperCAmelCase_ = re.sub(R"norm2" , "layer_norm2" , snake_case_ ) if "encoder.norm" in key: UpperCAmelCase_ = re.sub(R"encoder.norm" , "post_layernorm" , snake_case_ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase_ = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , snake_case_ ) if "encoder.pos_embed" in key: UpperCAmelCase_ = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , snake_case_ ) if "encoder.cls_token" in key: UpperCAmelCase_ = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , snake_case_ ) if "self_attn" in key: UpperCAmelCase_ = re.sub(R"self_attn.proj" , "self_attn.projection" , snake_case_ ) return key @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = BlipConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) UpperCAmelCase_ = BlipForConditionalGeneration(snake_case_ ).eval() UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" UpperCAmelCase_ = blip_decoder(pretrained=snake_case_ , image_size=3_84 , vit="base" ) UpperCAmelCase_ = pt_model.eval() UpperCAmelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value hf_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = 3_84 UpperCAmelCase_ = load_demo_image(image_size=snake_case_ , device="cpu" ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = tokenizer(["a picture of"] ).input_ids UpperCAmelCase_ = hf_model.generate(snake_case_ , snake_case_ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] UpperCAmelCase_ = hf_model.generate(snake_case_ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase_ = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) UpperCAmelCase_ = blip_vqa(pretrained=snake_case_ , image_size=snake_case_ , vit="base" ) vqa_model.eval() UpperCAmelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForQuestionAnswering(snake_case_ ) hf_vqa_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = ["How many dogs are in this image?"] UpperCAmelCase_ = tokenizer(snake_case_ , return_tensors="pt" ).input_ids UpperCAmelCase_ = hf_vqa_model.generate(snake_case_ , snake_case_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" UpperCAmelCase_ = blip_itm(pretrained=snake_case_ , image_size=snake_case_ , vit="base" ) itm_model.eval() UpperCAmelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForImageTextRetrieval(snake_case_ ) UpperCAmelCase_ = ["A picture of a woman with a dog sitting in a beach"] UpperCAmelCase_ = tokenizer( snake_case_ , return_tensors="pt" , padding="max_length" , truncation=snake_case_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case_ ) hf_itm_model.eval() UpperCAmelCase_ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) UpperCAmelCase_ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[Any] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
78
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def __A ( a_ : List[str] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) lowerCAmelCase = parser.parse_args() lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
551
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ lowerCAmelCase = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ lowerCAmelCase = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowerCamelCase ( self , a_ , a_ ): lowerCAmelCase : Any = 0.0 for i, j in zip(a_ , a_ ): n_correct += 1.0 if math_equivalence.is_equiv(a_ , a_ ) else 0.0 lowerCAmelCase : List[str] = n_correct / len(a_ ) return { "accuracy": accuracy, }
551
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = jnp.ones((batch_size, length) ) / length return scores def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = None lowerCAmelCase__ = 20 lowerCAmelCase__ = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase_ ) # tweak scores to not be uniform anymore lowerCAmelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase__ = jax.nn.softmax(lowerCamelCase_ , axis=-1 ) lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase__ = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase_ , scores.copy() , cur_len=lowerCamelCase_ ) , axis=-1 ) lowerCAmelCase__ = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase_ , scores.copy() , cur_len=lowerCamelCase_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = None lowerCAmelCase__ = 10 lowerCAmelCase__ = 2 # create ramp distribution lowerCAmelCase__ = np.broadcast_to(np.arange(lowerCamelCase_ )[None, :] , (batch_size, vocab_size) ).copy() lowerCAmelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = top_k_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase__ = 5 lowerCAmelCase__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCAmelCase__ = np.broadcast_to(np.arange(lowerCamelCase_ )[None, :] , (batch_size, length) ).copy() lowerCAmelCase__ = top_k_warp_safety_check(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = None lowerCAmelCase__ = 10 lowerCAmelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase__ = np.exp(top_p_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase__ = np.broadcast_to(np.arange(lowerCamelCase_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCAmelCase__ = top_p_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase_ ) # check that min length is applied at length 5 lowerCAmelCase__ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCAmelCase__ = 5 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = min_dist_processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = 15 lowerCAmelCase__ = min_dist_processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) self.assertFalse(jnp.isinf(lowerCamelCase_ ).any() ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase_ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase__ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCAmelCase__ = 1 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = logits_processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = logits_processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) self.assertFalse(jnp.isinf(lowerCamelCase_ ).any() ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = 5 lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase__ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCAmelCase__ = 4 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = logits_processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase__ = 3 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = logits_processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) self.assertFalse(jnp.isinf(lowerCamelCase_ ).any() ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = 4 lowerCAmelCase__ = 10 lowerCAmelCase__ = 15 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 15 # dummy input_ids and scores lowerCAmelCase__ = ids_tensor((batch_size, sequence_length) , lowerCamelCase_ ) lowerCAmelCase__ = input_ids.copy() lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = scores.copy() # instantiate all dist processors lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase_ ) lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase_ ) lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) lowerCAmelCase__ = 10 # no processor list lowerCAmelCase__ = temp_dist_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = top_k_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = top_p_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = min_dist_proc(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = bos_dist_proc(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = eos_dist_proc(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) # with processor list lowerCAmelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = 4 lowerCAmelCase__ = 10 lowerCAmelCase__ = 15 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 15 # dummy input_ids and scores lowerCAmelCase__ = ids_tensor((batch_size, sequence_length) , lowerCamelCase_ ) lowerCAmelCase__ = input_ids.copy() lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = scores.copy() # instantiate all dist processors lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase_ ) lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase_ ) lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) lowerCAmelCase__ = 10 # no processor list def run_no_processor_list(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = temp_dist_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = top_k_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = top_p_warp(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = min_dist_proc(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = bos_dist_proc(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) lowerCAmelCase__ = eos_dist_proc(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) return scores # with processor list def run_processor_list(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , cur_len=lowerCamelCase_ ) return scores lowerCAmelCase__ = jax.jit(lowerCamelCase_ ) lowerCAmelCase__ = jax.jit(lowerCamelCase_ ) lowerCAmelCase__ = jitted_run_no_processor_list(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jitted_run_processor_list(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
90
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) a = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } a = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) a = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) a = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" a = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" a = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" a = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." a = "" a = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Dict: assert ReadMe.from_string(snake_case , snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Union[str, Any]: with pytest.raises(snake_case , match=re.escape(expected_error.format(path="""root""" ) ) ): _UpperCAmelCase = ReadMe.from_string(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Tuple: with pytest.raises(snake_case , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(snake_case , snake_case ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]: ReadMe.from_string(snake_case , snake_case , suppress_parsing_errors=snake_case ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) _UpperCAmelCase = ReadMe.from_readme(snake_case , snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) _UpperCAmelCase = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): _UpperCAmelCase = ReadMe.from_readme(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) _UpperCAmelCase = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): ReadMe.from_readme(snake_case , snake_case ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) ReadMe.from_readme(snake_case , snake_case , suppress_parsing_errors=snake_case )
518
0
'''simple docstring''' def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' __lowerCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def A ( _UpperCAmelCase : int = 1_0_0 ) -> int: '''simple docstring''' __lowerCAmelCase : Any = 1 __lowerCAmelCase : Dict = 2 for i in range(2 ,max_n + 1 ): __lowerCAmelCase : Optional[int] = pre_numerator __lowerCAmelCase : str = 2 * i // 3 if i % 3 == 0 else 1 __lowerCAmelCase : Tuple = cur_numerator __lowerCAmelCase : Dict = e_cont * pre_numerator + temp return sum_digits(_UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
705
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def snake_case ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Any: return "lower newer", "lower newer" def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase : List[str] = 'lower' __lowerCAmelCase : Union[str, Any] = ['low', 'er</w>'] __lowerCAmelCase : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = tokens + ['<unk>'] __lowerCAmelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input __lowerCAmelCase : Optional[Any] = 'This is a simple input' __lowerCAmelCase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : int = ('This is a simple input', 'This is a pair') __lowerCAmelCase : Optional[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) def snake_case ( self ) -> int: pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase__ ( a ): '''simple docstring''' pass
123
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _A ( __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] =RoCBertTokenizer SCREAMING_SNAKE_CASE_ : Dict =None SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =True SCREAMING_SNAKE_CASE_ : Union[str, Any] =filter_non_english def _a (self ) -> str: '''simple docstring''' super().setUp() UpperCamelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] UpperCamelCase__ = {} UpperCamelCase__ = {} for i, value in enumerate(A__ ): UpperCamelCase__ = i UpperCamelCase__ = i UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(A__ , A__ , ensure_ascii=A__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(A__ , A__ , ensure_ascii=A__ ) def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(A__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A__ ) , [5, 6, 2, 5, 7, 8] ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=A__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] UpperCamelCase__ = {} for i, token in enumerate(A__ ): UpperCamelCase__ = i UpperCamelCase__ = RoCBertWordpieceTokenizer(vocab=A__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _a (self ) -> List[Any]: '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _a (self ) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _a (self ) -> int: '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: UpperCamelCase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def _a (self ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) UpperCamelCase__ = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." UpperCamelCase__ = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) UpperCamelCase__ = tokenizer_r.do_lower_case if hasattr(A__ , '''do_lower_case''' ) else False UpperCamelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = ["""的""", """人""", """有"""] UpperCamelCase__ = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = True UpperCamelCase__ = self.tokenizer_class.from_pretrained(A__ , **A__ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) UpperCamelCase__ = tokenizer_p.encode(A__ , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer_r.encode(A__ , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(A__ ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) UpperCamelCase__ = False UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(A__ , **A__ ) UpperCamelCase__ = tokenizer_r.encode(A__ , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer_p.encode(A__ , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(A__ ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase__ = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) @slow def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.encode('''你好''' , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer.encode('''你是谁''' , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(A__ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCamelCase__ = """你好,你是谁""" UpperCamelCase__ = tokenizer.tokenize(A__ ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(A__ ) UpperCamelCase__ = tokenizer.convert_tokens_to_shape_ids(A__ ) UpperCamelCase__ = tokenizer.convert_tokens_to_pronunciation_ids(A__ ) UpperCamelCase__ = tokenizer.prepare_for_model( A__ , A__ , A__ , add_special_tokens=A__ ) UpperCamelCase__ = tokenizer.encode_plus(A__ , add_special_tokens=A__ ) self.assertEqual(A__ , A__ )
415
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A_ : str = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def UpperCamelCase (lowercase_: Union[str, Any] ) -> Dict: A__ : Union[str, Any] = test_results.split(""" """ ) A__ : Union[str, Any] = 0 A__ : Union[str, Any] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A__ : List[str] = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCamelCase (lowercase_: Any ) -> Optional[int]: A__ : Dict = {} A__ : Union[str, Any] = None A__ : List[str] = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , lowercase_ ): A__ : Tuple = True A__ : Dict = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): A__ : Union[str, Any] = line A__ : List[str] = False return failures class _a : '''simple docstring''' def __init__( self , A__ , A__ ): A__ : Optional[Any] = title A__ : Tuple = doc_test_results["""time_spent"""].split(""",""" )[0] A__ : str = doc_test_results["""success"""] A__ : Optional[int] = doc_test_results["""failures"""] A__ : int = self.n_success + self.n_failures # Failures and success of the modeling tests A__ : Optional[int] = doc_test_results @property def __A ( self ): A__ : Tuple = [self._time_spent] A__ : Tuple = 0 for time in time_spent: A__ : Dict = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(A__ ) == 1: A__ : Dict = [0, 0, time_parts[0]] A__ , A__ , A__ : Optional[Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds A__ , A__ , A__ : List[str] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F"""{int(A__ )}h{int(A__ )}m{int(A__ )}s""" @property def __A ( self ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __A ( self ): return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __A ( self ): return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __A ( self ): A__ : Tuple = 40 A__ : Dict = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(A__ , A__ )} A__ : str = """""" for category, failures in category_failures.items(): if len(A__ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(A__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __A ( self ): A__ : Tuple = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(A__ ) @staticmethod def __A ( ): A__ : List[str] = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(A__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=A__ , ) def __A ( self ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) A__ : Any = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" A__ : Any = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=A__ , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Tuple = """""" for key, value in failures.items(): A__ : Any = value[:200] + """ [Truncated]""" if len(A__ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" A__ : Optional[Any] = job_name A__ : Union[str, Any] = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: A__ : Dict = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __A ( self ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) A__ : List[Any] = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) A__ : List[Any] = sorted(self.doc_test_results.items() , key=lambda A__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): A__ : Optional[int] = F"""*Num failures* :{len(job_result['failed'] )} \n""" A__ : Any = job_result["""failures"""] A__ : List[str] = self.get_reply_blocks(A__ , A__ , A__ , text=A__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F"""Results for {job}""" , blocks=A__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def UpperCamelCase () -> Dict: A__ : int = os.environ["""GITHUB_RUN_ID"""] A__ : Union[str, Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" A__ : Optional[int] = requests.get(lowercase_ ).json() A__ : List[str] = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Dict = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase_ ): A__ : str = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , lowercase_ ) return {} def UpperCamelCase (lowercase_: str ) -> Any: A__ : List[Any] = {} if os.path.exists(lowercase_ ): A__ : List[str] = os.listdir(lowercase_ ) for file in files: try: with open(os.path.join(lowercase_ , lowercase_ ) , encoding="""utf-8""" ) as f: A__ : Dict = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(lowercase_ , lowercase_ )}.""" ) from e return _artifact def UpperCamelCase () -> Union[str, Any]: class _a : '''simple docstring''' def __init__( self , A__ ): A__ : str = name A__ : Optional[int] = [] def __str__( self ): return self.name def __A ( self , A__ ): self.paths.append({"""name""": self.name, """path""": path} ) A__ : Dict[str, Artifact] = {} A__ : int = filter(os.path.isdir , os.listdir() ) for directory in directories: A__ : Dict = directory if artifact_name not in _available_artifacts: A__ : int = Artifact(lowercase_ ) _available_artifacts[artifact_name].add_path(lowercase_ ) return _available_artifacts if __name__ == "__main__": A_ : str = get_job_links() A_ : Dict = retrieve_available_artifacts() A_ : int = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A_ : int = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job A_ : Optional[Any] = github_actions_job_links.get('run_doctests') A_ : str = available_artifacts['doc_tests_gpu_test_reports'].paths[0] A_ : List[Any] = retrieve_artifact(artifact_path['name']) if "stats" in artifact: A_ , A_ , A_ : Any = handle_test_results(artifact['stats']) A_ : Union[str, Any] = failed A_ : int = success A_ : Optional[Any] = time_spent[1:-1] + ', ' A_ : Optional[Any] = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): A_ : Dict = line.replace('FAILED ', '') A_ : Dict = line.split()[0].replace('\n', '') if "::" in line: A_ , A_ : Dict = line.split('::') else: A_ , A_ : Dict = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A_ : List[str] = docs[file_regex] doc_test_results[category]["failed"].append(test) A_ : Optional[int] = all_failures[test] if test in all_failures else 'N/A' A_ : List[str] = failure break A_ : Optional[Any] = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
456
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A = imread(R'digital_image_processing/image_data/lena_small.jpg') A = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase ( ): lowerCamelCase : int = cn.convert_to_negative(__snake_case) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg') as img: # Work around assertion for response assert str(cc.change_contrast(__snake_case , 1_10)).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at') def UpperCAmelCase ( ): lowerCamelCase : List[str] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def UpperCAmelCase ( ): lowerCamelCase : Optional[int] = imread('digital_image_processing/image_data/lena_small.jpg' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase : Optional[Any] = canny.canny(__snake_case) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase ( ): assert gg.gaussian_filter(__snake_case , 5 , sigma=0.9).all() def UpperCAmelCase ( ): # laplace diagonals lowerCamelCase : str = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]]) lowerCamelCase : Any = conv.img_convolve(__snake_case , __snake_case).astype(__snake_case) assert res.any() def UpperCAmelCase ( ): assert med.median_filter(__snake_case , 3).any() def UpperCAmelCase ( ): lowerCamelCase , lowerCamelCase : List[str] = sob.sobel_filter(__snake_case) assert grad.any() and theta.any() def UpperCAmelCase ( ): lowerCamelCase : List[str] = sp.make_sepia(__snake_case , 20) assert sepia.all() def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase : Tuple = bs.Burkes(imread(__snake_case , 1) , 1_20) burkes.process() assert burkes.output_img.any() def UpperCAmelCase ( UpperCAmelCase__ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase : List[str] = rs.NearestNeighbour(imread(__snake_case , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def UpperCAmelCase ( ): lowerCamelCase : Dict = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase : Any = imread(__snake_case , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase : Optional[Any] = 0 lowerCamelCase : List[str] = 0 lowerCamelCase : Dict = image[x_coordinate][y_coordinate] lowerCamelCase : Tuple = lbp.get_neighbors_pixel( __snake_case , __snake_case , __snake_case , __snake_case) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase : Any = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase : str = lbp.local_binary_value(__snake_case , __snake_case , __snake_case) assert lbp_image.any()
705
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4']) lowerCamelCase : Dict = MaskFormerConfig(backbone_config=UpperCAmelCase__) lowerCamelCase : Dict = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok lowerCamelCase : Union[str, Any] = 8_47 lowerCamelCase : Any = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok lowerCamelCase : str = 1_50 lowerCamelCase : Union[str, Any] = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase : int = 1_71 lowerCamelCase : List[Any] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO lowerCamelCase : int = 1_33 lowerCamelCase : List[str] = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok lowerCamelCase : str = 19 lowerCamelCase : Union[str, Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok lowerCamelCase : Union[str, Any] = 65 lowerCamelCase : List[Any] = 'mapillary-vistas-id2label.json' lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset') , 'r')) lowerCamelCase : str = {int(UpperCAmelCase__): v for k, v in idalabel.items()} return config def UpperCAmelCase ( UpperCAmelCase__ : List[str]): lowerCamelCase : List[Any] = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias')) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight')) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''')) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''')) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''')) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''')) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''')) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''')) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias')) for source_index, target_index in zip(range(3 , 0 , -1) , range(0 , 3)): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''')) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''')) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''')) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight')) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias')) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''')) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''')) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''')) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''')) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''')) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''')) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias')) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias')) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight')) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias')) for i in range(3): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''')) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''')) # fmt: on return rename_keys def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]): lowerCamelCase : List[str] = dct.pop(UpperCAmelCase__) lowerCamelCase : Tuple = val def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]): lowerCamelCase : Union[str, Any] = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase : str = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase : Union[str, Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''') lowerCamelCase : int = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[:dim, :] lowerCamelCase : Dict = in_proj_bias[: dim] lowerCamelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase : Dict = in_proj_bias[ dim : dim * 2 ] lowerCamelCase : List[str] = in_proj_weight[ -dim :, : ] lowerCamelCase : int = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]): # fmt: off lowerCamelCase : Tuple = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase : Optional[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''') lowerCamelCase : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[str] = in_proj_weight[: hidden_size, :] lowerCamelCase : str = in_proj_bias[:config.hidden_size] lowerCamelCase : int = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase : List[Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase : Optional[int] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''') lowerCamelCase : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[: hidden_size, :] lowerCamelCase : Any = in_proj_bias[:config.hidden_size] lowerCamelCase : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase : Union[str, Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase : List[Any] = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase ( ): lowerCamelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : Tuple = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__).raw) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False): lowerCamelCase : Optional[Any] = get_maskformer_config(UpperCAmelCase__) # load original state_dict with open(UpperCAmelCase__ , 'rb') as f: lowerCamelCase : Tuple = pickle.load(UpperCAmelCase__) lowerCamelCase : str = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase : Optional[Any] = create_rename_keys(UpperCAmelCase__) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase__) # load 🤗 model lowerCamelCase : str = MaskFormerForInstanceSegmentation(UpperCAmelCase__) model.eval() for name, param in model.named_parameters(): print(UpperCAmelCase__ , param.shape) lowerCamelCase , lowerCamelCase : Optional[Any] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCAmelCase__) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results lowerCamelCase : Union[str, Any] = prepare_img() if "vistas" in model_name: lowerCamelCase : Optional[int] = 65 elif "cityscapes" in model_name: lowerCamelCase : Any = 6_55_35 else: lowerCamelCase : List[Any] = 2_55 lowerCamelCase : str = True if 'ade' in model_name else False lowerCamelCase : List[Any] = MaskFormerImageProcessor(ignore_index=UpperCAmelCase__ , reduce_labels=UpperCAmelCase__) lowerCamelCase : str = image_processor(UpperCAmelCase__ , return_tensors='pt') lowerCamelCase : Dict = model(**UpperCAmelCase__) print('Logits:' , outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase : List[str] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]]) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=1E-4) print('Looks ok!') if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''') Path(UpperCAmelCase__).mkdir(exist_ok=UpperCAmelCase__) model.save_pretrained(UpperCAmelCase__) image_processor.save_pretrained(UpperCAmelCase__) if push_to_hub: print('Pushing model and image processor to the hub...') model.push_to_hub(F'''nielsr/{model_name}''') image_processor.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
449
0
"""simple docstring""" from __future__ import annotations import bisect def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : Any = len(_A ) while lo < hi: _lowerCAmelCase : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCAmelCase : List[Any] = mid + 1 else: _lowerCAmelCase : Union[str, Any] = mid return lo def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : List[Any] = len(_A ) while lo < hi: _lowerCAmelCase : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCAmelCase : str = mid + 1 else: _lowerCAmelCase : Tuple = mid return lo def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(_A , _A , _A , _A ) , _A ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(_A , _A , _A , _A ) , _A ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 while left <= right: _lowerCAmelCase : Optional[Any] = left + (right - left) // 2 _lowerCAmelCase : Tuple = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCAmelCase : List[Any] = midpoint - 1 else: _lowerCAmelCase : Optional[int] = midpoint + 1 return None def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = bisect.bisect_left(_A , _A ) if index != len(_A ) and sorted_collection[index] == item: return index return None def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if right < left: return None _lowerCAmelCase : Optional[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_A , _A , _A , midpoint - 1 ) else: return binary_search_by_recursion(_A , _A , midpoint + 1 , _A ) if __name__ == "__main__": _lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() _lowerCAmelCase = sorted(int(item) for item in user_input.split(""",""")) _lowerCAmelCase = int(input("""Enter a single number to be found in the list:\n""")) _lowerCAmelCase = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
259
"""simple docstring""" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Optional[Any] = 0 snake_case_ :Dict = 0 snake_case_ :Any = {} def _a ( self , a ): """simple docstring""" if vertex not in self.adjacency: snake_case_ :str = {} self.num_vertices += 1 def _a ( self , a , a , a ): """simple docstring""" self.add_vertex(a ) self.add_vertex(a ) if head == tail: return snake_case_ :List[Any] = weight snake_case_ :str = weight def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = self.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge edges.remove((tail, head, weight) ) for i in range(len(a ) ): snake_case_ :Dict = list(edges[i] ) edges.sort(key=lambda a : e[2] ) for i in range(len(a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case_ :Tuple = edges[i][2] + 1 for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge snake_case_ :Dict = weight snake_case_ :int = weight def __str__( self ): """simple docstring""" snake_case_ :List[Any] = "" for tail in self.adjacency: for head in self.adjacency[tail]: snake_case_ :List[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def _a ( self ): """simple docstring""" snake_case_ :int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _a ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def _a ( a=None , a=None ): """simple docstring""" snake_case_ :Optional[Any] = Graph() if vertices is None: snake_case_ :int = [] if edges is None: snake_case_ :Any = [] for vertex in vertices: g.add_vertex(a ) for edge in edges: g.add_edge(*a ) return g class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Dict = {} snake_case_ :Optional[int] = {} def __len__( self ): """simple docstring""" return len(self.parent ) def _a ( self , a ): """simple docstring""" if item in self.parent: return self.find(a ) snake_case_ :Optional[Any] = item snake_case_ :str = 0 return item def _a ( self , a ): """simple docstring""" if item not in self.parent: return self.make_set(a ) if item != self.parent[item]: snake_case_ :Optional[int] = self.find(self.parent[item] ) return self.parent[item] def _a ( self , a , a ): """simple docstring""" snake_case_ :Any = self.find(a ) snake_case_ :str = self.find(a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case_ :Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: snake_case_ :Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case_ :Union[str, Any] = roota return roota return None @staticmethod def _a ( a ): """simple docstring""" snake_case_ :Any = graph.num_vertices snake_case_ :Any = Graph.UnionFind() snake_case_ :Optional[Any] = [] while num_components > 1: snake_case_ :List[Any] = {} for vertex in graph.get_vertices(): snake_case_ :str = -1 snake_case_ :Tuple = graph.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge snake_case_ :List[Any] = union_find.find(a ) snake_case_ :Union[str, Any] = union_find.find(a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case_ , snake_case_ , snake_case_ :List[Any] = cheap_edge[vertex] if union_find.find(a ) != union_find.find(a ): union_find.union(a , a ) mst_edges.append(cheap_edge[vertex] ) snake_case_ :List[Any] = num_components - 1 snake_case_ :Any = Graph.build(edges=a ) return mst
584
0
def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) print("The following activities are selected:" ) # The first activity is always selected __lowerCAmelCase = 0 print(SCREAMING_SNAKE_CASE_ , end="," ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE_ , end="," ) __lowerCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = [1, 3, 0, 5, 8, 5] UpperCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
552
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
552
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_a , ) lowerCamelCase = AutoencoderKL() lowerCamelCase = DDIMScheduler() lowerCamelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _lowerCAmelCase ( self , _a , _a=0 ): """simple docstring""" if str(_a ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(_a ) else: lowerCamelCase = torch.Generator(device=_a ).manual_seed(_a ) lowerCamelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCamelCase = self.get_dummy_inputs(_a ) lowerCamelCase = pipe(**_a ).images lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowerCamelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowerCamelCase = pipe.get_label_ids(_a ) lowerCamelCase = pipe(_a , generator=_a , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_a , _a ): lowerCamelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowerCamelCase = ["""vase""", """umbrella"""] lowerCamelCase = pipe.get_label_ids(_a ) lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe(_a , generator=_a , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_a , _a ): lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
543
"""simple docstring""" def a__ ( snake_case__ = 10_00 ) -> int: lowerCamelCase , lowerCamelCase = 1, 1 lowerCamelCase = 2 while True: lowerCamelCase = 0 lowerCamelCase = fa + fa lowerCamelCase , lowerCamelCase = fa, f index += 1 for _ in str(snake_case__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
543
1
from math import sqrt def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00_00_00 ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Dict = logging.get_logger(__name__) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) _lowerCAmelCase : Union[str, Any] = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , _A ) if matches: _lowerCAmelCase : int = float(matches[1] ) _lowerCAmelCase : int = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowerCAmelCase : List[str] = 1_0_0_1 _lowerCAmelCase : Union[str, Any] = 'imagenet-1k-id2label.json' _lowerCAmelCase : Optional[int] = 'huggingface/label-files' _lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : Dict = {int(_A ) + 1: v for k, v in idalabel.items()} _lowerCAmelCase : str = 'background' _lowerCAmelCase : Optional[Any] = idalabel _lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : int = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowercase (_A , _A , _A , _A=False ): """simple docstring""" _lowerCAmelCase : str = get_mobilenet_va_config(_A ) # Load 🤗 model _lowerCAmelCase : Tuple = MobileNetVaForImageClassification(_A ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_A , _A , _A ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowerCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 3_2} , ) _lowerCAmelCase : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase : Dict = model(**_A ) _lowerCAmelCase : Optional[int] = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": _lowerCAmelCase : Optional[int] = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": _lowerCAmelCase : List[str] = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: _lowerCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if push_to_hub: print('Pushing to the hub...' ) _lowerCAmelCase : int = 'google/' + model_name image_processor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase : int = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
444
'''simple docstring''' import argparse from collections import defaultdict import yaml lowerCAmelCase : Dict = """docs/source/en/_toctree.yml""" def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = defaultdict(_A ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Dict = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_A ) _lowerCAmelCase : str = new_doc_list _lowerCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] _lowerCAmelCase : List[str] = [] for duplicate_key in duplicates: _lowerCAmelCase : Any = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_A ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowerCAmelCase : Any = sorted(_A , key=lambda _A : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_A ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_A ) # Sort return overview_doc def lowercase (_A=False ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : str = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase : Optional[int] = api_doc[scheduler_idx]['sections'] _lowerCAmelCase : Any = clean_doc_toc(_A ) _lowerCAmelCase : int = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase : str = True if overwrite: _lowerCAmelCase : int = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase : Dict = api_doc with open(_A , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowercase (_A=False ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase : Optional[int] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[Any] = api_doc[pipeline_idx]['sections'] _lowerCAmelCase : Union[str, Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase : Tuple = pipeline_doc['section'] _lowerCAmelCase : Optional[int] = clean_doc_toc(_A ) if overwrite: _lowerCAmelCase : str = new_sub_pipeline_doc new_pipeline_docs.append(_A ) # sort overall pipeline doc _lowerCAmelCase : str = clean_doc_toc(_A ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase : Any = True if overwrite: _lowerCAmelCase : Optional[int] = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase : str = api_doc with open(_A , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : List[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
444
1
'''simple docstring''' import unittest from knapsack import knapsack as k class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Optional[int] = 0 lowerCamelCase_ : Optional[int] = [0] lowerCamelCase_ : Union[str, Any] = [0] lowerCamelCase_ : Any = len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) lowerCamelCase_ : Optional[int] = [60] lowerCamelCase_ : Optional[Any] = [10] lowerCamelCase_ : Any = len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[Any] = 3 lowerCamelCase_ : int = [1, 2, 3] lowerCamelCase_ : Union[str, Any] = [3, 2, 1] lowerCamelCase_ : str = len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = 50 lowerCamelCase_ : int = [60, 100, 120] lowerCamelCase_ : str = [10, 20, 30] lowerCamelCase_ : Optional[int] = len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
714
'''simple docstring''' import random def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[str] = a[left_index] lowerCamelCase_ : List[str] = left_index + 1 for j in range(left_index + 1 , __UpperCAmelCase ): if a[j] < pivot: lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = a[i], a[j] i += 1 lowerCamelCase_ , lowerCamelCase_ : Tuple = a[i - 1], a[left_index] return i - 1 def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if left < right: lowerCamelCase_ : int = random.randint(__UpperCAmelCase , right - 1 ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase_ : List[str] = partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) quick_sort_random( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __UpperCAmelCase , pivot_index + 1 , __UpperCAmelCase ) # recursive quicksort to the right of the pivot point def __snake_case (): """simple docstring""" lowerCamelCase_ : Optional[int] = input('''Enter numbers separated by a comma:\n''' ).strip() lowerCamelCase_ : Optional[Any] = [int(__UpperCAmelCase ) for item in user_input.split(''',''' )] quick_sort_random(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) ) print(__UpperCAmelCase ) if __name__ == "__main__": main()
418
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : int = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
673
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( a_ ): _A : Optional[int] = 'facebook/bart-large-mnli' _A : Union[str, Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) _A : Dict = 'text_classifier' _A : Union[str, Any] = AutoTokenizer _A : Tuple = AutoModelForSequenceClassification _A : Optional[int] = ['text', ['text']] _A : Dict = ['text'] def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().setup() UpperCAmelCase = self.model.config UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCAmelCase = int(snake_case__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = labels return self.pre_processor( [text] * len(snake_case__ ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = outputs.logits UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
import numpy as np def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: return np.where(vector > 0 , A_ , (alpha * (np.exp(A_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
710
def lowerCAmelCase ( lowerCAmelCase_ = 1_000_000 )-> int: lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Optional[Any] = {1: 1} for inputa in range(2 , lowerCAmelCase_ ): lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Dict = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase_ : Any = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase_ : Tuple = counter if counter > pre_counter: lowerCAmelCase_ : Optional[int] = inputa lowerCAmelCase_ : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
619
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
1
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return x if y == 0 else greatest_common_divisor(lowerCamelCase_ , x % y ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return (x * y) // greatest_common_divisor(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ = 2_0 ): """simple docstring""" lowerCAmelCase__ : List[str] = 1 for i in range(1 , n + 1 ): lowerCAmelCase__ : Tuple = lcm(lowerCamelCase_ , lowerCamelCase_ ) return g if __name__ == "__main__": print(f'{solution() = }')
712
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def UpperCAmelCase_ ( lowerCamelCase_ = 2_0_0_0_0_0_0 ): """simple docstring""" lowerCAmelCase__ : list[int] = [0] lowerCAmelCase__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase__ : int = 0 # an estimate of b, using the quadratic formula lowerCAmelCase__ : float # the largest integer less than b_estimate lowerCAmelCase__ : int # the largest integer less than b_estimate lowerCAmelCase__ : int # the triangle number corresponding to b_floor lowerCAmelCase__ : int # the triangle number corresponding to b_ceil lowerCAmelCase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase__ : Optional[int] = floor(lowerCamelCase_ ) lowerCAmelCase__ : Any = ceil(lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = triangle_numbers[b_floor] lowerCAmelCase__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Tuple = triangle_b_first_guess * triangle_a lowerCAmelCase__ : List[str] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Dict = triangle_b_second_guess * triangle_a lowerCAmelCase__ : Dict = idx_a * b_ceil return area if __name__ == "__main__": print(f'{solution() = }')
568
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Union[str, Any] ={ "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A : Dict = get_logger(__name__) A : Dict = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _UpperCamelCase : '''simple docstring''' @add_start_docstrings(__a ) def __call__( self , __a , __a ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _UpperCamelCase : '''simple docstring''' @add_start_docstrings(__a ) def __call__( self , __a , __a ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @add_start_docstrings(__a ) def __call__( self , __a , __a , __a , **__a ): for processor in self: __lowerCAmelCase = inspect.signature(processor.__call__ ).parameters if len(__a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys() )} for " f"{processor.__class__} are passed to the logits processor." ) __lowerCAmelCase = processor(__a , __a , __a , **__a ) else: __lowerCAmelCase = processor(__a , __a , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): if not isinstance(__a , __a ) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}" ) __lowerCAmelCase = temperature def __call__( self , __a , __a , __a ): __lowerCAmelCase = scores / self.temperature return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a = -float("Inf" ) , __a = 1 ): if not isinstance(__a , __a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__a , __a ) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) __lowerCAmelCase = top_p __lowerCAmelCase = filter_value __lowerCAmelCase = min_tokens_to_keep def __call__( self , __a , __a , __a ): __lowerCAmelCase , __lowerCAmelCase = lax.top_k(__a , scores.shape[-1] ) __lowerCAmelCase = jnp.full_like(__a , self.filter_value ) __lowerCAmelCase = jax.nn.softmax(__a , axis=-1 ).cumsum(axis=-1 ) __lowerCAmelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCAmelCase = jnp.roll(__a , 1 ) score_mask |= score_mask.at[:, 0].set(__a ) # min tokens to keep __lowerCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(__a ) __lowerCAmelCase = jnp.where(__a , __a , __a ) __lowerCAmelCase = jax.lax.sort_key_val(__a , __a )[-1] return next_scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a = -float("Inf" ) , __a = 1 ): if not isinstance(__a , __a ) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}" ) __lowerCAmelCase = max(__a , __a ) __lowerCAmelCase = filter_value def __call__( self , __a , __a , __a ): __lowerCAmelCase , __lowerCAmelCase = scores.shape __lowerCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value ) __lowerCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check __lowerCAmelCase , __lowerCAmelCase = lax.top_k(__a , __a ) __lowerCAmelCase = jnp.broadcast_to((jnp.arange(__a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __lowerCAmelCase = topk_scores.flatten() __lowerCAmelCase = topk_indices.flatten() + shift __lowerCAmelCase = next_scores_flat.at[topk_indices_flat].set(__a ) __lowerCAmelCase = next_scores_flat.reshape(__a , __a ) return next_scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = bos_token_id def __call__( self , __a , __a , __a ): __lowerCAmelCase = jnp.full(scores.shape , -float("inf" ) ) __lowerCAmelCase = 1 - jnp.bool_(cur_len - 1 ) __lowerCAmelCase = jnp.where(__a , new_scores.at[:, self.bos_token_id].set(0 ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = max_length __lowerCAmelCase = eos_token_id def __call__( self , __a , __a , __a ): __lowerCAmelCase = jnp.full(scores.shape , -float("inf" ) ) __lowerCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __lowerCAmelCase = jnp.where(__a , new_scores.at[:, self.eos_token_id].set(0 ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a ): if not isinstance(__a , __a ) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__a , __a ) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) __lowerCAmelCase = min_length __lowerCAmelCase = eos_token_id def __call__( self , __a , __a , __a ): # create boolean flag to decide if min length penalty should be applied __lowerCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __lowerCAmelCase = jnp.where(__a , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = list(__a ) __lowerCAmelCase = begin_index def __call__( self , __a , __a , __a ): __lowerCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index ) __lowerCAmelCase = jnp.where(__a , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = list(__a ) def __call__( self , __a , __a , __a ): __lowerCAmelCase = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = dict(__a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCAmelCase = force_token_array.at[index].set(__a ) __lowerCAmelCase = jnp.intaa(__a ) def __call__( self , __a , __a , __a ): def _force_token(__a ): __lowerCAmelCase = scores.shape[0] __lowerCAmelCase = self.force_token_array[generation_idx] __lowerCAmelCase = jnp.ones_like(__a , dtype=scores.dtype ) * -float("inf" ) __lowerCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __lowerCAmelCase = lax.dynamic_update_slice(__a , __a , (0, current_token) ) return new_scores __lowerCAmelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__a ) , lambda: scores , ) , ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a , __a ): __lowerCAmelCase = generate_config.eos_token_id __lowerCAmelCase = generate_config.no_timestamps_token_id __lowerCAmelCase = generate_config.no_timestamps_token_id + 1 __lowerCAmelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__a , "max_initial_timestamp_index" ): __lowerCAmelCase = generate_config.max_initial_timestamp_index else: __lowerCAmelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCAmelCase = model_config.vocab_size def __call__( self , __a , __a , __a ): # suppress <|notimestamps|> which is handled by without_timestamps __lowerCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__a , __a ): __lowerCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , __a , __a ) __lowerCAmelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __a , ) __lowerCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , __a , __a ) __lowerCAmelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __a , __a , ) return jnp.where( __a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , __a , ) __lowerCAmelCase = jax.vmap(__a )(__a , __a ) __lowerCAmelCase = jnp.where(cur_len == self.begin_index , __a , __a ) __lowerCAmelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __a , ) __lowerCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index __lowerCAmelCase = jnp.where( __a , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , __a , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCAmelCase = jax.nn.log_softmax(__a , axis=-1 ) def handle_cumulative_probs(__a , __a ): __lowerCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __lowerCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , __a , ) __lowerCAmelCase = jax.vmap(__a )(__a , __a ) return scores
636
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ): _snake_case = 1 _snake_case = 3 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase ) return image @property def UpperCamelCase( self ): torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCamelCase( self ): torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase( self ): torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(lowerCamelCase ) def UpperCamelCase( self ): _snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator _snake_case = self.dummy_cond_unet_upscale _snake_case = DDPMScheduler() _snake_case = DDIMScheduler(prediction_type="v_prediction" ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _snake_case = StableDiffusionUpscalePipeline( unet=lowerCamelCase , low_res_scheduler=lowerCamelCase , scheduler=lowerCamelCase , vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , max_noise_level=350 , ) _snake_case = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) _snake_case = "A painting of a squirrel eating a burger" _snake_case = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _snake_case = output.images _snake_case = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] _snake_case = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _snake_case = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator _snake_case = self.dummy_cond_unet_upscale _snake_case = DDPMScheduler() _snake_case = DDIMScheduler(prediction_type="v_prediction" ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _snake_case = StableDiffusionUpscalePipeline( unet=lowerCamelCase , low_res_scheduler=lowerCamelCase , scheduler=lowerCamelCase , vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , max_noise_level=350 , ) _snake_case = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) _snake_case = "A painting of a squirrel eating a burger" _snake_case = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _snake_case = output.images assert image.shape[0] == 2 _snake_case = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowerCamelCase , generator=lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _snake_case = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase( self ): _snake_case = self.dummy_cond_unet_upscale _snake_case = DDPMScheduler() _snake_case = DDIMScheduler(prediction_type="v_prediction" ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _snake_case = unet.half() _snake_case = text_encoder.half() # make sure here that pndm scheduler skips prk _snake_case = StableDiffusionUpscalePipeline( unet=lowerCamelCase , low_res_scheduler=lowerCamelCase , scheduler=lowerCamelCase , vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , max_noise_level=350 , ) _snake_case = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) _snake_case = "A painting of a squirrel eating a burger" _snake_case = torch.manual_seed(0 ) _snake_case = sd_pipe( [prompt] , image=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=2 , output_type="np" , ).images _snake_case = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _snake_case = "stabilityai/stable-diffusion-x4-upscaler" _snake_case = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() _snake_case = "a cat sitting on a park bench" _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCamelCase , image=lowerCamelCase , generator=lowerCamelCase , output_type="np" , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase( self ): _snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _snake_case = "stabilityai/stable-diffusion-x4-upscaler" _snake_case = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() _snake_case = "a cat sitting on a park bench" _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCamelCase , image=lowerCamelCase , generator=lowerCamelCase , output_type="np" , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _snake_case = "stabilityai/stable-diffusion-x4-upscaler" _snake_case = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = "a cat sitting on a park bench" _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCamelCase , image=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=5 , output_type="np" , ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
368
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] # initialize interval's left pointer and right pointer _snake_case , _snake_case = 0, 0 for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # case when current index is inside the interval if i <= right_pointer: _snake_case = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _snake_case = min_edge while go_next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _snake_case , _snake_case = i, i + z_result[i] - 1 return z_result def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return i + z_result[i] < len(SCREAMING_SNAKE_CASE__ ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _snake_case = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(SCREAMING_SNAKE_CASE__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
368
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "deta" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , _A : Tuple=None , _A : Dict=900 , _A : Union[str, Any]=2048 , _A : Union[str, Any]=6 , _A : List[str]=2048 , _A : str=8 , _A : Optional[int]=6 , _A : List[str]=1024 , _A : Optional[int]=8 , _A : List[str]=0.0 , _A : List[str]=True , _A : Any="relu" , _A : Any=256 , _A : Optional[int]=0.1 , _A : str=0.0 , _A : Dict=0.0 , _A : str=0.02 , _A : Union[str, Any]=1.0 , _A : Union[str, Any]=True , _A : Any=False , _A : Union[str, Any]="sine" , _A : int=5 , _A : Optional[Any]=4 , _A : Any=4 , _A : Union[str, Any]=True , _A : Dict=300 , _A : List[Any]=True , _A : Any=True , _A : Tuple=1 , _A : Optional[int]=5 , _A : str=2 , _A : Tuple=1 , _A : Tuple=1 , _A : Any=5 , _A : Tuple=2 , _A : str=0.1 , _A : List[str]=0.25 , **_A : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_A , _A ): _UpperCamelCase = backbone_config.pop('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : int ): return self.d_model def UpperCamelCase_ ( self : int ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase : Union[str, Any] = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["ViTFeatureExtractor"] lowercase : int = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''vit_mae''' def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=5_12 , __UpperCAmelCase=8 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.7_5 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) A : List[Any] = hidden_size A : str = num_hidden_layers A : Optional[Any] = num_attention_heads A : List[str] = intermediate_size A : Any = hidden_act A : str = hidden_dropout_prob A : Optional[int] = attention_probs_dropout_prob A : Optional[Any] = initializer_range A : Optional[int] = layer_norm_eps A : List[Any] = image_size A : Tuple = patch_size A : Optional[int] = num_channels A : int = qkv_bias A : Optional[Any] = decoder_num_attention_heads A : Optional[Any] = decoder_hidden_size A : Union[str, Any] = decoder_num_hidden_layers A : List[str] = decoder_intermediate_size A : List[Any] = mask_ratio A : Union[str, Any] = norm_pix_loss
423
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _UpperCamelCase = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _UpperCamelCase = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _UpperCamelCase = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _UpperCamelCase = sorted(arg_to_scheduler.keys()) _UpperCamelCase = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __UpperCAmelCase (pl.LightningModule ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , snake_case_="base" , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(snake_case_ ) A__ : Tuple = 0 A__ : Tuple = Path(self.hparams.output_dir ) A__ : Any = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: A__ : Union[str, Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=snake_case_ , **snake_case_ , ) else: A__ : PretrainedConfig = config A__ : int = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , snake_case_ , snake_case_ ): assert hasattr(self.config , snake_case_ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , snake_case_ , getattr(self.hparams , snake_case_ ) ) if tokenizer is None: A__ : str = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=snake_case_ , ) else: A__ : PreTrainedTokenizer = tokenizer A__ : str = MODEL_MODES[mode] if model is None: A__ : List[str] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=snake_case_ , ) else: A__ : Optional[int] = model def lowerCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' A__ : Optional[Any] = self.model_type.from_pretrained(*snake_case_ , **snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : str = arg_to_scheduler[self.hparams.lr_scheduler] A__ : List[Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) A__ : Optional[Any] = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def lowerCamelCase ( self ): '''simple docstring''' A__ : List[str] = self.model A__ : Optional[Any] = ["""bias""", """LayerNorm.weight"""] A__ : List[str] = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: A__ : Optional[Any] = Adafactor( snake_case_ , lr=self.hparams.learning_rate , scale_parameter=snake_case_ , relative_step=snake_case_ ) else: A__ : str = AdamW( snake_case_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) A__ : str = optimizer A__ : Dict = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' return self.validation_step(snake_case_ , snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.validation_end(snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[int] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores A__ : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' if stage == "test": A__ : Optional[Any] = len(self.test_dataloader().dataset ) else: A__ : int = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=snake_case_ ) A__ : int = len(self.train_dataloader().dataset ) def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = False ): '''simple docstring''' raise NotImplementedError("""You must implement this for your task""" ) def lowerCamelCase ( self ): '''simple docstring''' return self.train_loader def lowerCamelCase ( self ): '''simple docstring''' return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( snake_case_ , list(filter(snake_case_ , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' A__ : Any = self.output_dir.joinpath("""best_tfmr""" ) A__ : Any = self.step_count self.model.save_pretrained(snake_case_ ) self.tokenizer.save_pretrained(snake_case_ ) @staticmethod def lowerCamelCase ( snake_case_ , snake_case_ ): '''simple docstring''' parser.add_argument( """--model_name_or_path""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=snake_case_ , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=snake_case_ , type=snake_case_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(snake_case_ ).parent / """test_run""" / """cache""" ) , type=snake_case_ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=snake_case_ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=snake_case_ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=snake_case_ , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=snake_case_ , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=snake_case_ , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=snake_case_ , metavar=snake_case_ , type=snake_case_ , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=snake_case_ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=snake_case_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=snake_case_ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=snake_case_ , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=snake_case_ ) parser.add_argument("""--train_batch_size""" , default=32 , type=snake_case_ ) parser.add_argument("""--eval_batch_size""" , default=32 , type=snake_case_ ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class __UpperCAmelCase (pl.Callback ): '''simple docstring''' def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __UpperCAmelCase (pl.Callback ): '''simple docstring''' def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(snake_case_ ) class __UpperCAmelCase (pl.Callback ): '''simple docstring''' def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' A__ : List[str] = trainer.lr_schedulers[0]["""scheduler"""] A__ : Any = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(snake_case_ ) def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' rank_zero_info("""***** Validation results *****""" ) A__ : Optional[int] = trainer.callback_metrics # Log results for key in sorted(snake_case_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(snake_case_ , str(metrics[key] ) ) ) def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' rank_zero_info("""***** Test results *****""" ) A__ : List[str] = trainer.callback_metrics # Log and save results to file A__ : List[Any] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(snake_case_ , """w""" ) as writer: for key in sorted(snake_case_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(snake_case_ , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(snake_case_ , str(metrics[key] ) ) ) def _A( lowerCAmelCase , lowerCAmelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( """--output_dir""" , default=str(Path(lowerCAmelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=lowerCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=lowerCAmelCase ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=lowerCAmelCase , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=lowerCAmelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(lowerCAmelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=lowerCAmelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[] , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): pl.seed_everything(args.seed ) # init model A__ : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: A__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: A__ : str = LoggingCallback() A__ : Optional[Any] = {} if args.fpaa: A__ : List[str] = 16 if args.gpus > 1: A__ : Optional[int] = """auto""" A__ : Tuple = """ddp""" A__ : int = args.accumulate_grad_batches A__ : Union[str, Any] = None A__ : Any = """auto""" A__ : List[str] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
363
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _A( lowerCAmelCase ): def decorator(lowerCAmelCase ): A__ : Any = getattr(lowerCAmelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCAmelCase , """handle_key""" , lowerCAmelCase ) return func return decorator def _A( *lowerCAmelCase ): def decorator(lowerCAmelCase ): A__ : Optional[Any] = getattr(lowerCAmelCase , """handle_key""" , [] ) handle += keys setattr(lowerCAmelCase , """handle_key""" , lowerCAmelCase ) return func return decorator class __UpperCAmelCase (__A ): '''simple docstring''' def __new__( cls , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' A__ : Union[str, Any] = super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , """key_handler""" ): setattr(snake_case_ , """key_handler""" , {} ) setattr(snake_case_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): A__ : Dict = getattr(snake_case_ , """handle_key""" , [] ) for key in handled_keys: A__ : Optional[Any] = value return new_cls @staticmethod def lowerCamelCase ( cls ): '''simple docstring''' A__ : int = get_character() if char != KEYMAP["undefined"]: A__ : Union[str, Any] = ord(snake_case_ ) A__ : int = cls.key_handler.get(snake_case_ ) if handler: A__ : int = char return handler(cls ) else: return None def _A( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
363
1
'''simple docstring''' def lowerCamelCase_ ( A_ , A_ ): if not isinstance(A_ , A_ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(A_ , A_ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __lowerCamelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(A_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
575
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = k_size // 2 __lowerCamelCase , __lowerCamelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __lowerCamelCase = 1 / (2 * pi * sigma) * exp(-(square(A_ ) + square(A_ )) / (2 * square(A_ )) ) return g def lowerCamelCase_ ( A_ , A_ , A_ ): __lowerCamelCase , __lowerCamelCase = image.shape[0], image.shape[1] # dst image height and width __lowerCamelCase = height - k_size + 1 __lowerCamelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __lowerCamelCase = zeros((dst_height * dst_width, k_size * k_size) ) __lowerCamelCase = 0 for i, j in product(range(A_ ) , range(A_ ) ): __lowerCamelCase = ravel(image[i : i + k_size, j : j + k_size] ) __lowerCamelCase = window row += 1 # turn the kernel into shape(k*k, 1) __lowerCamelCase = gen_gaussian_kernel(A_ , A_ ) __lowerCamelCase = ravel(A_ ) # reshape and get the dst image __lowerCamelCase = dot(A_ , A_ ).reshape(A_ , A_ ).astype(A_ ) return dst if __name__ == "__main__": # read original image _UpperCamelCase : List[Any] =imread(R"../image_data/lena.jpg") # turn image in gray scale value _UpperCamelCase : List[Any] =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _UpperCamelCase : Tuple =gaussian_filter(gray, 3, sigma=1) _UpperCamelCase : List[str] =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
575
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __magic_name__ = '''true''' def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_=82 , lowerCAmelCase_=16): '''simple docstring''' set_seed(42) lowerCamelCase_ : Any = RegressionModel() lowerCamelCase_ : Optional[int] = deepcopy(lowerCAmelCase_) lowerCamelCase_ : Optional[Any] = RegressionDataset(length=lowerCAmelCase_) lowerCamelCase_ : Union[str, Any] = DataLoader(lowerCAmelCase_ , batch_size=lowerCAmelCase_) model.to(accelerator.device) lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_) return model, ddp_model, dataloader def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_=False): '''simple docstring''' lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased") lowerCamelCase_ : Union[str, Any] = load_dataset("glue" , "mrpc" , split="validation") def tokenize_function(lowerCAmelCase_): lowerCamelCase_ : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_) return outputs with accelerator.main_process_first(): lowerCamelCase_ : str = dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) lowerCamelCase_ : Any = tokenized_datasets.rename_column("label" , "labels") def collate_fn(lowerCAmelCase_): if use_longest: return tokenizer.pad(lowerCAmelCase_ , padding="longest" , return_tensors="pt") return tokenizer.pad(lowerCAmelCase_ , padding="max_length" , max_length=128 , return_tensors="pt") return DataLoader(lowerCAmelCase_ , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=16) def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[Any] = Accelerator(dispatch_batches=lowerCAmelCase_ , split_batches=lowerCAmelCase_) lowerCamelCase_ : Dict = get_dataloader(lowerCAmelCase_ , not dispatch_batches) lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=lowerCAmelCase_) lowerCamelCase_ ,lowerCamelCase_ : List[Any] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[Any] = [] for batch in dataloader: lowerCamelCase_ ,lowerCamelCase_ : int = batch.values() with torch.no_grad(): lowerCamelCase_ : List[Any] = model(lowerCAmelCase_) lowerCamelCase_ ,lowerCamelCase_ : Optional[Any] = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) lowerCamelCase_ ,lowerCamelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase_) targs.append(lowerCAmelCase_) lowerCamelCase_ ,lowerCamelCase_ : List[str] = torch.cat(lowerCAmelCase_), torch.cat(lowerCAmelCase_) return logits, targs def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_=82 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=16): '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = get_basic_setup(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowerCamelCase_ ,lowerCamelCase_ : Dict = generate_predictions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) assert ( len(lowerCAmelCase_) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase_)}""" def __magic_name__ ( lowerCAmelCase_ = False , lowerCAmelCase_ = False): '''simple docstring''' lowerCamelCase_ : Optional[int] = evaluate.load("glue" , "mrpc") lowerCamelCase_ ,lowerCamelCase_ : List[str] = get_mrpc_setup(lowerCAmelCase_ , lowerCAmelCase_) # First do baseline lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = setup["no"] model.to(lowerCAmelCase_) model.eval() for batch in dataloader: batch.to(lowerCAmelCase_) with torch.inference_mode(): lowerCamelCase_ : str = model(**lowerCAmelCase_) lowerCamelCase_ : Dict = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCAmelCase_ , references=batch["labels"]) lowerCamelCase_ : int = metric.compute() # Then do distributed lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : List[str] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCamelCase_ : Union[str, Any] = model(**lowerCAmelCase_) lowerCamelCase_ : str = outputs.logits.argmax(dim=-1) lowerCamelCase_ : Any = batch["labels"] lowerCamelCase_ ,lowerCamelCase_ : str = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCAmelCase_ , references=lowerCAmelCase_) lowerCamelCase_ : Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : Tuple = Accelerator(split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**") for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCAmelCase_ , lowerCAmelCase_) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**") for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCamelCase_ : Tuple = Accelerator(split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCAmelCase_ , 99) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**") lowerCamelCase_ : Any = Accelerator() test_torch_metrics(lowerCAmelCase_ , 512) accelerator.state._reset_state() def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' main() if __name__ == "__main__": main()
250
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self , *a_ , **a_ ): warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
250
1
def A ( snake_case :Any ) -> str: __UpperCamelCase = 1 __UpperCamelCase = 2 while i * i <= n: __UpperCamelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A ( ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 1 while True: i += 1 t_num += i if count_divisors(snake_case ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : List[Any] = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" A = '''convnextv2''' def __init__( self , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=0.0 , _lowerCAmelCase=224 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): '''simple docstring''' super().__init__(**_lowerCamelCase ) lowerCAmelCase__ :List[Any] = num_channels lowerCAmelCase__ :Tuple = patch_size lowerCAmelCase__ :str = num_stages lowerCAmelCase__ :str = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ :Tuple = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :List[Any] = initializer_range lowerCAmelCase__ :int = layer_norm_eps lowerCAmelCase__ :Optional[Any] = drop_path_rate lowerCAmelCase__ :Optional[Any] = image_size lowerCAmelCase__ :Union[str, Any] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase__ :str = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
145
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _A = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : Any = eval_examples UpperCAmelCase__ : Union[str, Any] = post_process_function UpperCAmelCase__ : int = quant_trainer_args UpperCAmelCase__ : Dict = 128 # default number of calibration samples def _a (self , _lowerCamelCase=None ): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) UpperCAmelCase__ : List[str] = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCAmelCase__ : Optional[int] = self._remove_unused_columns(_lowerCamelCase , description="""Calibration""" ) return DataLoader( _lowerCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_lowerCamelCase , ) def _a (self , _lowerCamelCase=None ): """simple docstring""" UpperCAmelCase__ : int = self.train_dataset if calib_dataset is None else calib_dataset UpperCAmelCase__ : List[str] = self.get_calib_dataloader(_lowerCamelCase ) UpperCAmelCase__ : List[str] = self.model quant_trainer.configure_model(_lowerCamelCase , self.quant_trainer_args , calib=_lowerCamelCase ) model.eval() quant_trainer.enable_calibration(_lowerCamelCase ) logger.info("""***** Running calibration *****""" ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(_lowerCamelCase ): # Prediction step UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.prediction_step(_lowerCamelCase , _lowerCamelCase , prediction_loss_only=_lowerCamelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_lowerCamelCase , self.quant_trainer_args ) UpperCAmelCase__ : Tuple = model def _a (self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = "eval" ): """simple docstring""" UpperCAmelCase__ : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase__ : List[Any] = self.get_eval_dataloader(_lowerCamelCase ) UpperCAmelCase__ : Tuple = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : Optional[Any] = self.compute_metrics UpperCAmelCase__ : int = None UpperCAmelCase__ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : str = eval_loop( _lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , ) finally: UpperCAmelCase__ : List[str] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCAmelCase__ : int = self.post_process_function(_lowerCamelCase , _lowerCamelCase , output.predictions ) UpperCAmelCase__ : List[Any] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase__ : Optional[int] = metrics.pop(_lowerCamelCase ) self.log(_lowerCamelCase ) else: UpperCAmelCase__ : List[Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase__ : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : Union[str, Any] = self.compute_metrics UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : Optional[Any] = eval_loop( _lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , ) finally: UpperCAmelCase__ : Dict = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase__ : Dict = self.post_process_function(_lowerCamelCase , _lowerCamelCase , output.predictions , """predict""" ) UpperCAmelCase__ : Any = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase__ : Any = metrics.pop(_lowerCamelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase ) def _a (self , _lowerCamelCase="./" ): """simple docstring""" UpperCAmelCase__ : Tuple = self.eval_dataset UpperCAmelCase__ : int = self.get_eval_dataloader(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = next(iter(_lowerCamelCase ) ) # saving device - to make it consistent UpperCAmelCase__ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple UpperCAmelCase__ : List[Any] = tuple(v.to(_lowerCamelCase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Tuple = self.model.to(_lowerCamelCase ) model.eval() model.float() UpperCAmelCase__ : str = model.module if hasattr(_lowerCamelCase , """module""" ) else model quant_trainer.configure_model(_lowerCamelCase , self.quant_trainer_args ) UpperCAmelCase__ : List[str] = os.path.join(_lowerCamelCase , """model.onnx""" ) logger.info(F"""exporting model to {output_model_file}""" ) UpperCAmelCase__ : Optional[Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , export_params=_lowerCamelCase , opset_version=13 , do_constant_folding=_lowerCamelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=_lowerCamelCase , ) logger.info("""onnx export finished""" )
182
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : List[Any] = """fnet""" def __init__( self : Tuple , snake_case : Optional[int]=32_000 , snake_case : Optional[Any]=768 , snake_case : Union[str, Any]=12 , snake_case : List[str]=3_072 , snake_case : str="gelu_new" , snake_case : Any=0.1 , snake_case : List[str]=512 , snake_case : Any=4 , snake_case : str=0.02 , snake_case : Union[str, Any]=1E-1_2 , snake_case : Optional[Any]=False , snake_case : List[Any]=512 , snake_case : int=3 , snake_case : Any=1 , snake_case : Union[str, Any]=2 , **snake_case : Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = intermediate_size A = hidden_act A = hidden_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps A = use_tpu_fourier_optimizations A = tpu_short_seq_length
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
109
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } __UpperCAmelCase = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } __UpperCAmelCase = "▁" class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = AlbertTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Any = ( AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ , normalized=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token ) super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = do_lower_case snake_case: Optional[int] = remove_space snake_case: Any = keep_accents snake_case: str = vocab_file snake_case: str = False if not self.vocab_file else True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: Dict = [self.sep_token_id] snake_case: str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: str = [self.sep_token_id] snake_case: Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
329
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = RobertaTokenizer lowerCamelCase__ = RobertaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"""cls_token""": """<s>"""} def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCamelCase : Optional[int] = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCamelCase : Optional[Any] = {'unk_token': '<unk>'} _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Any = 'lower newer' _lowerCamelCase : Union[str, Any] = 'lower newer' return input_text, output_text def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : List[str] = 'lower newer' _lowerCamelCase : Tuple = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCamelCase : List[str] = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained('roberta-base' ) _lowerCamelCase : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _lowerCamelCase : int = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _lowerCamelCase : List[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A_ ( self ): _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : str = 'Encode this sequence.' _lowerCamelCase : Optional[int] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowerCamelCase : Optional[int] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _lowerCamelCase : List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowerCamelCase : Optional[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _lowerCamelCase : List[Any] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(lowercase ) _lowerCamelCase : Optional[int] = 'Encode <mask> sequence' _lowerCamelCase : int = 'Encode <mask>sequence' _lowerCamelCase : str = tokenizer.encode(lowercase ) _lowerCamelCase : Tuple = encoded.index(lowercase ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _lowerCamelCase : Any = tokenizer.encode(lowercase ) _lowerCamelCase : Union[str, Any] = encoded.index(lowercase ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def A_ ( self ): pass def A_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : List[str] = 'A, <mask> AllenNLP sentence.' _lowerCamelCase : List[Any] = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCamelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A_ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCamelCase : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase ) def A_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Dict = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : Tuple = F'''{text_of_1_token} {text_of_1_token}''' _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : List[str] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : int = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : int = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Optional[int] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
630
0
"""simple docstring""" def A( snake_case_ = 50000000 ): """simple docstring""" lowercase__: int = set() lowercase__: Union[str, Any] = int((limit - 24) ** (1 / 2) ) lowercase__: Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __snake_case ) ) ) for primea in primes: lowercase__: List[Any] = primea * primea for primea in primes: lowercase__: List[str] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__: str = primea * primea * primea * primea lowercase__: Optional[int] = square + cube + tetr if total >= limit: break ret.add(__snake_case ) return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
707
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = """ernie_m""" UpperCamelCase__ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , UpperCAmelCase_ = 250_002 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 3_072 , UpperCAmelCase_ = "gelu" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 514 , UpperCAmelCase_ = 0.02 , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 1E-0_5 , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , **UpperCAmelCase_ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: List[Any] = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Tuple = max_position_embeddings lowercase__: str = initializer_range lowercase__: List[Any] = layer_norm_eps lowercase__: List[str] = classifier_dropout lowercase__: Optional[Any] = is_decoder lowercase__: Tuple = act_dropout
120
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = StableDiffusionXLImgaImgPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} _snake_case = PipelineTesterMixin.required_optional_params - {"""latents"""} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) snake_case : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=A , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) snake_case : Optional[Any] = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) snake_case : Tuple = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=3_2 , ) snake_case : Tuple = CLIPTextModel(A ) snake_case : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=A ) snake_case : Union[str, Any] = CLIPTextModelWithProjection(A ) snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=A ) snake_case : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCAmelCase ( self , A , A=0 ) -> str: snake_case : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) snake_case : Optional[Any] = image / 2 + 0.5 if str(A ).startswith("""mps""" ): snake_case : Union[str, Any] = torch.manual_seed(A ) else: snake_case : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) snake_case : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.get_dummy_components() snake_case : Any = StableDiffusionXLImgaImgPipeline(**A ) snake_case : Union[str, Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Dict = self.get_dummy_inputs(A ) snake_case : Union[str, Any] = sd_pipe(**A ).images snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case : str = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self ) -> Dict: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = self.get_dummy_components() snake_case : str = StableDiffusionXLImgaImgPipeline(**A ) snake_case : Any = sd_pipe.to(A ) snake_case : List[str] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds snake_case : int = self.get_dummy_inputs(A ) snake_case : Tuple = 3 * ["""this is a negative prompt"""] snake_case : int = negative_prompt snake_case : Tuple = 3 * [inputs["""prompt"""]] snake_case : Union[str, Any] = sd_pipe(**A ) snake_case : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case : List[str] = self.get_dummy_inputs(A ) snake_case : List[Any] = 3 * ["""this is a negative prompt"""] snake_case : Optional[Any] = 3 * [inputs.pop("""prompt""" )] ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : List[str] = sd_pipe.encode_prompt(A , negative_prompt=A ) snake_case : Dict = sd_pipe( **A , prompt_embeds=A , negative_prompt_embeds=A , pooled_prompt_embeds=A , negative_pooled_prompt_embeds=A , ) snake_case : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , A , A="cpu" , A=torch.floataa , A=0 ) -> Union[str, Any]: snake_case : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) snake_case : Optional[int] = np.random.RandomState(A ).standard_normal((1, 4, 6_4, 6_4) ) snake_case : Any = torch.from_numpy(A ).to(device=A , dtype=A ) snake_case : Tuple = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : int = self.get_inputs(A ) snake_case : List[Any] = pipe(**A ).images snake_case : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
587
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[str] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """camembert""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Any: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : int = vocab_size snake_case : Dict = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Any = hidden_act snake_case : List[str] = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : str = type_vocab_size snake_case : List[Any] = initializer_range snake_case : int = layer_norm_eps snake_case : Optional[int] = position_embedding_type snake_case : Tuple = use_cache snake_case : Tuple = classifier_dropout class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
587
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __lowerCamelCase ( __lowerCAmelCase : str ) -> Optional[int]: def wrapper(*__lowerCAmelCase : int , **__lowerCAmelCase : Dict ): snake_case = timeit.default_timer() snake_case = func(*__lowerCAmelCase , **__lowerCAmelCase ) snake_case = timeit.default_timer() - starttime return delta snake_case = func.__name__ return wrapper def __lowerCamelCase ( __lowerCAmelCase : dict , __lowerCAmelCase : Optional[Any]=1_00 , __lowerCAmelCase : Dict=None ) -> Any: snake_case = [] snake_case = seq_shapes or {} for i in range(__lowerCAmelCase ): snake_case = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCAmelCase , _ArrayXD ): snake_case = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCAmelCase , datasets.Value ): if v.dtype == "string": snake_case = """The small grey turtle was surprisingly fast when challenged.""" else: snake_case = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCAmelCase , datasets.Sequence ): while isinstance(__lowerCAmelCase , datasets.Sequence ): snake_case = v.feature snake_case = seq_shapes[k] snake_case = np.random.rand(*__lowerCAmelCase ).astype(v.dtype ) snake_case = data dummy_data.append((i, example) ) return dummy_data def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int=1_00 , __lowerCAmelCase : int=None ) -> List[Any]: snake_case = generate_examples(__lowerCAmelCase , num_examples=__lowerCAmelCase , seq_shapes=__lowerCAmelCase ) with ArrowWriter(features=__lowerCAmelCase , path=__lowerCAmelCase ) as writer: for key, record in dummy_data: snake_case = features.encode_example(__lowerCAmelCase ) writer.write(__lowerCAmelCase ) snake_case , snake_case = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) snake_case = datasets.Dataset.from_file(filename=__lowerCAmelCase , info=datasets.DatasetInfo(features=__lowerCAmelCase ) ) return dataset
517
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _SCREAMING_SNAKE_CASE = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
517
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor A = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] ,*UpperCamelCase : int ,**UpperCamelCase : Any ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' ,UpperCamelCase ,) super().__init__(*UpperCamelCase ,**UpperCamelCase )
125
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = RobertaTokenizer lowerCAmelCase__ : Tuple = RobertaTokenizerFast lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[int] = {"cls_token": "<s>"} def _lowerCamelCase ( self : Any ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase : Tuple = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) _lowercase : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : List[str] = {'unk_token': '<unk>'} _lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def _lowerCamelCase ( self : Dict ,**UpperCamelCase : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def _lowerCamelCase ( self : int ,**UpperCamelCase : List[Any] ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : Tuple ) -> Union[str, Any]: _lowercase : int = 'lower newer' _lowercase : Tuple = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : Union[str, Any] ) -> Tuple: _lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase : Optional[Any] = 'lower newer' _lowercase : Any = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : Optional[int] = tokenizer.tokenize(UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowercase : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) def _lowerCamelCase ( self : Any ) -> Union[str, Any]: _lowercase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=UpperCamelCase ) ,[0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=UpperCamelCase ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,) @slow def _lowerCamelCase ( self : Any ) -> Any: _lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained('roberta-base' ) _lowercase : List[str] = tokenizer.encode('sequence builders' ,add_special_tokens=UpperCamelCase ) _lowercase : Any = tokenizer.encode('multi-sequence build' ,add_special_tokens=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.encode( 'sequence builders' ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : List[Any] = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ,UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self : int ) -> str: _lowercase : Any = self.get_tokenizer() _lowercase : Optional[Any] = 'Encode this sequence.' _lowercase : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase : Dict = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : List[str] = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase ,UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) # Testing spaces after special tokens _lowercase : str = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase )} ) # mask token has a left space _lowercase : int = tokenizer.convert_tokens_to_ids(UpperCamelCase ) _lowercase : Any = 'Encode <mask> sequence' _lowercase : Dict = 'Encode <mask>sequence' _lowercase : int = tokenizer.encode(UpperCamelCase ) _lowercase : Optional[int] = encoded.index(UpperCamelCase ) _lowercase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : Dict = tokenizer.encode(UpperCamelCase ) _lowercase : Optional[Any] = encoded.index(UpperCamelCase ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) def _lowerCamelCase ( self : int ) -> Optional[Any]: pass def _lowerCamelCase ( self : Tuple ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) _lowercase : Any = self.tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) _lowercase : Any = 'A, <mask> AllenNLP sentence.' _lowercase : Optional[int] = tokenizer_r.encode_plus(UpperCamelCase ,add_special_tokens=UpperCamelCase ,return_token_type_ids=UpperCamelCase ) _lowercase : Any = tokenizer_p.encode_plus(UpperCamelCase ,add_special_tokens=UpperCamelCase ,return_token_type_ids=UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _lowercase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _lowerCamelCase ( self : Tuple ) -> List[str]: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): _lowercase : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] ,UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] ,UpperCamelCase ) def _lowerCamelCase ( self : List[Any] ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase : Optional[int] = F'''{text_of_1_token} {text_of_1_token}''' _lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Dict = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Optional[int] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Optional[int] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ) + 1, 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : List[str] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,)
125
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
708
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') A : Optional[int] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) A : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) A : List[Any] = BeautifulSoup(res.text, 'html.parser') A : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'https://google.com{link.get("href")}')
273
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) SCREAMING_SNAKE_CASE : int = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) SCREAMING_SNAKE_CASE : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowercase__ )} , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def UpperCamelCase ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase : Optional[int] =field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase : float =field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def UpperCamelCase ( self ): if self.train_file is not None: lowercase_ :Optional[int] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase_ :Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCamelCase ( _a , _a ) -> Tuple: '''simple docstring''' with open(_a , '''r''' , encoding='''utf-8''' ) as f: lowercase_ :Optional[int] = [json.loads(_a ) for line in f.read().splitlines() if (len(_a ) > 0 and not line.isspace())] assert len(_a ) == len(_a ) lowercase_ :Dict = {c: dataset[c] for c in dataset.column_names} lowercase_ :Optional[int] = refs return Dataset.from_dict(_a ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowercase_ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ :Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ :str = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase_ :Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ :Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ :List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase_ :Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , ) lowercase_ :List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , ) else: lowercase_ :Tuple = {} if data_args.train_file is not None: lowercase_ :Optional[Any] = data_args.train_file if data_args.validation_file is not None: lowercase_ :Optional[int] = data_args.validation_file lowercase_ :Dict = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowercase_ :Any = '''text''' lowercase_ :Optional[Any] = load_dataset(_a , data_files=_a ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ :Any = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ :List[Any] = AutoConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: lowercase_ :List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) lowercase_ :Optional[int] = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase_ :Tuple = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_a ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowercase_ :Optional[int] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase_ :Optional[int] = AutoModelForMaskedLM.from_config(_a ) model.resize_token_embeddings(len(_a ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase_ :List[Any] = datasets['''train'''].column_names else: lowercase_ :List[Any] = datasets['''validation'''].column_names lowercase_ :Union[str, Any] = '''text''' if '''text''' in column_names else column_names[0] lowercase_ :Optional[Any] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(_a ): # Remove empty lines lowercase_ :Optional[int] = [line for line in examples['''text'''] if len(_a ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=_a , truncation=_a , max_length=data_args.max_seq_length ) lowercase_ :List[Any] = datasets.map( _a , batched=_a , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase_ :int = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase_ :str = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase_ :Union[str, Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase_ :int = False # Data collator # This one will take care of randomly masking the tokens. lowercase_ :Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=_a , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase_ :str = Trainer( model=_a , args=_a , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase_ :Optional[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase_ :Tuple = model_args.model_name_or_path else: lowercase_ :Any = None lowercase_ :int = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase_ :Tuple = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(_a , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowercase_ :Optional[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ :Union[str, Any] = trainer.evaluate() lowercase_ :str = math.exp(eval_output['''eval_loss'''] ) lowercase_ :int = perplexity lowercase_ :List[str] = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
257
from typing import Any import numpy as np def UpperCamelCase ( _a ) -> bool: '''simple docstring''' return np.array_equal(_a , matrix.conjugate().T ) def UpperCamelCase ( _a , _a ) -> Any: '''simple docstring''' lowercase_ :str = v.conjugate().T lowercase_ :int = v_star.dot(_a ) assert isinstance(_a , np.ndarray ) return (v_star_dot.dot(_a )) / (v_star.dot(_a )) def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :str = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase_ :Optional[int] = np.array([[1], [2], [3]] ) assert is_hermitian(_a ), f"{a} is not hermitian." print(rayleigh_quotient(_a , _a ) ) lowercase_ :Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_a ), f"{a} is not hermitian." assert rayleigh_quotient(_a , _a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
257
1
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = "▁" a_ = {"vocab_file": "prophetnet.tokenizer"} a_ = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } a_ = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } a_ = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Any = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE, "r", encoding="utf-8" ) as reader: snake_case_ : Optional[Any] = reader.readlines() for index, token in enumerate(__SCREAMING_SNAKE_CASE ): snake_case_ : str = token.rstrip("\n" ) snake_case_ : Any = index return vocab class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="[SEP]" , lowercase_="[SEP]" , lowercase_="[SEP]" , lowercase_="[UNK]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_ = None , **lowercase_ , ): snake_case_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise snake_case_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) snake_case_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case_ : Optional[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): snake_case_ : List[Any] = F'[unused{i}]' snake_case_ : str = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case_ : str = 12 snake_case_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowercase_) def __getstate__( self): snake_case_ : List[str] = self.__dict__.copy() snake_case_ : Dict = None return state def __setstate__( self , lowercase_): snake_case_ : List[str] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): snake_case_ : Optional[Any] = {} snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return ([0] * len(lowercase_)) + [1] return ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1] def snake_case__ ( self , lowercase_ , lowercase_ = None): snake_case_ : int = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def snake_case__ ( self): return len(self.sp_model) + self.fairseq_offset def snake_case__ ( self): snake_case_ : int = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case__ ( self , lowercase_): return self.sp_model.encode(lowercase_ , out_type=lowercase_) def snake_case__ ( self , lowercase_): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ : List[Any] = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__ ( self , lowercase_): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def snake_case__ ( self , lowercase_): snake_case_ : Union[str, Any] = "".join(lowercase_).replace(lowercase_ , " ").strip() return out_string def snake_case__ ( self , lowercase_ , lowercase_ = None): if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return snake_case_ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , "wb") as fi: snake_case_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,) def snake_case__ ( self , lowercase_ , lowercase_ = None): if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case_ : int = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
92
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets a_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" a_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" a_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): snake_case_ : int = new_id # turn into Numpy arrays snake_case_ : int = np.array(__SCREAMING_SNAKE_CASE ) snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE ) if reduce_labels: snake_case_ : str = 2_5_5 snake_case_ : str = label - 1 snake_case_ : List[Any] = 2_5_5 snake_case_ : Union[str, Any] = label != ignore_index snake_case_ : Dict = np.not_equal(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = pred_label[mask] snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE )[mask] snake_case_ : List[str] = pred_label[pred_label == label] snake_case_ : int = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : Tuple = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" snake_case_ : List[Any] = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : List[str] = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa ) for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = intersect_and_union( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ : Tuple = total_intersect_and_union( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # compute metrics snake_case_ : Union[str, Any] = {} snake_case_ : int = total_area_intersect.sum() / total_area_label.sum() snake_case_ : str = total_area_intersect / total_area_union snake_case_ : Union[str, Any] = total_area_intersect / total_area_label snake_case_ : List[str] = np.nanmean(__SCREAMING_SNAKE_CASE ) snake_case_ : str = np.nanmean(__SCREAMING_SNAKE_CASE ) snake_case_ : Any = all_acc snake_case_ : Union[str, Any] = iou snake_case_ : Tuple = acc if nan_to_num is not None: snake_case_ : str = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE, nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def snake_case__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ): snake_case_ : Optional[Any] = mean_iou( results=lowercase_ , gt_seg_maps=lowercase_ , num_labels=lowercase_ , ignore_index=lowercase_ , nan_to_num=lowercase_ , label_map=lowercase_ , reduce_labels=lowercase_ , ) return iou_result
92
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=[30, 30] , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=None , UpperCamelCase_=8 , UpperCamelCase_=10 , ) -> List[str]: """simple docstring""" a_ : str = parent a_ : Tuple = batch_size a_ : str = image_size a_ : Union[str, Any] = patch_size a_ : Tuple = num_channels a_ : str = is_training a_ : List[Any] = use_labels a_ : int = hidden_size a_ : Union[str, Any] = num_hidden_layers a_ : List[str] = num_attention_heads a_ : int = intermediate_size a_ : List[str] = hidden_act a_ : Dict = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : int = type_sequence_label_size a_ : Dict = initializer_range a_ : Union[str, Any] = num_labels a_ : Optional[Any] = scope a_ : int = n_targets a_ : Tuple = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens a_ : List[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) a_ : Optional[int] = num_patches + 1 + self.num_detection_tokens def A ( self ) -> int: """simple docstring""" a_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) a_ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) a_ : List[str] = [] for i in range(self.batch_size ): a_ : Optional[int] = {} a_ : List[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase_ ) a_ : Optional[int] = torch.rand(self.n_targets , 4 , device=UpperCamelCase_ ) labels.append(UpperCamelCase_ ) a_ : Any = self.get_config() return config, pixel_values, labels def A ( self ) -> Union[str, Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" a_ : Optional[Any] = YolosModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() a_ : Tuple = model(UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: """simple docstring""" a_ : str = YolosForObjectDetection(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() a_ : List[str] = model(pixel_values=UpperCamelCase_ ) a_ : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) a_ : int = model(pixel_values=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A ( self ) -> Dict: """simple docstring""" a_ : Tuple = self.prepare_config_and_inputs() a_ , a_ , a_ : Optional[Any] = config_and_inputs a_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __A , __A , unittest.TestCase ): UpperCAmelCase : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase : Dict = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Optional[Any] = False def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> Any: """simple docstring""" a_ : Any = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": a_ : Union[str, Any] = [] for i in range(self.model_tester.batch_size ): a_ : int = {} a_ : List[str] = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase_ , dtype=torch.long ) a_ : List[str] = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase_ , dtype=torch.float ) labels.append(UpperCamelCase_ ) a_ : Dict = labels return inputs_dict def A ( self ) -> Optional[int]: """simple docstring""" a_ : Union[str, Any] = YolosModelTester(self ) a_ : Dict = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def A ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A ( self ) -> Any: """simple docstring""" pass def A ( self ) -> List[Any]: """simple docstring""" a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def A ( self ) -> List[str]: """simple docstring""" a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[Any] = model_class(UpperCamelCase_ ) a_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Any = [*signature.parameters.keys()] a_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def A ( self ) -> List[Any]: """simple docstring""" a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def A ( self ) -> Tuple: """simple docstring""" a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = True # in YOLOS, the seq_len is different a_ : Optional[int] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: a_ : Union[str, Any] = True a_ : Tuple = False a_ : Union[str, Any] = True a_ : List[str] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): a_ : int = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) a_ : Optional[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ : Tuple = True a_ : Union[str, Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): a_ : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) a_ : List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a_ : Dict = len(UpperCamelCase_ ) # Check attention is always last and order is fine a_ : Any = True a_ : Optional[Any] = True a_ : Optional[int] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): a_ : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) a_ : str = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) ) a_ : Dict = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): a_ : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): a_ : Dict = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) a_ : Optional[int] = outputs.hidden_states a_ : str = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # YOLOS has a different seq_length a_ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : List[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def A ( self ) -> Dict: """simple docstring""" a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase_ ) @slow def A ( self ) -> Union[str, Any]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Dict = YolosModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" a_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def A ( self ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def A ( self ) -> Optional[int]: """simple docstring""" a_ : int = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(UpperCamelCase_ ) a_ : Optional[Any] = self.default_image_processor a_ : Dict = prepare_img() a_ : Tuple = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): a_ : Tuple = model(inputs.pixel_values ) # verify outputs a_ : Union[str, Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) a_ : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCamelCase_ , ) a_ : Union[str, Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify postprocessing a_ : Tuple = image_processor.post_process_object_detection( UpperCamelCase_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] a_ : Tuple = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(UpperCamelCase_ ) a_ : List[Any] = [75, 75, 17, 63, 17] a_ : Dict = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCamelCase_ ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , UpperCamelCase_ , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , UpperCamelCase_ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , UpperCamelCase_ ) )
419
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class snake_case__ ( unittest.TestCase ): def A ( self ) -> int: """simple docstring""" a_ : List[str] = """ZinengTang/tvlt-base""" a_ : Dict = tempfile.mkdtemp() def A ( self , **UpperCamelCase_ ) -> Optional[Any]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCamelCase_ ) def A ( self , **UpperCamelCase_ ) -> Tuple: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase_ ) def A ( self ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self ) -> List[str]: """simple docstring""" a_ : int = self.get_image_processor() a_ : Optional[int] = self.get_feature_extractor() a_ : List[str] = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[int] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase_ ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def A ( self ) -> Dict: """simple docstring""" a_ : Any = self.get_image_processor() a_ : Tuple = self.get_feature_extractor() a_ : Any = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) a_ : Tuple = np.ones([12000] ) a_ : Tuple = feature_extractor(UpperCamelCase_ , return_tensors="""np""" ) a_ : List[Any] = processor(audio=UpperCamelCase_ , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self ) -> Optional[int]: """simple docstring""" a_ : int = self.get_image_processor() a_ : Dict = self.get_feature_extractor() a_ : int = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) a_ : List[str] = np.ones([3, 224, 224] ) a_ : str = image_processor(UpperCamelCase_ , return_tensors="""np""" ) a_ : Tuple = processor(images=UpperCamelCase_ , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self ) -> List[Any]: """simple docstring""" a_ : Optional[int] = self.get_image_processor() a_ : Union[str, Any] = self.get_feature_extractor() a_ : Any = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) a_ : Any = np.ones([12000] ) a_ : Optional[Any] = np.ones([3, 224, 224] ) a_ : Tuple = processor(audio=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def A ( self ) -> Optional[Any]: """simple docstring""" a_ : List[str] = self.get_image_processor() a_ : Union[str, Any] = self.get_feature_extractor() a_ : Any = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
419
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , ): snake_case_ : Optional[Any] = parent snake_case_ : Any = batch_size snake_case_ : Optional[Any] = image_size snake_case_ : Tuple = patch_size snake_case_ : List[str] = num_channels snake_case_ : Union[str, Any] = is_training snake_case_ : Dict = use_labels snake_case_ : List[str] = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : List[Any] = type_sequence_label_size snake_case_ : int = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ : Tuple = (image_size // patch_size) ** 2 snake_case_ : Optional[int] = num_patches + 1 def snake_case__ ( self): snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ : Optional[Any] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , ) return config, pixel_values def snake_case__ ( self , lowercase_ , lowercase_): snake_case_ : Dict = FlaxViTModel(config=__A) snake_case_ : Dict = model(__A) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case_ : List[Any] = (self.image_size, self.image_size) snake_case_ : Union[str, Any] = (self.patch_size, self.patch_size) snake_case_ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def snake_case__ ( self , lowercase_ , lowercase_): snake_case_ : Optional[Any] = self.type_sequence_label_size snake_case_ : int = FlaxViTForImageClassification(config=__A) snake_case_ : Any = model(__A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images snake_case_ : Tuple = 1 snake_case_ : Tuple = FlaxViTForImageClassification(__A) snake_case_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) snake_case_ : Union[str, Any] = model(__A) def snake_case__ ( self): snake_case_ : List[Any] = self.prepare_config_and_inputs() ( snake_case_ ) : Optional[Any] = config_and_inputs snake_case_ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def snake_case__ ( self): snake_case_ : Union[str, Any] = FlaxViTModelTester(self) snake_case_ : Union[str, Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A) def snake_case__ ( self): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A) def snake_case__ ( self): snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = model_class(__A) snake_case_ : Union[str, Any] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A) def snake_case__ ( self): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): snake_case_ : str = self._prepare_for_class(__A , __A) snake_case_ : Optional[int] = model_class(__A) @jax.jit def model_jitted(lowercase_ , **lowercase_): return model(pixel_values=__A , **__A) with self.subTest("JIT Enabled"): snake_case_ : Any = model_jitted(**__A).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): snake_case_ : str = model_jitted(**__A).to_tuple() self.assertEqual(len(__A) , len(__A)) for jitted_output, output in zip(__A , __A): self.assertEqual(jitted_output.shape , output.shape) @slow def snake_case__ ( self): for model_class_name in self.all_model_classes: snake_case_ : List[str] = model_class_name.from_pretrained("google/vit-base-patch16-224") snake_case_ : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24))) self.assertIsNotNone(__A)
703
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = 1_6 ): """simple docstring""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case_ : int = DatasetDict( { "train": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "validation": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "test": dataset["validation"], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ : str = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__SCREAMING_SNAKE_CASE, max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : List[Any] = datasets.map( __SCREAMING_SNAKE_CASE, batched=__SCREAMING_SNAKE_CASE, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Dict = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": snake_case_ : Tuple = 8 else: snake_case_ : Union[str, Any] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE, padding="longest", max_length=__SCREAMING_SNAKE_CASE, pad_to_multiple_of=__SCREAMING_SNAKE_CASE, return_tensors="pt", ) # Instantiate dataloaders. snake_case_ : Optional[int] = DataLoader( tokenized_datasets["train"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : int = DataLoader( tokenized_datasets["validation"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = DataLoader( tokenized_datasets["test"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[Any] = [] # Download the dataset snake_case_ : Tuple = load_dataset("glue", "mrpc" ) # Create our splits snake_case_ : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case_ : Optional[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Optional[Any] = config["lr"] snake_case_ : str = int(config["num_epochs"] ) snake_case_ : Tuple = int(config["seed"] ) snake_case_ : Optional[Any] = int(config["batch_size"] ) snake_case_ : List[Any] = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation snake_case_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: snake_case_ : int = kfold.split(np.zeros(datasets["train"].num_rows ), datasets["train"]["label"] ) snake_case_ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ : Tuple = get_fold_dataloaders( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters(), lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case_ : List[str] = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE, num_warmup_steps=1_0_0, num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = accelerator.prepare( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = outputs.loss snake_case_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : str = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE, ) snake_case_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:', __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end snake_case_ : Any = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = outputs.logits snake_case_ , snake_case_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case_ : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) snake_case_ : Any = torch.stack(__SCREAMING_SNAKE_CASE, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case_ : Tuple = metric.compute(predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE ) accelerator.print("Average test metrics from all folds:", __SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=__SCREAMING_SNAKE_CASE, default=__SCREAMING_SNAKE_CASE, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds", type=__SCREAMING_SNAKE_CASE, default=3, help="The number of splits to perform across the dataset" ) snake_case_ : List[Any] = parser.parse_args() snake_case_ : Optional[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
92
0
'''simple docstring''' from collections.abc import Generator from math import sin def a ( UpperCamelCase_ : bytes ) -> bytes: if len(UpperCamelCase_ ) != 32: raise ValueError('Input must be of length 32' ) snake_case__ =b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a ( UpperCamelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) snake_case__ =format(UpperCamelCase_ , '08x' )[-8:] snake_case__ =b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def a ( UpperCamelCase_ : bytes ) -> bytes: snake_case__ =b'' for char in message: bit_string += format(UpperCamelCase_ , '08b' ).encode('utf-8' ) snake_case__ =format(len(UpperCamelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def a ( UpperCamelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCamelCase_ ) % 512 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCamelCase_ ) , 512 ): snake_case__ =bit_string[pos : pos + 512] snake_case__ =[] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def a ( UpperCamelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) snake_case__ =format(UpperCamelCase_ , '032b' ) snake_case__ ='' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase_ , 2 ) def a ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: return (a + b) % 2**32 def a ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def a ( UpperCamelCase_ : bytes ) -> bytes: snake_case__ =preprocess(UpperCamelCase_ ) snake_case__ =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states snake_case__ =0X67452301 snake_case__ =0Xefcdab89 snake_case__ =0X98badcfe snake_case__ =0X10325476 snake_case__ =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase_ ): snake_case__ =aa snake_case__ =ba snake_case__ =ca snake_case__ =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f snake_case__ =d ^ (b & (c ^ d)) snake_case__ =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f snake_case__ =c ^ (d & (b ^ c)) snake_case__ =(5 * i + 1) % 16 elif i <= 47: snake_case__ =b ^ c ^ d snake_case__ =(3 * i + 5) % 16 else: snake_case__ =c ^ (b | not_aa(UpperCamelCase_ )) snake_case__ =(7 * i) % 16 snake_case__ =(f + a + added_consts[i] + block_words[g]) % 2**32 snake_case__ =d snake_case__ =c snake_case__ =b snake_case__ =sum_aa(UpperCamelCase_ , left_rotate_aa(UpperCamelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total snake_case__ =sum_aa(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ =sum_aa(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ =sum_aa(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ =sum_aa(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ =reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
538
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : Tuple = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
538
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Tuple = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : int = type_vocab_size _lowerCAmelCase : Union[str, Any] = type_sequence_label_size _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Tuple = num_labels _lowerCAmelCase : List[str] = num_choices _lowerCAmelCase : List[str] = scope _lowerCAmelCase : Optional[Any] = self.vocab_size - 1 def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Tuple = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _lowerCAmelCase : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = OpenAIGPTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : str = model(snake_case__ , token_type_ids=snake_case__ , head_mask=snake_case__ ) _lowerCAmelCase : int = model(snake_case__ , token_type_ids=snake_case__ ) _lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = OpenAIGPTLMHeadModel(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Any = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : List[str] = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : str = OpenAIGPTForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = config_and_inputs _lowerCAmelCase : Any = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __magic_name__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __magic_name__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def a ( self , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' _lowerCAmelCase : List[Any] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCAmelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ , ) _lowerCAmelCase : Tuple = inputs_dict['labels'] _lowerCAmelCase : Dict = inputs_dict['labels'] _lowerCAmelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case__ , ) _lowerCAmelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def a ( self ): '''simple docstring''' _lowerCAmelCase : str = OpenAIGPTModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , n_embd=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case__ ) @slow def a ( self ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = OpenAIGPTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(snake_case__ ) _lowerCAmelCase : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=snake_case__ ) # the president is _lowerCAmelCase : str = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCAmelCase : Dict = model.generate(snake_case__ , do_sample=snake_case__ ) self.assertListEqual(output_ids[0].tolist() , snake_case__ )
630
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase : Tuple = False lowerCAmelCase : str = True lowerCAmelCase : List[Any] = False if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCAmelCase : Optional[int] = parser.parse_args() lowerCAmelCase : int = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } lowerCAmelCase : int = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } lowerCAmelCase : Optional[Any] = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: lowerCAmelCase : int = reader.read() lowerCAmelCase : List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): lowerCAmelCase : str = UNetaDModel(**config) else: lowerCAmelCase : Union[str, Any] = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel lowerCAmelCase : Dict = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase : str = config[key] del config[key] lowerCAmelCase : Optional[int] = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] lowerCAmelCase : Dict = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: lowerCAmelCase : Tuple = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) lowerCAmelCase : str = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue lowerCAmelCase : str = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: lowerCAmelCase : Dict = param_value lowerCAmelCase : Tuple = True if not has_changed: lowerCAmelCase : Tuple = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
630
1
from collections.abc import Generator def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0, 1 while True: lowerCamelCase_ = b, a + b yield b def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = fibonacci_generator() while len(str(next(lowerCamelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
70
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ): import pyspark def generate_fn(): __a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) __a : Optional[Any] = partition_df.collect() __a : Union[str, Any] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _UpperCamelCase( _BaseExamplesIterable ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ): '''simple docstring''' __a : List[str] = df __a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) __a : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Tuple ): '''simple docstring''' yield from self.generate_examples_fn() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ): '''simple docstring''' __a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return len(self.partition_order ) class _UpperCamelCase( datasets.DatasetBuilder ): __SCREAMING_SNAKE_CASE : List[str] = SparkConfig def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' import pyspark __a : int = pyspark.sql.SparkSession.builder.getOrCreate() __a : Optional[int] = df __a : List[Any] = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __a : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __a : List[str] = self.df.count() __a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __a : List[str] = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __a : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' import pyspark __a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter __a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __a : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __a : List[str] = self.config.features __a : int = self._writer_batch_size __a : Union[str, Any] = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __a : Any = pyspark.TaskContext().taskAttemptId() __a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __a : Any = 0 __a : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __a , __a : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __a : Optional[Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Union[str, Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __a , __a : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' self._validate_cache_dir() __a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = not is_remote_filesystem(self._fs ) __a : Optional[Any] = os.path.join if is_local else posixpath.join __a : Any = '-TTTTT-SSSSS-of-NNNNN' __a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __a : Any = 0 __a : Dict = 0 __a : int = 0 __a : List[str] = [] __a : Optional[int] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __a : List[str] = total_num_examples __a : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __a : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __a : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , ) __a : Union[str, Any] = [] __a : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a , __a : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __a : List[Any] = 0 __a : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
47
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Optional[int] =logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] ={ '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __A ( a ): __A = """distilbert""" __A = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , UpperCAmelCase_=30522 , UpperCAmelCase_=512 , UpperCAmelCase_=False , UpperCAmelCase_=6 , UpperCAmelCase_=12 , UpperCAmelCase_=768 , UpperCAmelCase_=4 * 768 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.2 , UpperCAmelCase_=0 , **UpperCAmelCase_ , ): lowerCamelCase =vocab_size lowerCamelCase =max_position_embeddings lowerCamelCase =sinusoidal_pos_embds lowerCamelCase =n_layers lowerCamelCase =n_heads lowerCamelCase =dim lowerCamelCase =hidden_dim lowerCamelCase =dropout lowerCamelCase =attention_dropout lowerCamelCase =activation lowerCamelCase =initializer_range lowerCamelCase =qa_dropout lowerCamelCase =seq_classif_dropout super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ ) class __A ( a ): @property def _snake_case ( self ): if self.task == "multiple-choice": lowerCamelCase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
716
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : List[Any] ={'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict =['''YolosFeatureExtractor'''] UpperCAmelCase__ : List[Any] =['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] =[ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
269
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : int = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class _A ( lowerCamelCase__): SCREAMING_SNAKE_CASE : Union[str, Any] = '''ctrl''' SCREAMING_SNAKE_CASE : int = ['''past_key_values'''] SCREAMING_SNAKE_CASE : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _SCREAMING_SNAKE_CASE=24_6534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = n_positions SCREAMING_SNAKE_CASE_ : List[str] = n_embd SCREAMING_SNAKE_CASE_ : Dict = n_layer SCREAMING_SNAKE_CASE_ : int = n_head SCREAMING_SNAKE_CASE_ : Optional[Any] = dff SCREAMING_SNAKE_CASE_ : Tuple = resid_pdrop SCREAMING_SNAKE_CASE_ : Any = embd_pdrop SCREAMING_SNAKE_CASE_ : str = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : str = use_cache super().__init__(**_A )
511
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE_ = { "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = "hopper-medium-v2" SCREAMING_SNAKE_CASE_ = gym.make(env_name) SCREAMING_SNAKE_CASE_ = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) SCREAMING_SNAKE_CASE_ = env.reset() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE_ = pipeline(obs, planning_horizon=3_2) # execute action in environment SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = env.step(denorm_actions) SCREAMING_SNAKE_CASE_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
597
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="attention"): """simple docstring""" snake_case__ : int = params[F'{prefix}/layers_{i}/{layer_name}/key/kernel'] snake_case__ : str = params[F'{prefix}/layers_{i}/{layer_name}/out/kernel'] snake_case__ : Tuple = params[F'{prefix}/layers_{i}/{layer_name}/query/kernel'] snake_case__ : List[str] = params[F'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False): """simple docstring""" if split_mlp_wi: snake_case__ : Any = params[F'{prefix}/layers_{i}/mlp/wi_0/kernel'] snake_case__ : str = params[F'{prefix}/layers_{i}/mlp/wi_1/kernel'] snake_case__ : List[str] = (wi_a, wi_a) else: snake_case__ : Optional[Any] = params[F'{prefix}/layers_{i}/mlp/wi/kernel'] snake_case__ : Tuple = params[F'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" return params[F'{prefix}/layers_{i}/{layer_name}/scale'] def _lowercase ( UpperCAmelCase_ , *, UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Optional[int] = traverse_util.flatten_dict(variables["""target"""]) snake_case__ : Any = {"""/""".join(UpperCAmelCase_): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case__ : int = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , UpperCAmelCase_) snake_case__ : Optional[int] = collections.OrderedDict() # Shared embeddings. snake_case__ : Optional[Any] = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCAmelCase_): # Block i, layer 0 (Self Attention). snake_case__ : str = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """encoder""" , """pre_attention_layer_norm""") snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """encoder""" , """attention""") snake_case__ : Any = layer_norm snake_case__ : Optional[int] = k.T snake_case__ : Union[str, Any] = o.T snake_case__ : Optional[Any] = q.T snake_case__ : Tuple = v.T # Block i, layer 1 (MLP). snake_case__ : Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """encoder""" , """pre_mlp_layer_norm""") snake_case__ , snake_case__ : str = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """encoder""" , UpperCAmelCase_) snake_case__ : int = layer_norm if split_mlp_wi: snake_case__ : List[Any] = wi[0].T snake_case__ : Union[str, Any] = wi[1].T else: snake_case__ : int = wi.T snake_case__ : Union[str, Any] = wo.T snake_case__ : List[Any] = old[ """encoder/relpos_bias/rel_embedding""" ].T snake_case__ : List[Any] = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase_): # Block i, layer 0 (Self Attention). snake_case__ : str = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """decoder""" , """pre_self_attention_layer_norm""") snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """decoder""" , """self_attention""") snake_case__ : Union[str, Any] = layer_norm snake_case__ : Dict = k.T snake_case__ : List[Any] = o.T snake_case__ : Optional[int] = q.T snake_case__ : Any = v.T # Block i, layer 1 (Cross Attention). snake_case__ : Dict = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """decoder""" , """pre_cross_attention_layer_norm""") snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """decoder""" , """encoder_decoder_attention""") snake_case__ : int = layer_norm snake_case__ : Any = k.T snake_case__ : Tuple = o.T snake_case__ : List[Any] = q.T snake_case__ : int = v.T # Block i, layer 2 (MLP). snake_case__ : Union[str, Any] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """decoder""" , """pre_mlp_layer_norm""") snake_case__ , snake_case__ : str = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , """decoder""" , UpperCAmelCase_) snake_case__ : List[Any] = layer_norm if split_mlp_wi: snake_case__ : List[Any] = wi[0].T snake_case__ : List[str] = wi[1].T else: snake_case__ : Dict = wi.T snake_case__ : str = wo.T snake_case__ : List[Any] = old["""decoder/decoder_norm/scale"""] snake_case__ : Dict = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case__ : Any = old["""decoder/logits_dense/kernel"""].T return new def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case__ : Any = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case__ : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""") snake_case__ : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Optional[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_) snake_case__ : Dict = convert_tax_to_pytorch(UpperCAmelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase_) snake_case__ : Union[str, Any] = make_state_dict(UpperCAmelCase_ , UpperCAmelCase_) model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False): """simple docstring""" snake_case__ : Optional[int] = TaConfig.from_json_file(UpperCAmelCase_) print(F'Building PyTorch model from configuration: {config}') # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case__ : List[Any] = TaEncoderModel(UpperCAmelCase_) else: snake_case__ : List[str] = TaForConditionalGeneration(UpperCAmelCase_) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}') model.save_pretrained(UpperCAmelCase_) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase_) print("""Done""") if __name__ == "__main__": lowercase_: Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) lowercase_: Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
127
import colorsys from PIL import Image # type: ignore def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : List[Any] = x snake_case__ : int = y for step in range(UpperCAmelCase_): # noqa: B007 snake_case__ : str = a * a - b * b + x snake_case__ : Tuple = 2 * a * b + y snake_case__ : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowercase ( UpperCAmelCase_): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowercase ( UpperCAmelCase_): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(UpperCAmelCase_ , 1 , 1)) def _lowercase ( UpperCAmelCase_ = 800 , UpperCAmelCase_ = 600 , UpperCAmelCase_ = -0.6 , UpperCAmelCase_ = 0 , UpperCAmelCase_ = 3.2 , UpperCAmelCase_ = 50 , UpperCAmelCase_ = True , ): """simple docstring""" snake_case__ : Dict = Image.new("""RGB""" , (image_width, image_height)) snake_case__ : Optional[Any] = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase_): for image_y in range(UpperCAmelCase_): # determine the figure-coordinates based on the image-coordinates snake_case__ : Optional[int] = figure_width / image_width * image_height snake_case__ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case__ : str = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case__ : int = get_distance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case__ : List[str] = get_color_coded_rgb(UpperCAmelCase_) else: snake_case__ : Optional[Any] = get_black_and_white_rgb(UpperCAmelCase_) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase_: List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
127
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : int = random.Random() def snake_case__ ( _lowerCamelCase, _lowerCamelCase=1.0, _lowerCamelCase=None, _lowerCamelCase=None ) ->Tuple: """simple docstring""" if rng is None: __lowercase : Any = global_rng __lowercase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any]=7 , lowercase__ : Tuple=4_0_0 , lowercase__ : Optional[int]=2_0_0_0 , lowercase__ : Dict=2_0_4_8 , lowercase__ : List[Any]=1_2_8 , lowercase__ : Optional[int]=1 , lowercase__ : Optional[Any]=5_1_2 , lowercase__ : Any=3_0 , lowercase__ : Optional[int]=4_4_1_0_0 , ): __lowercase : List[Any] = parent __lowercase : Union[str, Any] = batch_size __lowercase : Optional[int] = min_seq_length __lowercase : Dict = max_seq_length __lowercase : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase : Union[str, Any] = spectrogram_length __lowercase : Dict = feature_size __lowercase : str = num_audio_channels __lowercase : int = hop_length __lowercase : Optional[Any] = chunk_length __lowercase : str = sampling_rate def snake_case ( self : Tuple ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self : Union[str, Any] , lowercase__ : Optional[int]=False , lowercase__ : Dict=False ): def _flatten(lowercase__ : int ): return list(itertools.chain(*lowercase__ ) ) if equal_length: __lowercase : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase : Union[str, Any] = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = TvltFeatureExtractor def snake_case ( self : str ): __lowercase : str = TvltFeatureExtractionTester(self ) def snake_case ( self : Optional[Any] ): __lowercase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowercase__ , "spectrogram_length" ) ) self.assertTrue(hasattr(lowercase__ , "feature_size" ) ) self.assertTrue(hasattr(lowercase__ , "num_audio_channels" ) ) self.assertTrue(hasattr(lowercase__ , "hop_length" ) ) self.assertTrue(hasattr(lowercase__ , "chunk_length" ) ) self.assertTrue(hasattr(lowercase__ , "sampling_rate" ) ) def snake_case ( self : Union[str, Any] ): __lowercase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Union[str, Any] = feat_extract_first.save_pretrained(lowercase__ )[0] check_json_file_has_correct_format(lowercase__ ) __lowercase : int = self.feature_extraction_class.from_pretrained(lowercase__ ) __lowercase : Dict = feat_extract_first.to_dict() __lowercase : List[Any] = feat_extract_second.to_dict() __lowercase : Optional[Any] = dict_first.pop("mel_filters" ) __lowercase : int = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertEqual(lowercase__ , lowercase__ ) def snake_case ( self : List[str] ): __lowercase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Tuple = os.path.join(lowercase__ , "feat_extract.json" ) feat_extract_first.to_json_file(lowercase__ ) __lowercase : Dict = self.feature_extraction_class.from_json_file(lowercase__ ) __lowercase : Any = feat_extract_first.to_dict() __lowercase : Tuple = feat_extract_second.to_dict() __lowercase : Optional[int] = dict_first.pop("mel_filters" ) __lowercase : Union[str, Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertEqual(lowercase__ , lowercase__ ) def snake_case ( self : Dict ): # Initialize feature_extractor __lowercase : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __lowercase : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : Optional[int] = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test not batched input __lowercase : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __lowercase : Optional[int] = feature_extractor(lowercase__ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __lowercase : List[Any] = feature_extractor( lowercase__ , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=lowercase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __lowercase : str = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase : Optional[Any] = np.asarray(lowercase__ ) __lowercase : Tuple = feature_extractor(lowercase__ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self : Union[str, Any] , lowercase__ : Union[str, Any] ): __lowercase : Optional[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowercase : List[str] = ds.sort("id" ).select(range(lowercase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case ( self : Dict ): __lowercase : Tuple = self._load_datasamples(1 ) __lowercase : List[str] = TvltFeatureExtractor() __lowercase : List[str] = feature_extractor(lowercase__ , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) __lowercase : Union[str, Any] = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase__ , atol=1e-4 ) )
575
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : Dict = PegasusConfig __UpperCAmelCase : int = {} __UpperCAmelCase : Tuple = "gelu" def __init__( self : List[str] , lowercase__ : int , lowercase__ : Union[str, Any]=1_3 , lowercase__ : Dict=7 , lowercase__ : Optional[Any]=True , lowercase__ : str=False , lowercase__ : Optional[int]=9_9 , lowercase__ : Tuple=3_2 , lowercase__ : Any=5 , lowercase__ : Any=4 , lowercase__ : Any=3_7 , lowercase__ : Any=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : Tuple=2_0 , lowercase__ : str=2 , lowercase__ : int=1 , lowercase__ : Dict=0 , ): __lowercase : int = parent __lowercase : str = batch_size __lowercase : Tuple = seq_length __lowercase : Tuple = is_training __lowercase : Dict = use_labels __lowercase : List[str] = vocab_size __lowercase : int = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : int = intermediate_size __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : List[Any] = max_position_embeddings __lowercase : int = eos_token_id __lowercase : Union[str, Any] = pad_token_id __lowercase : Union[str, Any] = bos_token_id def snake_case ( self : int ): __lowercase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __lowercase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase : Optional[Any] = prepare_pegasus_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def snake_case ( self : str , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ): __lowercase : Union[str, Any] = 2_0 __lowercase : List[Any] = model_class_name(lowercase__ ) __lowercase : Tuple = model.encode(inputs_dict["input_ids"] ) __lowercase ,__lowercase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) __lowercase : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __lowercase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) __lowercase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase__ , ) __lowercase : List[Any] = model.decode(lowercase__ , lowercase__ ) __lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def snake_case ( self : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] ): __lowercase : Any = 2_0 __lowercase : Any = model_class_name(lowercase__ ) __lowercase : List[Any] = model.encode(inputs_dict["input_ids"] ) __lowercase ,__lowercase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) __lowercase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : str = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) __lowercase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase__ , decoder_position_ids=lowercase__ , ) __lowercase : Union[str, Any] = model.decode(lowercase__ , lowercase__ , decoder_attention_mask=lowercase__ ) __lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase=None, _lowerCamelCase=None, ) ->int: """simple docstring""" if attention_mask is None: __lowercase : List[str] = np.not_equal(_lowerCamelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowercase : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCAmelCase : Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCAmelCase : Dict = True __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def snake_case ( self : List[Any] ): __lowercase : Optional[Any] = FlaxPegasusModelTester(self ) __lowercase : Optional[Any] = ConfigTester(self , config_class=lowercase__ ) def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): __lowercase ,__lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase__ , lowercase__ , lowercase__ ) def snake_case ( self : Optional[int] ): __lowercase ,__lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase__ , lowercase__ , lowercase__ ) def snake_case ( self : Tuple ): __lowercase ,__lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : Union[str, Any] = self._prepare_for_class(lowercase__ , lowercase__ ) __lowercase : List[str] = model_class(lowercase__ ) @jax.jit def encode_jitted(lowercase__ : List[str] , lowercase__ : int=None , **lowercase__ : Tuple ): return model.encode(input_ids=lowercase__ , attention_mask=lowercase__ ) with self.subTest("JIT Enabled" ): __lowercase : List[Any] = encode_jitted(**lowercase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase : Optional[Any] = encode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self : Optional[Any] ): __lowercase ,__lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : Union[str, Any] = model_class(lowercase__ ) __lowercase : List[str] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __lowercase : Optional[int] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Any ): return model.decode( decoder_input_ids=lowercase__ , decoder_attention_mask=lowercase__ , encoder_outputs=lowercase__ , ) with self.subTest("JIT Enabled" ): __lowercase : Tuple = decode_jitted(**lowercase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase : Any = decode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case ( self : Any ): for model_class_name in self.all_model_classes: __lowercase : int = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowercase__ ) __lowercase : Any = np.ones((1, 1) ) __lowercase : Tuple = model(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow def snake_case ( self : Optional[int] ): __lowercase : str = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __lowercase : Optional[Any] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __lowercase : Any = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __lowercase : Union[str, Any] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __lowercase : Tuple = tokenizer(lowercase__ , return_tensors="np" , truncation=lowercase__ , max_length=5_1_2 , padding=lowercase__ ) __lowercase : Tuple = model.generate(**lowercase__ , num_beams=2 ).sequences __lowercase : str = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ ) assert tgt_text == decoded
575
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase : List[Any] = True except (ImportError, AttributeError): UpperCamelCase : List[Any] = object def UpperCamelCase_ ( *__a , **__a ) -> int: pass UpperCamelCase : List[Any] = False UpperCamelCase : str = logging.get_logger("""transformers-cli/serving""") def UpperCamelCase_ ( __a ) -> Dict: a__ : Union[str, Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__a , args.host , args.port , args.workers ) class A__ ( A__ ): """simple docstring""" _lowercase = 42 class A__ ( A__ ): """simple docstring""" _lowercase = 42 _lowercase = 42 class A__ ( A__ ): """simple docstring""" _lowercase = 42 class A__ ( A__ ): """simple docstring""" _lowercase = 42 class A__ ( A__ ): """simple docstring""" @staticmethod def _UpperCamelCase( lowerCamelCase__ : ArgumentParser ): a__ : Dict = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=lowerCamelCase__ , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=lowerCamelCase__ , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=lowerCamelCase__ , default=8_888 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=lowerCamelCase__ , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=lowerCamelCase__ , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=lowerCamelCase__ , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=lowerCamelCase__ , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=lowerCamelCase__ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : Union[str, Any] , lowerCamelCase__ : Pipeline , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : int ): a__ : Union[str, Any] = pipeline a__ : Optional[int] = host a__ : str = port a__ : List[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f'''Serving model over {host}:{port}''' ) a__ : Union[str, Any] = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=["POST"] , ), ] , timeout=600 , ) def _UpperCamelCase( self : Dict ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def _UpperCamelCase( self : int ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : str = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ : bool = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) ): try: a__ : Optional[int] = self._pipeline.tokenizer.tokenize(lowerCamelCase__ ) if return_ids: a__ : Any = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) return ServeTokenizeResult(tokens=lowerCamelCase__ , tokens_ids=lowerCamelCase__ ) else: return ServeTokenizeResult(tokens=lowerCamelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(lowerCamelCase__ )} ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ : bool = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ : bool = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , ): try: a__ : List[str] = self._pipeline.tokenizer.decode(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return ServeDeTokenizeResult(model="" , text=lowerCamelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(lowerCamelCase__ )} ) async def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int]=Body(lowerCamelCase__ , embed=lowerCamelCase__ ) ): # Check we don't have empty string if len(lowerCamelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model a__ : Any = self._pipeline(lowerCamelCase__ ) return ServeForwardResult(output=lowerCamelCase__ ) except Exception as e: raise HTTPException(500 , {"error": str(lowerCamelCase__ )} )
151
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCamelCase : Any = logging.get_logger(__name__) class A__ ( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float , **lowerCamelCase__ : List[Any] ): a__ : int = feature_size a__ : List[str] = sampling_rate a__ : Optional[Any] = padding_value a__ : List[Any] = kwargs.pop("padding_side" , "right" ) a__ : Optional[int] = kwargs.pop("return_attention_mask" , lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = True , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a__ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) a__ : Union[str, Any] = processed_features[self.model_input_names[0]] a__ : Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase__ ) == 0: if return_attention_mask: a__ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a__ : List[str] = required_input[0] if isinstance(lowerCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a__ : Tuple = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase__ ): a__ : Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase__ ): a__ : List[Any] = "tf" elif is_torch_tensor(lowerCamelCase__ ): a__ : int = "pt" elif isinstance(lowerCamelCase__ , (int, float, list, tuple, np.ndarray) ): a__ : str = "np" else: raise ValueError( f'''type of {first_element} unknown: {type(lowerCamelCase__ )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a__ : str = to_numpy(lowerCamelCase__ ) else: a__ : Any = [to_numpy(lowerCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy a__ : Union[str, Any] = self._get_padding_strategies(padding=lowerCamelCase__ , max_length=lowerCamelCase__ ) a__ : Tuple = processed_features[self.model_input_names[0]] a__ : Optional[Any] = len(lowerCamelCase__ ) if not all(len(lowerCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) a__ : Dict = [] for i in range(lowerCamelCase__ ): a__ : int = {k: v[i] for k, v in processed_features.items()} # truncation a__ : Any = self._truncate( lowerCamelCase__ , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , truncation=lowerCamelCase__ , ) truncated_inputs.append(lowerCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a__ : Union[str, Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a__ : Any = PaddingStrategy.MAX_LENGTH a__ : Optional[int] = {} for i in range(lowerCamelCase__ ): # padding a__ : Optional[Any] = self._pad( truncated_inputs[i] , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: a__ : Dict = [] if value.dtype is np.dtype(np.floataa ): a__ : Optional[int] = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase__ ) return BatchFeature(lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def _UpperCamelCase( self : int , lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : Optional[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a__ : Tuple = len(lowerCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ : Any = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a__ : Optional[int] = np.ones(len(lowerCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: a__ : List[str] = max_length - len(lowerCamelCase__ ) if self.padding_side == "right": if return_attention_mask: a__ : Tuple = np.pad( processed_features["attention_mask"] , (0, difference) ) a__ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a__ : List[Any] = np.pad( lowerCamelCase__ , lowerCamelCase__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a__ : List[str] = np.pad( processed_features["attention_mask"] , (difference, 0) ) a__ : Any = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a__ : List[str] = np.pad( lowerCamelCase__ , lowerCamelCase__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) a__ : Optional[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ : List[str] = len(lowerCamelCase__ ) > max_length if needs_to_be_truncated: a__ : Optional[int] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a__ : List[str] = processed_features["attention_mask"][:max_length] return processed_features def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Tuple=None ): # Get padding strategy if padding is not False: if padding is True: a__ : Tuple = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Tuple = PaddingStrategy(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Optional[Any] = padding else: a__ : Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
151
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCamelCase :Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase ( __snake_case ): def __init__( self: Any , __UpperCamelCase: int , __UpperCamelCase: int , __UpperCamelCase: float , **__UpperCamelCase: int ): _a = feature_size _a = sampling_rate _a = padding_value _a = kwargs.pop('''padding_side''' , '''right''' ) _a = kwargs.pop('''return_attention_mask''' , __UpperCamelCase ) super().__init__(**__UpperCamelCase ) def _A ( self: Optional[Any] , __UpperCamelCase: Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __UpperCamelCase: Union[bool, str, PaddingStrategy] = True , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: bool = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _a = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) _a = processed_features[self.model_input_names[0]] _a = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__UpperCamelCase ) == 0: if return_attention_mask: _a = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _a = required_input[0] if isinstance(__UpperCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _a = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__UpperCamelCase ): _a = required_input[index][0] if return_tensors is None: if is_tf_tensor(__UpperCamelCase ): _a = '''tf''' elif is_torch_tensor(__UpperCamelCase ): _a = '''pt''' elif isinstance(__UpperCamelCase , (int, float, list, tuple, np.ndarray) ): _a = '''np''' else: raise ValueError( f"type of {first_element} unknown: {type(__UpperCamelCase )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _a = to_numpy(__UpperCamelCase ) else: _a = [to_numpy(__UpperCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _a = self._get_padding_strategies(padding=__UpperCamelCase , max_length=__UpperCamelCase ) _a = processed_features[self.model_input_names[0]] _a = len(__UpperCamelCase ) if not all(len(__UpperCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _a = [] for i in range(__UpperCamelCase ): _a = {k: v[i] for k, v in processed_features.items()} # truncation _a = self._truncate( __UpperCamelCase , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , truncation=__UpperCamelCase , ) truncated_inputs.append(__UpperCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _a = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _a = PaddingStrategy.MAX_LENGTH _a = {} for i in range(__UpperCamelCase ): # padding _a = self._pad( truncated_inputs[i] , max_length=__UpperCamelCase , padding_strategy=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _a = [] if value.dtype is np.dtype(np.floataa ): _a = value.astype(np.floataa ) batch_outputs[key].append(__UpperCamelCase ) return BatchFeature(__UpperCamelCase , tensor_type=__UpperCamelCase ) def _A ( self: Optional[int] , __UpperCamelCase: Union[Dict[str, np.ndarray], BatchFeature] , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , ): _a = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _a = len(__UpperCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__UpperCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _a = np.ones(len(__UpperCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: _a = max_length - len(__UpperCamelCase ) if self.padding_side == "right": if return_attention_mask: _a = np.pad( processed_features['''attention_mask'''] , (0, difference) ) _a = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _a = np.pad( __UpperCamelCase , __UpperCamelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _a = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _a = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _a = np.pad( __UpperCamelCase , __UpperCamelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def _A ( self: Any , __UpperCamelCase: Union[Dict[str, np.ndarray], BatchFeature] , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _a = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a = len(__UpperCamelCase ) > max_length if needs_to_be_truncated: _a = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _a = processed_features['''attention_mask'''][:max_length] return processed_features def _A ( self: Union[str, Any] , __UpperCamelCase: Any=False , __UpperCamelCase: Tuple=None ): # Get padding strategy if padding is not False: if padding is True: _a = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__UpperCamelCase , __UpperCamelCase ): _a = PaddingStrategy(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): _a = padding else: _a = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
487
def __snake_case ( _UpperCamelCase ) -> list[int]: if length <= 0 or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
487
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
183
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): @staticmethod @abstractmethod def a_ ( lowercase_ ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def a_ ( self ) -> Any: raise NotImplementedError()
183
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self , _a , _a=99 , _a=13 , _a=16 , _a=7 , _a=True , _a=True , _a=True , _a=False , _a=True , _a=2 , _a=32 , _a=4 , _a=4 , _a=30 , _a=0 , _a=1 , _a=2 , _a=None , ) -> Any: _A : Any = parent _A : List[Any] = batch_size _A : int = decoder_seq_length # For common tests _A : Union[str, Any] = self.decoder_seq_length _A : Optional[Any] = is_training _A : str = use_attention_mask _A : str = use_labels _A : Tuple = vocab_size _A : Tuple = d_model _A : Dict = d_model _A : Optional[int] = decoder_layers _A : Dict = decoder_layers _A : Any = decoder_ffn_dim _A : List[Any] = decoder_attention_heads _A : Union[str, Any] = decoder_attention_heads _A : str = eos_token_id _A : List[str] = bos_token_id _A : Dict = pad_token_id _A : str = decoder_start_token_id _A : Optional[int] = use_cache _A : List[Any] = max_position_embeddings _A : Optional[Any] = None _A : Tuple = decoder_seq_length _A : Tuple = 2 _A : List[Any] = 1 def a__ ( self ) -> int: _A : int = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A : Dict = None if self.use_attention_mask: _A : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _A : Optional[int] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A : List[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def a__ ( self , _a , _a , _a , _a , ) -> Tuple: _A : Union[str, Any] = True _A : Union[str, Any] = TrOCRDecoder(config=_a ).to(_a ).eval() _A : str = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _A : Dict = model(_a , use_cache=_a ) _A : Union[str, Any] = model(_a ) _A : Any = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) _A : Tuple = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _A : Tuple = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _A : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : str = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = model(_a , past_key_values=_a )["""last_hidden_state"""] # select random slice _A : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _A : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_a , _a , atol=1e-3 ) def a__ ( self ) -> Optional[Any]: _A : Optional[Any] = self.prepare_config_and_inputs() _A , _A , _A , _A : List[Any] = config_and_inputs _A : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _a = (TrOCRForCausalLM,) if is_torch_available() else () _a = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} _a = True _a = False def a__ ( self ) -> Optional[Any]: _A : int = TrOCRStandaloneDecoderModelTester(self , is_training=_a ) _A : Union[str, Any] = ConfigTester(self , config_class=_a ) def a__ ( self ) -> Tuple: pass def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> int: self.config_tester.run_common_tests() def a__ ( self ) -> List[str]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_a ) def a__ ( self ) -> List[Any]: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def a__ ( self ) -> Union[str, Any]: pass
307
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } _snake_case = { "gpt-neox-20b": 2048, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self , _a=None , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ) -> str: super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , ) _A : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _a ) != add_prefix_space: _A : List[Any] = getattr(_a , pre_tok_state.pop("""type""" ) ) _A : List[str] = add_prefix_space _A : int = pre_tok_class(**_a ) _A : Optional[Any] = add_prefix_space def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def a__ ( self , _a ) -> List[int]: _A : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: _A : List[str] = input_ids[-self.model_max_length :] return input_ids
307
1
from string import ascii_lowercase, ascii_uppercase def lowerCamelCase__ ( lowercase ): """simple docstring""" if not sentence: return "" SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(lowercase , lowercase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
711
from __future__ import annotations def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = str(lowercase ) return n == n[::-1] def lowerCamelCase__ ( lowercase = 1000000 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 for i in range(1 , lowercase ): if is_palindrome(lowercase ) and is_palindrome(bin(lowercase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
488
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ : List[str] = '''FlavaImageProcessor''' SCREAMING_SNAKE_CASE__ : Any = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , snake_case : Tuple=None , snake_case : Optional[int]=None , **snake_case : Any ): """simple docstring""" _snake_case : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) _snake_case : List[str] = kwargs.pop('feature_extractor' ) _snake_case : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) _snake_case : Tuple = self.image_processor def __call__( self : Any , snake_case : Optional[ImageInput] = None , snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , snake_case : bool = True , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Union[bool, str, TruncationStrategy] = False , snake_case : Optional[int] = None , snake_case : int = 0 , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = True , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Optional[Any] , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[Any] = self.tokenizer( text=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , ) if images is not None: _snake_case : Optional[Any] = self.image_processor( snake_case , return_image_mask=snake_case , return_codebook_pixels=snake_case , return_tensors=snake_case , **snake_case , ) if text is not None and images is not None: encoding.update(snake_case ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case ) , tensor_type=snake_case ) def __UpperCAmelCase ( self : List[Any] , *snake_case : Optional[int] , **snake_case : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case , **snake_case ) def __UpperCAmelCase ( self : Optional[int] , *snake_case : int , **snake_case : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case , **snake_case ) @property def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case : Dict = self.tokenizer.model_input_names _snake_case : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case , ) return self.image_processor_class @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case , ) return self.image_processor
517
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__=False , ) -> Optional[Any]: """simple docstring""" output_path.parent.mkdir(parents=a__ , exist_ok=a__) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , ) else: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , ) @torch.no_grad() def lowerCamelCase__ ( a__ , a__ , a__ , a__ = False) -> List[str]: """simple docstring""" _snake_case : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _snake_case : Optional[Any] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA') else: _snake_case : List[str] = 'cpu' _snake_case : Optional[Any] = StableDiffusionPipeline.from_pretrained(a__ , torch_dtype=a__).to(a__) _snake_case : Tuple = Path(a__) # TEXT ENCODER _snake_case : List[str] = pipeline.text_encoder.config.max_position_embeddings _snake_case : Any = pipeline.text_encoder.config.hidden_size _snake_case : Union[str, Any] = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=a__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=a__ , dtype=torch.intaa)) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=a__ , ) del pipeline.text_encoder # UNET _snake_case : List[Any] = pipeline.unet.config.in_channels _snake_case : List[Any] = pipeline.unet.config.sample_size _snake_case : Dict = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , a__ , a__ , a__).to(device=a__ , dtype=a__), torch.randn(2).to(device=a__ , dtype=a__), torch.randn(2 , a__ , a__).to(device=a__ , dtype=a__), False, ) , output_path=a__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=a__ , use_external_data_format=a__ , ) _snake_case : Optional[Any] = str(unet_path.absolute().as_posix()) _snake_case : int = os.path.dirname(a__) _snake_case : int = onnx.load(a__) # clean up existing tensor files shutil.rmtree(a__) os.mkdir(a__) # collate external tensor files into one onnx.save_model( a__ , a__ , save_as_external_data=a__ , all_tensors_to_one_file=a__ , location='weights.pb' , convert_attribute=a__ , ) del pipeline.unet # VAE ENCODER _snake_case : Optional[int] = pipeline.vae _snake_case : List[str] = vae_encoder.config.in_channels _snake_case : str = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _snake_case : str = lambda a__ , a__: vae_encoder.encode(a__ , a__)[0].sample() onnx_export( a__ , model_args=( torch.randn(1 , a__ , a__ , a__).to(device=a__ , dtype=a__), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=a__ , ) # VAE DECODER _snake_case : str = pipeline.vae _snake_case : Tuple = vae_decoder.config.latent_channels _snake_case : List[Any] = vae_decoder.config.out_channels # forward only through the decoder part _snake_case : Optional[Any] = vae_encoder.decode onnx_export( a__ , model_args=( torch.randn(1 , a__ , a__ , a__).to(device=a__ , dtype=a__), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=a__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _snake_case : Optional[Any] = pipeline.safety_checker _snake_case : List[str] = safety_checker.config.vision_config.num_channels _snake_case : Tuple = safety_checker.config.vision_config.image_size _snake_case : int = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , a__ , a__ , a__ , ).to(device=a__ , dtype=a__), torch.randn(1 , a__ , a__ , a__).to(device=a__ , dtype=a__), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=a__ , ) del pipeline.safety_checker _snake_case : Any = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker') _snake_case : Dict = pipeline.feature_extractor else: _snake_case : List[Any] = None _snake_case : int = None _snake_case : Dict = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder') , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder') , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder') , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet') , scheduler=pipeline.scheduler , safety_checker=a__ , feature_extractor=a__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(a__) print('ONNX pipeline saved to' , a__) del pipeline del onnx_pipeline _snake_case : str = OnnxStableDiffusionPipeline.from_pretrained(a__ , provider='CPUExecutionProvider') print('ONNX pipeline is loadable') if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
517
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Dict = '▁' _snake_case : Tuple = {'vocab_file': 'spiece.model'} _snake_case : Optional[Any] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _snake_case : Union[str, Any] = { 'google/pegasus-xsum': 5_12, } _snake_case : Optional[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ =["""input_ids""", """attention_mask"""] def __init__( self, _a, _a="<pad>", _a="</s>", _a="<unk>", _a="<mask_2>", _a="<mask_1>", _a=None, _a=1_03, _a = None, **_a, ) -> None: __SCREAMING_SNAKE_CASE = offset if additional_special_tokens is not None: if not isinstance(_a, _a ): raise TypeError( f'''additional_special_tokens should be of type {type(_a )}, but is''' f''' {type(_a )}''' ) __SCREAMING_SNAKE_CASE = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_a ), self.offset - 1 ) ] if len(set(_a ) ) != len(_a ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __SCREAMING_SNAKE_CASE = additional_special_tokens_extended else: __SCREAMING_SNAKE_CASE = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2, self.offset )] __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_a, unk_token=_a, mask_token=_a, pad_token=_a, mask_token_sent=_a, offset=_a, additional_special_tokens=_a, sp_model_kwargs=self.sp_model_kwargs, **_a, ) __SCREAMING_SNAKE_CASE = mask_token_sent __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # add special tokens to encoder dict __SCREAMING_SNAKE_CASE = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) -> int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) -> Dict[str, int]: __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self, _a ) -> str: __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self, _a ) -> List[str]: return self.sp_model.encode(_a, out_type=_a ) def __lowerCAmelCase ( self, _a ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __SCREAMING_SNAKE_CASE = self.sp_model.piece_to_id(_a ) return sp_id + self.offset def __lowerCAmelCase ( self, _a ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self, _a ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def __lowerCAmelCase ( self, _a=False ) -> List[Any]: return 1 def __lowerCAmelCase ( self, _a ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self, _a, _a = None, _a = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_a ) elif token_ids_a is None: return self._special_token_mask(_a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self, _a, _a=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self, _a, _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE = os.path.join( _a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _a ) elif not os.path.isfile(self.vocab_file ): with open(_a, "wb" ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
707
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ ="""new-model""" if is_tf_available(): class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =NewModelConfig @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "bert-base-cased" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = "bert-base-cased" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Dict: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> int: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow @require_tensorflow_probability def __lowerCAmelCase ( self ) -> Dict: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( _a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a, _a ) self.assertEqual(model.num_parameters(), 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_a ), 1_44_10 ) def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a, _a ) self.assertEqual(model.num_parameters(), 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_a ), 1_44_10 ) def __lowerCAmelCase ( self ) -> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) __SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] __SCREAMING_SNAKE_CASE = TFAutoModel.from_config(_a ) self.assertIsInstance(_a, _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a ) self.assertIsInstance(_a, _a ) def __lowerCAmelCase ( self ) -> str: try: AutoConfig.register("new-model", _a ) __SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_a ): auto_class.register(_a, _a ) auto_class.register(_a, _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): auto_class.register(_a, _a ) # Now that the config is registered, it can be used as any other config with the auto-API __SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() __SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) __SCREAMING_SNAKE_CASE = auto_class.from_config(_a ) self.assertIsInstance(_a, _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = auto_class.from_pretrained(_a ) self.assertIsInstance(_a, _a ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowerCAmelCase ( self ) -> List[str]: with self.assertRaisesRegex( _a, "bert-base is not a local folder and is not a valid model identifier" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( _a, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a, revision="aaaaaa" ) def __lowerCAmelCase ( self ) -> Dict: with self.assertRaisesRegex( _a, "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __lowerCAmelCase ( self ) -> Optional[int]: with self.assertRaisesRegex(_a, "Use `from_pt=True` to load this model" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def __lowerCAmelCase ( self ) -> List[Any]: # Make sure we have cached the model. __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 ) # With a sharded checkpoint __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 )
214
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __snake_case :Any =logging.get_logger(__name__) __snake_case :str ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Tuple , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Optional[Any] ) -> Tuple: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) if config is None: assert isinstance(self.model , __UpperCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) A = self.model.config else: A = config A = data_args A = self.config.tgt_vocab_size if isinstance(self.config , __UpperCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ' padding..' ) if self.args.label_smoothing == 0: A = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A = label_smoothed_nll_loss def __UpperCamelCase ( self : int , __UpperCamelCase : int ) -> str: if self.optimizer is None: A = ['bias', 'LayerNorm.weight'] A = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] A = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A = Adafactor A = {'scale_parameter': False, 'relative_step': False} else: A = AdamW A = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } A = self.args.learning_rate if self.sharded_ddp: A = OSS( params=__UpperCamelCase , optim=__UpperCamelCase , **__UpperCamelCase , ) else: A = optimizer_cls(__UpperCamelCase , **__UpperCamelCase ) if self.lr_scheduler is None: A = self._get_lr_scheduler(__UpperCamelCase ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __UpperCamelCase ( self : str , __UpperCamelCase : List[Any] ) -> Union[str, Any]: A = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__UpperCamelCase ) return scheduler def __UpperCamelCase ( self : List[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ) -> int: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A = model(**__UpperCamelCase , use_cache=__UpperCamelCase )[0] A = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A , A = model(**__UpperCamelCase , labels=__UpperCamelCase , use_cache=__UpperCamelCase )[:2] else: # compute label smoothed loss A = model(**__UpperCamelCase , use_cache=__UpperCamelCase )[0] A = torch.nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) A , A = self.loss_fn(__UpperCamelCase , __UpperCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCamelCase ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> List[Any]: A = inputs.pop('labels' ) A , A = self._compute_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return loss def __UpperCamelCase ( self : int , __UpperCamelCase : nn.Module , __UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] , __UpperCamelCase : bool , __UpperCamelCase : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A = self._prepare_inputs(__UpperCamelCase ) A = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **__UpperCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A = self._pad_tensors_to_max_len(__UpperCamelCase , gen_kwargs['max_length'] ) A = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data A , A = self._compute_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A = self._pad_tensors_to_max_len(__UpperCamelCase , gen_kwargs['max_length'] ) return (loss, logits, labels) def __UpperCamelCase ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Dict ) -> int: # If PAD token is not defined at least EOS token has to be defined A = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' f''' padded to `max_length`={max_length}''' ) A = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A = tensor return padded_tensor
106
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase__ : List[Any] = 4 UpperCAmelCase__ : Optional[Any] = 3 class __lowercase ( lowerCamelCase__ ): pass def A ( snake_case__ : List[str] ) -> str: '''simple docstring''' for shard in shards: for i in range(snake_case__ ): yield {"i": i, "shard": shard} def A ( ) -> List[str]: '''simple docstring''' __snake_case = int(os.environ['RANK'] ) __snake_case = int(os.environ['WORLD_SIZE'] ) __snake_case = ArgumentParser() parser.add_argument('--streaming' , type=snake_case__ ) parser.add_argument('--local_rank' , type=snake_case__ ) parser.add_argument('--num_workers' , type=snake_case__ , default=0 ) __snake_case = parser.parse_args() __snake_case = args.streaming __snake_case = args.num_workers __snake_case = {'shards': [f"shard_{shard_idx}" for shard_idx in range(snake_case__ )]} __snake_case = IterableDataset.from_generator(snake_case__ , gen_kwargs=snake_case__ ) if not streaming: __snake_case = Dataset.from_list(list(snake_case__ ) ) __snake_case = split_dataset_by_node(snake_case__ , rank=snake_case__ , world_size=snake_case__ ) __snake_case = torch.utils.data.DataLoader(snake_case__ , num_workers=snake_case__ ) __snake_case = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
313
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __SCREAMING_SNAKE_CASE ): def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
705
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase__( enum.Enum ): lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[Any] = 2 @add_end_docstrings(__A ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params ) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( __UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) A__ = handle_long_generation preprocess_params.update(__UpperCAmelCase ) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Dict: A__ = self.tokenizer( prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs['max_new_tokens'] else: A__ = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) A__ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs['attention_mask'][:, -keep_length:] return inputs def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: A__ = model_inputs['input_ids'] A__ = model_inputs.get('attention_mask' ,__UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop('prefix_length' ,0 ) if prefix_length > 0: A__ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": A__ = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str: A__ = model_outputs['generated_sequence'][0] A__ = model_outputs['input_ids'] A__ = model_outputs['prompt_text'] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( __UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) ) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {'generated_text': all_text} records.append(__UpperCAmelCase ) return records
536
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __snake_case ( _lowerCAmelCase : List[str]=None ) -> Union[str, Any]: if subparsers is not None: A_ : Union[str, Any] = subparsers.add_parser("test" ) else: A_ : Union[str, Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=_SCREAMING_SNAKE_CASE , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __snake_case ( _lowerCAmelCase : str ) -> List[Any]: A_ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: A_ : Optional[int] = script_name else: A_ : List[str] = f"--config_file={args.config_file} {script_name}" A_ : Optional[Any] = ["accelerate-launch"] + test_args.split() A_ : int = execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __snake_case ( ) -> Tuple: A_ : List[str] = test_command_parser() A_ : List[Any] = parser.parse_args() test_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
454
import functools def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) @functools.cache def min_distance(_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _SCREAMING_SNAKE_CASE ) , 1 + min_distance(_SCREAMING_SNAKE_CASE , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """Pix2StructImageProcessor""" lowerCamelCase__ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , lowercase , lowercase ): _lowerCamelCase : Optional[int] = False super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 2048 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _lowerCamelCase : Optional[Any] = self.tokenizer _lowerCamelCase : Tuple = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _lowerCamelCase : Union[str, Any] = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , **lowercase ) else: # add pixel_values and bbox _lowerCamelCase : Optional[Any] = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , header_text=lowercase , **lowercase ) if text is not None and not self.image_processor.is_vqa: _lowerCamelCase : Optional[Any] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) if "attention_mask" in text_encoding: _lowerCamelCase : List[Any] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _lowerCamelCase : str = text_encoding.pop('input_ids' ) else: _lowerCamelCase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer.model_input_names _lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
492
"""simple docstring""" def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = abs(lowercase__ ) _lowerCamelCase : Optional[int] = 0 while n > 0: res += n % 10 n //= 10 return res def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = abs(lowercase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _snake_case ( lowercase__ ): return sum(int(lowercase__ ) for c in str(abs(lowercase__ ) ) ) def _snake_case ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ , lowercase__ ) -> None: _lowerCamelCase : int = f'''{func.__name__}({value})''' _lowerCamelCase : Optional[Any] = timeit(f'''__main__.{call}''' , setup='import __main__' ) print(f'''{call:56} = {func(lowercase__ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase__ , lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
492
1
"""simple docstring""" from math import sqrt def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> bool: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__: Optional[Any] = True # 0 and 1 are none primes. if number <= 1: lowercase__: str = False for divisor in range(2 , int(round(sqrt(__UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__: Optional[int] = False break # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'status' must been from type bool" return status def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__: Optional[Any] = list(range(2 , n + 1 ) ) lowercase__: int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__UpperCAmelCase ) ): for j in range(i + 1 , len(__UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__: Union[str, Any] = 0 # filters actual prime numbers. lowercase__: List[Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type list" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" lowercase__: Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__UpperCAmelCase ): ans.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type list" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" lowercase__: str = [] # this list will be returns of the function. # potential prime number factors. lowercase__: str = 2 lowercase__: Optional[Any] = number if number == 0 or number == 1: ans.append(__UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__UpperCAmelCase ): while quotient != 1: if is_prime(__UpperCAmelCase ) and (quotient % factor == 0): ans.append(__UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type list" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__: str = 0 # prime factorization of 'number' lowercase__: Dict = prime_factorization(__UpperCAmelCase ) lowercase__: int = max(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type int" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__: Optional[Any] = 0 # prime factorization of 'number' lowercase__: Any = prime_factorization(__UpperCAmelCase ) lowercase__: List[Any] = min(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type int" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (number > 2) and is_even(__UpperCAmelCase ) ), "'number' must been an int, even and > 2" lowercase__: List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__: int = get_prime_numbers(__UpperCAmelCase ) lowercase__: Dict = len(__UpperCAmelCase ) # run variable for while-loops. lowercase__: Optional[Any] = 0 lowercase__: Any = None # exit variable. for break up the loops lowercase__: Tuple = True while i < len_pn and loop: lowercase__: Dict = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__: List[str] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (len(__UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__: List[Any] = 0 while numbera != 0: lowercase__: List[Any] = numbera % numbera lowercase__: str = numbera lowercase__: Optional[int] = rest # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__: str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__: Union[str, Any] = prime_factorization(__UpperCAmelCase ) lowercase__: List[Any] = prime_factorization(__UpperCAmelCase ) elif numbera == 1 or numbera == 1: lowercase__: Union[str, Any] = [] lowercase__: Dict = [] lowercase__: Any = max(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[int] = 0 lowercase__: List[str] = 0 lowercase__: Tuple = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__: int = prime_fac_a.count(__UpperCAmelCase ) lowercase__: Dict = prime_fac_a.count(__UpperCAmelCase ) for _ in range(max(__UpperCAmelCase , __UpperCAmelCase ) ): ans *= n else: lowercase__: Any = prime_fac_a.count(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): ans *= n done.append(__UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__: Union[str, Any] = prime_fac_a.count(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): ans *= n done.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" lowercase__: Optional[Any] = 0 lowercase__: Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__UpperCAmelCase ): ans += 1 # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and is_prime( __UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: assert ( is_prime(__UpperCAmelCase ) and is_prime(__UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__: Optional[Any] = p_number_a + 1 # jump to the next number lowercase__: Union[str, Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(__UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(__UpperCAmelCase ): number += 1 # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ans[0] != p_number_a and ans[len(__UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" lowercase__: Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(__UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__: Any = get_divisors(__UpperCAmelCase ) # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(__UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__: Dict = gcd(abs(__UpperCAmelCase ) , abs(__UpperCAmelCase ) ) # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" lowercase__: Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" lowercase__: Tuple = 0 lowercase__: Tuple = 1 lowercase__: List[str] = 1 # this will be return for _ in range(n - 1 ): lowercase__: int = ans ans += fiba lowercase__: Optional[int] = tmp return ans
586
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DeiTFeatureExtractor"] __A = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
586
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def UpperCAmelCase__ ( *snake_case__ : Any , **snake_case__ : List[Any] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class a ( unittest.TestCase ): lowercase_ : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase__ ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowerCAmelCase = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = object_detector(examples[0] , threshold=0.0 ) __lowerCAmelCase = len(snake_case__ ) self.assertGreater(snake_case__ , 0 ) self.assertEqual( snake_case__ , [ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" pass @require_torch def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowerCAmelCase = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) __lowerCAmelCase = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Any ): """simple docstring""" __lowerCAmelCase = pipeline("zero-shot-object-detection" ) __lowerCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) __lowerCAmelCase = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" pass @require_torch @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = 0.2 __lowerCAmelCase = pipeline("zero-shot-object-detection" ) __lowerCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = 2 __lowerCAmelCase = pipeline("zero-shot-object-detection" ) __lowerCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
376
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( __UpperCAmelCase ): @staticmethod @abstractmethod def UpperCAmelCase__ ( snake_case__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self : Any ): """simple docstring""" raise NotImplementedError()
376
1