code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowercase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ) -> str: A = TOKEN HfFolder.save_token(A_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ) -> Optional[int]: try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) A = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_ ,getattr(A_ ,A_ ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ,repo_id='test-config' ,push_to_hub=A_ ,use_auth_token=self._token ) A = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_ ,getattr(A_ ,A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: A = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) A = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_ ,getattr(A_ ,A_ ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A_ ,repo_id='valid_org/test-config-org' ,push_to_hub=A_ ,use_auth_token=self._token ) A = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_ ,getattr(A_ ,A_ ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: CustomConfig.register_for_auto_class() A = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) A = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' ,trust_remote_code=A_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A = c.n_embd + 1 # int A = c.resid_pdrop + 1.0 # float A = not c.scale_attn_weights # bool A = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(A_ ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(A_ ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(A_ ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(A_ ,c.summary_type ,'mismatch for key: summary_type' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A = PretrainedConfig() A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( A_ ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) A = [key for key, value in config_common_kwargs.items() if value == getattr(A_ ,A_ )] if len(A_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(A_ )}.' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: with self.assertRaises(A_ ): # config is in subfolder, the following should not work without specifying the subfolder A = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) A = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 500 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=A_ ) as mock_head: A = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 A = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = AutoConfig.from_pretrained('bert-base-cased' ) A = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(A_ ) A = 2 json.dump(configuration.to_dict() ,open(os.path.join(A_ ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A = AutoConfig.from_pretrained(A_ ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A = ['config.42.0.0.json'] A = 768 configuration.save_pretrained(A_ ) shutil.move(os.path.join(A_ ,'config.4.0.0.json' ) ,os.path.join(A_ ,'config.42.0.0.json' ) ) A = AutoConfig.from_pretrained(A_ ) self.assertEqual(new_configuration.hidden_size ,768 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A = 'hf-internal-testing/test-two-configs' import transformers as new_transformers A = 'v4.0.0' A , A = new_transformers.models.auto.AutoConfig.from_pretrained( A_ ,return_unused_kwargs=A_ ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(A_ ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A = 'v3.0.0' A = old_transformers.models.auto.AutoConfig.from_pretrained(A_ ) self.assertEqual(old_configuration.hidden_size ,768 )
91
from __future__ import annotations def a__ ( snake_case__ : list[int] ): if len(snake_case__ ) == 0: return array _UpperCAmelCase,_UpperCAmelCase : List[str] = min(snake_case__ ), max(snake_case__ ) # Compute the variables _UpperCAmelCase : Tuple = _max - _min + 1 _UpperCAmelCase,_UpperCAmelCase : Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _UpperCAmelCase : Optional[int] = i - _min _UpperCAmelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _UpperCAmelCase : List[Any] = 0 for i in range(snake_case__ ): while holes_repeat[i] > 0: _UpperCAmelCase : Optional[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Dict = input('Enter numbers separated by comma:\n') SCREAMING_SNAKE_CASE__ : Optional[int] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
643
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowercase : int = datasets.load_iris() __lowercase : Union[str, Any] = np.array(data["data"]) __lowercase : Any = np.array(data["target"]) __lowercase : Tuple = data["target_names"] __lowercase ,__lowercase ,__lowercase ,__lowercase : Union[str, Any] = train_test_split(X, y) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return np.linalg.norm(np.array(snake_case) - np.array(snake_case)) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case=5): __snake_case = zip(snake_case, snake_case) # List of distances of all points from the point to be classified __snake_case = [] for data_point in data: __snake_case = euclidean_distance(data_point[0], snake_case) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __snake_case = [i[1] for i in sorted(snake_case)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __snake_case = Counter(snake_case).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
93
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case): return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = 0 __snake_case = number while duplicate > 0: __snake_case , __snake_case = divmod(snake_case, 10) fact_sum += factorial(snake_case) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") __lowercase : Optional[int] = int(input("Enter number: ").strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
93
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase__ : Tuple = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
376
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Tuple , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : float , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : str , __lowercase : bool = False , ): """simple docstring""" super().__init__() snake_case_ = nn.Embedding(__lowercase , __lowercase ) snake_case_ = nn.Embedding(__lowercase , __lowercase ) snake_case_ = False snake_case_ = nn.Dropout(p=__lowercase ) snake_case_ = TaConfig( vocab_size=__lowercase , d_model=__lowercase , num_heads=__lowercase , d_kv=__lowercase , d_ff=__lowercase , dropout_rate=__lowercase , feed_forward_proj=__lowercase , is_decoder=__lowercase , is_encoder_decoder=__lowercase , ) snake_case_ = nn.ModuleList() for lyr_num in range(__lowercase ): snake_case_ = TaBlock(__lowercase ) self.encoders.append(__lowercase ) snake_case_ = TaLayerNorm(__lowercase ) snake_case_ = nn.Dropout(p=__lowercase ) def snake_case__ ( self : str , __lowercase : Dict , __lowercase : str ): """simple docstring""" snake_case_ = self.token_embedder(__lowercase ) snake_case_ = encoder_input_tokens.shape[1] snake_case_ = torch.arange(__lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(__lowercase ) snake_case_ = self.dropout_pre(__lowercase ) # inverted the attention mask snake_case_ = encoder_input_tokens.size() snake_case_ = self.get_extended_attention_mask(__lowercase , __lowercase ) for lyr in self.encoders: snake_case_ = lyr(__lowercase , __lowercase )[0] snake_case_ = self.layer_norm(__lowercase ) return self.dropout_post(__lowercase ), encoder_inputs_mask
376
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'mvp' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self, A_=5_0267, A_=1024, A_=12, A_=4096, A_=16, A_=12, A_=4096, A_=16, A_=0.0, A_=0.0, A_="gelu", A_=1024, A_=0.1, A_=0.0, A_=0.0, A_=0.02, A_=0.0, A_=False, A_=True, A_=1, A_=0, A_=2, A_=True, A_=2, A_=2, A_=False, A_=100, A_=800, **A_, ) -> List[str]: UpperCAmelCase__ =vocab_size UpperCAmelCase__ =max_position_embeddings UpperCAmelCase__ =d_model UpperCAmelCase__ =encoder_ffn_dim UpperCAmelCase__ =encoder_layers UpperCAmelCase__ =encoder_attention_heads UpperCAmelCase__ =decoder_ffn_dim UpperCAmelCase__ =decoder_layers UpperCAmelCase__ =decoder_attention_heads UpperCAmelCase__ =dropout UpperCAmelCase__ =attention_dropout UpperCAmelCase__ =activation_dropout UpperCAmelCase__ =activation_function UpperCAmelCase__ =init_std UpperCAmelCase__ =encoder_layerdrop UpperCAmelCase__ =decoder_layerdrop UpperCAmelCase__ =classifier_dropout UpperCAmelCase__ =use_cache UpperCAmelCase__ =encoder_layers UpperCAmelCase__ =scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase__ =use_prompt UpperCAmelCase__ =prompt_length UpperCAmelCase__ =prompt_mid_dim super().__init__( pad_token_id=A_, bos_token_id=A_, eos_token_id=A_, is_encoder_decoder=A_, decoder_start_token_id=A_, forced_eos_token_id=A_, **A_, ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", A_ ): UpperCAmelCase__ =self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." )
510
def _UpperCAmelCase ( A , A ): '''simple docstring''' _validate_point(A ) _validate_point(A ) if len(A ) != len(A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(A , A ) ) ) def _UpperCAmelCase ( A ): '''simple docstring''' if point: if isinstance(A , A ): for item in point: if not isinstance(A , (int, float) ): UpperCAmelCase__ =( "Expected a list of numbers as input, found " F"""{type(A ).__name__}""" ) raise TypeError(A ) else: UpperCAmelCase__ =F"""Expected a list of numbers as input, found {type(A ).__name__}""" raise TypeError(A ) else: raise ValueError("Missing an input" ) def _UpperCAmelCase ( A , A ): '''simple docstring''' _validate_point(A ) _validate_point(A ) if len(A ) != len(A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(A , A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
510
1
import os def a_ ( ): __lowerCAmelCase = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'triangle.txt' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [] for line in triangle: __lowerCAmelCase = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowerCAmelCase_ ) ) a.append(lowerCAmelCase_ ) for i in range(1, len(lowerCAmelCase_ ) ): for j in range(len(a[i] ) ): __lowerCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCAmelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCAmelCase_, lowerCAmelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
53
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Optional[int] ): """simple docstring""" super().__init__(*snake_case , **snake_case ) _snake_case : Tuple = {} def __UpperCAmelCase ( self : int , snake_case : List[Any] , *snake_case : Optional[Any] , **snake_case : List[Any] ): """simple docstring""" _snake_case : str = super().add_tokens(snake_case , *snake_case , **snake_case ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Optional[int] , *snake_case : Dict , snake_case : int=1 , **snake_case : int ): """simple docstring""" _snake_case : str = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case , *snake_case , **snake_case ) output.append(snake_case ) else: _snake_case : Optional[Any] = [] for i in range(snake_case ): _snake_case : int = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case , *snake_case , **snake_case ) output.append(snake_case ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) _snake_case : Dict = output def __UpperCAmelCase ( self : Union[str, Any] , snake_case : str , snake_case : Dict=False , snake_case : List[str]=1.0 ): """simple docstring""" if isinstance(snake_case , snake_case ): _snake_case : int = [] for i in range(len(snake_case ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Union[str, Any] = self.token_map[placeholder_token] _snake_case : Any = tokens[: 1 + int(len(snake_case ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Union[str, Any] = copy.copy(snake_case ) random.shuffle(snake_case ) _snake_case : List[str] = text.replace(snake_case , ' '.join(snake_case ) ) return text def __call__( self : List[Any] , snake_case : Optional[int] , *snake_case : Any , snake_case : int=False , snake_case : str=1.0 , **snake_case : Optional[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , ) def __UpperCAmelCase ( self : int , snake_case : List[str] , *snake_case : List[Any] , snake_case : Optional[int]=False , snake_case : Optional[Any]=1.0 , **snake_case : Any ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , )
517
0
'''simple docstring''' import operator as op def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = [] lowercase_ : List[Any] = lambda _UpperCamelCase , _UpperCamelCase : int(x / y ) # noqa: E731 integer division operation lowercase_ : List[str] = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(_UpperCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_UpperCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(_UpperCamelCase ) , sep=" | " ) else: lowercase_ : Dict = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(_UpperCamelCase ) , sep=" | " ) lowercase_ : Optional[int] = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(_UpperCamelCase ) , sep=" | " ) stack.append( str(opr[x](int(_UpperCamelCase ) , int(_UpperCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(_UpperCamelCase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": UpperCamelCase__ = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : Any = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' debug_launcher(test_script.main ) def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' debug_launcher(test_ops.main )
98
1
'''simple docstring''' from math import factorial class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = real if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [1] * rank else: _snake_case = rank def __repr__( self ): """simple docstring""" return ( F'{self.real}+' F'{"+".join(str(lowerCAmelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCAmelCase_ ) def __add__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return Dual(self.real + other , self.duals ) _snake_case = self.duals.copy() _snake_case = other.duals.copy() if len(lowerCAmelCase_ ) > len(lowerCAmelCase_ ): o_dual.extend([1] * (len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )) ) elif len(lowerCAmelCase_ ) < len(lowerCAmelCase_ ): s_dual.extend([1] * (len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )) ) _snake_case = [] for i in range(len(lowerCAmelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCAmelCase_ ) __lowercase = __add__ def __sub__( self , lowerCAmelCase_ ): """simple docstring""" return self + other * -1 def __mul__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCAmelCase_ ) _snake_case = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCAmelCase_ ) __lowercase = __mul__ def __truediv__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCAmelCase_ ) raise ValueError def __floordiv__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCAmelCase_ ) raise ValueError def __pow__( self , lowerCAmelCase_ ): """simple docstring""" if n < 0 or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _snake_case = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> List[str]: if not callable(__A ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(__A , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(__A , __A ): raise ValueError('differentiate() requires an int as input for order' ) _snake_case = Dual(__A , 1 ) _snake_case = func(__A ) if order == 0: return result.real return result.duals[order - 1] * factorial(__A ) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: return y**2 * y**4 print(differentiate(f, 9, 2))
542
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionInstructPixaPixPipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('RGB' ) if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'french fries' _snake_case = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = [inputs['prompt']] * 2 _snake_case = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 _snake_case = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) _snake_case = image / 2 + 0.5 _snake_case = image.permute(0 , 3 , 1 , 2 ) _snake_case = image.repeat(2 , 1 , 1 , 1 ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _snake_case = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' ) _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] _snake_case = [round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) )[0] _snake_case = components['vae'] _snake_case = self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _snake_case = vae.encode(inputs[image_param] ).latent_dist.mode() _snake_case = pipe(**lowerCAmelCase_ )[0] _snake_case = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.manual_seed(lowerCAmelCase_ ) _snake_case = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) _snake_case = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) _snake_case = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 0 def callback_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _snake_case = False _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _snake_case = inputs['image'].resize((5_04, 5_04) ) _snake_case = 'timbrooks/instruct-pix2pix' _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = pipe(**lowerCAmelCase_ ) _snake_case = output.images[0] _snake_case = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) _snake_case = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
542
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="Translation" , init=a , repr=a ) def __call__( self : Any ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="TranslationVariableLanguages" , init=a , repr=a ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = sorted(set(self.languages ) ) if self.languages else None __SCREAMING_SNAKE_CASE = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Union[str, Any]: """simple docstring""" return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = set(self.languages ) if self.languages and set(UpperCamelCase_ ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(UpperCamelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(UpperCamelCase_ )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __SCREAMING_SNAKE_CASE = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __SCREAMING_SNAKE_CASE = zip(*sorted(UpperCamelCase_ ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
627
"""simple docstring""" from math import pi, sqrt, tan def __UpperCAmelCase ( __UpperCamelCase ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __UpperCAmelCase ( __UpperCamelCase ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def __UpperCAmelCase ( __UpperCamelCase ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) __lowercase : List[str] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def __UpperCAmelCase ( __UpperCamelCase ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) __lowercase : int = (sidea + sidea + sidea) / 2 __lowercase : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def __UpperCAmelCase ( __UpperCamelCase ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"Rectangle: {area_rectangle(1_0, 2_0) = }") print(F"Square: {area_square(1_0) = }") print(F"Triangle: {area_triangle(1_0, 1_0) = }") print(F"Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }") print(F"Parallelogram: {area_parallelogram(1_0, 2_0) = }") print(F"Rhombus: {area_rhombus(1_0, 2_0) = }") print(F"Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }") print(F"Circle: {area_circle(2_0) = }") print(F"Ellipse: {area_ellipse(1_0, 2_0) = }") print('\nSurface Areas of various geometric shapes: \n') print(F"Cube: {surface_area_cube(2_0) = }") print(F"Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }") print(F"Sphere: {surface_area_sphere(2_0) = }") print(F"Hemisphere: {surface_area_hemisphere(2_0) = }") print(F"Cone: {surface_area_cone(1_0, 2_0) = }") print(F"Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }") print(F"Cylinder: {surface_area_cylinder(1_0, 2_0) = }") print(F"Torus: {surface_area_torus(2_0, 1_0) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 1_0) = }") print(F"Square: {area_reg_polygon(4, 1_0) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 1_0) = }")
76
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Tuple = logging.get_logger(__name__) lowerCAmelCase_: str = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "transfo-xl" snake_case_ = ["mems"] snake_case_ = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, _UpperCAmelCase=26_7735, _UpperCAmelCase=[2_0000, 4_0000, 20_0000], _UpperCAmelCase=1024, _UpperCAmelCase=1024, _UpperCAmelCase=16, _UpperCAmelCase=64, _UpperCAmelCase=4096, _UpperCAmelCase=4, _UpperCAmelCase=False, _UpperCAmelCase=18, _UpperCAmelCase=1600, _UpperCAmelCase=1000, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=0, _UpperCAmelCase=-1, _UpperCAmelCase=True, _UpperCAmelCase=0.1, _UpperCAmelCase=0.0, _UpperCAmelCase=True, _UpperCAmelCase="normal", _UpperCAmelCase=0.01, _UpperCAmelCase=0.01, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-5, _UpperCAmelCase=0, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) @property def snake_case__ ( self ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> Tuple: lowercase__ : str = tempfile.mkdtemp() lowercase__ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase__ : Any = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> str: return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> List[Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : Any = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__( self ) -> int: lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Union[str, Any] = self.get_rust_tokenizer() lowercase__ : Any = self.get_image_processor() lowercase__ : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) lowercase__ : List[Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ : Any = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) lowercase__ : Union[str, Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Tuple = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : Tuple = image_processor(lowerCamelCase__ , return_tensors="""np""" ) lowercase__ : str = processor(images=lowerCamelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : List[str] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Any = """lower newer""" lowercase__ : List[Any] = processor(text=lowerCamelCase__ ) lowercase__ : Tuple = tokenizer(lowerCamelCase__ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__( self ) -> str: lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : List[Any] = """lower newer""" lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : List[Any] = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : int = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Tuple = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Tuple = processor.batch_decode(lowerCamelCase__ ) lowercase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : Optional[int] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : str = """lower newer""" lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : int = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
200
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> Tuple: lowercase__ : str = tempfile.mkdtemp() lowercase__ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase__ : Any = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> str: return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> List[Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : Any = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__( self ) -> int: lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Union[str, Any] = self.get_rust_tokenizer() lowercase__ : Any = self.get_image_processor() lowercase__ : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) lowercase__ : List[Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ : Any = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) lowercase__ : Union[str, Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Tuple = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : Tuple = image_processor(lowerCamelCase__ , return_tensors="""np""" ) lowercase__ : str = processor(images=lowerCamelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : List[str] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Any = """lower newer""" lowercase__ : List[Any] = processor(text=lowerCamelCase__ ) lowercase__ : Tuple = tokenizer(lowerCamelCase__ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__( self ) -> str: lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : List[Any] = """lower newer""" lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : List[Any] = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : int = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Tuple = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Tuple = processor.batch_decode(lowerCamelCase__ ) lowercase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : Optional[int] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : str = """lower newer""" lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : int = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
200
1
"""simple docstring""" from pathlib import Path import fire def UpperCAmelCase ( A__: Optional[Any] , A__: Dict , A__: Tuple ) -> List[str]: __lowerCamelCase : str = Path(lowercase_ ) __lowerCamelCase : int = Path(lowercase_ ) dest_dir.mkdir(exist_ok=lowercase_ ) for path in src_dir.iterdir(): __lowerCamelCase : Any = [x.rstrip() for x in list(path.open().readlines() )][:n] __lowerCamelCase : Dict = dest_dir.joinpath(path.name ) print(lowercase_ ) dest_path.open('w' ).write('\n'.join(lowercase_ ) ) if __name__ == "__main__": fire.Fire(minify)
707
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , **__a , ): super().__init__( __a , split=__a , features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) __lowerCamelCase : List[Any] = field __lowerCamelCase : Dict = path_or_paths if isinstance(__a , __a ) else {self.split: path_or_paths} __lowerCamelCase : str = Json( cache_dir=__a , data_files=__a , features=__a , field=__a , **__a , ) def snake_case_ ( self ): # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : Any = None __lowerCamelCase : Any = None __lowerCamelCase : str = None __lowerCamelCase : int = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) __lowerCamelCase : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset class __lowercase: '''simple docstring''' def __init__( self , __a , __a , __a = None , __a = None , **__a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : Optional[int] = path_or_buf __lowerCamelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase : str = num_proc __lowerCamelCase : Optional[Any] = 'utf-8' __lowerCamelCase : Optional[int] = to_json_kwargs def snake_case_ ( self ): __lowerCamelCase : Tuple = self.to_json_kwargs.pop('path_or_buf' , __a ) __lowerCamelCase : Any = self.to_json_kwargs.pop('orient' , 'records' ) __lowerCamelCase : List[Any] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __lowerCamelCase : Tuple = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __lowerCamelCase : int = self.to_json_kwargs.pop('compression' , __a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=__a ) as buffer: __lowerCamelCase : int = self._write(file_obj=__a , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) __lowerCamelCase : Dict = self._write( file_obj=self.path_or_buf , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) return written def snake_case_ ( self , __a ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = args __lowerCamelCase : int = query_table( table=self.dataset.data , key=slice(__a , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase : List[str] = batch.to_pandas().to_json( path_or_buf=__a , orient=__a , lines=__a , index=__a , **__a ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case_ ( self , __a , __a , __a , __a , **__a , ): __lowerCamelCase : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __lowerCamelCase : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__a ) else: __lowerCamelCase , __lowerCamelCase : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __a , __a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(__a ) return written
263
0
import numpy class _UpperCamelCase : def __init__( self , __UpperCamelCase , __UpperCamelCase )-> None: __lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. __lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowerCAmelCase = numpy.zeros(output_array.shape ) def __UpperCAmelCase ( self )-> numpy.ndarray: __lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __UpperCAmelCase ( self )-> None: __lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> None: for iteration in range(1 , iterations + 1 ): __lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: __lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def __UpperCAmelCase ( self , __UpperCamelCase )-> int: __lowerCAmelCase = input_arr __lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __lowerCAmelCase ( __snake_case ): return 1 / (1 + numpy.exp(-value )) def __lowerCAmelCase ( __snake_case ): return (value) * (1 - (value)) def __lowerCAmelCase ( ): __lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=A__ , output_array=A__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=A__ , iterations=10 , give_loss=A__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
367
class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , __a : int ) ->Optional[int]: lowerCamelCase_ : Optional[Any] = n lowerCamelCase_ : Dict = [None] * self.n lowerCamelCase_ : int = 0 # index of the first element lowerCamelCase_ : str = 0 lowerCamelCase_ : Optional[Any] = 0 def __len__( self : List[str] ) ->int: return self.size def _lowerCAmelCase ( self : str ) ->bool: return self.size == 0 def _lowerCAmelCase ( self : str ) ->Any: return False if self.is_empty() else self.array[self.front] def _lowerCAmelCase ( self : Union[str, Any] , __a : int ) ->List[Any]: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) lowerCamelCase_ : Tuple = data lowerCamelCase_ : Tuple = (self.rear + 1) % self.n self.size += 1 return self def _lowerCAmelCase ( self : Tuple ) ->int: if self.size == 0: raise Exception("""UNDERFLOW""" ) lowerCamelCase_ : str = self.array[self.front] lowerCamelCase_ : str = None lowerCamelCase_ : Optional[Any] = (self.front + 1) % self.n self.size -= 1 return temp
278
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = 1.5 snake_case_ = int(factor * num_class_images ) snake_case_ = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_A , aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images" , exist_ok=_A ) if len(list(Path(f"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: snake_case_ = client.query(text=_A ) if len(_A ) >= factor * num_class_images or num_images > 1E4: break else: snake_case_ = int(factor * num_images ) snake_case_ = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_A , aesthetic_weight=0.1 , ) snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(desc="downloading real regularization images" , total=_A ) with open(f"{class_data_dir}/caption.txt" , "w" ) as fa, open(f"{class_data_dir}/urls.txt" , "w" ) as fa, open( f"{class_data_dir}/images.txt" , "w" ) as fa: while total < num_class_images: snake_case_ = class_images[count] count += 1 try: snake_case_ = requests.get(images["url"] ) if img.status_code == 200: snake_case_ = Image.open(BytesIO(img.content ) ) with open(f"{class_data_dir}/images/{total}.jpg" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f"{class_data_dir}/images/{total}.jpg" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser("" , add_help=_A ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=_A , type=_A ) parser.add_argument("--class_data_dir" , help="path to save images" , required=_A , type=_A ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=_A ) return parser.parse_args() if __name__ == "__main__": lowercase__ : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
139
from __future__ import annotations def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = len(_A ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(_A )] for _ in range(_A )] snake_case_ = run_maze(_A , 0 , 0 , _A ) if solved: print("\n".join(str(_A ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = len(_A ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(_A , i + 1 , _A , _A ) or run_maze(_A , _A , j + 1 , _A ) or run_maze(_A , i - 1 , _A , _A ) or run_maze(_A , _A , j - 1 , _A ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
139
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef A__ : Tuple = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict ) -> Union[str, Any]: warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , "sklearn" ) return (preds == labels).mean() def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) -> List[Any]: warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , "sklearn" ) lowerCamelCase_ : List[str] =simple_accuracy(lowercase_ , lowercase_ ) lowerCamelCase_ : Dict =fa_score(y_true=lowercase_ , y_pred=lowercase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) -> Optional[int]: warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , "sklearn" ) lowerCamelCase_ : Union[str, Any] =pearsonr(lowercase_ , lowercase_ )[0] lowerCamelCase_ : Dict =spearmanr(lowercase_ , lowercase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str ) -> Any: warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , "sklearn" ) assert len(lowercase_ ) == len(lowercase_ ), F"""Predictions and labels have mismatched lengths {len(lowercase_ )} and {len(lowercase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase_ , lowercase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "mrpc": return acc_and_fa(lowercase_ , lowercase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowercase_ , lowercase_ ) elif task_name == "qqp": return acc_and_fa(lowercase_ , lowercase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} else: raise KeyError(lowercase_ ) def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) -> Optional[Any]: warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , "sklearn" ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowercase_ )} and {len(lowercase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} else: raise KeyError(lowercase_ )
153
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] ): # noqa: E741 while r - l > 1: lowercase = (l + r) // 2 if v[m] >= key: lowercase = m else: lowercase = m # noqa: E741 return r def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] ): if len(lowercase_ ) == 0: return 0 lowercase = [0] * len(lowercase_ ) lowercase = 1 lowercase = v[0] for i in range(1 , len(lowercase_ ) ): if v[i] < tail[0]: lowercase = v[i] elif v[i] > tail[length - 1]: lowercase = v[i] length += 1 else: lowercase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
588
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCAmelCase_ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""")) _SCREAMING_SNAKE_CASE : Any = self.transformer_dir shutil.copy( os.path.join(_A , """src/transformers/models/bert/modeling_bert.py""") , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""") , ) def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir) def _lowerCAmelCase ( self : int , _A : int , _A : Optional[int] , _A : Any , _A : Tuple=None): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _SCREAMING_SNAKE_CASE : Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _SCREAMING_SNAKE_CASE : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(_A , mode=_A) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""") with open(_A , """w""" , newline="""\n""") as f: f.write(_A) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=_A) with open(_A , """r""") as f: self.assertTrue(f.read() , _A) def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : int = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""") self.assertEqual(_A , _A) def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _A , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _A) , ) # Copy consistency with a really long name _SCREAMING_SNAKE_CASE : Optional[Any] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("""Bert""" , _A , _A) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _A , overwrite_result=re.sub("""Bert""" , """TestModel""" , _A) , ) def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _SCREAMING_SNAKE_CASE : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _SCREAMING_SNAKE_CASE : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = check_copies.convert_to_localized_md( _A , _A , localized_readme["""format_model_list"""]) self.assertFalse(_A) self.assertEqual(_A , _A) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = check_copies.convert_to_localized_md( _A , _A , localized_readme["""format_model_list"""]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_A) _SCREAMING_SNAKE_CASE : int = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = check_copies.convert_to_localized_md( _A , _A , localized_readme["""format_model_list"""]) # Check if the model link is synchronized. self.assertEqual(_A , _A)
635
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _snake_case ( __snake_case ): """simple docstring""" a = "M-CLIP" def __init__( self : Optional[Any] , _A : List[str]=1_0_2_4 , _A : Union[str, Any]=7_6_8 , **_A : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = transformerDimSize _SCREAMING_SNAKE_CASE : List[str] = imageDimSize super().__init__(**_A) class _snake_case ( __snake_case ): """simple docstring""" a = MCLIPConfig def __init__( self : Dict , _A : Optional[Any] , *_A : Any , **_A : Dict): """simple docstring""" super().__init__(_A , *_A , **_A) _SCREAMING_SNAKE_CASE : Tuple = XLMRobertaModel(_A) _SCREAMING_SNAKE_CASE : List[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def _lowerCAmelCase ( self : Union[str, Any] , _A : str , _A : int): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.transformer(input_ids=_A , attention_mask=_A)[0] _SCREAMING_SNAKE_CASE : Optional[Any] = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(_A), embs
635
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """dpr""" def __init__( self :Any , lowerCamelCase_ :str=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Tuple=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :str=0.0_2 , lowerCamelCase_ :Union[str, Any]=1E-12 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :int = 0 , **lowerCamelCase_ :Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = projection_dim SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type
698
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
1
def UpperCamelCase_( lowerCamelCase_ ) -> list: _lowercase : Any = len(lowerCamelCase_ ) for i in range(1 , lowerCamelCase_ ): _lowercase : Tuple = collection[i] _lowercase : str = 0 _lowercase : Optional[int] = i - 1 while low <= high: _lowercase : int = (low + high) // 2 if val < collection[mid]: _lowercase : Union[str, Any] = mid - 1 else: _lowercase : Tuple = mid + 1 for j in range(lowerCamelCase_ , lowerCamelCase_ , -1 ): _lowercase : str = collection[j - 1] _lowercase : Union[str, Any] = val return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : Optional[Any] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
354
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : List[Any] = (DPMSolverSinglestepScheduler,) lowercase_ : List[str] = (("""num_inference_steps""", 25),) def UpperCamelCase ( self, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf'), 'variance_type': None, } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Union[str, Any] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Optional[int] = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample _lowercase : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[Any] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase , _lowercase : List[Any] = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1): _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : int = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = dict(self.forward_default_kwargs) _lowercase : List[str] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : List[str] = self.dummy_sample _lowercase : str = 0.1 * sample _lowercase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : List[Any] = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[Any] = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, lowerCamelCase=None, **lowerCamelCase) -> Optional[Any]: """simple docstring""" if scheduler is None: _lowercase : str = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Optional[int] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : Optional[int] = 50 _lowercase : Union[str, Any] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): _lowercase : Optional[Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : int = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_5_7_4) < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : List[str] = self.full_loop(scheduler=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 _lowercase : str = DEISMultistepScheduler.from_config(scheduler.config) _lowercase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowercase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config) _lowercase : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowercase : Any = self.full_loop(scheduler=lowerCamelCase) _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='dpmsolver++', solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) _lowercase : Optional[Any] = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase).any(), "Samples have nan numbers" def UpperCamelCase ( self) -> str: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase) self.check_over_configs(lower_order_final=lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase) self.check_over_configs(variance_type='learned_range') def UpperCamelCase ( self) -> Dict: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.full_loop() _lowercase : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(use_karras_sigmas=lowerCamelCase) _lowercase : List[str] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_2_4_8) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction') _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.1_4_5_3) < 1E-3 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.0_6_4_9) < 1E-3 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0) _lowercase : Any = scheduler_class(**lowerCamelCase) _lowercase : str = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Tuple = model(lowerCamelCase, lowerCamelCase) _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample assert sample.dtype == torch.floataa
354
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __a = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __a = 128_022 __a = 128_028 @require_sentencepiece class __a( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = MaMaaaTokenizer lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True def a__ ( self ) -> Optional[Any]: super().setUp() UpperCAmelCase_ : Tuple = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCAmelCase_ : Optional[int] = dict(zip(a__ ,range(len(a__ ) ) ) ) UpperCAmelCase_ : List[str] = Path(self.tmpdirname ) save_json(a__ ,save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a__ ,save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) UpperCAmelCase_ : Dict = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**a__ ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: return ( "This is a test", "This is a test", ) def a__ ( self ) -> str: UpperCAmelCase_ : Optional[Any] = """</s>""" UpperCAmelCase_ : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) ,a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) ,a__ ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<s>''' ) self.assertEqual(len(a__ ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def a__ ( self ) -> Union[str, Any]: pass def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) ,[2, 3, 4, 5, 6] ,) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(a__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_string(a__ ) self.assertEqual(a__ ,'''This is a test''' ) @slow def a__ ( self ) -> int: # fmt: off UpperCAmelCase_ : Any = {"""input_ids""": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ ,model_name='''facebook/m2m100_418M''' ,revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' ,) @require_torch @require_sentencepiece @require_tokenizers class __a( unittest.TestCase ): """simple docstring""" lowerCAmelCase = "facebook/m2m100_418M" lowerCAmelCase = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] lowerCAmelCase = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off lowerCAmelCase = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def a__ ( cls ) -> Tuple: UpperCAmelCase_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en''' ,tgt_lang='''fr''' ) UpperCAmelCase_ : str = 1 return cls def a__ ( self ) -> Optional[Any]: self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) ,128_006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) ,128_022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) ,128_076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) ,128_063 ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.tokenizer.get_vocab() self.assertEqual(len(a__ ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] ,3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) ,a__ ) def a__ ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = """en""" UpperCAmelCase_ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,a__ ) def a__ ( self ) -> Any: self.assertIn(a__ ,self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on UpperCAmelCase_ : Optional[Any] = self.tokenizer.decode(a__ ,skip_special_tokens=a__ ) UpperCAmelCase_ : List[Any] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=a__ ) self.assertEqual(a__ ,a__ ) self.assertNotIn(self.tokenizer.eos_token ,a__ ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : Tuple = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(a__ ) UpperCAmelCase_ : List[Any] = MaMaaaTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.lang_token_to_id ,a__ ) @require_torch def a__ ( self ) -> Any: UpperCAmelCase_ : List[str] = """en""" UpperCAmelCase_ : str = """fr""" UpperCAmelCase_ : str = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=a__ ,return_tensors='''pt''' ) UpperCAmelCase_ : List[str] = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: UpperCAmelCase_ : int = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def a__ ( self ) -> Dict: UpperCAmelCase_ : Optional[int] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) UpperCAmelCase_ : Optional[int] = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[str] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) UpperCAmelCase_ : int = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[str] = self.tokenizer._build_translation_inputs('''A test''' ,return_tensors='''pt''' ,src_lang='''en''' ,tgt_lang='''ar''' ) self.assertEqual( nested_simplify(a__ ) ,{ # en_XX, A, test, EOS '''input_ids''': [[128_022, 58, 4_183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128_006, } ,)
30
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = (UniPCMultistepScheduler,) _UpperCamelCase : List[str] = (("num_inference_steps", 25),) def __A ( self , **a__ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**a__ ) return config def __A ( self , a__=0 , **a__ ): _lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) _lowerCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" , a__ ) _lowerCAmelCase : List[str] = self.dummy_sample _lowerCAmelCase : Optional[int] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : int = self.get_scheduler_config(**a__ ) _lowerCAmelCase : Dict = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) _lowerCAmelCase : List[str] = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals _lowerCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = sample, sample for t in range(a__ , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Optional[Any] = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : int = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self , a__=0 , **a__ ): _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Dict = kwargs.pop("""num_inference_steps""" , a__ ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : List[Any] = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() _lowerCAmelCase : Optional[int] = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) _lowerCAmelCase : Tuple = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : int = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : int = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self , a__=None , **a__ ): if scheduler is None: _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**a__ ) _lowerCAmelCase : Optional[int] = scheduler_class(**a__ ) _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config(**a__ ) _lowerCAmelCase : Tuple = scheduler_class(**a__ ) _lowerCAmelCase : Optional[int] = 10 _lowerCAmelCase : Any = self.dummy_model() _lowerCAmelCase : int = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(a__ , a__ ) _lowerCAmelCase : int = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def __A ( self ): _lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" , a__ ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : List[Any] = self.get_scheduler_config() _lowerCAmelCase : Optional[int] = scheduler_class(**a__ ) _lowerCAmelCase : Optional[int] = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , """set_timesteps""" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , """set_timesteps""" ): _lowerCAmelCase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : List[str] = scheduler.timesteps[5] _lowerCAmelCase : Optional[Any] = scheduler.timesteps[6] _lowerCAmelCase : Optional[Any] = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : int = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase : Optional[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : List[Any] = self.full_loop(scheduler=a__ ) _lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 _lowerCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=a__ ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __A ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __A ( self ): self.check_over_configs(thresholding=a__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , solver_order=a__ , solver_type=a__ , ) def __A ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __A ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=a__ , solver_type=a__ , prediction_type=a__ , ) _lowerCAmelCase : Tuple = self.full_loop( solver_order=a__ , solver_type=a__ , prediction_type=a__ , ) assert not torch.isnan(a__ ).any(), "Samples have nan numbers" def __A ( self ): self.check_over_configs(lower_order_final=a__ ) self.check_over_configs(lower_order_final=a__ ) def __A ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=a__ , time_step=0 ) def __A ( self ): _lowerCAmelCase : List[str] = self.full_loop() _lowerCAmelCase : Dict = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __A ( self ): _lowerCAmelCase : Dict = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase : str = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __A ( self ): _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(thresholding=a__ , dynamic_thresholding_ratio=0 ) _lowerCAmelCase : int = scheduler_class(**a__ ) _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.half() scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Optional[Any] = model(a__ , a__ ) _lowerCAmelCase : Tuple = scheduler.step(a__ , a__ , a__ ).prev_sample assert sample.dtype == torch.floataa def __A ( self , **a__ ): for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**a__ ) _lowerCAmelCase : Optional[Any] = scheduler_class(**a__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
213
0
'''simple docstring''' import datasets from .evaluate import evaluate __lowerCamelCase : Optional[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" __lowerCamelCase : Any = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" __lowerCamelCase : Union[str, Any] = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase__ (self : Union[str, Any] ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def UpperCAmelCase__ (self : List[str] , A__ : List[Any] , A__ : List[str] ) -> str: lowercase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowercase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowercase = evaluate(dataset=A__ , predictions=A__ ) return score
713
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = '''vit_mae''' def __init__(self : Dict , A__ : Tuple=7_6_8 , A__ : str=1_2 , A__ : Dict=1_2 , A__ : Optional[Any]=3_0_7_2 , A__ : Union[str, Any]="gelu" , A__ : Optional[int]=0.0 , A__ : str=0.0 , A__ : Optional[Any]=0.0_2 , A__ : Optional[Any]=1e-12 , A__ : Tuple=2_2_4 , A__ : str=1_6 , A__ : Optional[int]=3 , A__ : List[Any]=True , A__ : Dict=1_6 , A__ : Dict=5_1_2 , A__ : Dict=8 , A__ : Union[str, Any]=2_0_4_8 , A__ : str=0.7_5 , A__ : str=False , **A__ : Any , ) -> Union[str, Any]: super().__init__(**A__ ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias lowercase = decoder_num_attention_heads lowercase = decoder_hidden_size lowercase = decoder_num_hidden_layers lowercase = decoder_intermediate_size lowercase = mask_ratio lowercase = norm_pix_loss
459
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case (__lowercase , __lowercase=False ) -> Union[str, Any]: '''simple docstring''' try: _snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case : List[Any] = default else: # KEY is set, convert it to True or False. try: _snake_case : Optional[int] = strtobool(__lowerCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __SCREAMING_SNAKE_CASE : Any = parse_flag_from_env('RUN_SLOW', default=False) __SCREAMING_SNAKE_CASE : Optional[Any] = parse_flag_from_env('RUN_REMOTE', default=False) __SCREAMING_SNAKE_CASE : int = parse_flag_from_env('RUN_LOCAL', default=True) __SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression __SCREAMING_SNAKE_CASE : Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') __SCREAMING_SNAKE_CASE : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') __SCREAMING_SNAKE_CASE : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio __SCREAMING_SNAKE_CASE : Dict = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam __SCREAMING_SNAKE_CASE : Optional[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility __SCREAMING_SNAKE_CASE : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows __SCREAMING_SNAKE_CASE : List[str] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def snake_case (__lowercase ) -> Dict: '''simple docstring''' try: import faiss # noqa except ImportError: _snake_case : Optional[int] = unittest.skip("test requires faiss" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Union[str, Any]: '''simple docstring''' try: import regex # noqa except ImportError: _snake_case : int = unittest.skip("test requires regex" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Optional[Any]: '''simple docstring''' try: import elasticsearch # noqa except ImportError: _snake_case : Tuple = unittest.skip("test requires elasticsearch" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> List[str]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: _snake_case : List[Any] = unittest.skip("test requires sqlalchemy" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> int: '''simple docstring''' if not config.TORCH_AVAILABLE: _snake_case : Optional[Any] = unittest.skip("test requires PyTorch" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' if not config.TF_AVAILABLE: _snake_case : Tuple = unittest.skip("test requires TensorFlow" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Any: '''simple docstring''' if not config.JAX_AVAILABLE: _snake_case : List[str] = unittest.skip("test requires JAX" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Dict: '''simple docstring''' if not config.PIL_AVAILABLE: _snake_case : Union[str, Any] = unittest.skip("test requires Pillow" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> List[str]: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__lowerCamelCase ) else: return test_case def snake_case (__lowercase ) -> Tuple: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__lowerCamelCase ) else: return test_case def snake_case (__lowercase ) -> Any: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__lowerCamelCase ) else: return test_case def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' def _require_spacy_model(__lowercase ): try: import spacy # noqa F401 spacy.load(__lowerCamelCase ) except ImportError: return unittest.skip("test requires spacy" )(__lowerCamelCase ) except OSError: return unittest.skip("test requires spacy model \'{}\'".format(__lowerCamelCase ) )(__lowerCamelCase ) else: return test_case return _require_spacy_model def snake_case (__lowercase ) -> Any: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__lowerCamelCase ) else: return test_case def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__lowerCamelCase ) else: return test_case def snake_case (__lowercase ) -> str: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: _snake_case : Tuple = unittest.skip("test is slow" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Any: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: _snake_case : Union[str, Any] = unittest.skip("test is local" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: _snake_case : Tuple = unittest.skip("test is packaged" )(__lowerCamelCase ) return test_case def snake_case (__lowercase ) -> Tuple: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: _snake_case : Union[str, Any] = unittest.skip("test requires remote" )(__lowerCamelCase ) return test_case def snake_case (*__lowercase ) -> Union[str, Any]: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__lowerCamelCase ) and name.startswith("test" ): for decorator in decorators: _snake_case : Any = decorator(__lowerCamelCase ) setattr(cls , __lowerCamelCase , __lowerCamelCase ) return cls return decorate class lowercase_ ( A_ ): pass class lowercase_ ( A_ ): _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = 2 @contextmanager def snake_case (__lowercase=OfflineSimulationMode.CONNECTION_FAILS , __lowercase=1e-16 ) -> Union[str, Any]: '''simple docstring''' _snake_case : Dict = requests.Session().request def timeout_request(__lowercase , __lowercase , __lowercase , **__lowercase ): # Change the url to an invalid url so that the connection hangs _snake_case : Optional[int] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _snake_case : Any = timeout try: return online_request(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _snake_case : Tuple = url _snake_case : Dict = e.args[0] _snake_case : Union[str, Any] = (max_retry_error.args[0].replace("10.255.255.1" , F"""OfflineMock[{url}]""" ),) _snake_case : List[str] = (max_retry_error,) raise def raise_connection_error(__lowercase , __lowercase , **__lowercase ): raise requests.ConnectionError("Offline mode is enabled." , request=__lowerCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , __lowerCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , __lowerCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def snake_case (*__lowercase , **__lowercase ) -> str: '''simple docstring''' _snake_case : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCamelCase , **__lowerCamelCase ) as tmp_dir: try: os.chdir(__lowerCamelCase ) yield finally: os.chdir(__lowerCamelCase ) @contextmanager def snake_case () -> int: '''simple docstring''' import gc gc.collect() _snake_case : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case () -> int: '''simple docstring''' import gc gc.collect() _snake_case : Dict = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case (__lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' return deepcopy(__lowerCamelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__lowerCamelCase ).integers(0 , 100 , 10 ).tolist() def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__lowercase , *__lowercase , **__lowercase ): try: return func(*__lowerCamelCase , **__lowerCamelCase ) except HTTPError as err: if str(__lowerCamelCase ).startswith("500" ) or str(__lowerCamelCase ).startswith("502" ): pytest.xfail(str(__lowerCamelCase ) ) raise err return decorator.decorator(_wrapper , __lowerCamelCase ) class lowercase_ : def __init__( self , lowercase_ , lowercase_ , lowercase_ ): _snake_case : str = returncode _snake_case : List[str] = stdout _snake_case : List[str] = stderr async def snake_case (__lowercase , __lowercase ) -> Any: '''simple docstring''' while True: _snake_case : Union[str, Any] = await stream.readline() if line: callback(__lowerCamelCase ) else: break async def snake_case (__lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False , __lowercase=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: " , " ".join(__lowerCamelCase ) ) _snake_case : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case : Any = [] _snake_case : Union[str, Any] = [] def tee(__lowercase , __lowercase , __lowercase , __lowercase="" ): _snake_case : str = line.decode("utf-8" ).rstrip() sink.append(__lowerCamelCase ) if not quiet: print(__lowerCamelCase , __lowerCamelCase , file=__lowerCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowercase : tee(__lowerCamelCase , __lowerCamelCase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda __lowercase : tee(__lowerCamelCase , __lowerCamelCase , sys.stderr , label="stderr:" ) ), ] , timeout=__lowerCamelCase , ) return _RunOutput(await p.wait() , __lowerCamelCase , __lowerCamelCase ) def snake_case (__lowercase , __lowercase=None , __lowercase=None , __lowercase=180 , __lowercase=False , __lowercase=True ) -> _RunOutput: '''simple docstring''' _snake_case : Dict = asyncio.get_event_loop() _snake_case : List[Any] = loop.run_until_complete( _stream_subprocess(__lowerCamelCase , env=__lowerCamelCase , stdin=__lowerCamelCase , timeout=__lowerCamelCase , quiet=__lowerCamelCase , echo=__lowerCamelCase ) ) _snake_case : str = " ".join(__lowerCamelCase ) if result.returncode > 0: _snake_case : str = "\n".join(result.stderr ) raise RuntimeError( F"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""\'{cmd_str}\' produced no output.""" ) return result def snake_case () -> Optional[int]: '''simple docstring''' _snake_case : Dict = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) _snake_case : Optional[Any] = re.sub(r"^gw" , "" , __lowerCamelCase , 0 , re.M ) return int(__lowerCamelCase ) def snake_case () -> Union[str, Any]: '''simple docstring''' _snake_case : List[Any] = 29_500 _snake_case : int = pytest_xdist_worker_id() return port + uniq_delta
670
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase__ ( A_ ): __a = """switch_transformers""" __a = ["""past_key_values"""] __a = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[Any] , _lowerCamelCase : Any=32128 , _lowerCamelCase : List[Any]=768 , _lowerCamelCase : Any=64 , _lowerCamelCase : Dict=2048 , _lowerCamelCase : int=64 , _lowerCamelCase : Dict=12 , _lowerCamelCase : str=3 , _lowerCamelCase : Union[str, Any]=12 , _lowerCamelCase : Tuple=3 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : List[str]=8 , _lowerCamelCase : int=False , _lowerCamelCase : Union[str, Any]=0.0_1 , _lowerCamelCase : Any="float32" , _lowerCamelCase : str=False , _lowerCamelCase : Optional[int]=32 , _lowerCamelCase : Any=128 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : Any=1e-6 , _lowerCamelCase : Union[str, Any]=0.0_0_1 , _lowerCamelCase : Tuple=0.0_0_1 , _lowerCamelCase : Dict=1.0 , _lowerCamelCase : int="relu" , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=True , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : List[Any]=1 , **_lowerCamelCase : Optional[Any] , ): _snake_case = vocab_size _snake_case = d_model _snake_case = d_kv _snake_case = d_ff _snake_case = num_sparse_encoder_layers _snake_case = num_layers _snake_case = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _snake_case = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _snake_case = self.num_layers // self.num_sparse_encoder_layers else: _snake_case = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _snake_case = self.num_decoder_layers // self.num_sparse_decoder_layers else: _snake_case = self.num_decoder_layers # HACK: this will create 0 sparse layers _snake_case = num_heads _snake_case = num_experts _snake_case = expert_capacity _snake_case = router_bias _snake_case = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _snake_case = router_dtype _snake_case = router_ignore_padding_tokens _snake_case = relative_attention_num_buckets _snake_case = relative_attention_max_distance _snake_case = dropout_rate _snake_case = layer_norm_epsilon _snake_case = initializer_factor _snake_case = feed_forward_proj _snake_case = use_cache _snake_case = add_router_probs _snake_case = router_z_loss_coef _snake_case = router_aux_loss_coef _snake_case = self.feed_forward_proj.split('''-''' ) _snake_case = act_info[-1] _snake_case = act_info[0] == '''gated''' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _snake_case = '''gelu_new''' super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase , )
224
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCamelCase__ = "scheduler_config.json" class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[int] = 1 snake_case : List[Any] = 2 snake_case : Any = 3 snake_case : List[str] = 4 snake_case : Dict = 5 snake_case : int = 6 snake_case : Optional[int] = 7 snake_case : Tuple = 8 snake_case : List[str] = 9 snake_case : Union[str, Any] = 10 snake_case : Tuple = 11 snake_case : Tuple = 12 snake_case : Optional[int] = 13 snake_case : Optional[int] = 14 @dataclass class __SCREAMING_SNAKE_CASE ( _a ): snake_case : torch.FloatTensor class __SCREAMING_SNAKE_CASE : snake_case : Optional[Any] = SCHEDULER_CONFIG_NAME snake_case : Any = [] snake_case : List[str] = True @classmethod def _lowerCamelCase ( cls , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , **__lowerCAmelCase , ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = cls.load_config( pretrained_model_name_or_path=__lowerCAmelCase , subfolder=__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , return_commit_hash=__lowerCAmelCase , **__lowerCAmelCase , ) return cls.from_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): self.save_config(save_directory=__lowerCAmelCase , push_to_hub=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCamelCase ( self ): return self._get_compatibles() @classmethod def _lowerCamelCase ( cls ): UpperCamelCase__ = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase__ = importlib.import_module(__name__.split(""".""" )[0] ) UpperCamelCase__ = [ getattr(__lowerCAmelCase , __lowerCAmelCase ) for c in compatible_classes_str if hasattr(__lowerCAmelCase , __lowerCAmelCase ) ] return compatible_classes
548
def _UpperCamelCase (a__ :int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 while repunit: UpperCamelCase__ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _UpperCamelCase (a__ :int = 100_0000 ): """simple docstring""" UpperCamelCase__ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
548
1
"""simple docstring""" def snake_case_ ( A_ : dict ): '''simple docstring''' _lowerCamelCase : int = set() # edges = list of graph's edges _lowerCamelCase : Optional[int] = get_edges(A_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCamelCase , _lowerCamelCase : Dict = edges.pop() chosen_vertices.add(A_ ) chosen_vertices.add(A_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(A_ ) return chosen_vertices def snake_case_ ( A_ : dict ): '''simple docstring''' _lowerCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
83
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class snake_case (nn.Module ): def __init__( self ,UpperCAmelCase_ ) -> Dict: super().__init__() lowercase__ = torchvision.models.resnetaaa(pretrained=UpperCAmelCase_ ) lowercase__ = list(model.children() )[:-2] lowercase__ = nn.Sequential(*UpperCAmelCase_ ) lowercase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self ,UpperCAmelCase_ ) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowercase__ = self.pool(self.model(UpperCAmelCase_ ) ) lowercase__ = torch.flatten(UpperCAmelCase_ ,start_dim=2 ) lowercase__ = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = [json.loads(UpperCAmelCase_ ) for l in open(UpperCAmelCase_ )] lowercase__ = os.path.dirname(UpperCAmelCase_ ) lowercase__ = tokenizer lowercase__ = labels lowercase__ = len(UpperCAmelCase_ ) lowercase__ = max_seq_length lowercase__ = transforms def __len__( self ) -> Optional[Any]: return len(self.data ) def __getitem__( self ,UpperCAmelCase_ ) -> Optional[int]: lowercase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] ,add_special_tokens=UpperCAmelCase_ ) ) lowercase__ , lowercase__ , lowercase__ = sentence[0], sentence[1:-1], sentence[-1] lowercase__ = sentence[: self.max_seq_length] lowercase__ = torch.zeros(self.n_classes ) lowercase__ = 1 lowercase__ = Image.open(os.path.join(self.data_dir ,self.data[index]["img"] ) ).convert("RGB" ) lowercase__ = self.transforms(UpperCAmelCase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self ) -> str: lowercase__ = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def lowerCamelCase ( _snake_case : Optional[int] ): '''simple docstring''' lowercase__ = [len(row["sentence"] ) for row in batch] lowercase__ , lowercase__ = len(_snake_case ), max(_snake_case ) lowercase__ = torch.zeros(_snake_case ,_snake_case ,dtype=torch.long ) lowercase__ = torch.zeros(_snake_case ,_snake_case ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_snake_case ,_snake_case ) ): lowercase__ = input_row["sentence"] lowercase__ = 1 lowercase__ = torch.stack([row["image"] for row in batch] ) lowercase__ = torch.stack([row["label"] for row in batch] ) lowercase__ = torch.stack([row["image_start_token"] for row in batch] ) lowercase__ = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] ,std=[0.12_221_994, 0.12_145_835, 0.14_380_469] ,), ] )
267
0
"""simple docstring""" import numpy as np import datasets __a : Any = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a : List[Any] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a : Union[str, Any] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def lowercase ( self: List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def lowercase ( self: Optional[int] , __A: int , __A: List[str] ): '''simple docstring''' a__ = np.array(__A ) a__ = np.array(__A ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction a__ = X - np.mean(__A ) a__ = np.cov(reference_distribution.T ) try: a__ = np.linalg.inv(__A ) except np.linalg.LinAlgError: a__ = np.linalg.pinv(__A ) a__ = np.dot(__A , __A ) a__ = np.dot(__A , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
702
"""simple docstring""" class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Any ): '''simple docstring''' a__ = {} def lowercase ( self: Optional[int] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(__A , ''' -> ''' , ''' -> '''.join([str(__A ) for j in self.vertex[i]] ) ) def lowercase ( self: Union[str, Any] , __A: int , __A: int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(__A ) else: # else make a new vertex a__ = [to_vertex] def lowercase ( self: Dict ): '''simple docstring''' a__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__A , __A ) def lowercase ( self: Optional[int] , __A: int , __A: list ): '''simple docstring''' a__ = True print(__A , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__A , __A ) if __name__ == "__main__": __a : Any = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
200
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : Optional[Any] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
from decimal import Decimal, getcontext from math import ceil, factorial def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) __lowerCAmelCase = precision __lowerCAmelCase = ceil(precision / 1_4 ) __lowerCAmelCase = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() __lowerCAmelCase = 1 __lowerCAmelCase = 1_3_5_9_1_4_0_9 __lowerCAmelCase = Decimal(UpperCamelCase ) for k in range(1 , UpperCamelCase ): __lowerCAmelCase = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCamelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase_ = 5_0 print(f'''The first {n} digits of pi is: {pi(n)}''')
611
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Any = """xlm-prophetnet""" _A : Union[str, Any] = ["""past_key_values"""] _A : Optional[int] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__(self , lowercase__ = 0.1 , lowercase__ = "gelu" , lowercase__ = 3_05_22 , lowercase__ = 10_24 , lowercase__ = 40_96 , lowercase__ = 12 , lowercase__ = 16 , lowercase__ = 40_96 , lowercase__ = 12 , lowercase__ = 16 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 5_12 , lowercase__ = 0.02 , lowercase__ = True , lowercase__ = True , lowercase__ = 0 , lowercase__ = 2 , lowercase__ = 32 , lowercase__ = 1_28 , lowercase__ = False , lowercase__ = 0.0 , lowercase__ = True , lowercase__ = 0 , lowercase__ = 1 , lowercase__ = 2 , **lowercase__ , ): snake_case_ : Dict = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : Tuple = encoder_ffn_dim snake_case_ : Optional[Any] = num_encoder_layers snake_case_ : Dict = num_encoder_attention_heads snake_case_ : Dict = decoder_ffn_dim snake_case_ : Union[str, Any] = num_decoder_layers snake_case_ : Tuple = num_decoder_attention_heads snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = init_std # Normal(0, this parameter) snake_case_ : Optional[Any] = activation_function # parameters for xlmprophetnet snake_case_ : Dict = ngram snake_case_ : List[Any] = num_buckets snake_case_ : Union[str, Any] = relative_max_distance snake_case_ : Optional[int] = disable_ngram_loss snake_case_ : Optional[int] = eps # 3 Types of Dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Optional[int] = activation_dropout snake_case_ : Any = dropout snake_case_ : Tuple = use_cache super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , add_cross_attention=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) @property def __UpperCamelCase (self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __UpperCamelCase (self , lowercase__ ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase : Dict = logging.getLogger(__name__) @dataclass(frozen=_lowerCamelCase ) class __UpperCAmelCase : __lowercase = 42 __lowercase = 42 __lowercase = None __lowercase = None __lowercase = None @dataclass(frozen=_lowerCamelCase ) class __UpperCAmelCase : __lowercase = 42 __lowercase = None __lowercase = None __lowercase = None __lowercase = None if is_torch_available(): import torch from torch.utils.data import Dataset class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_ = False , ): """simple docstring""" _snake_case = hans_processors[task]() _snake_case = os.path.join( lowerCAmelCase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowerCAmelCase_ ) , lowerCAmelCase_ , ) , ) _snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _snake_case , _snake_case = label_list[2], label_list[1] _snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case = cached_features_file + '.lock' with FileLock(lowerCAmelCase_ ): if os.path.exists(lowerCAmelCase_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) _snake_case = torch.load(lowerCAmelCase_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) _snake_case = ( processor.get_dev_examples(lowerCAmelCase_ ) if evaluate else processor.get_train_examples(lowerCAmelCase_ ) ) logger.info('Training examples: %s' , len(lowerCAmelCase_ ) ) _snake_case = hans_convert_examples_to_features(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('Saving features into cached file %s' , lowerCAmelCase_ ) torch.save(self.features , lowerCAmelCase_ ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , lowerCAmelCase_ ): """simple docstring""" return self.features[i] def lowerCamelCase ( self ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class __UpperCAmelCase : __lowercase = 42 def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1_28 , lowerCAmelCase_=False , lowerCAmelCase_ = False , ): """simple docstring""" _snake_case = hans_processors[task]() _snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _snake_case , _snake_case = label_list[2], label_list[1] _snake_case = label_list _snake_case = processor.get_dev_examples(lowerCAmelCase_ ) if evaluate else processor.get_train_examples(lowerCAmelCase_ ) _snake_case = hans_convert_examples_to_features(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowerCAmelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _snake_case = tf.data.Dataset.from_generator( lowerCAmelCase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCamelCase ( self ): """simple docstring""" return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , lowerCAmelCase_ ): """simple docstring""" return self.features[i] def lowerCamelCase ( self ): """simple docstring""" return self.label_list class __UpperCAmelCase ( _lowerCamelCase ): def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def lowerCamelCase ( self ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = [] for i, line in enumerate(lowerCAmelCase_ ): if i == 0: continue _snake_case = '%s-%s' % (set_type, line[0]) _snake_case = line[5] _snake_case = line[6] _snake_case = line[7][2:] if line[7].startswith('ex' ) else line[7] _snake_case = line[0] examples.append(InputExample(guid=lowerCAmelCase_ , text_a=lowerCAmelCase_ , text_b=lowerCAmelCase_ , label=lowerCAmelCase_ , pairID=lowerCAmelCase_ ) ) return examples def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , ) -> int: _snake_case = {label: i for i, label in enumerate(__A )} _snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(__A ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d' % (ex_index) ) _snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=__A , max_length=__A , padding='max_length' , truncation=__A , return_overflowing_tokens=__A , ) _snake_case = label_map[example.label] if example.label in label_map else 0 _snake_case = int(example.pairID ) features.append(InputFeatures(**__A , label=__A , pairID=__A ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features lowercase : Optional[int] = { "hans": 3, } lowercase : Any = { "hans": HansProcessor, }
495
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowercase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A=None , __A=None ) -> int: return field(default_factory=lambda: default , metadata=__A ) @dataclass class __UpperCAmelCase : __lowercase = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) __lowercase = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __lowercase = list_field( default=[8, 32, 1_28, 5_12] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Benchmark training of model"""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Verbose memory tracing"""} ) __lowercase = field( default=_lowerCamelCase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Trace memory line by line"""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Save result to a CSV file"""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Save all print statements in a log file"""} ) __lowercase = field(default=_lowerCamelCase , metadata={"""help""": """Whether to print environment information"""} ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) __lowercase = field( default=f"inference_time_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) __lowercase = field( default=f"inference_memory_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) __lowercase = field( default=f"train_time_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) __lowercase = field( default=f"train_memory_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) __lowercase = field( default=f"env_info_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) __lowercase = field( default=f"log_{round(time() )}.csv" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) __lowercase = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) __lowercase = field( default=_lowerCamelCase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def lowerCamelCase ( self ): """simple docstring""" warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , lowerCAmelCase_ , ) def lowerCamelCase ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCamelCase ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def lowerCamelCase ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
495
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase : Tuple ={ """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] =["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any =[ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase : List[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' A_ : Any = AutoencoderKL A_ : List[Any] = 'sample' A_ : Optional[Any] = 1e-2 @property def _A ( self ): '''simple docstring''' a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase ) return {"sample": image} @property def _A ( self ): '''simple docstring''' return (3, 32, 32) @property def _A ( self ): '''simple docstring''' return (3, 32, 32) def _A ( self ): '''simple docstring''' a__ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } a__ = self.dummy_input return init_dict, inputs_dict def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def _A ( self ): '''simple docstring''' a__ , a__ = self.prepare_init_args_and_inputs_for_common() a__ = self.model_class(**lowerCamelCase ) model.to(lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training a__ = model(**lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() a__ = torch.randn_like(lowerCamelCase ) a__ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing a__ = self.model_class(**lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training a__ = model_a(**lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() a__ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) a__ = dict(model.named_parameters() ) a__ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def _A ( self ): '''simple docstring''' a__ , a__ = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCamelCase ) a__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _A ( self ): '''simple docstring''' a__ = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) a__ = model.to(lowerCamelCase ) model.eval() if torch_device == "mps": a__ = torch.manual_seed(0 ) else: a__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) a__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ = image.to(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase , sample_posterior=lowerCamelCase , generator=lowerCamelCase ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": a__ = torch.tensor( [ -4.00_78e-01, -3.83_23e-04, -1.26_81e-01, -1.14_62e-01, 2.00_95e-01, 1.08_93e-01, -8.82_47e-02, -3.03_61e-01, -9.86_44e-03, ] ) elif torch_device == "cpu": a__ = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: a__ = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase , lowerCamelCase , rtol=1e-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return f'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase ) for s in shape] )}.npy' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self , lowerCamelCase=0 , lowerCamelCase=(4, 3, 512, 512) , lowerCamelCase=False ): '''simple docstring''' a__ = torch.floataa if fpaa else torch.floataa a__ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) ).to(lowerCamelCase ).to(lowerCamelCase ) return image def _A ( self , lowerCamelCase="CompVis/stable-diffusion-v1-4" , lowerCamelCase=False ): '''simple docstring''' a__ = """fp16""" if fpaa else None a__ = torch.floataa if fpaa else torch.floataa a__ = AutoencoderKL.from_pretrained( lowerCamelCase , subfolder="""vae""" , torch_dtype=lowerCamelCase , revision=lowerCamelCase , ) model.to(lowerCamelCase ).eval() return model def _A ( self , lowerCamelCase=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCamelCase ) return torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase ) a__ = self.get_generator(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample assert sample.shape == image.shape a__ = sample[-1, -2:, -2:, :2].flatten().float().cpu() a__ = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model(fpaa=lowerCamelCase ) a__ = self.get_sd_image(lowerCamelCase , fpaa=lowerCamelCase ) a__ = self.get_generator(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample assert sample.shape == image.shape a__ = sample[-1, -2:, :2, -2:].flatten().float().cpu() a__ = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase ).sample assert sample.shape == image.shape a__ = sample[-1, -2:, -2:, :2].flatten().float().cpu() a__ = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] a__ = sample[-1, -2:, :2, -2:].flatten().cpu() a__ = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model(fpaa=lowerCamelCase ) a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] a__ = sample[-1, -2:, :2, -2:].flatten().float().cpu() a__ = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model(fpaa=lowerCamelCase ) a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase ) a__ = self.get_generator(lowerCamelCase ) with torch.no_grad(): a__ = model.encode(lowerCamelCase ).latent_dist a__ = dist.sample(generator=lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] a__ = sample[0, -1, -3:, -3:].flatten().cpu() a__ = torch.tensor(lowerCamelCase ) a__ = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=lowerCamelCase )
412
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ["input_values", "attention_mask"] def __init__( self : Union[str, Any] , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1_6_0_0_0 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : bool = False , _UpperCamelCase : int = 8_0 , _UpperCamelCase : int = 1_6 , _UpperCamelCase : int = 6_4 , _UpperCamelCase : str = "hann_window" , _UpperCamelCase : float = 1.0 , _UpperCamelCase : float = 8_0 , _UpperCamelCase : float = 7_6_0_0 , _UpperCamelCase : float = 1e-10 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , **_UpperCamelCase : Dict , ) ->Any: super().__init__(feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = do_normalize snake_case_ = return_attention_mask snake_case_ = num_mel_bins snake_case_ = hop_length snake_case_ = win_length snake_case_ = win_function snake_case_ = frame_signal_scale snake_case_ = fmin snake_case_ = fmax snake_case_ = mel_floor snake_case_ = reduction_factor snake_case_ = win_length * sampling_rate // 1_0_0_0 snake_case_ = hop_length * sampling_rate // 1_0_0_0 snake_case_ = optimal_fft_length(self.sample_size ) snake_case_ = (self.n_fft // 2) + 1 snake_case_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCamelCase ) snake_case_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _UpperCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _UpperCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case__( _UpperCamelCase : List[np.ndarray] , _UpperCamelCase : List[np.ndarray] , _UpperCamelCase : float = 0.0 ) ->List[np.ndarray]: if attention_mask is not None: snake_case_ = np.array(_UpperCamelCase , np.intaa ) snake_case_ = [] for vector, length in zip(_UpperCamelCase , attention_mask.sum(-1 ) ): snake_case_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: snake_case_ = padding_value normed_input_values.append(_UpperCamelCase ) else: snake_case_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def snake_case__( self : str , _UpperCamelCase : np.ndarray , ) ->np.ndarray: snake_case_ = spectrogram( _UpperCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Any , _UpperCamelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCamelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : List[str] , ) ->BatchFeature: if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: snake_case_ = self._process_audio( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) else: snake_case_ = None if audio_target is not None: snake_case_ = self._process_audio( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) if inputs is None: return inputs_target else: snake_case_ = inputs_target['''input_values'''] snake_case_ = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: snake_case_ = decoder_attention_mask return inputs def snake_case__( self : Optional[int] , _UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCamelCase : bool = False , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : int , ) ->BatchFeature: snake_case_ = isinstance(_UpperCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): snake_case_ = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): snake_case_ = speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [speech] # needed to make pad() work on spectrogram inputs snake_case_ = self.feature_size # convert into correct format for padding if is_target: snake_case_ = [self._extract_mel_features(_UpperCamelCase ) for waveform in speech] snake_case_ = BatchFeature({'''input_values''': features} ) snake_case_ = self.num_mel_bins else: snake_case_ = BatchFeature({'''input_values''': speech} ) snake_case_ = self.pad( _UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = feature_size_hack # convert input values to correct format snake_case_ = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): snake_case_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): snake_case_ = input_values.astype(np.floataa ) # convert attention_mask to correct format snake_case_ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: snake_case_ = ( attention_mask if self._get_padding_strategies(_UpperCamelCase , max_length=_UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case_ = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_UpperCamelCase , padding_value=self.padding_value ) if return_tensors is not None: snake_case_ = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs def snake_case__( self : Tuple ) ->Dict[str, Any]: snake_case_ = super().to_dict() # Don't serialize these as they are derived from the other properties. snake_case_ = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
39
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowercase ( A__ ): """simple docstring""" _a = None _a = None _a = None _a = None class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=512 , UpperCamelCase_="cls" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = project_dim UpperCamelCase__ :List[str] = pooler_fn UpperCamelCase__ :Dict = learn_encoder UpperCamelCase__ :Any = use_attention_mask class lowercase ( A__ ): """simple docstring""" _a = [R'pooler', R'logit_scale'] _a = [R'position_ids', R'predictions.decoder.bias'] _a = 'roberta' _a = RobertaSeriesConfig def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = XLMRobertaModel(UpperCamelCase_ ) UpperCamelCase__ :Tuple = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase__ :Union[str, Any] = getattr(UpperCamelCase_ , '''has_pre_transformation''' , UpperCamelCase_ ) if self.has_pre_transformation: UpperCamelCase__ :Any = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase__ :str = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowerCAmelCase__ ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ :str = self.base_model( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCamelCase_ , ) if self.has_pre_transformation: UpperCamelCase__ :Dict = outputs['''hidden_states'''][-2] UpperCamelCase__ :Optional[int] = self.pre_LN(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = self.transformation_pre(UpperCamelCase_ ) return TransformationModelOutput( projection_state=UpperCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCamelCase__ :List[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
189
0
"""simple docstring""" def _A (__a = 50 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
719
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ : int = 10_24 SCREAMING_SNAKE_CASE_ : Dict = 40_96 SCREAMING_SNAKE_CASE_ : Optional[int] = 24 SCREAMING_SNAKE_CASE_ : Any = 16 SCREAMING_SNAKE_CASE_ : int = [5, 11, 17, 23] SCREAMING_SNAKE_CASE_ : List[str] = [2_56, 5_12, 10_24, 10_24] SCREAMING_SNAKE_CASE_ : Optional[int] = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[str] = 7_68 SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 1, 1, 0.5] SCREAMING_SNAKE_CASE_ : Optional[Any] = [2_56, 5_12, 7_68, 7_68] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1_50 SCREAMING_SNAKE_CASE_ : str = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = (1, 3_84, 3_84) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Tuple = '''project''' if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Dict = 7_68 SCREAMING_SNAKE_CASE_ : Tuple = [1, 1, 1, 0.5] SCREAMING_SNAKE_CASE_ : List[str] = 1_50 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 16 SCREAMING_SNAKE_CASE_ : Tuple = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ : List[Any] = '''ade20k-id2label.json''' SCREAMING_SNAKE_CASE_ : List[str] = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type='''dataset''' ) ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ : Dict = {int(__a ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Optional[int] = idalabel SCREAMING_SNAKE_CASE_ : Optional[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Any = [1, 1_50, 4_80, 4_80] return config, expected_shape def _A (__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__a , __a ) def _A (__a ) -> Optional[int]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''proj''' , '''projection''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: SCREAMING_SNAKE_CASE_ : Dict = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE_ : int = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _A (__a , __a ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ : Dict = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ : Optional[Any] = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ : Any = in_proj_bias[-config.hidden_size :] def _A () -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def _A (__a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = get_dpt_config(__a ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") SCREAMING_SNAKE_CASE_ : int = torch.load(__a , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__a ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : List[Any] = state_dict.pop(__a ) SCREAMING_SNAKE_CASE_ : Dict = val # read in qkv matrices read_in_q_k_v(__a , __a ) # load HuggingFace model SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPTForSemanticSegmentation(__a ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__a ) model.load_state_dict(__a ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE_ : Dict = 4_80 if '''ade''' in checkpoint_url else 3_84 SCREAMING_SNAKE_CASE_ : Optional[Any] = DPTImageProcessor(size=__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : Tuple = image_processor(__a , return_tensors='''pt''' ) # forward pass SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**__a ).logits if '''ade''' in checkpoint_url else model(**__a ).predicted_depth if show_prediction: SCREAMING_SNAKE_CASE_ : List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__a , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(__a ).mkdir(exist_ok=__a ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
176
0
'''simple docstring''' def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 2 while i * i <= n: _SCREAMING_SNAKE_CASE = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_00 ) if __name__ == "__main__": print(solution())
591
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: UpperCamelCase__ : List[Any] = None UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ : List[str] = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } UpperCamelCase__ : Dict = { "google/fnet-base": 512, "google/fnet-large": 512, } UpperCamelCase__ : str = "▁" class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'token_type_ids'] SCREAMING_SNAKE_CASE = FNetTokenizer def __init__( self , A__=None , A__=None , A__=False , A__=True , A__=True , A__="<unk>" , A__="[SEP]" , A__="<pad>" , A__="[CLS]" , A__="[MASK]" , **A__ , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) _SCREAMING_SNAKE_CASE = do_lower_case _SCREAMING_SNAKE_CASE = remove_space _SCREAMING_SNAKE_CASE = keep_accents _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self , A__ , A__ = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self , A__ , A__ = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
591
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCAmelCase_ : Union[str, Any] = 0b101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCAmelCase_ : Union[str, Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowercase__ : def __init__( self ): lowerCAmelCase_ : Optional[int] = WATERMARK_BITS lowerCAmelCase_ : Dict = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def UpperCAmelCase__ ( self , _lowercase ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images lowerCAmelCase_ : Any = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase_ : int = [self.encoder.encode(_UpperCAmelCase , """dwtDct""" ) for image in images] lowerCAmelCase_ : Any = torch.from_numpy(np.array(_UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 ) lowerCAmelCase_ : Dict = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : int = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
440
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=lowercase ) lowerCamelCase_ = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(lowercase , 'func' ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
70
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a : List[str] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _a : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) _a : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING _a : Tuple = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def UpperCamelCase__ ( _A: Dict , _A: Optional[int] , _A: Union[str, Any] , _A: str ): '''simple docstring''' __lowerCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): __lowerCamelCase = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , _A , ) is not None ): __lowerCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowerCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowerCamelCase = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] __lowerCamelCase = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed __lowerCamelCase = True if not attribute_used: __lowerCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowerCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowerCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowerCamelCase = True elif attribute.endswith("""_token_id""" ): __lowerCamelCase = True # configuration class specific cases if not case_allowed: __lowerCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __lowerCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase__ ( _A: Dict ): '''simple docstring''' __lowerCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowerCamelCase = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] __lowerCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowerCamelCase = {} if len(config_class.attribute_map ) > 0: __lowerCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowerCamelCase = inspect.getsourcefile(_A ) __lowerCamelCase = os.path.dirname(_A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowerCamelCase = [os.path.join(_A , _A ) for fn in os.listdir(_A ) if fn.startswith("""modeling_""" )] # Get the source code strings __lowerCamelCase = [] for path in modeling_paths: if os.path.isfile(_A ): with open(_A ) as fp: modeling_sources.append(fp.read() ) __lowerCamelCase = [] for config_param, default_value in zip(_A , _A ): # `attributes` here is all the variant names for `config_param` __lowerCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_A , _A , _A , _A ): unused_attributes.append(attributes[0] ) return sorted(_A ) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowerCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _A : inspect.isclass(_A ) and issubclass(_A , _A ) and inspect.getmodule(_A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __lowerCamelCase = check_config_attributes_being_used(_A ) if len(_A ) > 0: __lowerCamelCase = unused_attributes if len(_A ) > 0: __lowerCamelCase = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_A ) if __name__ == "__main__": check_config_attributes()
479
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase__ = get_logger(__name__) def __lowerCamelCase ( __a : Dict , __a : Any , __a : Optional[int] , __a : Dict , __a : str=0 ) -> str: os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowercase =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowercase =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _lowercase =os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__a , __a ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowercase =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__a , __a ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowercase =os.path.join(__a , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__a , exist_ok=__a ) logger.info(f'''Saving model to {ckpt_dir}''' ) _lowercase ={"model": state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def __lowerCamelCase ( __a : Union[str, Any] , __a : Tuple , __a : str , __a : Optional[int] , __a : List[Any]=0 ) -> Optional[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return _lowercase =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _lowercase =os.path.join(__a , __a ) logger.info(f'''Loading model from {input_model_file}''' ) _lowercase =torch.load(__a ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowercase =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Loading model from {input_model_file}''' ) _lowercase =torch.load(__a ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowercase =( os.path.join(__a , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) _lowercase ={"model": model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) _lowercase =state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__a ) def __lowerCamelCase ( __a : Tuple , __a : int , __a : List[Any] , __a : Optional[int] , __a : List[Any] , __a : Any=0 ) -> str: os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowercase =FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowercase =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__a , __a ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: _lowercase =os.path.join(__a , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__a , exist_ok=__a ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def __lowerCamelCase ( __a : str , __a : Any , __a : Any , __a : Any , __a : str , __a : List[Any]=0 ) -> Optional[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowercase =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowercase =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) _lowercase =torch.load(__a ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: _lowercase =( os.path.join(__a , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) _lowercase =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(__a ) , ) _lowercase =optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) _lowercase =FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
594
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 100 ): """simple docstring""" lowerCAmelCase__ : Any = set() lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : List[str] = n + 1 # maximum limit for a in range(2 , UpperCamelCase ): for b in range(2 , UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = a**b # calculates the current power collect_powers.add(UpperCamelCase ) # adds the result to the set return len(UpperCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
565
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 600851475143 ): """simple docstring""" try: lowerCAmelCase__ : Union[str, Any] = int(UpperCamelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : int = 2 while i * i <= n: while n % i == 0: lowerCAmelCase__ : str = i n //= i i += 1 if n > 1: lowerCAmelCase__ : List[str] = n return int(UpperCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
565
1
import string import numpy def lowerCamelCase( a__ ,a__): return b if a == 0 else greatest_common_divisor(b % a ,a__) class A__ : UpperCAmelCase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase = numpy.vectorize(lambda UpperCamelCase__ : x % 36 ) UpperCAmelCase = numpy.vectorize(UpperCamelCase__ ) def __init__( self : int , _a : numpy.ndarray ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =self.modulus(_a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _SCREAMING_SNAKE_CASE =encrypt_key.shape[0] def __UpperCamelCase ( self : Dict , _a : str ) -> int: """simple docstring""" return self.key_string.index(_a ) def __UpperCamelCase ( self : List[str] , _a : int ) -> str: """simple docstring""" return self.key_string[round(_a )] def __UpperCamelCase ( self : int ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _SCREAMING_SNAKE_CASE =det % len(self.key_string ) _SCREAMING_SNAKE_CASE =len(self.key_string ) if greatest_common_divisor(_a , len(self.key_string ) ) != 1: _SCREAMING_SNAKE_CASE =( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(_a ) def __UpperCamelCase ( self : List[str] , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[char for char in text.upper() if char in self.key_string] _SCREAMING_SNAKE_CASE =chars[-1] while len(_a ) % self.break_key != 0: chars.append(_a ) return "".join(_a ) def __UpperCamelCase ( self : List[str] , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.process_text(text.upper() ) _SCREAMING_SNAKE_CASE ='''''' for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _SCREAMING_SNAKE_CASE =text[i : i + self.break_key] _SCREAMING_SNAKE_CASE =[self.replace_letters(_a ) for char in batch] _SCREAMING_SNAKE_CASE =numpy.array([vec] ).T _SCREAMING_SNAKE_CASE =self.modulus(self.encrypt_key.dot(_a ) ).T.tolist()[ 0 ] _SCREAMING_SNAKE_CASE =''''''.join( self.replace_digits(_a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __UpperCamelCase ( self : Union[str, Any] ) -> numpy.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _SCREAMING_SNAKE_CASE =det % len(self.key_string ) _SCREAMING_SNAKE_CASE =None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _SCREAMING_SNAKE_CASE =i break _SCREAMING_SNAKE_CASE =( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_a ) ) def __UpperCamelCase ( self : str , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.make_decrypt_key() _SCREAMING_SNAKE_CASE =self.process_text(text.upper() ) _SCREAMING_SNAKE_CASE ='''''' for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _SCREAMING_SNAKE_CASE =text[i : i + self.break_key] _SCREAMING_SNAKE_CASE =[self.replace_letters(_a ) for char in batch] _SCREAMING_SNAKE_CASE =numpy.array([vec] ).T _SCREAMING_SNAKE_CASE =self.modulus(decrypt_key.dot(_a ) ).T.tolist()[0] _SCREAMING_SNAKE_CASE =''''''.join( self.replace_digits(_a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =int(input('''Enter the order of the encryption key: ''')) _SCREAMING_SNAKE_CASE =[] print('''Enter each row of the encryption key with space separated integers''') for _ in range(a__): _SCREAMING_SNAKE_CASE =[int(a__) for x in input().split()] hill_matrix.append(a__) _SCREAMING_SNAKE_CASE =HillCipher(numpy.array(a__)) print('''Would you like to encrypt or decrypt some text? (1 or 2)''') _SCREAMING_SNAKE_CASE =input('''\n1. Encrypt\n2. Decrypt\n''') if option == "1": _SCREAMING_SNAKE_CASE =input('''What text would you like to encrypt?: ''') print('''Your encrypted text is:''') print(hc.encrypt(a__)) elif option == "2": _SCREAMING_SNAKE_CASE =input('''What text would you like to decrypt?: ''') print('''Your decrypted text is:''') print(hc.decrypt(a__)) if __name__ == "__main__": import doctest doctest.testmod() main()
191
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase( a__ ,a__=() ,a__=None ,a__="no" ,a__="29500"): _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False if any(key.startswith('''KAGGLE''') for key in os.environ.keys()): _SCREAMING_SNAKE_CASE =True elif "IPython" in sys.modules: _SCREAMING_SNAKE_CASE ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython()) try: _SCREAMING_SNAKE_CASE =PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.") if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' ,a__) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''') if num_processes is None: _SCREAMING_SNAKE_CASE =8 _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,distributed_type='''TPU''') print(f"Launching a training on {num_processes} TPU cores.") xmp.spawn(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''') elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''') else: print('''Launching training on one CPU.''') function(*a__) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''') if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''') if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''') # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ ,master_addr='''127.0.01''' ,master_port=a__ ,mixed_precision=a__): _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,distributed_type='''MULTI_GPU''') print(f"Launching training on {num_processes} GPUs.") try: start_processes(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''') except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''') from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _SCREAMING_SNAKE_CASE ='''1''' print('''Launching training on MPS.''') elif torch.cuda.is_available(): print('''Launching training on one GPU.''') else: print('''Launching training on CPU.''') function(*a__) def lowerCamelCase( a__ ,a__=() ,a__=2): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ ,master_addr='''127.0.01''' ,master_port='''29500''' ,accelerate_mixed_precision='''no''' ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu='''yes''' ,): _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,debug=a__) start_processes(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''')
191
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _a : """simple docstring""" def __init__( self : Any , lowercase_ : Dict , lowercase_ : int=13 , lowercase_ : Optional[int]=7 , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : int=True , lowercase_ : str=True , lowercase_ : List[Any]=99 , lowercase_ : List[str]=[1, 1, 2] , lowercase_ : str=1 , lowercase_ : Union[str, Any]=32 , lowercase_ : Tuple=4 , lowercase_ : Optional[Any]=8 , lowercase_ : Dict=37 , lowercase_ : str="gelu_new" , lowercase_ : List[str]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=512 , lowercase_ : Tuple=3 , lowercase_ : str=0.0_2 , lowercase_ : Optional[Any]=3 , lowercase_ : str=4 , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=False , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = block_sizes lowercase_ = num_decoder_layers lowercase_ = d_model lowercase_ = n_head lowercase_ = d_head lowercase_ = d_inner lowercase_ = hidden_act lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = 2 lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = initializer_std # Used in the tests to check the size of the first attention layer lowercase_ = n_head # Used in the tests to check the size of the first hidden state lowercase_ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase_ = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : str , ): '''simple docstring''' lowercase_ = TFFunnelModel(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) lowercase_ = [input_ids, input_mask] lowercase_ = model(lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase_ = False lowercase_ = TFFunnelModel(config=lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase_ = False lowercase_ = TFFunnelModel(config=lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : int , lowercase_ : Any , ): '''simple docstring''' lowercase_ = TFFunnelBaseModel(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) lowercase_ = [input_ids, input_mask] lowercase_ = model(lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowercase_ = False lowercase_ = TFFunnelBaseModel(config=lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowercase_ = False lowercase_ = TFFunnelBaseModel(config=lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Dict , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any , lowercase_ : Dict , ): '''simple docstring''' lowercase_ = TFFunnelForPreTraining(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] , ): '''simple docstring''' lowercase_ = TFFunnelForMaskedLM(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : int , lowercase_ : List[str] , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : int , lowercase_ : int , ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = TFFunnelForSequenceClassification(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Optional[Any] , ): '''simple docstring''' lowercase_ = self.num_choices lowercase_ = TFFunnelForMultipleChoice(config=lowercase_ ) lowercase_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : int , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = TFFunnelForTokenClassification(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : List[Any] , ): '''simple docstring''' lowercase_ = TFFunnelForQuestionAnswering(config=lowercase_ ) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): """simple docstring""" A_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A_ = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A_ = False A_ = False def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = TFFunnelModelTester(self ) lowercase_ = ConfigTester(self , config_class=lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @require_tf class _a ( __a , unittest.TestCase ): """simple docstring""" A_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A_ = False A_ = False def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = TFFunnelModelTester(self , base=lowercase_ ) lowercase_ = ConfigTester(self , config_class=lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
451
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[Any]: lowercase_ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: lowercase_ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowercase_ = s_dict.pop(SCREAMING_SNAKE_CASE_ ) elif "subsample" in key: lowercase_ = s_dict.pop(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Dict: lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) lowercase_ = emb.weight.data return lin_layer def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: lowercase_ = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) lowercase_ = mam_aaa["""args"""] lowercase_ = mam_aaa["""model"""] lowercase_ = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) rename_keys(SCREAMING_SNAKE_CASE_ ) lowercase_ = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowercase_ = args.share_decoder_input_output_embed lowercase_ = [int(SCREAMING_SNAKE_CASE_ ) for i in args.conv_kernel_sizes.split(""",""" )] lowercase_ = SpeechaTextConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(SCREAMING_SNAKE_CASE_ ) , conv_channels=args.conv_channels , conv_kernel_sizes=SCREAMING_SNAKE_CASE_ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , num_beams=5 , max_length=2_00 , use_cache=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=2 , early_stopping=SCREAMING_SNAKE_CASE_ , ) lowercase_ = SpeechaTextForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ = model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0 and not set(SCREAMING_SNAKE_CASE_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f""" but all the following weights are missing {missing}""" ) if tie_embeds: lowercase_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase_ = lm_head_weights model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
451
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): _UpperCamelCase : Union[str, Any] = UNetaDModel _UpperCamelCase : Any = """sample""" @property def _snake_case ( self ) -> List[Any]: """simple docstring""" a__ : Dict = 4 a__ : Optional[Any] = 3 a__ : str = (32, 32) a__ : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case ) a__ : Tuple = torch.tensor([10] ).to(snake_case ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self ) -> str: """simple docstring""" return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: """simple docstring""" return (3, 32, 32) def _snake_case ( self ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } a__ : Optional[int] = self.dummy_input return init_dict, inputs_dict class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): _UpperCamelCase : Dict = UNetaDModel _UpperCamelCase : Union[str, Any] = """sample""" @property def _snake_case ( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = 4 a__ : Union[str, Any] = 4 a__ : Dict = (32, 32) a__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case ) a__ : List[Any] = torch.tensor([10] ).to(snake_case ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self ) -> Optional[int]: """simple docstring""" return (4, 32, 32) @property def _snake_case ( self ) -> int: """simple docstring""" return (4, 32, 32) def _snake_case ( self ) -> List[str]: """simple docstring""" a__ : Optional[int] = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } a__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Dict: """simple docstring""" a__ , a__ : Dict = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(snake_case ) a__ : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _snake_case ( self ) -> str: """simple docstring""" a__ , a__ : Optional[int] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=snake_case ) model.to(snake_case ) a__ : Optional[int] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _snake_case ( self ) -> List[Any]: """simple docstring""" a__ , a__ : int = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=snake_case ) model_accelerate.to(snake_case ) model_accelerate.eval() a__ : Optional[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ : List[Any] = noise.to(snake_case ) a__ : Optional[int] = torch.tensor([10] * noise.shape[0] ).to(snake_case ) a__ : Any = model_accelerate(snake_case , snake_case )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() a__ , a__ : Tuple = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=snake_case , low_cpu_mem_usage=snake_case ) model_normal_load.to(snake_case ) model_normal_load.eval() a__ : Any = model_normal_load(snake_case , snake_case )["sample"] assert torch_all_close(snake_case , snake_case , rtol=1E-3 ) def _snake_case ( self ) -> Optional[int]: """simple docstring""" a__ : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(snake_case ) a__ : List[str] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ : Any = noise.to(snake_case ) a__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(snake_case ) with torch.no_grad(): a__ : Dict = model(snake_case , snake_case ).sample a__ : str = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ : Optional[Any] = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(snake_case , snake_case , rtol=1E-3 ) ) class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): _UpperCamelCase : Dict = UNetaDModel _UpperCamelCase : List[Any] = """sample""" @property def _snake_case ( self , snake_case=(32, 32) ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = 4 a__ : Optional[Any] = 3 a__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case ) a__ : Any = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=snake_case ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self ) -> Dict: """simple docstring""" return (3, 32, 32) @property def _snake_case ( self ) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) def _snake_case ( self ) -> int: """simple docstring""" a__ : Tuple = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } a__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict @slow def _snake_case ( self ) -> str: """simple docstring""" a__ , a__ : Any = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(snake_case ) a__ : int = self.dummy_input a__ : Union[str, Any] = floats_tensor((4, 3) + (256, 256) ).to(snake_case ) a__ : List[str] = noise a__ : Any = model(**snake_case ) assert image is not None, "Make sure output is not None" @slow def _snake_case ( self ) -> Union[str, Any]: """simple docstring""" a__ : Dict = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(snake_case ) a__ : Optional[Any] = 4 a__ : Any = 3 a__ : Union[str, Any] = (256, 256) a__ : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(snake_case ) a__ : str = torch.tensor(batch_size * [1E-4] ).to(snake_case ) with torch.no_grad(): a__ : Optional[int] = model(snake_case , snake_case ).sample a__ : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ : Dict = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(snake_case , snake_case , rtol=1E-2 ) ) def _snake_case ( self ) -> Tuple: """simple docstring""" a__ : List[Any] = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(snake_case ) a__ : List[Any] = 4 a__ : Union[str, Any] = 3 a__ : str = (32, 32) a__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(snake_case ) a__ : str = torch.tensor(batch_size * [1E-4] ).to(snake_case ) with torch.no_grad(): a__ : List[Any] = model(snake_case , snake_case ).sample a__ : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ : Tuple = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(snake_case , snake_case , rtol=1E-2 ) ) def _snake_case ( self ) -> Tuple: """simple docstring""" pass
629
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): SCREAMING_SNAKE_CASE__ : int = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE__ : Dict = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _A ( lowerCamelCase ): a__ : Optional[int] = (images / 2 + 0.5).clamp(0 , 1 ) a__ : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a__ : int = numpy_to_pil(lowerCamelCase ) return images def _A ( lowerCamelCase ): if images.ndim == 3: a__ : Tuple = images[None, ...] a__ : Dict = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images a__ : str = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: a__ : List[Any] = [Image.fromarray(lowerCamelCase ) for image in images] return pil_images
629
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __A ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = """sew-d""" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__=2 , a__=512 , a__=256 , a__=True , a__=True , a__=("p2c", "c2p") , a__="layer_norm" , a__="gelu_python" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.1 , a__=0.02 , a__=1e-7 , a__=1e-5 , a__="group" , a__="gelu" , a__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a__=False , a__=128 , a__=16 , a__=True , a__=0.05 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__="mean" , a__=False , a__=False , a__=256 , a__=0 , a__=1 , a__=2 , **a__ , ): """simple docstring""" super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__) _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : int = feat_extract_norm _lowerCamelCase : Tuple = feat_extract_activation _lowerCamelCase : Optional[Any] = list(a__) _lowerCamelCase : Tuple = list(a__) _lowerCamelCase : str = list(a__) _lowerCamelCase : Tuple = conv_bias _lowerCamelCase : List[Any] = num_conv_pos_embeddings _lowerCamelCase : List[str] = num_conv_pos_embedding_groups _lowerCamelCase : Optional[int] = len(self.conv_dim) _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Dict = squeeze_factor _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = position_buckets _lowerCamelCase : List[str] = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : int = norm_rel_ebd _lowerCamelCase : Optional[Any] = list(a__) _lowerCamelCase : str = hidden_act _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Dict = hidden_dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : int = feat_proj_dropout _lowerCamelCase : Union[str, Any] = final_dropout _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : Optional[Any] = feature_layer_norm_eps _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Union[str, Any] = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : str = apply_spec_augment _lowerCamelCase : str = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : List[str] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[int] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Any = ctc_loss_reduction _lowerCamelCase : Optional[Any] = ctc_zero_infinity # sequence classification _lowerCamelCase : Tuple = use_weighted_layer_sum _lowerCamelCase : Any = classifier_proj_size @property def __snake_case ( self): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1)
114
import copy import random from transformers import CLIPTokenizer class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *a__ , **a__): """simple docstring""" super().__init__(*a__ , **a__) _lowerCamelCase : Optional[Any] = {} def __snake_case ( self , a__ , *a__ , **a__): """simple docstring""" _lowerCamelCase : Optional[int] = super().add_tokens(a__ , *a__ , **a__) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''') def __snake_case ( self , a__ , *a__ , a__=1 , **a__): """simple docstring""" _lowerCamelCase : Tuple = [] if num_vec_per_token == 1: self.try_adding_tokens(a__ , *a__ , **a__) output.append(a__) else: _lowerCamelCase : Dict = [] for i in range(a__): _lowerCamelCase : Optional[Any] = placeholder_token + F"""_{i}""" self.try_adding_tokens(a__ , *a__ , **a__) output.append(a__) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""") _lowerCamelCase : int = output def __snake_case ( self , a__ , a__=False , a__=1.0): """simple docstring""" if isinstance(a__ , a__): _lowerCamelCase : Tuple = [] for i in range(len(a__)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a__)) return output for placeholder_token in self.token_map: if placeholder_token in text: _lowerCamelCase : Union[str, Any] = self.token_map[placeholder_token] _lowerCamelCase : Optional[Any] = tokens[: 1 + int(len(a__) * prop_tokens_to_load)] if vector_shuffle: _lowerCamelCase : int = copy.copy(a__) random.shuffle(a__) _lowerCamelCase : List[str] = text.replace(a__ , ''' '''.join(a__)) return text def __call__( self , a__ , *a__ , a__=False , a__=1.0 , **a__): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__) , *a__ , **a__ , ) def __snake_case ( self , a__ , *a__ , a__=False , a__=1.0 , **a__): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__) , *a__ , **a__ , )
114
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowerCamelCase = ['small', 'medium', 'large'] __lowerCamelCase = 'lm_head.decoder.weight' __lowerCamelCase = 'lm_head.weight' def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = torch.load(__snake_case ) _UpperCAmelCase : str = d.pop(__snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) __lowerCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowerCamelCase = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __lowerCamelCase = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
712
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , *_lowerCamelCase : int , **_lowerCamelCase : Tuple ): warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
328
0
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __A : Dict = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') __A : Optional[int] = parser.parse_args() if args.check_lib: __A : Dict = importlib.import_module('transformers') __A : str = Path(transformers_module.__file__).parent else: __A : Tuple = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
575
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING A__ : Dict = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class lowercase__ ( snake_case__ ): def __init__( self : List[Any] , *snake_case__ : Dict , **snake_case__ : List[str] ): super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Tuple=None , snake_case__ : Tuple=None , snake_case__ : Any=None ): lowerCamelCase_ : List[str] ={} lowerCamelCase_ : List[Any] ={} if prompt is not None: lowerCamelCase_ : Union[str, Any] =prompt if generate_kwargs is not None: lowerCamelCase_ : List[str] =generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCamelCase_ : Optional[int] ={} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) lowerCamelCase_ : Dict =max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : Optional[Any] ): return super().__call__(snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Dict=None ): lowerCamelCase_ : Any =load_image(snake_case__ ) if prompt is not None: if not isinstance(snake_case__ , snake_case__ ): raise ValueError( F"""Received an invalid text input, got - {type(snake_case__ )} - but expected a single string. """ "Note also that one single text can be provided for conditional image to text generation." ) lowerCamelCase_ : Optional[int] =self.model.config.model_type if model_type == "git": lowerCamelCase_ : Optional[int] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) lowerCamelCase_ : Union[str, Any] =self.tokenizer(text=snake_case__ , add_special_tokens=snake_case__ ).input_ids lowerCamelCase_ : str =[self.tokenizer.cls_token_id] + input_ids lowerCamelCase_ : Optional[Any] =torch.tensor(snake_case__ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": lowerCamelCase_ : Union[str, Any] =self.image_processor(images=snake_case__ , header_text=snake_case__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCamelCase_ : Union[str, Any] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) lowerCamelCase_ : Dict =self.tokenizer(snake_case__ , return_tensors=self.framework ) model_inputs.update(snake_case__ ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowerCamelCase_ : Optional[int] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCamelCase_ : Union[str, Any] =None return model_inputs def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any , snake_case__ : Dict=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , snake_case__ ) and all(x is None for x in model_inputs["input_ids"] ) ): lowerCamelCase_ : Tuple =None if generate_kwargs is None: lowerCamelCase_ : List[Any] ={} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCamelCase_ : str =model_inputs.pop(self.model.main_input_name ) lowerCamelCase_ : List[Any] =self.model.generate(snake_case__ , **snake_case__ , **snake_case__ ) return model_outputs def UpperCAmelCase__ ( self : str , snake_case__ : Any ): lowerCamelCase_ : Optional[Any] =[] for output_ids in model_outputs: lowerCamelCase_ : Tuple ={ "generated_text": self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , ) } records.append(snake_case__ ) return records
153
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = args.log_outputs UpperCamelCase__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric UpperCamelCase__ = load_metric('wer' ) UpperCamelCase__ = load_metric('cer' ) # compute metrics UpperCamelCase__ = wer.compute(references=result['target'] , predictions=result['prediction'] ) UpperCamelCase__ = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results UpperCamelCase__ = F'WER: {wer_result}\nCER: {cer_result}' print(UpperCAmelCase__ ) with open(F'{dataset_id}_eval_results.txt' , 'w' ) as f: f.write(UpperCAmelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase__ = F'log_{dataset_id}_predictions.txt' UpperCamelCase__ = F'log_{dataset_id}_targets.txt' with open(UpperCAmelCase__ , 'w' ) as p, open(UpperCAmelCase__ , 'w' ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): p.write(F'{i}' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'{i}' + '\n' ) t.write(batch['target'] + '\n' ) result.map(UpperCAmelCase__ , with_indices=UpperCAmelCase__ ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase__ = re.sub(UpperCAmelCase__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: UpperCamelCase__ = ' '.join(text.split(UpperCAmelCase__ ) ) return text def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=UpperCAmelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase__ = feature_extractor.sampling_rate # resample audio UpperCamelCase__ = dataset.cast_column('audio' , Audio(sampling_rate=UpperCAmelCase__ ) ) # load eval pipeline if args.device is None: UpperCamelCase__ = 0 if torch.cuda.is_available() else -1 UpperCamelCase__ = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase__ = prediction['text'] UpperCamelCase__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples UpperCamelCase__ = dataset.map(UpperCAmelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": A__ : int= argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `\'en\'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `\'test\'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) A__ : List[Any]= parser.parse_args() main(args)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowercase : Any = '''\ Text data. Second line of data.''' __lowercase : Tuple = '''file''' @pytest.fixture(scope="""session""" ) def lowercase ( __A : List[str] ) -> int: '''simple docstring''' snake_case : Dict = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") snake_case : Optional[int] = bytes(__A , """utf-8""" ) with zstd.open(__A , """wb""" ) as f: f.write(__A ) return path @pytest.fixture def lowercase ( __A : Dict ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __A ) , """w""" ) as f: f.write(__A ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def lowercase ( __A : Tuple , __A : Dict , __A : Optional[int] , __A : Dict , __A : List[str] , __A : int ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} snake_case : List[str] = input_paths[compression_format] snake_case : str = tmp_path / """cache""" snake_case : Dict = DownloadConfig(cache_dir=__A , extract_compressed_file=__A ) snake_case : Optional[int] = cached_path(__A , download_config=__A ) with open(__A ) as f: snake_case : Optional[Any] = f.read() with open(__A ) as f: snake_case : List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def lowercase ( __A : List[str] , __A : Tuple , __A : int , __A : Dict , __A : str ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = """custom_cache""" snake_case : List[str] = """custom_extracted_dir""" snake_case : List[Any] = tmp_path / """custom_extracted_path""" if default_extracted: snake_case : int = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , __A ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(__A ) ) snake_case : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case : Optional[Any] = xz_file snake_case : Union[str, Any] = ( DownloadConfig(extract_compressed_file=__A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__A ) ) snake_case : str = cached_path(__A , download_config=__A ) assert Path(__A ).parent.parts[-2:] == expected def lowercase ( __A : str ) -> str: '''simple docstring''' snake_case : List[str] = str(Path(__A ).resolve() ) assert cached_path(__A ) == text_file # relative path snake_case : Dict = str(Path(__A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__A ) == text_file def lowercase ( __A : Dict ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(__A ): cached_path(__A ) # relative path snake_case : Tuple = """./__missing_file__.txt""" with pytest.raises(__A ): cached_path(__A ) def lowercase ( __A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : str = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(__A ) as f: snake_case : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , __A ) def lowercase ( ) -> List[str]: '''simple docstring''' with pytest.raises(__A ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , __A ) def lowercase ( __A : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(__A ): http_get("""https://huggingface.co""" , temp_file=__A ) with pytest.raises(__A ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , __A ) def lowercase ( __A : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(__A ): ftp_get("""ftp://huggingface.co""" , temp_file=__A ) with pytest.raises(__A ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , __A ) def lowercase ( __A : Optional[int] ) -> str: '''simple docstring''' snake_case : int = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(__A ): fsspec_get("""s3://huggingface.co""" , temp_file=__A ) with pytest.raises(__A ): fsspec_head("""s3://huggingface.co""" )
36
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = '''pixel_values''' __A : List[Any] = False __A : List[str] = TimmBackboneConfig def __init__( self , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' requires_backends(self , 'timm') super().__init__(lowercase) a__ : List[str] = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.') if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.') if hasattr(lowercase , 'out_features') and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.') a__ : List[Any] = getattr(lowercase , 'use_pretrained_backbone' , lowercase) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.') # We just take the final layer by default. This matches the default for the transformers models. a__ : Optional[Any] = config.out_indices if getattr(lowercase , 'out_indices' , lowercase) is not None else (-1,) a__ : Dict = timm.create_model( config.backbone , pretrained=lowercase , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowercase , **lowercase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a__ : Tuple = self._backbone.return_layers a__ : int = {layer['module']: str(lowercase) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(lowercase) @classmethod def __lowercase ( cls , lowercase , *lowercase , **lowercase) -> Dict: '''simple docstring''' requires_backends(cls , ['vision', 'timm']) from ...models.timm_backbone import TimmBackboneConfig a__ : List[Any] = kwargs.pop('config' , TimmBackboneConfig()) a__ : Any = kwargs.pop('use_timm_backbone' , lowercase) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones') a__ : List[str] = kwargs.pop('num_channels' , config.num_channels) a__ : str = kwargs.pop('features_only' , config.features_only) a__ : List[str] = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone) a__ : int = kwargs.pop('out_indices' , config.out_indices) a__ : Union[str, Any] = TimmBackboneConfig( backbone=lowercase , num_channels=lowercase , features_only=lowercase , use_pretrained_backbone=lowercase , out_indices=lowercase , ) return super()._from_config(lowercase , **lowercase) def __lowercase ( self , lowercase) -> Union[str, Any]: '''simple docstring''' pass def __lowercase ( self , lowercase , lowercase=None , lowercase=None , lowercase=None , **lowercase) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict a__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : Optional[Any] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment') if output_hidden_states: # We modify the return layers to include all the stages of the backbone a__ : Optional[int] = self._all_layers a__ : int = self._backbone(lowercase , **lowercase) a__ : List[Any] = self._return_layers a__ : List[Any] = tuple(hidden_states[i] for i in self.out_indices) else: a__ : str = self._backbone(lowercase , **lowercase) a__ : List[str] = None a__ : Optional[Any] = tuple(lowercase) a__ : Optional[int] = tuple(lowercase) if hidden_states is not None else None if not return_dict: a__ : Dict = (feature_maps,) if output_hidden_states: a__ : List[str] = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowercase , hidden_states=lowercase , attentions=lowercase)
302
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any]=13, lowerCamelCase : Dict=32, lowerCamelCase : Tuple=3, lowerCamelCase : List[str]=4, lowerCamelCase : int=[10, 20, 30, 40], lowerCamelCase : int=[2, 2, 3, 2], lowerCamelCase : List[str]=True, lowerCamelCase : int=True, lowerCamelCase : List[Any]=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Optional[Any]=10, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"], lowerCamelCase : int=[2, 3, 4], lowerCamelCase : Optional[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=_a, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def lowercase__ ( self : List[Any], lowerCamelCase : List[str], lowerCamelCase : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = ConvNextModel(config=_a ) model.to(_a ) model.eval() lowercase__ = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() lowercase__ = model(_a, labels=_a ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() lowercase__ = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() lowercase__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( UpperCamelCase__ ,UpperCamelCase__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = ConvNextModelTester(self ) lowercase__ = ConfigTester(self, config_class=_a, has_text_modality=_a, hidden_size=37 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def lowercase__ ( self : Any ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1], _a ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def lowercase__ ( self : Dict ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : int ): lowercase__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_a, _a ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_a ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_a, _a, _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_a, _a, _a ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_a, return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): lowercase__ = model(**_a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, _a ) lowercase__ = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _a, atol=1E-4 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ,UpperCamelCase__ ): """simple docstring""" lowercase__ = (ConvNextBackbone,) if is_torch_available() else () lowercase__ = ConvNextConfig lowercase__ = False def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = ConvNextModelTester(self )
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase( self ) -> str: lowercase__ : List[Any] = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowercase__ : Any = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(__lowerCAmelCase ) from datasets import load_dataset lowercase__ : List[str] = load_dataset('''nielsr/rvlcdip-demo''' ) lowercase__ : Tuple = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowercase__ : str = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : int = model(**__lowerCAmelCase ) lowercase__ : int = outputs.logits lowercase__ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase__ : Any = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=__lowerCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
152
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: Optional[Any] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Dict = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __a: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A_ : str = 'src/transformers' A_ : Union[str, Any] = 'docs/source/en/tasks' def UpperCamelCase (lowercase_: List[Any] , lowercase_: List[str] , lowercase_: List[Any] ) -> Tuple: with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : Dict = f.readlines() # Find the start prompt. A__ : str = 0 while not lines[start_index].startswith(_lowerCamelCase ): start_index += 1 start_index += 1 A__ : List[str] = start_index while not lines[end_index].startswith(_lowerCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A_ : Dict = direct_transformers_import(TRANSFORMERS_PATH) A_ : Dict = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A_ : Optional[Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def UpperCamelCase (lowercase_: Union[str, Any] ) -> List[str]: A__ : Optional[int] = TASK_GUIDE_TO_MODELS[task_guide] A__ : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCamelCase , set() ) A__ : Optional[int] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase (lowercase_: Tuple , lowercase_: int=False ) -> Any: A__ : List[str] = _find_text_in_file( filename=os.path.join(_lowerCamelCase , _lowerCamelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) A__ : str = get_model_list_for_task(_lowerCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
705
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = TextToVideoSDPipeline UpperCAmelCase__: Any = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__: Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCAmelCase__: Optional[int] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __A ( self ): torch.manual_seed(0 ) A__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) A__ : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) A__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A__ : Union[str, Any] = CLIPTextModel(A__ ) A__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , A__ , A__=0 ): if str(A__ ).startswith("""mps""" ): A__ : Tuple = torch.manual_seed(A__ ) else: A__ : List[str] = torch.Generator(device=A__ ).manual_seed(A__ ) A__ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def __A ( self ): A__ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Union[str, Any] = self.get_dummy_components() A__ : Union[str, Any] = TextToVideoSDPipeline(**A__ ) A__ : int = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) A__ : int = self.get_dummy_inputs(A__ ) A__ : int = """np""" A__ : Any = sd_pipe(**A__ ).frames A__ : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) A__ : Optional[Any] = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A__ , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A__ , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def __A ( self ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def __A ( self ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def __A ( self ): pass def __A ( self ): return super().test_progress_bar() @slow @skip_mps class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) A__ : Tuple = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) A__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) A__ : int = pipe.to("""cuda""" ) A__ : Optional[Any] = """Spiderman is surfing""" A__ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ : Optional[Any] = pipe(A__ , generator=A__ , num_inference_steps=25 , output_type="""pt""" ).frames A__ : Dict = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def __A ( self ): A__ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) A__ : Optional[int] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) A__ : List[str] = pipe.to("""cuda""" ) A__ : Dict = """Spiderman is surfing""" A__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ : Optional[int] = pipe(A__ , generator=A__ , num_inference_steps=2 , output_type="""pt""" ).frames A__ : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
64
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _SCREAMING_SNAKE_CASE( A , A ): SCREAMING_SNAKE_CASE_ : Dict = '''pixel_values''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Dict = TimmBackboneConfig def __init__( self ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" requires_backends(self ,'''timm''' ) super().__init__(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(SCREAMING_SNAKE_CASE__ ,'''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) __SCREAMING_SNAKE_CASE :str = getattr(SCREAMING_SNAKE_CASE__ ,'''use_pretrained_backbone''' ,SCREAMING_SNAKE_CASE__ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. __SCREAMING_SNAKE_CASE :Tuple = config.out_indices if getattr(SCREAMING_SNAKE_CASE__ ,'''out_indices''' ,SCREAMING_SNAKE_CASE__ ) is not None else (-1,) __SCREAMING_SNAKE_CASE :int = timm.create_model( config.backbone ,pretrained=SCREAMING_SNAKE_CASE__ ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __SCREAMING_SNAKE_CASE :Optional[int] = self._backbone.return_layers __SCREAMING_SNAKE_CASE :str = {layer['''module''']: str(SCREAMING_SNAKE_CASE__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls ,SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" requires_backends(cls ,['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig __SCREAMING_SNAKE_CASE :Optional[Any] = kwargs.pop('''config''' ,TimmBackboneConfig() ) __SCREAMING_SNAKE_CASE :Union[str, Any] = kwargs.pop('''use_timm_backbone''' ,SCREAMING_SNAKE_CASE__ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) __SCREAMING_SNAKE_CASE :Dict = kwargs.pop('''num_channels''' ,config.num_channels ) __SCREAMING_SNAKE_CASE :Dict = kwargs.pop('''features_only''' ,config.features_only ) __SCREAMING_SNAKE_CASE :str = kwargs.pop('''use_pretrained_backbone''' ,config.use_pretrained_backbone ) __SCREAMING_SNAKE_CASE :Optional[Any] = kwargs.pop('''out_indices''' ,config.out_indices ) __SCREAMING_SNAKE_CASE :Any = TimmBackboneConfig( backbone=SCREAMING_SNAKE_CASE__ ,num_channels=SCREAMING_SNAKE_CASE__ ,features_only=SCREAMING_SNAKE_CASE__ ,use_pretrained_backbone=SCREAMING_SNAKE_CASE__ ,out_indices=SCREAMING_SNAKE_CASE__ ,) return super()._from_config(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" pass def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE :str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE :Optional[int] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __SCREAMING_SNAKE_CASE :Any = self._all_layers __SCREAMING_SNAKE_CASE :Union[str, Any] = self._backbone(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self._return_layers __SCREAMING_SNAKE_CASE :List[str] = tuple(hidden_states[i] for i in self.out_indices ) else: __SCREAMING_SNAKE_CASE :Any = self._backbone(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = None __SCREAMING_SNAKE_CASE :Any = tuple(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tuple(SCREAMING_SNAKE_CASE__ ) if hidden_states is not None else None if not return_dict: __SCREAMING_SNAKE_CASE :List[Any] = (feature_maps,) if output_hidden_states: __SCREAMING_SNAKE_CASE :int = output + (hidden_states,) return output return BackboneOutput(feature_maps=SCREAMING_SNAKE_CASE__ ,hidden_states=SCREAMING_SNAKE_CASE__ ,attentions=SCREAMING_SNAKE_CASE__ )
498
"""simple docstring""" def __lowerCamelCase ( a_ : int = 50 ) -> int: __SCREAMING_SNAKE_CASE :List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
498
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _lowerCAmelCase ( A__ , A__ ): lowercase__ = F'''{sampling_rate}''' lowercase__ = '1' lowercase__ = 'f32le' lowercase__ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase__ = ffmpeg_process.communicate(A__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowercase__ = output_stream[0] lowercase__ = np.frombuffer(A__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _lowerCAmelCase ( A__ , A__ , A__ = "f32le" , ): lowercase__ = F'''{sampling_rate}''' lowercase__ = '1' if format_for_conversion == "s16le": lowercase__ = 2 elif format_for_conversion == "f32le": lowercase__ = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowercase__ = platform.system() if system == "Linux": lowercase__ = 'alsa' lowercase__ = 'default' elif system == "Darwin": lowercase__ = 'avfoundation' lowercase__ = ':0' elif system == "Windows": lowercase__ = 'dshow' lowercase__ = 'default' lowercase__ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase__ = _ffmpeg_stream(A__ , A__ ) for item in iterator: yield item def _lowerCAmelCase ( A__ , A__ , A__ = None , A__ = None , A__ = "f32le" , ): if stream_chunk_s is not None: lowercase__ = stream_chunk_s else: lowercase__ = chunk_length_s lowercase__ = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ ) if format_for_conversion == "s16le": lowercase__ = np.intaa lowercase__ = 2 elif format_for_conversion == "f32le": lowercase__ = np.floataa lowercase__ = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowercase__ = chunk_length_s / 6 lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A__ , (int, float) ): lowercase__ = [stride_length_s, stride_length_s] lowercase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase__ = datetime.datetime.now() lowercase__ = datetime.timedelta(seconds=A__ ) for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ): # Put everything back in numpy scale lowercase__ = np.frombuffer(item['raw'] , dtype=A__ ) lowercase__ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowercase__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _lowerCAmelCase ( A__ , A__ , A__ , A__ = False ): lowercase__ = B'' lowercase__, lowercase__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowercase__ = 0 for raw in iterator: acc += raw if stream and len(A__ ) < chunk_len: lowercase__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A__ ) >= chunk_len: # We are flushing the accumulator lowercase__ = (_stride_left, stride_right) lowercase__ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowercase__ = False yield item lowercase__ = stride_left lowercase__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A__ ) > stride_left: lowercase__ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowercase__ = False yield item def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 2**24 # 16Mo try: with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process: while True: lowercase__ = ffmpeg_process.stdout.read(A__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
708
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __A : str = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" __A : List[Any] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" __A : Tuple = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): """simple docstring""" def __lowercase ( self : Any ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def __lowercase ( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Optional[int]=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Dict=None , lowerCamelCase : str=None , lowerCamelCase : Optional[Any]="auto" , lowerCamelCase : Tuple=-1 , lowerCamelCase : Union[str, Any]=0.9 , lowerCamelCase : str=5 , lowerCamelCase : List[str]=5_00 , lowerCamelCase : Optional[int]="gpt2-large" , lowerCamelCase : List[str]=-1 , lowerCamelCase : str=10_24 , lowerCamelCase : Optional[int]=25 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[Any]=25 , ) -> str: lowerCAmelCase_ : Any = compute_mauve( p_text=lowerCamelCase , q_text=lowerCamelCase , p_features=lowerCamelCase , q_features=lowerCamelCase , p_tokens=lowerCamelCase , q_tokens=lowerCamelCase , num_buckets=lowerCamelCase , pca_max_data=lowerCamelCase , kmeans_explained_var=lowerCamelCase , kmeans_num_redo=lowerCamelCase , kmeans_max_iter=lowerCamelCase , featurize_model_name=lowerCamelCase , device_id=lowerCamelCase , max_text_length=lowerCamelCase , divergence_curve_discretization_size=lowerCamelCase , mauve_scaling_factor=lowerCamelCase , verbose=lowerCamelCase , seed=lowerCamelCase , ) return out
275
'''simple docstring''' from collections.abc import Callable class __snake_case : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Callable | None = None ) -> None: # Stores actual heap items. lowerCAmelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. lowerCAmelCase_ : dict = {} # Stores current size of heap. lowerCAmelCase_ : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowerCAmelCase_ : Tuple = key or (lambda lowerCamelCase : x) def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.arr[j], self.arr[i] def __lowercase ( self : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __lowercase ( self : int , lowerCamelCase : int ) -> int: lowerCAmelCase_ : List[str] = self._left(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self._right(lowerCamelCase ) lowerCAmelCase_ : Tuple = i if left is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : int = left if right is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = right return valid_parent def __lowercase ( self : List[Any] , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Tuple = self._parent(lowerCamelCase ) while parent is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : str = parent, self._parent(lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Optional[Any] = self._get_valid_parent(lowerCamelCase ) while valid_parent != index: self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : int = valid_parent, self._get_valid_parent(lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : Dict = self.pos_map[item] lowerCAmelCase_ : Dict = [item, self.key(lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : List[str] = self.pos_map[item] del self.pos_map[item] lowerCAmelCase_ : Tuple = self.arr[self.size - 1] lowerCAmelCase_ : List[str] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase )] ) else: lowerCAmelCase_ : str = [item, self.key(lowerCamelCase )] lowerCAmelCase_ : Optional[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self : str ) -> tuple | None: return self.arr[0] if self.size else None def __lowercase ( self : Optional[Any] ) -> tuple | None: lowerCAmelCase_ : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
275
1
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] lowercase = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] lowercase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase = F'''down_blocks.{i}.resnets.{j}.''' lowercase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase = F'''down_blocks.{i}.attentions.{j}.''' lowercase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase = F'''up_blocks.{i}.resnets.{j}.''' lowercase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase = F'''up_blocks.{i}.attentions.{j}.''' lowercase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase = F'''down_blocks.{i}.downsamplers.0.conv.''' lowercase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase = F'''up_blocks.{i}.upsamplers.0.''' lowercase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase = "mid_block.attentions.0." lowercase = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase = F'''mid_block.resnets.{j}.''' lowercase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v _UpperCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase = F'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase = F'''down_blocks.{i}.downsamplers.0.''' lowercase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase = F'''up_blocks.{i}.upsamplers.0.''' lowercase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase = F'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase = F'''mid_block.resnets.{i}.''' lowercase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' _UpperCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v _UpperCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCAmelCase = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) _UpperCAmelCase = reshape_weight_for_sd(_lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] lowercase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase = {"q": 0, "k": 1, "v": 2} def UpperCAmelCase ( A : List[str] ): '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): _UpperCAmelCase = k[: -len('.q_proj.weight' )] _UpperCAmelCase = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: _UpperCAmelCase = [None, None, None] _UpperCAmelCase = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): _UpperCAmelCase = k[: -len('.q_proj.bias' )] _UpperCAmelCase = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: _UpperCAmelCase = [None, None, None] _UpperCAmelCase = v continue _UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _UpperCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _UpperCAmelCase = torch.cat(_lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _UpperCAmelCase = torch.cat(_lowerCamelCase ) return new_state_dict def UpperCAmelCase ( A : Any ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowercase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowercase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowercase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase = load_file(unet_path, device='''cpu''') else: lowercase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowercase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowercase = load_file(vae_path, device='''cpu''') else: lowercase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowercase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowercase = load_file(text_enc_path, device='''cpu''') else: lowercase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowercase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowercase = convert_unet_state_dict(unet_state_dict) lowercase = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase = convert_vae_state_dict(vae_state_dict) lowercase = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase = {"transformer." + k: v for k, v in text_enc_dict.items()} lowercase = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: lowercase = convert_text_enc_state_dict(text_enc_dict) lowercase = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
import numpy as np def lowerCAmelCase_ ( __a , __a , __a = 1e-12 , __a = 100 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase ) lowerCamelCase__: List[str] =np.iscomplexobj(__lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase__: Optional[int] =False lowerCamelCase__: Optional[Any] =0 lowerCamelCase__: int =0 lowerCamelCase__: Tuple =1e12 while not convergence: # Multiple matrix by the vector. lowerCamelCase__: int =np.dot(__lowerCamelCase , __lowerCamelCase ) # Normalize the resulting output vector. lowerCamelCase__: List[str] =w / np.linalg.norm(__lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase__: Optional[Any] =vector.conj().T if is_complex else vector.T lowerCamelCase__: str =np.dot(__lowerCamelCase , np.dot(__lowerCamelCase , __lowerCamelCase ) ) # Check convergence. lowerCamelCase__: int =np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase__: Optional[Any] =True lowerCamelCase__: Optional[Any] =lambda_ if is_complex: lowerCamelCase__: Optional[Any] =np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Union[str, Any] =np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase__: List[str] =np.array([41, 4, 20] ) lowerCamelCase__: List[Any] =real_input_matrix.astype(np.complexaaa ) lowerCamelCase__: Tuple =np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase__: Tuple =np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase__: Optional[Any] =real_input_matrix lowerCamelCase__: Optional[int] =real_vector elif problem_type == "complex": lowerCamelCase__: Any =complex_input_matrix lowerCamelCase__: int =complex_vector # Our implementation. lowerCamelCase__: Optional[int] =power_iteration(__lowerCamelCase , __lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase__: Tuple =np.linalg.eigh(__lowerCamelCase ) # Last eigenvalue is the maximum one. lowerCamelCase__: List[Any] =eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase__: List[str] =eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
59
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( *_snake_case : Any ,**_snake_case : List[str] ) -> List[str]: """simple docstring""" pass def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = DepthEstimationPipeline(model=_snake_case ,image_processor=_snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self : str ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : int = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,_snake_case ) import datasets lowercase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) lowercase__ : Union[str, Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,_snake_case ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @slow @require_torch def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : int = '''Intel/dpt-large''' lowercase__ : Tuple = pipeline('''depth-estimation''' ,model=_snake_case ) lowercase__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) lowercase__ : Dict = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.662 ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
560
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> bool: lowercase__ : List[str] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __UpperCAmelCase ( __lowerCamelCase = 50_00 ) -> int: lowercase__ : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , __lowerCamelCase )] for i, pentagonal_i in enumerate(__lowerCamelCase ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): lowercase__ : List[str] = pentagonal_nums[j] lowercase__ : List[str] = pentagonal_i + pentagonal_j lowercase__ : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(__lowerCamelCase ) and is_pentagonal(__lowerCamelCase ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
122
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(__lowerCamelCase , '''_dynamo''' ): return False return isinstance(__lowerCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = True ) -> Optional[Any]: lowercase__ : List[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ : str = is_compiled_module(__lowerCamelCase ) if is_compiled: lowercase__ : int = model lowercase__ : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Union[str, Any] = model.module if not keep_fpaa_wrapper: lowercase__ : List[Any] = getattr(__lowerCamelCase , '''forward''' ) lowercase__ : Any = model.__dict__.pop('''_original_forward''' , __lowerCamelCase ) if original_forward is not None: while hasattr(__lowerCamelCase , '''__wrapped__''' ): lowercase__ : Optional[int] = forward.__wrapped__ if forward == original_forward: break lowercase__ : Dict = forward if getattr(__lowerCamelCase , '''_converted_to_transformer_engine''' , __lowerCamelCase ): convert_model(__lowerCamelCase , to_transformer_engine=__lowerCamelCase ) if is_compiled: lowercase__ : Optional[Any] = model lowercase__ : Tuple = compiled_model return model def __UpperCAmelCase ( ) -> int: PartialState().wait_for_everyone() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCamelCase , __lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCamelCase , __lowerCamelCase ) @contextmanager def __UpperCAmelCase ( **__lowerCamelCase ) -> Optional[int]: for key, value in kwargs.items(): lowercase__ : Optional[int] = str(__lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: if not hasattr(__lowerCamelCase , '''__qualname__''' ) and not hasattr(__lowerCamelCase , '''__name__''' ): lowercase__ : Tuple = getattr(__lowerCamelCase , '''__class__''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''__qualname__''' ): return obj.__qualname__ if hasattr(__lowerCamelCase , '''__name__''' ): return obj.__name__ return str(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: for key, value in source.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : int = destination.setdefault(__lowerCamelCase , {} ) merge_dicts(__lowerCamelCase , __lowerCamelCase ) else: lowercase__ : Optional[int] = value return destination def __UpperCAmelCase ( __lowerCamelCase = None ) -> bool: if port is None: lowercase__ : List[Any] = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
122
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCAmelCase = logging.get_logger(__name__) class __snake_case( lowercase__ ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> Tuple: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
433
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ : Dict = logging.get_logger(__name__) a_ : Dict = Dict[str, Any] a_ : str = List[Prediction] @add_end_docstrings(lowercase__ ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , *__a , **__a ): super().__init__(*__a , **__a ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case_ ( self , **__a ): __lowerCamelCase : List[str] = {} if "threshold" in kwargs: __lowerCamelCase : Optional[int] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *__a , **__a ): return super().__call__(*__a , **__a ) def snake_case_ ( self , __a ): __lowerCamelCase : Optional[Any] = load_image(__a ) __lowerCamelCase : Any = torch.IntTensor([[image.height, image.width]] ) __lowerCamelCase : Any = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: __lowerCamelCase : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) __lowerCamelCase : Dict = target_size return inputs def snake_case_ ( self , __a ): __lowerCamelCase : Union[str, Any] = model_inputs.pop('target_size' ) __lowerCamelCase : Optional[Any] = self.model(**__a ) __lowerCamelCase : Any = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: __lowerCamelCase : Optional[Any] = model_inputs['bbox'] return model_outputs def snake_case_ ( self , __a , __a=0.9 ): __lowerCamelCase : Dict = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __lowerCamelCase , __lowerCamelCase : Dict = target_size[0].tolist() def unnormalize(__a ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __lowerCamelCase , __lowerCamelCase : Tuple = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __lowerCamelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __lowerCamelCase : Union[str, Any] = [unnormalize(__a ) for bbox in model_outputs['bbox'].squeeze(0 )] __lowerCamelCase : List[str] = ['score', 'label', 'box'] __lowerCamelCase : Tuple = [dict(zip(__a , __a ) ) for vals in zip(scores.tolist() , __a , __a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __lowerCamelCase : Optional[int] = self.image_processor.post_process_object_detection(__a , __a , __a ) __lowerCamelCase : Any = raw_annotations[0] __lowerCamelCase : Any = raw_annotation['scores'] __lowerCamelCase : Tuple = raw_annotation['labels'] __lowerCamelCase : Union[str, Any] = raw_annotation['boxes'] __lowerCamelCase : List[str] = scores.tolist() __lowerCamelCase : str = [self.model.config.idalabel[label.item()] for label in labels] __lowerCamelCase : List[Any] = [self._get_bounding_box(__a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __lowerCamelCase : int = ['score', 'label', 'box'] __lowerCamelCase : int = [ dict(zip(__a , __a ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def snake_case_ ( self , __a ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = box.int().tolist() __lowerCamelCase : Dict = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
594
0
'''simple docstring''' import numpy as np def A ( _UpperCAmelCase : str ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } A_ = { "google/pegasus-xsum": 5_12, } class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PegasusTokenizer _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<mask_2>" , SCREAMING_SNAKE_CASE="<mask_1>" , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1_03 , **SCREAMING_SNAKE_CASE , ) -> List[str]: __lowerCAmelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError( F"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE )}, but is""" F""" {type(SCREAMING_SNAKE_CASE )}""" ) __lowerCAmelCase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE ) ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __lowerCAmelCase : Tuple = additional_special_tokens_extended else: __lowerCAmelCase : List[str] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , mask_token_sent=SCREAMING_SNAKE_CASE , offset=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = vocab_file __lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
123
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __lowercase = [[float('''inf''' ) for _ in range(lowerCamelCase_ )] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): __lowercase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase_ ): # looping through rows of graph array for i in range(lowerCamelCase_ ): # looping through columns of graph array for j in range(lowerCamelCase_ ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowercase = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase_ , lowerCamelCase_ ) return dist, v if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input('''Enter number of vertices: ''')) _SCREAMING_SNAKE_CASE = int(input('''Enter number of edges: ''')) _SCREAMING_SNAKE_CASE = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): _SCREAMING_SNAKE_CASE = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) _SCREAMING_SNAKE_CASE = int(input('''Enter source:''')) _SCREAMING_SNAKE_CASE = int(input('''Enter destination:''')) _SCREAMING_SNAKE_CASE = float(input('''Enter weight:''')) _SCREAMING_SNAKE_CASE = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
502
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = ["image_processor", "tokenizer"] a : Optional[int] = "ChineseCLIPImageProcessor" a : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_lowerCamelCase ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.image_processor def __call__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(_lowerCamelCase ,return_tensors=_lowerCamelCase ,**_lowerCamelCase ) if images is not None: __lowercase = self.image_processor(_lowerCamelCase ,return_tensors=_lowerCamelCase ,**_lowerCamelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) ,tensor_type=_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_lowerCamelCase ,**_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_lowerCamelCase ,) return self.image_processor_class
502
1
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class snake_case ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = PriorTransformer _lowerCamelCase = "hidden_states" @property def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 4 lowerCamelCase_ = 8 lowerCamelCase_ = 7 lowerCamelCase_ = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase__ ) lowerCamelCase_ = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase__ ) lowerCamelCase_ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case ( self , UpperCamelCase=0 ): """simple docstring""" torch.manual_seed(lowerCamelCase__ ) lowerCamelCase_ = 4 lowerCamelCase_ = 8 lowerCamelCase_ = 7 lowerCamelCase_ = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase__ ) lowerCamelCase_ = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase__ ) lowerCamelCase_ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case ( self ): """simple docstring""" return (4, 8) @property def snake_case ( self ): """simple docstring""" return (4, 8) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(lowerCamelCase__ ) lowerCamelCase_ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCamelCase_ = self.model_class(**lowerCamelCase__ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , lowerCamelCase__ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowerCamelCase_ = model.to(lowerCamelCase__ ) if hasattr(lowerCamelCase__ , "set_default_attn_processor" ): model.set_default_attn_processor() lowerCamelCase_ = self.get_dummy_seed_input() with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ )[0] lowerCamelCase_ = output[0, :5].flatten().cpu() print(lowerCamelCase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowerCamelCase_ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(lowerCamelCase__ , lowerCamelCase__ , rtol=1e-2 ) ) @slow class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self , UpperCamelCase=1 , UpperCamelCase=768 , UpperCamelCase=77 , UpperCamelCase=0 ): """simple docstring""" torch.manual_seed(lowerCamelCase__ ) lowerCamelCase_ = batch_size lowerCamelCase_ = embedding_dim lowerCamelCase_ = num_embeddings lowerCamelCase_ = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase__ ) lowerCamelCase_ = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase__ ) lowerCamelCase_ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(lowerCamelCase__ ) lowerCamelCase_ = self.get_dummy_seed_input(seed=lowerCamelCase__ ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ )[0] assert list(sample.shape ) == [1, 768] lowerCamelCase_ = sample[0, :8].flatten().cpu() print(lowerCamelCase__ ) lowerCamelCase_ = torch.tensor(lowerCamelCase__ ) assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 )
718
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ : Dict = logging.get_logger(__name__) a_ : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Optional[Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } a_ : str = { """gpt-neox-20b""": 2048, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCamelCase ) lowerCamelCase_ = add_prefix_space def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids
445
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = 42 UpperCAmelCase = 42 class lowerCAmelCase_ ( nn.Module ): UpperCAmelCase = 42 UpperCAmelCase = (16, 32, 96, 256) UpperCAmelCase = jnp.floataa def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCamelCase = [] for i in range(len(self.block_out_channels ) - 1 ): _UpperCamelCase = self.block_out_channels[i] _UpperCamelCase = self.block_out_channels[i + 1] _UpperCamelCase = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) _UpperCamelCase = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) _UpperCamelCase = blocks _UpperCamelCase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , _A : Tuple ): _UpperCamelCase = self.conv_in(_A ) _UpperCamelCase = nn.silu(_A ) for block in self.blocks: _UpperCamelCase = block(_A ) _UpperCamelCase = nn.silu(_A ) _UpperCamelCase = self.conv_out(_A ) return embedding @flax_register_to_config class lowerCAmelCase_ ( nn.Module, __lowercase, __lowercase ): UpperCAmelCase = 32 UpperCAmelCase = 4 UpperCAmelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase = False UpperCAmelCase = (320, 640, 1280, 1280) UpperCAmelCase = 2 UpperCAmelCase = 8 UpperCAmelCase = None UpperCAmelCase = 1280 UpperCAmelCase = 0.0 UpperCAmelCase = False UpperCAmelCase = jnp.floataa UpperCAmelCase = True UpperCAmelCase = 0 UpperCAmelCase = "rgb" UpperCAmelCase = (16, 32, 96, 256) def UpperCamelCase_ ( self : List[Any] , _A : jax.random.KeyArray ): # init input tensors _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(_A , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase = (1, 3, self.sample_size * 8, self.sample_size * 8) _UpperCamelCase = jnp.zeros(_A , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(_A ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(_A , dtype=self.dtype ) _UpperCamelCase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _UpperCamelCase = self.only_cross_attention if isinstance(_A , _A ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] _UpperCamelCase = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): _UpperCamelCase = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: _UpperCamelCase = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) _UpperCamelCase = down_blocks _UpperCamelCase = controlnet_down_blocks # mid _UpperCamelCase = block_out_channels[-1] _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _UpperCamelCase = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : str , _A : Dict , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : float = 1.0 , _A : bool = True , _A : bool = False , ): _UpperCamelCase = self.controlnet_conditioning_channel_order if channel_order == "bgr": _UpperCamelCase = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(_A , 0 ) _UpperCamelCase = self.time_proj(_A ) _UpperCamelCase = self.time_embedding(_A ) # 2. pre-process _UpperCamelCase = jnp.transpose(_A , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(_A ) _UpperCamelCase = jnp.transpose(_A , (0, 2, 3, 1) ) _UpperCamelCase = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): _UpperCamelCase , _UpperCamelCase = down_block(_A , _A , _A , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _UpperCamelCase = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks _UpperCamelCase = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): _UpperCamelCase = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = controlnet_down_block_res_samples _UpperCamelCase = self.controlnet_mid_block(_A ) # 6. scaling _UpperCamelCase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
712
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case , __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case , __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _UpperCamelCase = None for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True elif name.split('''.''' )[0] == "proj": _UpperCamelCase = fairseq_model.proj _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer def _snake_case ( __snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.split(''' ''' )[0] for line in lines] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase = WavaVecaConfig.from_pretrained(__snake_case ) _UpperCamelCase = SpeechaTextaConfig.from_pretrained( __snake_case , vocab_size=__snake_case , decoder_layers=__snake_case , do_stable_layer_norm=__snake_case ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _UpperCamelCase = model[0].eval() # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) _UpperCamelCase = recursively_load_weights_wavaveca(model.encoder , __snake_case ) _UpperCamelCase = SpeechaTextaForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) _UpperCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) _UpperCamelCase = False # add projection layer _UpperCamelCase = nn.Parameter(projection_layer.weight ) _UpperCamelCase = nn.Parameter(projection_layer.bias ) _UpperCamelCase = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) _UpperCamelCase = SpeechaTextaTokenizer(os.path.join(__snake_case , '''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''speech_to_text_2''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
71
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self , A_ , A_=2 , A_=32 , A_=16 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=[0, 1, 2, 3] , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.02 , A_=3 , A_=[1, 384, 24, 24] , A_=True , A_=None , ) -> Union[str, Any]: """simple docstring""" _lowercase: Union[str, Any] = parent _lowercase: List[str] = batch_size _lowercase: Any = image_size _lowercase: int = patch_size _lowercase: str = num_channels _lowercase: Any = is_training _lowercase: str = use_labels _lowercase: Optional[Any] = hidden_size _lowercase: int = num_hidden_layers _lowercase: int = backbone_out_indices _lowercase: Optional[int] = num_attention_heads _lowercase: int = intermediate_size _lowercase: Any = hidden_act _lowercase: List[str] = hidden_dropout_prob _lowercase: Any = attention_probs_dropout_prob _lowercase: List[str] = initializer_range _lowercase: Dict = num_labels _lowercase: Tuple = backbone_featmap_shape _lowercase: Any = scope _lowercase: Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowercase: Optional[int] = (image_size // patch_size) ** 2 _lowercase: Optional[Any] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowercase: str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase: List[str] = None if self.use_labels: _lowercase: int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowercase: Dict = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: str = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowercase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowercase: Any = DPTModel(config=A_ ) model.to(A_ ) model.eval() _lowercase: Any = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowercase: Union[str, Any] = self.num_labels _lowercase: Optional[int] = DPTForDepthEstimation(A_ ) model.to(A_ ) model.eval() _lowercase: str = model(A_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowercase_ ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowercase: Tuple = self.num_labels _lowercase: List[Any] = DPTForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() _lowercase: List[Any] = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowercase: Optional[int] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase: Union[str, Any] = config_and_inputs _lowercase: List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): UpperCamelCase_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def lowercase_ ( self ) -> Any: """simple docstring""" _lowercase: Optional[int] = DPTModelTester(self ) _lowercase: Dict = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def lowercase_ ( self ) -> Dict: """simple docstring""" pass def lowercase_ ( self ) -> List[str]: """simple docstring""" _lowercase , _lowercase: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase: int = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def lowercase_ ( self ) -> str: """simple docstring""" _lowercase , _lowercase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase: int = model_class(A_ ) _lowercase: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase: Optional[Any] = [*signature.parameters.keys()] _lowercase: Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def lowercase_ ( self ) -> Dict: """simple docstring""" _lowercase: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A_ ) def lowercase_ ( self ) -> str: """simple docstring""" _lowercase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowercase , _lowercase: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase: Tuple = True if model_class in get_values(A_ ): continue _lowercase: Any = model_class(A_ ) model.to(A_ ) model.train() _lowercase: Tuple = self._prepare_for_class(A_ , A_ , return_labels=A_ ) _lowercase: Optional[Any] = model(**A_ ).loss loss.backward() def lowercase_ ( self ) -> Optional[int]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowercase , _lowercase: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase: List[Any] = False _lowercase: Optional[int] = True if model_class in get_values(A_ ) or not model_class.supports_gradient_checkpointing: continue _lowercase: Union[str, Any] = model_class(A_ ) model.to(A_ ) model.gradient_checkpointing_enable() model.train() _lowercase: Optional[int] = self._prepare_for_class(A_ , A_ , return_labels=A_ ) _lowercase: Union[str, Any] = model(**A_ ).loss loss.backward() def lowercase_ ( self ) -> List[str]: """simple docstring""" _lowercase , _lowercase: Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowercase: Optional[Any] = _config_zero_init(A_ ) for model_class in self.all_model_classes: _lowercase: List[str] = model_class(config=A_ ) # Skip the check for the backbone _lowercase: str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowercase: int = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self ) -> str: """simple docstring""" pass @slow def lowercase_ ( self ) -> int: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowercase: Dict = DPTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase , _lowercase: int = self.model_tester.prepare_config_and_inputs_for_common() _lowercase: Tuple = '''add''' with self.assertRaises(A_ ): _lowercase: List[Any] = DPTForDepthEstimation(A_ ) def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def lowercase_ ( self ) -> int: """simple docstring""" _lowercase: Optional[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) _lowercase: Optional[int] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(A_ ) _lowercase: str = prepare_img() _lowercase: Union[str, Any] = image_processor(images=A_ , return_tensors='''pt''' ).to(A_ ) # forward pass with torch.no_grad(): _lowercase: Dict = model(**A_ ) _lowercase: int = outputs.predicted_depth # verify the predicted depth _lowercase: str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , A_ ) _lowercase: Optional[Any] = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A_ , atol=1E-4 ) )
353
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : int = logging.get_logger(__name__) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ): """simple docstring""" _lowercase: Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for i in range(config.num_hidden_layers ): _lowercase: List[str] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase: Optional[int] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) _lowercase: int = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase: List[str] = in_proj_weight[ : config.hidden_size, : ] _lowercase: List[Any] = in_proj_bias[: config.hidden_size] _lowercase: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase: List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase: Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowercase: Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: List[str] = dct.pop(_UpperCamelCase ) _lowercase: Dict = val @torch.no_grad() def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: List[Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_UpperCamelCase ) _lowercase: Optional[Any] = False _lowercase: Optional[Any] = False _lowercase: Union[str, Any] = False _lowercase: Union[str, Any] = False if "vqa" in checkpoint_url: _lowercase: Union[str, Any] = True _lowercase: str = 3_129 _lowercase: List[str] = '''huggingface/label-files''' _lowercase: Tuple = '''vqa2-id2label.json''' _lowercase: Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowercase: str = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _lowercase: Tuple = idalabel _lowercase: Tuple = {v: k for k, v in idalabel.items()} _lowercase: Any = ViltForQuestionAnswering(_UpperCamelCase ) elif "nlvr" in checkpoint_url: _lowercase: Any = True _lowercase: List[str] = 2 _lowercase: Optional[int] = {0: '''False''', 1: '''True'''} _lowercase: List[Any] = {v: k for k, v in config.idalabel.items()} _lowercase: Optional[Any] = 3 _lowercase: List[Any] = ViltForImagesAndTextClassification(_UpperCamelCase ) elif "irtr" in checkpoint_url: _lowercase: List[str] = True _lowercase: Optional[int] = ViltForImageAndTextRetrieval(_UpperCamelCase ) elif "mlm_itm" in checkpoint_url: _lowercase: Dict = True _lowercase: int = ViltForMaskedLM(_UpperCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys _lowercase: List[Any] = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='''cpu''' )['''state_dict'''] _lowercase: Dict = create_rename_keys(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) if mlm_model or irtr_model: _lowercase: int = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowercase , _lowercase: Optional[int] = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_UpperCamelCase ) # Define processor _lowercase: int = ViltImageProcessor(size=384 ) _lowercase: List[str] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowercase: List[Any] = ViltProcessor(_UpperCamelCase , _UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowercase: int = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_UpperCamelCase ).raw ) _lowercase: List[Any] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_UpperCamelCase ).raw ) _lowercase: Dict = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) _lowercase: Any = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) _lowercase: Union[str, Any] = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) _lowercase: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowercase: Dict = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=_UpperCamelCase ).raw ) if mlm_model: _lowercase: int = '''a bunch of [MASK] laying on a [MASK].''' else: _lowercase: Optional[int] = '''How many cats are there?''' _lowercase: Optional[Any] = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) _lowercase: Optional[Any] = model(**_UpperCamelCase ) # Verify outputs if mlm_model: _lowercase: List[str] = torch.Size([1, 11, 30_522] ) _lowercase: Tuple = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowercase: Optional[int] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowercase: Optional[int] = torch.Size([1, 3_129] ) _lowercase: List[str] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowercase: List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowercase: Tuple = torch.Size([1, 2] ) _lowercase: Any = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A__ : str = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
353
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowerCamelCase : Any = 1_6 _lowerCamelCase : int = 3_2 def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 16 , UpperCamelCase_ : str = "bert-base-cased" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(A__ ) _lowerCAmelCase : List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase_ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase : Any = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase_ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCAmelCase : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) _lowerCAmelCase : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def _UpperCAmelCase (UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): '''simple docstring''' model.eval() _lowerCAmelCase : List[Any] = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : List[str] = model(**A__ ) _lowerCAmelCase : Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: _lowerCAmelCase : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) _lowerCAmelCase : Any = metric.compute() return eval_metric["accuracy"] def _UpperCAmelCase (UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Dict = config["""lr"""] _lowerCAmelCase : str = int(config["""num_epochs"""] ) _lowerCAmelCase : int = int(config["""seed"""] ) _lowerCAmelCase : Tuple = int(config["""batch_size"""] ) _lowerCAmelCase : Dict = args.model_name_or_path set_seed(A__ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer _lowerCAmelCase : int = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCAmelCase : Any = 1 _lowerCAmelCase : List[Any] = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: _lowerCAmelCase : str = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) _lowerCAmelCase : Tuple = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase : int = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase : Tuple = args.resume_from_checkpoint.split("""epoch_""" )[1] _lowerCAmelCase : Dict = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase : Optional[int] = int(A__ ) + 1 _lowerCAmelCase : List[str] = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json" ) , """r""" ) as f: _lowerCAmelCase : List[str] = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase : Any = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): _lowerCAmelCase : Tuple = model(**A__ ) _lowerCAmelCase : List[Any] = outputs.loss _lowerCAmelCase : Any = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase : int = F"epoch_{epoch}" _lowerCAmelCase : Tuple = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) _lowerCAmelCase : List[str] = evaluation_loop(A__ , A__ , A__ , A__ ) _lowerCAmelCase : Optional[Any] = accuracy _lowerCAmelCase : List[str] = lr_scheduler.get_lr()[0] _lowerCAmelCase : List[Any] = optimizer.param_groups[0]["""lr"""] _lowerCAmelCase : Any = epoch _lowerCAmelCase : str = overall_step accelerator.print(F"epoch {epoch}:" , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json" ) , """w""" ) as f: json.dump(A__ , A__ ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Dict = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : Optional[int] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
714
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowerCamelCase : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _lowerCamelCase : Optional[Any] = [ { "type": "header", "text": { "type": "plain_text", "text": F'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', "emoji": True, }, } ] _lowerCamelCase : str = 0 for log in Path().glob("*.log"): _lowerCamelCase : str = 0 with open(log, "r") as f: for line in f: _lowerCamelCase : Optional[Any] = json.loads(line) if line.get("nodeid", "") != "": _lowerCamelCase : str = line["nodeid"] if line.get("duration", None) is not None: _lowerCamelCase : str = F'''{line['duration']:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowerCamelCase : Optional[int] = [] log.unlink() _lowerCamelCase : str = "" _lowerCamelCase : Optional[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _lowerCamelCase : Any = [] _lowerCamelCase : Dict = {} for test in failed_tests: _lowerCamelCase : Union[str, Any] = test[0].split("::") _lowerCamelCase : str = data[0].split("/")[-1] if data[0] not in filesafailed: _lowerCamelCase : List[str] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowerCamelCase : List[Any] = [test[0] for test in failed_table] _lowerCamelCase : Optional[Any] = list(set(files)) # Count number of instances in failed_tests _lowerCamelCase : Union[str, Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowerCamelCase : Optional[Any] = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: _lowerCamelCase : List[str] = "Too many failed tests, please see the full report in the Action results." _lowerCamelCase : Tuple = len(err) + 1_0 _lowerCamelCase : Union[str, Any] = message[: 3_0_0_0 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: _lowerCamelCase : List[str] = "No failed tests! 🤗" print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _lowerCamelCase : Optional[int] = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _lowerCamelCase : int = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _lowerCamelCase : List[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) _lowerCamelCase : Union[str, Any] = { "type": "context", "elements": [ { "type": "plain_text", "text": F'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) _lowerCamelCase : int = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _lowerCamelCase : List[Any] = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowerCamelCase : Dict = "" for i, row in enumerate(test_failures): if row[0] != test_class: _lowerCamelCase : Optional[int] = row[0] else: _lowerCamelCase : List[str] = "" _lowerCamelCase : int = { "type": "section", "text": { "type": "mrkdwn", "text": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
196
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowercase (datasets.BuilderConfig ): """simple docstring""" _UpperCAmelCase = None class __lowercase (datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCAmelCase = PandasConfig def UpperCamelCase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE_ : Dict = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[int] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ : List[str] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , 'rb' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase__ ) ) yield i, self._cast_table(lowerCAmelCase__ )
101
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
from __future__ import annotations def lowerCamelCase_ ( lowercase__): return len(set(lowercase__)) == len(lowercase__) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' class lowercase : '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = name lowerCamelCase__ = val def __str__( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : List[str] , __lowerCamelCase : List[str] ) -> str: '''simple docstring''' return self.val < other.val class lowercase : '''simple docstring''' def __init__( self : int , __lowerCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = {} lowerCamelCase__ = self.build_heap(__lowerCamelCase ) def __getitem__( self : Tuple , __lowerCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' return self.get_value(__lowerCamelCase ) def a__ ( self : str , __lowerCamelCase : int ) -> Optional[Any]: '''simple docstring''' return (idx - 1) // 2 def a__ ( self : List[str] , __lowerCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' return idx * 2 + 1 def a__ ( self : Any , __lowerCamelCase : str ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def a__ ( self : Any , __lowerCamelCase : int ) -> Dict: '''simple docstring''' return self.heap_dict[key] def a__ ( self : str , __lowerCamelCase : List[str] ) -> str: '''simple docstring''' lowerCamelCase__ = len(__lowerCamelCase ) - 1 lowerCamelCase__ = self.get_parent_idx(__lowerCamelCase ) for idx, i in enumerate(__lowerCamelCase ): lowerCamelCase__ = idx lowerCamelCase__ = i.val for i in range(__lowerCamelCase , -1 , -1 ): self.sift_down(__lowerCamelCase , __lowerCamelCase ) return array def a__ ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ) -> int: '''simple docstring''' while True: lowerCamelCase__ = self.get_left_child_idx(__lowerCamelCase ) # noqa: E741 lowerCamelCase__ = self.get_right_child_idx(__lowerCamelCase ) lowerCamelCase__ = idx if l < len(__lowerCamelCase ) and array[l] < array[idx]: lowerCamelCase__ = l if r < len(__lowerCamelCase ) and array[r] < array[smallest]: lowerCamelCase__ = r if smallest != idx: lowerCamelCase__ , lowerCamelCase__ = array[smallest], array[idx] ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCamelCase__ = smallest else: break def a__ ( self : str , __lowerCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = self.get_parent_idx(__lowerCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCamelCase__ , lowerCamelCase__ = self.heap[idx], self.heap[p] lowerCamelCase__ , lowerCamelCase__ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCamelCase__ = p lowerCamelCase__ = self.get_parent_idx(__lowerCamelCase ) def a__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.heap[0] def a__ ( self : Tuple ) -> int: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.heap[-1], self.heap[0] lowerCamelCase__ , lowerCamelCase__ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCamelCase__ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def a__ ( self : List[str] , __lowerCamelCase : Tuple ) -> List[Any]: '''simple docstring''' self.heap.append(__lowerCamelCase ) lowerCamelCase__ = len(self.heap ) - 1 lowerCamelCase__ = node.val self.sift_up(len(self.heap ) - 1 ) def a__ ( self : Dict ) -> Any: '''simple docstring''' return len(self.heap ) == 0 def a__ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCamelCase__ = new_value lowerCamelCase__ = new_value self.sift_up(self.idx_of_element[node] ) __A : str = Node("""R""", -1) __A : Dict = Node("""B""", 6) __A : Tuple = Node("""A""", 3) __A : str = Node("""X""", 1) __A : Optional[Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __A : Tuple = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
187
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Optional[Any]: '''simple docstring''' __lowercase = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } __lowercase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __lowercase = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=UpperCamelCase__ , output_all_encodings=UpperCamelCase__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , UpperCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __lowercase = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab __lowercase = os.path.join(get_home_dir() , '''models''' ) __lowercase = _load_vocab(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls=UpperCamelCase__ ) __lowercase = nlp.model.BERTModel( UpperCamelCase__ , len(UpperCamelCase__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=UpperCamelCase__ , use_token_type_embed=UpperCamelCase__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=UpperCamelCase__ , use_decoder=UpperCamelCase__ , ) original_bort.load_parameters(UpperCamelCase__ , cast_dtype=UpperCamelCase__ , ignore_extra=UpperCamelCase__ ) __lowercase = original_bort._collect_params_with_prefix() # Build our config 🤗 __lowercase = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(UpperCamelCase__ ), } __lowercase = BertConfig.from_dict(UpperCamelCase__ ) __lowercase = BertForMaskedLM(UpperCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCamelCase__ : Tuple ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): __lowercase = hf_param.shape __lowercase = to_torch(params[gluon_param] ) __lowercase = gluon_param.shape assert ( shape_hf == shape_gluon ), F'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __lowercase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __lowercase = hf_bort_model.bert.encoder.layer[i] # self attention __lowercase = layer.attention.self __lowercase = check_and_map_params( self_attn.key.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __lowercase = check_and_map_params( self_attn.key.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __lowercase = check_and_map_params( self_attn.query.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __lowercase = check_and_map_params( self_attn.query.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __lowercase = check_and_map_params( self_attn.value.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __lowercase = check_and_map_params( self_attn.value.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __lowercase = layer.attention.output __lowercase = check_and_map_params( self_output.dense.bias , F'encoder.transformer_cells.{i}.proj.bias' ) __lowercase = check_and_map_params( self_output.dense.weight , F'encoder.transformer_cells.{i}.proj.weight' ) __lowercase = check_and_map_params( self_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.layer_norm.beta' ) __lowercase = check_and_map_params( self_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __lowercase = layer.intermediate __lowercase = check_and_map_params( intermediate.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __lowercase = check_and_map_params( intermediate.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __lowercase = layer.output __lowercase = check_and_map_params( bert_output.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __lowercase = check_and_map_params( bert_output.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __lowercase = check_and_map_params( bert_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __lowercase = check_and_map_params( bert_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __lowercase = RobertaTokenizer.from_pretrained('''roberta-base''' ) __lowercase = tokenizer.encode_plus(UpperCamelCase__ )['''input_ids'''] # Get gluon output __lowercase = mx.nd.array([input_ids] ) __lowercase = original_bort(inputs=UpperCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(UpperCamelCase__ ) __lowercase = BertModel.from_pretrained(UpperCamelCase__ ) hf_bort_model.eval() __lowercase = tokenizer.encode_plus(UpperCamelCase__ , return_tensors='''pt''' ) __lowercase = hf_bort_model(**UpperCamelCase__ )[0] __lowercase = output_gluon[0].asnumpy() __lowercase = output_hf[0].detach().numpy() __lowercase = np.max(np.abs(hf_layer - gluon_layer ) ).item() __lowercase = np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
332
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Tuple = 'xmod' def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[int]=30_522 , lowerCamelCase__ : Union[str, Any]=768 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Any=12 , lowerCamelCase__ : Optional[Any]=3_072 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : List[str]=512 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Dict=1e-1_2 , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : List[str]="absolute" , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Tuple=("en_XX",) , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : Optional[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout __lowercase = pre_norm __lowercase = adapter_reduction_factor __lowercase = adapter_layer_norm __lowercase = adapter_reuse_layer_norm __lowercase = ln_before_adapter __lowercase = list(lowerCamelCase__ ) __lowercase = default_language class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
332
1
import random from .binary_exp_mod import bin_exp_mod def _snake_case ( __snake_case , __snake_case=1000 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _UpperCamelCase = n - 1 _UpperCamelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _UpperCamelCase = 0 while count < prec: _UpperCamelCase = random.randint(2 , n - 1 ) _UpperCamelCase = bin_exp_mod(__snake_case , __snake_case , __snake_case ) if b != 1: _UpperCamelCase = True for _ in range(__snake_case ): if b == n - 1: _UpperCamelCase = False break _UpperCamelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCAmelCase = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
71
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
71
1
"""simple docstring""" def UpperCAmelCase ( _lowercase : list[list] ) -> list[list]: """simple docstring""" lowerCAmelCase_ = current_set.copy() for row_index, row in enumerate(a_ ): lowerCAmelCase_ = row[0] for column_index, column in enumerate(a_ ): if magnitude == 0: lowerCAmelCase_ = column continue lowerCAmelCase_ = column / magnitude # Subtract to cancel term lowerCAmelCase_ = current_set[0] lowerCAmelCase_ = [first_row] lowerCAmelCase_ = current_set[1::] for row in current_set: lowerCAmelCase_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(a_ ) continue for column_index in range(len(a_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(a_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCAmelCase_ = final_set[0] lowerCAmelCase_ = [] lowerCAmelCase_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCAmelCase_ = simplify(a_ ) for i in range(len(a_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , a_ ) lowerCAmelCase_ = resultant return final_set def UpperCAmelCase ( _lowercase : list[list] ) -> list: """simple docstring""" if len(a_ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) lowerCAmelCase_ = len(a_ ) + 1 if any(len(a_ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(a_ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(a_ ) == 1: return [equations[0][-1] / equations[0][0]] lowerCAmelCase_ = equations.copy() if any(0 in row for row in data_set ): lowerCAmelCase_ = data_set.copy() lowerCAmelCase_ = [] for row_index, row in enumerate(a_ ): if 0 not in row: lowerCAmelCase_ = data_set.pop(a_ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , a_ ) lowerCAmelCase_ = data_set.copy() lowerCAmelCase_ = simplify(a_ ) lowerCAmelCase_ = simplified[::-1] lowerCAmelCase_ = [] for row in simplified: lowerCAmelCase_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCAmelCase_ = row.copy()[: len(a_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(a_ ) == 0: solutions.append(0 ) continue lowerCAmelCase_ = temp_row[1::] lowerCAmelCase_ = temp_row[::-1] for column_index, column in enumerate(a_ ): current_solution -= column * solutions[column_index] solutions.append(a_ ) lowerCAmelCase_ = [] for item in solutions: final.append(float(round(a_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
552
"""simple docstring""" UpperCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def lowerCamelCase (a_ :dict , a_ :List[str] , a_ :Tuple) -> list[str]: lowercase :str = set() # keep track of all the paths to be checked lowercase :Dict = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase :Optional[int] = queue.pop(0) # get the last node from the path lowercase :Any = path[-1] if node not in explored: lowercase :int = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase :List[Any] = list(a_) new_path.append(a_) queue.append(a_) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(a_) # in case there's no path between the 2 nodes return [] def lowerCamelCase (a_ :dict , a_ :List[Any] , a_ :List[Any]) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase :List[str] = [start] lowercase :Optional[Any] = set(a_) # Keep tab on distances from `start` node. lowercase :Union[str, Any] = {start: 0, target: -1} while queue: lowercase :Union[str, Any] = queue.pop(0) if node == target: lowercase :Any = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(a_) queue.append(a_) lowercase :Dict = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
677
0
"""simple docstring""" _lowercase : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : int = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : List[str] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
397
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "codegen" a__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _lowercase : Optional[int]=5_04_00 , _lowercase : List[str]=20_48 , _lowercase : Optional[int]=20_48 , _lowercase : Tuple=40_96 , _lowercase : Optional[Any]=28 , _lowercase : Tuple=16 , _lowercase : str=64 , _lowercase : Dict=None , _lowercase : Any="gelu_new" , _lowercase : Any=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.0 , _lowercase : str=1E-5 , _lowercase : Union[str, Any]=0.02 , _lowercase : List[str]=True , _lowercase : Dict=5_02_56 , _lowercase : str=5_02_56 , _lowercase : Any=False , **_lowercase : Optional[Any] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = n_ctx __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = n_inner __UpperCAmelCase = rotary_dim __UpperCAmelCase = activation_function __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id super().__init__( bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : int , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[Any] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Dict ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head def a ( self : Tuple , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
397
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
393
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( snake_case_ : list[int | float] , snake_case_ : int , snake_case_ : int ) -> int | float: '''simple docstring''' if len(snake_case_ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(snake_case_ ) or left < -len(snake_case_ ) or right >= len(snake_case_ ) or right < -len(snake_case_ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCAmelCase = (left + right) >> 1 # the middle __lowerCAmelCase = find_max(snake_case_ , snake_case_ , snake_case_ ) # find max in range[left, mid] __lowerCAmelCase = find_max(snake_case_ , mid + 1 , snake_case_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
427
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
567
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['ConvNextFeatureExtractor'] _snake_case = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure)
567
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : str )-> List[str]: '''simple docstring''' __snake_case = old_name if "patch_embed" in old_name: __snake_case , __snake_case , __snake_case = old_name.split('''.''' ) if layer == "0": __snake_case = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": __snake_case = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": __snake_case = old_name.replace('''3''' , '''convolution2''' ) else: __snake_case = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , _lowerCamelCase ): __snake_case = R'''\b\d{2}\b''' if bool(re.search(_lowerCamelCase , _lowerCamelCase ) ): __snake_case = re.search(R'''\d\.\d\d.''' , _lowerCamelCase ).group() else: __snake_case = re.search(R'''\d\.\d.''' , _lowerCamelCase ).group() if int(match[0] ) < 6: __snake_case = old_name.replace(_lowerCamelCase , '''''' ) __snake_case = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) __snake_case = '''intermediate_stages.''' + trimmed_name else: __snake_case = old_name.replace(_lowerCamelCase , '''''' ) if int(match[2] ) < num_meta4D_last_stage: __snake_case = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: __snake_case = str(int(match[2] ) - num_meta4D_last_stage ) __snake_case = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: __snake_case = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: __snake_case = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: __snake_case = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: __snake_case = trimmed_name.replace('''fc2''' , '''linear_out''' ) __snake_case = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , _lowerCamelCase ): __snake_case = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: __snake_case = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __snake_case = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __snake_case = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: __snake_case = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: __snake_case = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: __snake_case = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: __snake_case = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __snake_case = new_name.replace('''norm''' , '''layernorm''' ) __snake_case = '''efficientformer.''' + new_name else: __snake_case = '''efficientformer.encoder.''' + new_name return new_name def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : Tuple )-> List[str]: '''simple docstring''' for key in checkpoint.copy().keys(): __snake_case = checkpoint.pop(_lowerCamelCase ) __snake_case = val return checkpoint def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image def _UpperCamelCase (_lowerCamelCase : Path , _lowerCamelCase : Path , _lowerCamelCase : Path , _lowerCamelCase : bool )-> Optional[Any]: '''simple docstring''' __snake_case = torch.load(_lowerCamelCase , map_location='''cpu''' )['''model'''] __snake_case = EfficientFormerConfig.from_json_file(_lowerCamelCase ) __snake_case = EfficientFormerForImageClassificationWithTeacher(_lowerCamelCase ) __snake_case = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) __snake_case = config.depths[-1] - config.num_metaad_blocks + 1 __snake_case = convert_torch_checkpoint(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __snake_case = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __snake_case = prepare_img() __snake_case = 2_56 __snake_case = 2_24 __snake_case = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) __snake_case = processor(images=_lowerCamelCase , return_tensors='''pt''' ).pixel_values # original processing pipeline __snake_case = Compose( [ Resize(_lowerCamelCase , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(_lowerCamelCase ), ToTensor(), Normalize(_lowerCamelCase , _lowerCamelCase ), ] ) __snake_case = image_transforms(_lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) __snake_case = model(_lowerCamelCase ) __snake_case = outputs.logits __snake_case = (1, 10_00) if "l1" in model_name: __snake_case = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __snake_case = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __snake_case = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_lowerCamelCase ) print(f'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=_lowerCamelCase , ) processor.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
24
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case :Optional[Any] ={ 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :int =[ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __snake_case :List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
224
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case :Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :str =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[Any] =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case :Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
224
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) set_seed(770) lowerCAmelCase__ = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase__ = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase__ = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase__ = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def _A ( A__ , A__=False ): """simple docstring""" __lowercase = model_type if use_small: key += "_small" return os.path.join(A__ , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def _A ( A__ , A__ ): """simple docstring""" os.makedirs(A__ , exist_ok=A__ ) hf_hub_download(repo_id=A__ , filename=A__ , local_dir=A__ ) def _A ( A__ , A__ , A__=False , A__="text" ): """simple docstring""" if model_type == "text": __lowercase = BarkSemanticModel __lowercase = BarkSemanticConfig __lowercase = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase = BarkCoarseModel __lowercase = BarkCoarseConfig __lowercase = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase = BarkFineModel __lowercase = BarkFineConfig __lowercase = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase = F"{model_type}_small" if use_small else model_type __lowercase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A__ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) __lowercase = torch.load(A__ , map_location=A__ ) # this is a hack __lowercase = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __lowercase = model_args['''vocab_size'''] __lowercase = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase = model_args.pop('''n_head''' ) __lowercase = model_args.pop('''n_embd''' ) __lowercase = model_args.pop('''n_layer''' ) __lowercase = ConfigClass(**checkpoint['''model_args'''] ) __lowercase = ModelClass(config=A__ ) __lowercase = GenerationConfigClass() __lowercase = model_generation_config __lowercase = checkpoint['''model'''] # fixup checkpoint __lowercase = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(A__ ): # replace part of the key with corresponding layer name in HF implementation __lowercase = k[len(A__ ) :] for old_layer_name in new_layer_name_dict: __lowercase = new_k.replace(A__ , new_layer_name_dict[old_layer_name] ) __lowercase = state_dict.pop(A__ ) __lowercase = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} __lowercase = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(A__ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(A__ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(A__ , strict=A__ ) __lowercase = model.num_parameters(exclude_embeddings=A__ ) __lowercase = checkpoint['''best_val_loss'''].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(A__ , 3 )} loss" ) model.eval() model.to(A__ ) del checkpoint, state_dict return model def _A ( A__ , A__=False , A__="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase = '''cpu''' # do conversion on cpu __lowercase = _get_ckpt_path(A__ , use_small=A__ ) __lowercase = _load_model(A__ , A__ , model_type=A__ , use_small=A__ ) # load bark initial model __lowercase = _bark_load_model(A__ , '''cpu''' , model_type=A__ , use_small=A__ ) if model_type == "text": __lowercase = bark_model['''model'''] if model.num_parameters(exclude_embeddings=A__ ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model __lowercase = 5 __lowercase = 10 if model_type in ["text", "coarse"]: __lowercase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase = bark_model(A__ )[0] __lowercase = model(A__ ) # take last logits __lowercase = output_new_model_total.logits[:, [-1], :] else: __lowercase = 3 __lowercase = 8 __lowercase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase = model(A__ , A__ ) __lowercase = bark_model(A__ , A__ ) __lowercase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) def _A ( A__ , A__ , A__ , A__ , A__ , A__ , ): """simple docstring""" __lowercase = os.path.join(A__ , A__ ) __lowercase = BarkSemanticConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = BarkCoarseConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = BarkFineConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) __lowercase = BarkSemanticModel.from_pretrained(A__ ) __lowercase = BarkCoarseModel.from_pretrained(A__ ) __lowercase = BarkFineModel.from_pretrained(A__ ) __lowercase = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) __lowercase = BarkConfig.from_sub_model_configs( A__ , A__ , A__ , A__ ) __lowercase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase = BarkModel(A__ ) __lowercase = semantic __lowercase = coarseAcoustic __lowercase = fineAcoustic __lowercase = codec __lowercase = bark_generation_config Path(A__ ).mkdir(exist_ok=A__ ) bark.save_pretrained(A__ , repo_id=A__ , push_to_hub=A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
41
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
0
UpperCamelCase__ : str = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__A ): if (place + 1 < len(__A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: (SCREAMING_SNAKE_CASE_) = divmod(__A , __A ) result.append(roman * factor ) if number == 0: break return "".join(__A ) if __name__ == "__main__": import doctest doctest.testmod()
715
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCamelCase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCAmelCase : Optional[datasets.Features] = None __lowerCAmelCase : str = "utf-8" __lowerCAmelCase : Optional[str] = None __lowerCAmelCase : Optional[str] = None __lowerCAmelCase : bool = True # deprecated __lowerCAmelCase : Optional[int] = None # deprecated __lowerCAmelCase : int = 10 << 20 # 10MB __lowerCAmelCase : Optional[bool] = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCAmelCase : int = JsonConfig def lowerCAmelCase__ ( self): if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def lowerCAmelCase__ ( self , _A): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files) if isinstance(_A , (str, list, tuple)): SCREAMING_SNAKE_CASE_ = data_files if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files})) return splits def lowerCAmelCase__ ( self , _A): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(_A).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(_A , pa.array([None] * len(_A) , type=_A)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(_A , self.config.features.arrow_schema) return pa_table def lowerCAmelCase__ ( self , _A): for file_idx, file in enumerate(itertools.chain.from_iterable(_A)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: SCREAMING_SNAKE_CASE_ = json.load(_A) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple)): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset]) SCREAMING_SNAKE_CASE_ = {col: [row.get(_A) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(_A) yield file_idx, self._cast_table(_A) # If the file has one json object per line else: with open(_A , 'rb') as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=_A).encode('utf-8') try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(_A) , read_options=paj.ReadOptions(block_size=_A)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid) and "straddling" not in str(_A) or block_size > len(_A) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(_A)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: SCREAMING_SNAKE_CASE_ = json.load(_A) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(_A)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset]) SCREAMING_SNAKE_CASE_ = {col: [row.get(_A) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(_A) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(_A)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(_A) break else: logger.error(f"""Failed to read file '{file}' with error {type(_A)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A) batch_idx += 1
620
0
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ : List[str] = '''▁''' A__ : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = BigBirdTokenizer lowerCamelCase : Tuple = BigBirdTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : Union[str, Any] = True def lowercase_ ( self ) -> Optional[int]: super().setUp() __lowerCamelCase : List[Any] = self.tokenizer_class(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : List[str] = """<s>""" __lowerCamelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 10_04 ) def lowercase_ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowercase_ ( self ) -> int: if not self.test_rust_tokenizer: return __lowerCamelCase : Tuple = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = self.get_rust_tokenizer() __lowerCamelCase : Dict = """I was born in 92000, and this is falsé.""" __lowerCamelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.get_rust_tokenizer() __lowerCamelCase : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Any = BigBirdTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [2_85, 46, 10, 1_70, 3_82] , ) __lowerCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : str = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowercase_ ( self ) -> Any: return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Tuple = """Hello World!""" __lowerCamelCase : int = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off __lowerCamelCase : Union[str, Any] = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @require_torch @slow def lowercase_ ( self ) -> Any: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __lowerCamelCase : str = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowerCamelCase : Dict = """ """.join(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , return_tensors='pt' , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = BigBirdConfig(attention_type='original_full' ) __lowerCamelCase : Dict = BigBirdModel(SCREAMING_SNAKE_CASE_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ ) model(**SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> str: __lowerCamelCase : Optional[int] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) __lowerCamelCase : List[Any] = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowercase_ ( self ) -> Any: # fmt: off __lowerCamelCase : Union[str, Any] = {"""input_ids""": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
13
"""simple docstring""" __A : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
499
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case_ = logging.get_logger(__name__) class snake_case_ ( _A): lowerCamelCase :Union[str, Any] = ["input_values", "padding_mask"] def __init__( self , __lowercase = 1 , __lowercase = 2_4_0_0_0 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , **__lowercase , ) -> List[Any]: super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) lowerCamelCase : Dict =chunk_length_s lowerCamelCase : List[Any] =overlap @property def __lowercase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowercase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __lowercase , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs lowerCamelCase : List[Any] =True lowerCamelCase : int =bool( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase : int =[np.asarray(__lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowercase , np.ndarray ): lowerCamelCase : Optional[int] =np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCamelCase : Optional[int] =raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase : Dict =[np.asarray(__lowercase ).T] # verify inputs are valid for idx, example in enumerate(__lowercase ): if example.ndim > 2: raise ValueError(F"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"Expected stereo audio but example has {example.shape[-1]} channels" ) lowerCamelCase : Tuple =None lowerCamelCase : Any =BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCamelCase : str =min(array.shape[0] for array in raw_audio ) lowerCamelCase : str =int(np.floor(max_length / self.chunk_stride ) ) lowerCamelCase : List[Any] =(nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCamelCase : str =max(array.shape[0] for array in raw_audio ) lowerCamelCase : int =int(np.ceil(max_length / self.chunk_stride ) ) lowerCamelCase : Optional[int] =(nb_step - 1) * self.chunk_stride + self.chunk_length lowerCamelCase : List[Any] ='''max_length''' else: lowerCamelCase : Optional[Any] =input_values # normal padding on batch if padded_inputs is None: lowerCamelCase : List[Any] =self.pad( __lowercase , max_length=__lowercase , truncation=__lowercase , padding=__lowercase , return_attention_mask=__lowercase , ) if padding: lowerCamelCase : int =padded_inputs.pop('''attention_mask''' ) lowerCamelCase : Dict =[] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: lowerCamelCase : Any =example[..., None] input_values.append(example.T ) lowerCamelCase : List[Any] =input_values if return_tensors is not None: lowerCamelCase : str =padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs
701
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument snake_case_ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def A__ ( SCREAMING_SNAKE_CASE_ ) -> int: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCamelCase : List[Any] =list(s_dict.keys() ) for key in keys: lowerCamelCase : Dict =R'''.*/layers_(\d+)''' lowerCamelCase : Optional[int] =key if re.match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Optional[Any] =re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict =R'''(encoder|decoder)\/''' if re.match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Dict =re.match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).groups() if groups[0] == "encoder": lowerCamelCase : Dict =re.sub(R'''/mlp/''' , R'''/1/mlp/''' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] =re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , SCREAMING_SNAKE_CASE_ ) elif groups[0] == "decoder": lowerCamelCase : List[str] =re.sub(R'''/mlp/''' , R'''/2/mlp/''' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : str =re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , SCREAMING_SNAKE_CASE_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase : Dict =new_key.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"{key} -> {new_key}" ) lowerCamelCase : Optional[Any] =s_dict.pop(SCREAMING_SNAKE_CASE_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase : Dict =s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase : Union[str, Any] =s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCamelCase : List[Any] =s_dict[key].shape[0] lowerCamelCase : int =s_dict[key] for idx in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Tuple =expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(SCREAMING_SNAKE_CASE_ ) return s_dict snake_case_ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # Convert a google style config to the hugging face fromat import regex as re with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: lowerCamelCase : str =f.read() lowerCamelCase : Union[str, Any] =re.findall(R'''(.*) = ([0-9.]*)''' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : str ={} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase : str =float(SCREAMING_SNAKE_CASE_ ) if '''.''' in value else int(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int =re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase : Any =str(activation[1] ) lowerCamelCase : Tuple =num_experts lowerCamelCase : Any =SwitchTransformersConfig(**SCREAMING_SNAKE_CASE_ ) return config def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="./" , SCREAMING_SNAKE_CASE_=8 ) -> Dict: # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) lowerCamelCase : List[Any] =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) if gin_file is not None: lowerCamelCase : Dict =convert_gin_to_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Optional[int] =SwitchTransformersConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any =SwitchTransformersForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int =flax_params['''target'''] lowerCamelCase : Optional[int] =flatten_dict(SCREAMING_SNAKE_CASE_ , sep='''/''' ) lowerCamelCase : str =rename_keys(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] =unflatten_dict(SCREAMING_SNAKE_CASE_ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') snake_case_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
262
0
def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : int ): if digit_amount > 0: return round(number - int(__lowerCamelCase ) , __lowerCamelCase ) return number - int(__lowerCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
63
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1 , __lowerCamelCase: int = 1000 ): lowercase_ = 1 lowercase_ = 0 for divide_by_number in range(__lowerCamelCase , digit + 1 ): lowercase_ = [] lowercase_ = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowerCamelCase ): lowercase_ = len(__lowerCamelCase ) lowercase_ = divide_by_number else: has_been_divided.append(__lowerCamelCase ) lowercase_ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
711
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): SCREAMING_SNAKE_CASE__ = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.999_995 , metadata={"help": "Decay of gumbel temperature during training."} ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: ModelArguments , __lowerCamelCase: TrainingArguments ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ = logging.WARNING if model_args.verbose_logging: lowercase_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase_ = logging.INFO logger.setLevel(__lowerCamelCase ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase_ = self.feature_extractor.pad( UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowercase_ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase_ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase_ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase_ = 1 lowercase_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , ) return batch class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , *UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=1.0 , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) lowercase_ = 0 lowercase_ = max_gumbel_temp lowercase_ = min_gumbel_temp lowercase_ = gumbel_temp_decay def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' model.train() lowercase_ = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase_ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowercase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() configure_logger(__lowerCamelCase , __lowerCamelCase ) # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCamelCase ) def prepare_dataset(__lowerCamelCase: Dict ): # check that all files have the correct sampling rate lowercase_ , lowercase_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase_ = datasets.map( __lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase_ = vectorized_datasets.filter( lambda __lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCamelCase: Optional[Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase_ = vectorized_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) lowercase_ = WavaVecaForPreTraining(__lowerCamelCase ) lowercase_ = DataCollatorForWavaVecaPretraining(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) lowercase_ = WavaVecaPreTrainer( model=__lowerCamelCase , data_collator=__lowerCamelCase , args=__lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
601
0
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> bool: SCREAMING_SNAKE_CASE_ : Optional[Any] =0 for ch in input_str: SCREAMING_SNAKE_CASE_ : List[Any] =ord(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =pow(2 , UpperCAmelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
443
from math import ceil, sqrt def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int = 1_0_0_0_0_0_0 ) -> int: SCREAMING_SNAKE_CASE_ : List[Any] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: SCREAMING_SNAKE_CASE_ : List[str] =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE_ : List[str] =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"{solution() = }")
443
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _a ( __lowerCamelCase ): def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=13 , UpperCamelCase_: Union[str, Any]=7 , UpperCamelCase_: List[Any]=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: int=99 , UpperCamelCase_: Dict=32 , UpperCamelCase_: Dict=5 , UpperCamelCase_: Union[str, Any]=4 , UpperCamelCase_: str=37 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Tuple=512 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: Dict=2 , UpperCamelCase_: int=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Optional[int]=4 , UpperCamelCase_: str=None , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Tuple ) -> Tuple: """simple docstring""" lowercase__ = DistilBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] ) -> int: """simple docstring""" lowercase__ = DistilBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" lowercase__ = DistilBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = DistilBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.num_labels lowercase__ = DistilBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = DistilBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowercase : str = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _lowercase : Optional[Any] = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Optional[Any] = True _lowercase : Dict = True _lowercase : Dict = True _lowercase : List[str] = True def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" lowercase__ = DistilBertModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , dim=37 ) def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DistilBertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = torch.jit.trace( UpperCamelCase_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''traced_model.pt''' ) ) lowercase__ = torch.jit.load(os.path.join(UpperCamelCase_ , '''traced_model.pt''' ) , map_location=UpperCamelCase_ ) loaded(inputs_dict['''input_ids'''].to(UpperCamelCase_ ) , inputs_dict['''attention_mask'''].to(UpperCamelCase_ ) ) @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" lowercase__ = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) lowercase__ = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1E-4 ) )
714
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = list(range(len(SCREAMING_SNAKE_CASE ) ) ) lowercase__ = [v / w for v, w in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] index.sort(key=lambda SCREAMING_SNAKE_CASE : ratio[i] , reverse=SCREAMING_SNAKE_CASE ) lowercase__ = 0 lowercase__ = [0] * len(SCREAMING_SNAKE_CASE ) for i in index: if weight[i] <= capacity: lowercase__ = 1 max_value += value[i] capacity -= weight[i] else: lowercase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
429
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __a : def __init__( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple=14 ,lowerCamelCase : Optional[Any]=7 ,lowerCamelCase : str=True ,lowerCamelCase : List[str]=True ,lowerCamelCase : Dict=True ,lowerCamelCase : Any=True ,lowerCamelCase : int=True ,lowerCamelCase : Dict=99 ,lowerCamelCase : Dict=32 ,lowerCamelCase : Optional[Any]=5 ,lowerCamelCase : Tuple=4 ,lowerCamelCase : Optional[int]=37 ,lowerCamelCase : Optional[int]="gelu" ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Dict=512 ,lowerCamelCase : int=16 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : str=3 ,lowerCamelCase : Union[str, Any]=4 ,lowerCamelCase : Any=None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = use_mc_token_ids __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = self.vocab_size - 1 def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_mc_token_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Any ,lowerCamelCase : List[str] ,lowerCamelCase : str ,*lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() model(lowerCamelCase ,token_type_ids=lowerCamelCase ,head_mask=lowerCamelCase ) model(lowerCamelCase ,token_type_ids=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : int ,lowerCamelCase : Dict ,*lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCamelCase ,token_type_ids=lowerCamelCase ,labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int ,lowerCamelCase : str ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ,*lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = CTRLForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ,token_type_ids=lowerCamelCase ,labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class __a ( _snake_case, _snake_case, _snake_case, unittest.TestCase ): __UpperCamelCase : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __UpperCamelCase : Dict = (CTRLLMHeadModel,) if is_torch_available() else () __UpperCamelCase : int = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : List[str] = True __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = False def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Any ,lowerCamelCase : str ,lowerCamelCase : List[str] ,lowerCamelCase : int ,lowerCamelCase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,n_embd=37 ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = CTRLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor( [[1_1859, 0, 1611, 8]] ,dtype=torch.long ,device=lowerCamelCase ) # Legal the president is __SCREAMING_SNAKE_CASE = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __SCREAMING_SNAKE_CASE = model.generate(lowerCamelCase ,do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() ,lowerCamelCase )
109
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __UpperCAmelCase ( UpperCamelCase__ :int ) -> typing.Counter[int]: snake_case__ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(UpperCamelCase__ , max_perimeter + 1 ): snake_case__ : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(UpperCamelCase__ ): snake_case__ : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __UpperCAmelCase ( UpperCamelCase__ :int = 1000 ) -> int: snake_case__ : Tuple = pythagorean_triple(UpperCamelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
574
'''simple docstring''' import argparse import os import re _lowercase : str ="src/transformers" # Pattern that looks at the indentation in a line. _lowercase : List[Any] =re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _lowercase : Optional[Any] =re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowercase : Tuple =re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. _lowercase : List[Any] =re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowercase : int =re.compile(R"\[([^\]]+)\]") def __UpperCAmelCase ( UpperCamelCase__ :List[str] ) -> Tuple: snake_case__ : str = _re_indent.search(UpperCamelCase__ ) return "" if search is None else search.groups()[0] def __UpperCAmelCase ( UpperCamelCase__ :int , UpperCamelCase__ :int="" , UpperCamelCase__ :Optional[int]=None , UpperCamelCase__ :str=None ) -> int: snake_case__ : Union[str, Any] = 0 snake_case__ : int = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(UpperCamelCase__ ): index += 1 snake_case__ : Dict = ['''\n'''.join(lines[:index] )] else: snake_case__ : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : int = [lines[index]] index += 1 while index < len(UpperCamelCase__ ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCamelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(UpperCamelCase__ ) ) if index < len(UpperCamelCase__ ) - 1: snake_case__ : Any = [lines[index + 1]] index += 1 else: snake_case__ : Any = [] else: blocks.append('''\n'''.join(UpperCamelCase__ ) ) snake_case__ : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCamelCase__ ) > 0: blocks.append('''\n'''.join(UpperCamelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCamelCase__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def __UpperCAmelCase ( UpperCamelCase__ :Union[str, Any] ) -> int: def _inner(UpperCamelCase__ :Dict ): return key(UpperCamelCase__ ).lower().replace('''_''' , '''''' ) return _inner def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :List[str]=None ) -> Optional[Any]: # If no key is provided, we use a noop. def noop(UpperCamelCase__ :List[str] ): return x if key is None: snake_case__ : Optional[Any] = noop # Constants are all uppercase, they go first. snake_case__ : Dict = [obj for obj in objects if key(UpperCamelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : Optional[int] = [obj for obj in objects if key(UpperCamelCase__ )[0].isupper() and not key(UpperCamelCase__ ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : Any = [obj for obj in objects if not key(UpperCamelCase__ )[0].isupper()] snake_case__ : Union[str, Any] = ignore_underscore(UpperCamelCase__ ) return sorted(UpperCamelCase__ , key=UpperCamelCase__ ) + sorted(UpperCamelCase__ , key=UpperCamelCase__ ) + sorted(UpperCamelCase__ , key=UpperCamelCase__ ) def __UpperCAmelCase ( UpperCamelCase__ :List[Any] ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(UpperCamelCase__ :Union[str, Any] ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return F'''[{imports}]''' snake_case__ : Dict = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : Tuple = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCamelCase__ )] ) + "]" snake_case__ : Optional[int] = import_statement.split('''\n''' ) if len(UpperCamelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Optional[Any] = 2 if lines[1].strip() == '''[''' else 1 snake_case__ : Union[str, Any] = [(i, _re_strip_line.search(UpperCamelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : Dict = sort_objects(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] ) snake_case__ : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCamelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : Any = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : Dict = keys[:-1] snake_case__ : Union[str, Any] = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCamelCase__ )] ) return "\n".join(UpperCamelCase__ ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Dict = _re_bracket_content.sub(_replace , UpperCamelCase__ ) return import_statement def __UpperCAmelCase ( UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Dict=True ) -> Dict: with open(UpperCamelCase__ , encoding='''utf-8''' ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[Any] = split_code_in_indented_blocks( UpperCamelCase__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCamelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Any = main_blocks[block_idx] snake_case__ : Dict = block.split('''\n''' ) # Get to the start of the imports. snake_case__ : List[str] = 0 while line_idx < len(UpperCamelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : List[Any] = len(UpperCamelCase__ ) else: line_idx += 1 if line_idx >= len(UpperCamelCase__ ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : Optional[Any] = '''\n'''.join(block_lines[line_idx:-1] ) snake_case__ : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : List[str] = split_code_in_indented_blocks(UpperCamelCase__ , indent_level=UpperCamelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[int] = [(pattern.search(UpperCamelCase__ ).groups()[0] if pattern.search(UpperCamelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Any = [(i, key) for i, key in enumerate(UpperCamelCase__ ) if key is not None] snake_case__ : Optional[int] = [x[0] for x in sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : Dict = 0 snake_case__ : Dict = [] for i in range(len(UpperCamelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(UpperCamelCase__ ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : int = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCamelCase__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(UpperCamelCase__ ) ) def __UpperCAmelCase ( UpperCamelCase__ :Optional[Any]=True ) -> Union[str, Any]: snake_case__ : str = [] for root, _, files in os.walk(UpperCamelCase__ ): if "__init__.py" in files: snake_case__ : int = sort_imports(os.path.join(UpperCamelCase__ , '''__init__.py''' ) , check_only=UpperCamelCase__ ) if result: snake_case__ : Optional[Any] = [os.path.join(UpperCamelCase__ , '''__init__.py''' )] if len(UpperCamelCase__ ) > 0: raise ValueError(F'''Would overwrite {len(UpperCamelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": _lowercase : Optional[Any] =argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowercase : Tuple =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
574
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=13 , __lowerCamelCase : List[Any]=10 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Any=10 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : List[str]="divided_space_time" , __lowerCamelCase : List[Any]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_frames SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = attention_type SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = (num_frames) * self.num_patches_per_frame + 1 def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) SCREAMING_SNAKE_CASE = self.num_labels return config def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # verify the logits shape SCREAMING_SNAKE_CASE = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = TimesformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str=False ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _snake_case ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _snake_case ( self : Optional[Any] ): pass def _snake_case ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def _snake_case ( self : str ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = self.model_tester.seq_length SCREAMING_SNAKE_CASE = self.model_tester.num_frames SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _snake_case ( self : Any ): def check_hidden_states_output(__lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) SCREAMING_SNAKE_CASE = np.load(A__ ) return list(A__ ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_video() SCREAMING_SNAKE_CASE = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] )
187
0
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list ) -> list: SCREAMING_SNAKE_CASE_ : Tuple =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_ : Optional[Any] =True for i in range(0 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ : int =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_ : List[Any] =False for i in range(1 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ : Tuple =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_ : Any =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _lowercase = [int(x) for x in input().split()] # inputing elements of the list in one line _lowercase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict ) -> Optional[int]: from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : List[Any] =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ) -> int: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: SCREAMING_SNAKE_CASE_ : Union[str, Any] =0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag("""IGNORE_RESULT""") _lowercase = doctest.OutputChecker class lowercase_ ( A ): def _snake_case ( self , __A , __A , __A ) -> List[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __A , __A , __A ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
431
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( _a , unittest.TestCase): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @property def snake_case_ ( self : List[Any] ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self : List[Any] ) -> Optional[Any]: _A = ort.SessionOptions() _A = False return options def snake_case_ ( self : int ) -> Dict: _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _A = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _A = "A red cat sitting on a park bench" _A = np.random.RandomState(0 ) _A = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='''np''' , ) _A = output.images _A = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _A = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case_ ( self : Optional[int] ) -> Optional[Any]: _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _A = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) _A = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _A = "A red cat sitting on a park bench" _A = np.random.RandomState(0 ) _A = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='''np''' , ) _A = output.images _A = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _A = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
2
def _A ( SCREAMING_SNAKE_CASE ): stooge(SCREAMING_SNAKE_CASE ,0 ,len(SCREAMING_SNAKE_CASE ) - 1 ) return arr def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCAmelCase__ , UpperCAmelCase__: int = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCAmelCase__: str = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,(h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE ,i + t ,(SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,(h - t) ) if __name__ == "__main__": _lowerCAmelCase : List[str] =input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Any =[int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
113
0
_a : Any = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
111
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : str = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
111
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __magic_name__ : def __init__( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[Any]=1_3 ,__SCREAMING_SNAKE_CASE : int=7 ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : Optional[int]=True ,__SCREAMING_SNAKE_CASE : Dict=9_9 ,__SCREAMING_SNAKE_CASE : int=3_2 ,__SCREAMING_SNAKE_CASE : List[str]=2 ,__SCREAMING_SNAKE_CASE : List[Any]=4 ,__SCREAMING_SNAKE_CASE : int=3_7 ,__SCREAMING_SNAKE_CASE : Any="gelu" ,__SCREAMING_SNAKE_CASE : Tuple=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 ,__SCREAMING_SNAKE_CASE : int=1_6 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=2 ,__SCREAMING_SNAKE_CASE : int=0.02 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=3 ,__SCREAMING_SNAKE_CASE : Any=4 ,__SCREAMING_SNAKE_CASE : str=None ,): UpperCAmelCase = parent UpperCAmelCase = 1_3 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 9_9 UpperCAmelCase = 3_8_4 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 3_7 UpperCAmelCase = "gelu" UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 5_1_2 UpperCAmelCase = 1_6 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = 1_2_8 UpperCAmelCase = 2 UpperCAmelCase = 9 UpperCAmelCase = 1 UpperCAmelCase = None def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = ConvBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=__SCREAMING_SNAKE_CASE ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : str ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFConvBertModel(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = TFConvBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFConvBertForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = self.num_choices UpperCAmelCase = TFConvBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFConvBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFConvBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _a , _a , unittest.TestCase): _UpperCAmelCase : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = False def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = TFConvBertModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=3_7 ) def _UpperCAmelCase ( self : List[Any] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[int] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = True if hasattr(__SCREAMING_SNAKE_CASE ,"use_cache" ): UpperCAmelCase = True UpperCAmelCase = getattr(self.model_tester ,"encoder_seq_length" ,self.model_tester.seq_length ) UpperCAmelCase = getattr(self.model_tester ,"key_length" ,__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = len(model(__SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE ,saved_model=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE ,"saved_model" ,"1" ) UpperCAmelCase = tf.keras.models.load_model(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: UpperCAmelCase = outputs["encoder_hidden_states"] UpperCAmelCase = outputs["encoder_attentions"] else: UpperCAmelCase = outputs["hidden_states"] UpperCAmelCase = outputs["attentions"] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = getattr( self.model_tester ,"expected_num_hidden_layers" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) ,[self.model_tester.seq_length, self.model_tester.hidden_size] ,) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) @slow def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = getattr(self.model_tester ,"decoder_seq_length" ,self.model_tester.seq_length ) UpperCAmelCase = getattr(self.model_tester ,"encoder_seq_length" ,self.model_tester.seq_length ) UpperCAmelCase = getattr(self.model_tester ,"key_length" ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = getattr(self.model_tester ,"key_length" ,__SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 ,0 ) UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] ,) def check_encoder_attentions_output(__SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states ,__SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states ,__SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(__SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states ,__SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(__SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states ,__SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) @require_tf class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 )
333
import os def __UpperCamelCase ( ): """simple docstring""" with open(os.path.dirname(_lowerCAmelCase ) + "/grid.txt" ) as f: UpperCAmelCase = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCAmelCase ) for x in f.readline().split()] ) UpperCAmelCase = 0 # right for i in range(20 ): for j in range(17 ): UpperCAmelCase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCAmelCase = temp # down for i in range(17 ): for j in range(20 ): UpperCAmelCase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCAmelCase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCAmelCase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCAmelCase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCAmelCase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCAmelCase = temp return maximum if __name__ == "__main__": print(solution())
333
1
"""simple docstring""" def UpperCamelCase_ ( lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __magic_name__ : Union[str, Any] = set() # Replace all the whitespace in our sentence __magic_name__ : List[Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCamelCase ) == 26 def UpperCamelCase_ ( lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __magic_name__ : List[Any] = [False] * 26 for char in input_str: if char.islower(): __magic_name__ : List[Any] = True elif char.isupper(): __magic_name__ : Tuple = True return all(lowerCamelCase ) def UpperCamelCase_ ( lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase_ ( ) -> None: from timeit import timeit __magic_name__ : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowerCamelCase ) ) print(timeit('''is_pangram_faster()''' , setup=lowerCamelCase ) ) print(timeit('''is_pangram_fastest()''' , setup=lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
706
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A = datasets.utils.logging.get_logger(__name__) A = ["""names""", """prefix"""] A = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] A = ["""encoding_errors""", """on_bad_lines"""] A = ["""date_format"""] @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" snake_case_ = "," snake_case_ = None snake_case_ = "infer" snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = False snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = None snake_case_ = "." snake_case_ = None snake_case_ = '"' snake_case_ = 0 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = None snake_case_ = 1_0_0_0_0 snake_case_ = None snake_case_ = "strict" snake_case_ = "error" snake_case_ = None def _UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if self.delimiter is not None: __magic_name__ : Optional[Any] = self.delimiter if self.column_names is not None: __magic_name__ : Union[str, Any] = self.column_names @property def _UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _UpperCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" snake_case_ = CsvConfig def _UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _UpperCAmelCase ( self : Union[str, Any] , snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __magic_name__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): __magic_name__ : List[str] = data_files if isinstance(snake_case , snake_case ): __magic_name__ : Optional[int] = [files] __magic_name__ : List[Any] = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __magic_name__ : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): __magic_name__ : List[Any] = [files] __magic_name__ : Optional[int] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={'''files''': files} ) ) return splits def _UpperCAmelCase ( self : List[Any] , snake_case : pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: __magic_name__ : int = self.config.features.arrow_schema if all(not require_storage_cast(snake_case ) for feature in self.config.features.values() ): # cheaper cast __magic_name__ : List[str] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __magic_name__ : Optional[int] = table_cast(snake_case , snake_case ) return pa_table def _UpperCAmelCase ( self : Optional[int] , snake_case : Any ) -> Any: '''simple docstring''' __magic_name__ : str = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __magic_name__ : List[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): __magic_name__ : int = pd.read_csv(snake_case , iterator=snake_case , dtype=snake_case , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case ): __magic_name__ : str = pa.Table.from_pandas(snake_case ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(snake_case )}: {e}""" ) raise
147
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __a = logging.get_logger(__name__) @dataclass class __a( _a ): """simple docstring""" lowerCAmelCase = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self ,**_SCREAMING_SNAKE_CASE ) -> int: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ : Any = deprecated_arg[3:] UpperCAmelCase_ : Any = not kwargs.pop(_SCREAMING_SNAKE_CASE ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase_ : List[str] = kwargs.pop('''tpu_name''' ,self.tpu_name ) UpperCAmelCase_ : Any = kwargs.pop('''device_idx''' ,self.device_idx ) UpperCAmelCase_ : Dict = kwargs.pop('''eager_mode''' ,self.eager_mode ) UpperCAmelCase_ : Any = kwargs.pop('''use_xla''' ,self.use_xla ) super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Name of TPU'''} , ) lowerCAmelCase = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Benchmark models in eager model.'''} ) lowerCAmelCase = field( default=_a , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def a__ ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['''tf'''] ) UpperCAmelCase_ : Tuple = None if self.tpu: try: if self.tpu_name: UpperCAmelCase_ : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase_ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase_ : Optional[int] = None return tpu @cached_property def a__ ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase_ : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'''GPU''' ) UpperCAmelCase_ : Any = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] ,'''GPU''' ) # disable GPU UpperCAmelCase_ : Optional[int] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def a__ ( self ) -> bool: requires_backends(self ,['''tf'''] ) return self._setup_tpu is not None @property def a__ ( self ) -> "tf.distribute.Strategy": requires_backends(self ,['''tf'''] ) return self._setup_strategy @property def a__ ( self ) -> Tuple: requires_backends(self ,['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def a__ ( self ) -> int: requires_backends(self ,['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def a__ ( self ) -> bool: return self.n_gpu > 0
30
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger() def _UpperCamelCase ( lowerCAmelCase__: int ,lowerCAmelCase__: str ,lowerCAmelCase__: LevitConfig ,lowerCAmelCase__: Path ,lowerCAmelCase__: bool = True ) -> Optional[int]: print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": SCREAMING_SNAKE_CASE_ = timm.create_model('levit_128s' ,pretrained=lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ = timm.create_model('levit_128' ,pretrained=lowerCAmelCase__ ) if hidden_sizes == 192: SCREAMING_SNAKE_CASE_ = timm.create_model('levit_192' ,pretrained=lowerCAmelCase__ ) if hidden_sizes == 256: SCREAMING_SNAKE_CASE_ = timm.create_model('levit_256' ,pretrained=lowerCAmelCase__ ) if hidden_sizes == 384: SCREAMING_SNAKE_CASE_ = timm.create_model('levit_384' ,pretrained=lowerCAmelCase__ ) from_model.eval() SCREAMING_SNAKE_CASE_ = LevitForImageClassificationWithTeacher(lowerCAmelCase__ ).eval() SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = from_model.state_dict() SCREAMING_SNAKE_CASE_ = list(from_model.state_dict().keys() ) SCREAMING_SNAKE_CASE_ = list(our_model.state_dict().keys() ) print(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ) for i in range(len(lowerCAmelCase__ ) ): SCREAMING_SNAKE_CASE_ = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = torch.randn((2, 3, 224, 224) ) SCREAMING_SNAKE_CASE_ = from_model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = our_model(lowerCAmelCase__ ).logits assert torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE_ = name print(lowerCAmelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) SCREAMING_SNAKE_CASE_ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def _UpperCamelCase ( lowerCAmelCase__: Path ,lowerCAmelCase__: str = None ,lowerCAmelCase__: bool = True ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ = 1000 SCREAMING_SNAKE_CASE_ = (1, num_labels) SCREAMING_SNAKE_CASE_ = 'huggingface/label-files' SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='dataset' ) ,'r' ) ) SCREAMING_SNAKE_CASE_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = partial(lowerCAmelCase__ ,num_labels=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } SCREAMING_SNAKE_CASE_ = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] ,num_attention_heads=[4, 6, 8] ,depths=[2, 3, 4] ,key_dim=[16, 16, 16] ,drop_path_rate=0 ,), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] ,num_attention_heads=[4, 8, 12] ,depths=[4, 4, 4] ,key_dim=[16, 16, 16] ,drop_path_rate=0 ,), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] ,num_attention_heads=[3, 5, 6] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0 ,), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] ,num_attention_heads=[4, 6, 8] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0 ,), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] ,num_attention_heads=[6, 9, 12] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0.1 ,), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] ,lowerCAmelCase__ ,names_to_config[model_name] ,lowerCAmelCase__ ,lowerCAmelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
294
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } UpperCamelCase__ = { '''gpt-neox-20b''': 2_0_4_8, } class a__ ( UpperCamelCase_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : str ,a__ : List[str]=None ,a__ : Any=None ,a__ : Any=None ,a__ : List[Any]="<|endoftext|>" ,a__ : Optional[Any]="<|endoftext|>" ,a__ : List[str]="<|endoftext|>" ,a__ : List[str]=False ,**a__ : int ,) -> Union[str, Any]: """simple docstring""" super().__init__( a__ ,a__ ,tokenizer_file=a__ ,unk_token=a__ ,bos_token=a__ ,eos_token=a__ ,add_prefix_space=a__ ,**a__ ,) _lowerCAmelCase:Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' ,a__) != add_prefix_space: _lowerCAmelCase:Union[str, Any] = getattr(a__ ,pre_tok_state.pop('''type''')) _lowerCAmelCase:str = add_prefix_space _lowerCAmelCase:Optional[int] = pre_tok_class(**a__) _lowerCAmelCase:int = add_prefix_space def __UpperCamelCase ( self : List[Any] ,a__ : str ,a__ : Optional[str] = None) -> Tuple[str]: """simple docstring""" _lowerCAmelCase:List[Any] = self._tokenizer.model.save(a__ ,name=a__) return tuple(a__) def __UpperCamelCase ( self : int ,a__ : "Conversation") -> List[int]: """simple docstring""" _lowerCAmelCase:Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ ,add_special_tokens=a__) + [self.eos_token_id]) if len(a__) > self.model_max_length: _lowerCAmelCase:Optional[Any] = input_ids[-self.model_max_length :] return input_ids
439
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class a__ ( UpperCamelCase_ ): snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
439
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A : Union[str, Any] = logging.get_logger(__name__) class a_ ( _a ): a : Any = ['''input_features'''] def __init__( self , __UpperCamelCase=80 , __UpperCamelCase=16_000 , __UpperCamelCase=160 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=0.0 , __UpperCamelCase=False , **__UpperCamelCase , ): super().__init__( feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) _lowercase = n_fft _lowercase = hop_length _lowercase = chunk_length _lowercase = chunk_length * sampling_rate _lowercase = self.n_samples // hop_length _lowercase = sampling_rate _lowercase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__UpperCamelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def UpperCamelCase_ ( self , __UpperCamelCase ): _lowercase = spectrogram( __UpperCamelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) _lowercase = log_spec[:, :-1] _lowercase = np.maximum(__UpperCamelCase , log_spec.max() - 8.0 ) _lowercase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0.0 ): if attention_mask is not None: _lowercase = np.array(__UpperCamelCase , np.intaa ) _lowercase = [] for vector, length in zip(__UpperCamelCase , attention_mask.sum(-1 ) ): _lowercase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowercase = padding_value normed_input_values.append(__UpperCamelCase ) else: _lowercase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "max_length" , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _lowercase = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _lowercase = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _lowercase = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase = [np.asarray([raw_speech] ).T] _lowercase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding _lowercase = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) _lowercase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format _lowercase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) _lowercase = [self._np_extract_fbank_features(__UpperCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __UpperCamelCase ): _lowercase = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] else: _lowercase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: _lowercase = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs def UpperCamelCase_ ( self ): _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
287
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class a_ ( _a ): a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class a_ ( _a ): a : np.ndarray a : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
287
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class UpperCamelCase ( lowerCAmelCase__ ): lowercase = "git_vision_model" def __init__( self ,__UpperCamelCase=768 ,__UpperCamelCase=3072 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3 ,__UpperCamelCase=224 ,__UpperCamelCase=16 ,__UpperCamelCase="quick_gelu" ,__UpperCamelCase=1e-5 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) lowercase_ : Any = hidden_size lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Dict = num_channels lowercase_ : Dict = patch_size lowercase_ : Tuple = image_size lowercase_ : List[Any] = initializer_range lowercase_ : List[str] = attention_dropout lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : str = hidden_act @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) lowercase_ , lowercase_ : int = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": lowercase_ : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class UpperCamelCase ( lowerCAmelCase__ ): lowercase = "git" def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=3_0522 ,__UpperCamelCase=768 ,__UpperCamelCase=6 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=1024 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0 ,__UpperCamelCase="absolute" ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=101 ,__UpperCamelCase=102 ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' super().__init__(bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) if vision_config is None: lowercase_ : Optional[int] = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) lowercase_ : int = GitVisionConfig(**_lowerCamelCase ) lowercase_ : str = vocab_size lowercase_ : Any = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : str = hidden_act lowercase_ : Optional[int] = intermediate_size lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : Optional[int] = initializer_range lowercase_ : Optional[int] = layer_norm_eps lowercase_ : Any = position_embedding_type lowercase_ : List[Any] = use_cache lowercase_ : Optional[int] = tie_word_embeddings lowercase_ : str = num_image_with_embedding lowercase_ : str = bos_token_id lowercase_ : int = eos_token_id def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = copy.deepcopy(self.__dict__ ) lowercase_ : Dict = self.vision_config.to_dict() lowercase_ : Union[str, Any] = self.__class__.model_type return output
712
"""simple docstring""" from math import sqrt def lowercase__( __SCREAMING_SNAKE_CASE : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : int = 1_00_01 ): lowercase_ : str = 0 lowercase_ : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(__SCREAMING_SNAKE_CASE ): count += 1 while count != nth: number += 2 if is_prime(__SCREAMING_SNAKE_CASE ): count += 1 return number if __name__ == "__main__": print(F"{solution() = }")
477
0
from collections import defaultdict class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: lowerCamelCase : str = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCamelCase : str = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_UpperCamelCase ) ) ] lowerCamelCase : Optional[int] = defaultdict(_UpperCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCamelCase : str = (1 << len(_UpperCamelCase )) - 1 def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCamelCase : Tuple = self.count_ways_until(_UpperCamelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. lowerCamelCase : str = total_ways_util return self.dp[mask][task_no] def _lowercase ( self , UpperCamelCase__ ) -> Optional[int]: for i in range(len(_UpperCamelCase ) ): for j in task_performed[i]: self.task[j].append(_UpperCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. SCREAMING_SNAKE_CASE__ : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
311
class lowercase : # Public class to implement a graph def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = row SCREAMING_SNAKE_CASE = col SCREAMING_SNAKE_CASE = graph def __snake_case( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ) def __snake_case( self : Any ) -> int: # And finally, count all islands. '''simple docstring''' SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) count += 1 return count
403
0
import operator as op def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[int] = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation __lowerCAmelCase : Optional[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(1_2 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (3_0 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(1_2 ) , ''','''.join(lowercase__ ) , sep=''' | ''' ) else: __lowerCAmelCase : int = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(1_2 ) , ''','''.join(lowercase__ ) , sep=''' | ''' ) __lowerCAmelCase : List[str] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(1_2 ) , ''','''.join(lowercase__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(1_2 ) , ''','''.join(lowercase__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": _UpperCamelCase = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
711
from __future__ import annotations from math import ceil, floor, sqrt def _lowercase ( lowercase__ = 2_0_0_0_0_0_0 ): __lowerCAmelCase : list[int] = [0] __lowerCAmelCase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCAmelCase : int = 0 # the area corresponding to the grid that gives the product closest to target __lowerCAmelCase : int = 0 # an estimate of b, using the quadratic formula __lowerCAmelCase : float # the largest integer less than b_estimate __lowerCAmelCase : int # the largest integer less than b_estimate __lowerCAmelCase : int # the triangle number corresponding to b_floor __lowerCAmelCase : int # the triangle number corresponding to b_ceil __lowerCAmelCase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCAmelCase : Any = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCAmelCase : List[str] = floor(lowercase__ ) __lowerCAmelCase : str = ceil(lowercase__ ) __lowerCAmelCase : Dict = triangle_numbers[b_floor] __lowerCAmelCase : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase : Union[str, Any] = triangle_b_first_guess * triangle_a __lowerCAmelCase : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase : Optional[Any] = triangle_b_second_guess * triangle_a __lowerCAmelCase : int = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
583
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __magic_name__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def _a ( self , _A = "auto" ): '''simple docstring''' if slice_size == "auto": UpperCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def _a ( self ): '''simple docstring''' self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self , _A , _A=1_6_0_0_0 , _A = 5_1_2 , _A = 5_1_2 , _A = 5_0 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ): '''simple docstring''' UpperCamelCase : str = self.speech_processor.feature_extractor( _A , return_tensors="""pt""" , sampling_rate=_A ).input_features.to(self.device ) UpperCamelCase : List[Any] = self.speech_model.generate(_A , max_length=4_8_0_0_0_0 ) UpperCamelCase : Optional[int] = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): UpperCamelCase : Tuple = 1 elif isinstance(_A , _A ): UpperCamelCase : List[Any] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get prompt text embeddings UpperCamelCase : Dict = self.tokenizer( _A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[int] = text_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : str = [""""""] * batch_size elif type(_A ) is not type(_A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" f""" {type(_A )}.""" ) elif isinstance(_A , _A ): UpperCamelCase : Tuple = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase : Any = negative_prompt UpperCamelCase : Optional[int] = text_input_ids.shape[-1] UpperCamelCase : List[str] = self.tokenizer( _A , padding="""max_length""" , max_length=_A , truncation=_A , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : List[Any] = uncond_embeddings.shape[1] UpperCamelCase : Dict = uncond_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Tuple = torch.randn(_A , generator=_A , device="""cpu""" , dtype=_A ).to( self.device ) else: UpperCamelCase : Any = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : str = {} if accepts_eta: UpperCamelCase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : str = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual UpperCamelCase : Optional[Any] = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : str = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCamelCase : Optional[Any] = 1 / 0.1_82_15 * latents UpperCamelCase : Union[str, Any] = self.vae.decode(_A ).sample UpperCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
102
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : List[Any] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> bool: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = number while duplicate > 0: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = divmod(a__, 10 ) fact_sum += factorial(a__ ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") snake_case_ : Dict = int(input("Enter number: ").strip()) print( f'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int , __A : int , __A : Optional[Any]=13 , __A : Any=7 , __A : Any=True , __A : List[Any]=True , __A : str=True , __A : int=True , __A : Optional[Any]=99 , __A : Dict=32 , __A : int=5 , __A : Optional[int]=4 , __A : Dict=37 , __A : List[str]="gelu" , __A : str=0.1 , __A : int=0.1 , __A : Optional[int]=512 , __A : Optional[int]=16 , __A : List[str]=2 , __A : List[Any]=0.0_2 , __A : int=4 , ): __A : Tuple = parent __A : Union[str, Any] = batch_size __A : int = seq_length __A : Any = is_training __A : Optional[int] = use_attention_mask __A : List[Any] = use_token_type_ids __A : Optional[int] = use_labels __A : Optional[Any] = vocab_size __A : Tuple = hidden_size __A : int = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[Any] = intermediate_size __A : Optional[int] = hidden_act __A : Any = hidden_dropout_prob __A : List[Any] = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : Tuple = type_vocab_size __A : List[str] = type_sequence_label_size __A : List[str] = initializer_range __A : List[Any] = num_choices def lowerCAmelCase_ ( self : List[Any] ): __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = None if self.use_attention_mask: __A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Any = None if self.use_token_type_ids: __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Dict = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.prepare_config_and_inputs() __A , __A , __A , __A : Tuple = config_and_inputs __A : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Tuple ): __A : Tuple = self.prepare_config_and_inputs() __A , __A , __A , __A : List[Any] = config_and_inputs __A : Optional[int] = True __A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : str = True _lowercase : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self : List[str] ): __A : List[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCAmelCase_ ( self : Any ): for model_class_name in self.all_model_classes: __A : List[Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__A ) __A : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : int ): __A : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__A ) __A : str = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __A : List[Any] = model(__A )[0] __A : str = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , __A ) # compare the actual values for a slice. __A : int = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __A , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Any ): __A : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__A ) __A : Dict = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __A : Optional[int] = model(__A )[0] # compare the actual values for a slice. __A : Optional[int] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __A , atol=1e-4 ) )
17
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
import re import string import numpy as np import datasets __UpperCamelCase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __UpperCamelCase : Optional[Any] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __UpperCamelCase : Union[str, Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase__ ( datasets.Metric): def __A ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def __A ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Union[str, Any]=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE : int = np.array([re.sub(UpperCamelCase__ , '''''' , UpperCamelCase__ ) for x in predictions] ) SCREAMING_SNAKE_CASE : List[Any] = np.array([re.sub(UpperCamelCase__ , '''''' , UpperCamelCase__ ) for x in references] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = np.asarray(UpperCamelCase__ ) if ignore_case: SCREAMING_SNAKE_CASE : Dict = np.char.lower(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: SCREAMING_SNAKE_CASE : Optional[int] = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) SCREAMING_SNAKE_CASE : List[str] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: SCREAMING_SNAKE_CASE : Any = string.digits.maketrans('''''' , '''''' , string.digits ) SCREAMING_SNAKE_CASE : Tuple = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
34
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = IFPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""} def __A ( self : Tuple ): '''simple docstring''' return self._get_dummy_components() def __A ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : int=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __A ( self : List[str] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __A ( self : Any ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __A ( self : Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __A ( self : List[Any] ): '''simple docstring''' self._test_save_load_local() def __A ( self : List[str] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE : Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE : Tuple = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , original_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , original_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) def A ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
34
1
'''simple docstring''' snake_case = 9.80665 def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = g ): """simple docstring""" if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
378
'''simple docstring''' def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if height >= 1: move_tower(height - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) move_disk(lowerCamelCase_ , lowerCamelCase_ ) move_tower(height - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" print("moving disk from" , lowerCamelCase_ , "to" , lowerCamelCase_ ) def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = int(input("Height of hanoi: " ).strip() ) move_tower(lowerCamelCase_ , "A" , "B" , "C" ) if __name__ == "__main__": main()
378
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) _lowerCAmelCase =re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , a__ ) if matches: _lowerCAmelCase =float(matches[1] ) _lowerCAmelCase =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowerCAmelCase =1_0_0_1 _lowerCAmelCase ='imagenet-1k-id2label.json' _lowerCAmelCase ='huggingface/label-files' _lowerCAmelCase =json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase ={int(a__ ) + 1: v for k, v in idalabel.items()} _lowerCAmelCase ='background' _lowerCAmelCase =idalabel _lowerCAmelCase ={v: k for k, v in idalabel.items()} return config def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase =Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__ , a__=False ): '''simple docstring''' _lowerCAmelCase =get_mobilenet_va_config(a__ ) # Load 🤗 model _lowerCAmelCase =MobileNetVaForImageClassification(a__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(a__ , a__ , a__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowerCAmelCase =MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 3_2} , ) _lowerCAmelCase =image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase =model(**a__ ) _lowerCAmelCase =outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": _lowerCAmelCase =torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": _lowerCAmelCase =torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: _lowerCAmelCase =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if push_to_hub: print('Pushing to the hub...' ) _lowerCAmelCase ='google/' + model_name image_processor.push_to_hub(a__ ) model.push_to_hub(a__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
"""simple docstring""" from math import isclose, sqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): A__ = point_y / 4 / point_x A__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) A__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) A__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 A__ = outgoing_gradient**2 + 4 A__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) A__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 A__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) A__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point A__ = x_minus if isclose(UpperCamelCase , UpperCamelCase ) else x_plus A__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _SCREAMING_SNAKE_CASE ( UpperCamelCase : float = 1.4 , UpperCamelCase : float = -9.6 ): A__ = 0 A__ = first_x_coord A__ = first_y_coord A__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): A__ ,A__ ,A__ = next_point(UpperCamelCase , UpperCamelCase , UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'{solution() = }')
574
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str ): def get_masked_lm_array(UpperCamelCase : str ): A__ = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_array(UpperCamelCase : str ): A__ = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_layer_array(UpperCamelCase : int , UpperCamelCase : str ): A__ = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_attention_layer_array(UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : int ): A__ = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) A__ = array.reshape(UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) print(F"""Loading model based on config from {config_path}...""" ) A__ = BertConfig.from_json_file(UpperCamelCase ) A__ = BertForMaskedLM(UpperCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ = model.bert.encoder.layer[layer_index] # Self-attention A__ = layer.attention.self A__ = get_encoder_attention_layer_array( UpperCamelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output A__ = layer.attention.output A__ = get_encoder_attention_layer_array( UpperCamelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) A__ = get_encoder_layer_array(UpperCamelCase , """_attention_layer_norm/gamma""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_attention_layer_norm/beta""" ) # Intermediate A__ = layer.intermediate A__ = get_encoder_layer_array(UpperCamelCase , """_intermediate_dense/kernel""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_intermediate_dense/bias""" ) # Output A__ = layer.output A__ = get_encoder_layer_array(UpperCamelCase , """_output_dense/kernel""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_dense/bias""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_layer_norm/gamma""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_layer_norm/beta""" ) # Embeddings A__ = get_encoder_array("""_position_embedding_layer/embeddings""" ) A__ = get_encoder_array("""_type_embedding_layer/embeddings""" ) A__ = get_encoder_array("""_embedding_norm_layer/gamma""" ) A__ = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head A__ = model.cls.predictions.transform A__ = get_masked_lm_array("""dense/kernel""" ) A__ = get_masked_lm_array("""dense/bias""" ) A__ = get_masked_lm_array("""layer_norm/gamma""" ) A__ = get_masked_lm_array("""layer_norm/beta""" ) A__ = get_masked_lm_array("""embedding_table""" ) # Pooling A__ = BertPooler(config=UpperCamelCase ) A__ = get_encoder_array("""_pooler_layer/kernel""" ) A__ = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(UpperCamelCase ) # Integration test - should load without any errors ;) A__ = BertForMaskedLM.from_pretrained(UpperCamelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) lowerCamelCase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
574
1
from __future__ import annotations import math class _a : """simple docstring""" def __init__( self , _snake_case ): _UpperCAmelCase =size # approximate the overall size of segment tree with given value _UpperCAmelCase =[0 for i in range(0 , 4 * size )] # create array to store lazy update _UpperCAmelCase =[0 for i in range(0 , 4 * size )] _UpperCAmelCase =[0 for i in range(0 , 4 * size )] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _snake_case ): return idx * 2 def SCREAMING_SNAKE_CASE ( self , _snake_case ): return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case ): if left_element == right_element: _UpperCAmelCase =a[left_element - 1] else: _UpperCAmelCase =(left_element + right_element) // 2 self.build(self.left(_snake_case ) , _snake_case , _snake_case , _snake_case ) self.build(self.right(_snake_case ) , mid + 1 , _snake_case , _snake_case ) _UpperCAmelCase =max( self.segment_tree[self.left(_snake_case )] , self.segment_tree[self.right(_snake_case )] ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): if self.flag[idx] is True: _UpperCAmelCase =self.lazy[idx] _UpperCAmelCase =False if left_element != right_element: _UpperCAmelCase =self.lazy[idx] _UpperCAmelCase =self.lazy[idx] _UpperCAmelCase =True _UpperCAmelCase =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _UpperCAmelCase =val if left_element != right_element: _UpperCAmelCase =val _UpperCAmelCase =val _UpperCAmelCase =True _UpperCAmelCase =True return True _UpperCAmelCase =(left_element + right_element) // 2 self.update(self.left(_snake_case ) , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) self.update(self.right(_snake_case ) , mid + 1 , _snake_case , _snake_case , _snake_case , _snake_case ) _UpperCAmelCase =max( self.segment_tree[self.left(_snake_case )] , self.segment_tree[self.right(_snake_case )] ) return True def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): if self.flag[idx] is True: _UpperCAmelCase =self.lazy[idx] _UpperCAmelCase =False if left_element != right_element: _UpperCAmelCase =self.lazy[idx] _UpperCAmelCase =self.lazy[idx] _UpperCAmelCase =True _UpperCAmelCase =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _UpperCAmelCase =(left_element + right_element) // 2 _UpperCAmelCase =self.query(self.left(_snake_case ) , _snake_case , _snake_case , _snake_case , _snake_case ) _UpperCAmelCase =self.query(self.right(_snake_case ) , mid + 1 , _snake_case , _snake_case , _snake_case ) return max(_snake_case , _snake_case ) def __str__( self ): return str([self.query(1 , 1 , self.size , _snake_case , _snake_case ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": snake_case__ : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] snake_case__ : Dict = 1_5 snake_case__ : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
715
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCamelCase__ ( _lowerCamelCase ) ->List[str]: _UpperCAmelCase =split_dict._to_yaml_list() assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _UpperCAmelCase =SplitDict._from_yaml_list(_lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase =None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCamelCase__ ( _lowerCamelCase ) ->Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCAmelCase =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
592
0