code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _a ( lowerCamelCase_ , lowerCamelCase_=0.9_99 , lowerCamelCase_="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase_ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case : int =[] for i in range(lowerCamelCase_ ): snake_case : Optional[int] =i / num_diffusion_timesteps snake_case : Optional[Any] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase_ ) / alpha_bar_fn(lowerCamelCase_ ) , lowerCamelCase_ ) ) return torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) class lowerCAmelCase_ ( __a , __a ): __UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase = 2 @register_to_config def __init__( self : Union[str, Any], _snake_case : int = 1_000, _snake_case : float = 0.0_0085, _snake_case : float = 0.012, _snake_case : str = "linear", _snake_case : Optional[Union[np.ndarray, List[float]]] = None, _snake_case : str = "epsilon", _snake_case : Optional[bool] = False, _snake_case : Optional[bool] = False, _snake_case : float = 1.0, _snake_case : str = "linspace", _snake_case : int = 0, ): '''simple docstring''' if trained_betas is not None: snake_case : Optional[Any] =torch.tensor(lowerCAmelCase__, dtype=torch.floataa ) elif beta_schedule == "linear": snake_case : Optional[int] =torch.linspace(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case : Optional[Any] =( torch.linspace(beta_start**0.5, beta_end**0.5, lowerCAmelCase__, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case : str =betas_for_alpha_bar(lowerCAmelCase__, alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": snake_case : List[Any] =betas_for_alpha_bar(lowerCAmelCase__, alpha_transform_type='''exp''' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case : Dict =1.0 - self.betas snake_case : Tuple =torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) snake_case : Optional[int] =use_karras_sigmas def __snake_case ( self : List[Any], _snake_case : List[Any], _snake_case : Optional[int]=None ): '''simple docstring''' if schedule_timesteps is None: snake_case : List[str] =self.timesteps snake_case : List[Any] =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case : Any =1 if len(lowerCAmelCase__ ) > 1 else 0 else: snake_case : Union[str, Any] =timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep snake_case : int =self._index_counter[timestep_int] return indices[pos].item() @property def __snake_case ( self : Tuple ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __snake_case ( self : str, _snake_case : torch.FloatTensor, _snake_case : Union[float, torch.FloatTensor], ): '''simple docstring''' snake_case : Any =self.index_for_timestep(lowerCAmelCase__ ) snake_case : List[Any] =self.sigmas[step_index] snake_case : List[str] =sample / ((sigma**2 + 1) ** 0.5) return sample def __snake_case ( self : Union[str, Any], _snake_case : int, _snake_case : Union[str, torch.device] = None, _snake_case : Optional[int] = None, ): '''simple docstring''' snake_case : int =num_inference_steps snake_case : int =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case : Union[str, Any] =np.linspace(0, num_train_timesteps - 1, lowerCAmelCase__, dtype=lowerCAmelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case : Tuple =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case : str =(np.arange(0, lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case : Dict =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case : List[str] =(np.arange(lowerCAmelCase__, 0, -step_ratio )).round().copy().astype(lowerCAmelCase__ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case : int =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case : int =np.log(lowerCAmelCase__ ) snake_case : Optional[int] =np.interp(lowerCAmelCase__, np.arange(0, len(lowerCAmelCase__ ) ), lowerCAmelCase__ ) if self.config.use_karras_sigmas: snake_case : List[Any] =self._convert_to_karras(in_sigmas=lowerCAmelCase__, num_inference_steps=self.num_inference_steps ) snake_case : List[Any] =np.array([self._sigma_to_t(lowerCAmelCase__, lowerCAmelCase__ ) for sigma in sigmas] ) snake_case : List[Any] =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case : List[str] =torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ) snake_case : Union[str, Any] =torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case : str =torch.from_numpy(lowerCAmelCase__ ) snake_case : List[Any] =torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase__ ).startswith('''mps''' ): # mps does not support float64 snake_case : Optional[int] =timesteps.to(lowerCAmelCase__, dtype=torch.floataa ) else: snake_case : Union[str, Any] =timesteps.to(device=lowerCAmelCase__ ) # empty dt and derivative snake_case : Any =None snake_case : Any =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case : List[str] =defaultdict(lowerCAmelCase__ ) def __snake_case ( self : List[str], _snake_case : Union[str, Any], _snake_case : Dict ): '''simple docstring''' snake_case : Tuple =np.log(lowerCAmelCase__ ) # get distribution snake_case : int =log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case : int =np.cumsum((dists >= 0), axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case : List[str] =low_idx + 1 snake_case : Tuple =log_sigmas[low_idx] snake_case : Any =log_sigmas[high_idx] # interpolate sigmas snake_case : Any =(low - log_sigma) / (low - high) snake_case : Tuple =np.clip(lowerCAmelCase__, 0, 1 ) # transform interpolation to time range snake_case : Optional[int] =(1 - w) * low_idx + w * high_idx snake_case : Optional[int] =t.reshape(sigma.shape ) return t def __snake_case ( self : Optional[int], _snake_case : torch.FloatTensor, _snake_case : Tuple ): '''simple docstring''' snake_case : Dict =in_sigmas[-1].item() snake_case : Any =in_sigmas[0].item() snake_case : int =7.0 # 7.0 is the value used in the paper snake_case : Tuple =np.linspace(0, 1, lowerCAmelCase__ ) snake_case : Optional[int] =sigma_min ** (1 / rho) snake_case : Dict =sigma_max ** (1 / rho) snake_case : List[Any] =(max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __snake_case ( self : Dict ): '''simple docstring''' return self.dt is None def __snake_case ( self : List[Any], _snake_case : Union[torch.FloatTensor, np.ndarray], _snake_case : Union[float, torch.FloatTensor], _snake_case : Union[torch.FloatTensor, np.ndarray], _snake_case : bool = True, ): '''simple docstring''' snake_case : str =self.index_for_timestep(lowerCAmelCase__ ) # advance index counter by 1 snake_case : List[Any] =timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case : List[Any] =self.sigmas[step_index] snake_case : Tuple =self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case : Any =self.sigmas[step_index - 1] snake_case : List[Any] =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case : Union[str, Any] =0 snake_case : int =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case : Optional[Any] =sigma_hat if self.state_in_first_order else sigma_next snake_case : Optional[int] =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case : Any =sigma_hat if self.state_in_first_order else sigma_next snake_case : List[Any] =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case : Tuple =model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case : Union[str, Any] =pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case : Optional[Any] =(sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case : Tuple =sigma_next - sigma_hat # store for 2nd order step snake_case : int =derivative snake_case : List[str] =dt snake_case : Dict =sample else: # 2. 2nd order / Heun's method snake_case : Optional[Any] =(sample - pred_original_sample) / sigma_next snake_case : Optional[int] =(self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case : Tuple =self.dt snake_case : Any =self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case : Union[str, Any] =None snake_case : List[Any] =None snake_case : int =None snake_case : int =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__ ) def __snake_case ( self : List[str], _snake_case : torch.FloatTensor, _snake_case : torch.FloatTensor, _snake_case : torch.FloatTensor, ): '''simple docstring''' snake_case : int =self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase__ ): # mps does not support float64 snake_case : List[Any] =self.timesteps.to(original_samples.device, dtype=torch.floataa ) snake_case : Optional[Any] =timesteps.to(original_samples.device, dtype=torch.floataa ) else: snake_case : Union[str, Any] =self.timesteps.to(original_samples.device ) snake_case : List[Any] =timesteps.to(original_samples.device ) snake_case : str =[self.index_for_timestep(lowerCAmelCase__, lowerCAmelCase__ ) for t in timesteps] snake_case : str =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case : Optional[int] =sigma.unsqueeze(-1 ) snake_case : Tuple =original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): '''simple docstring''' return self.config.num_train_timesteps
349
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _snake_case : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class UpperCamelCase_ ( __a ): '''simple docstring''' def __init__( self :Tuple , **lowerCAmelCase__ :Dict ) ->int: super().__init__(**lowerCAmelCase__ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Tuple , **lowerCAmelCase__ :Union[str, Any] ) ->List[Any]: lowercase = {} lowercase = {} lowercase = {} # preprocess args if "points_per_batch" in kwargs: lowercase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: lowercase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: lowercase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: lowercase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: lowercase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: lowercase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: lowercase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: lowercase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: lowercase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: lowercase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: lowercase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: lowercase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self :List[str] , lowerCAmelCase__ :int , *lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :List[str] ) ->Optional[int]: return super().__call__(lowerCAmelCase__ , *lowerCAmelCase__ , num_workers=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :float = 512 / 1500 , lowerCAmelCase__ :Optional[int] = 32 , lowerCAmelCase__ :Optional[int] = 1 , ) ->Any: lowercase = load_image(lowerCAmelCase__ ) lowercase = self.image_processor.size["longest_edge"] lowercase , lowercase , lowercase , lowercase = self.image_processor.generate_crop_boxes( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = self.image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": lowercase = self.get_inference_context() with inference_context(): lowercase = self._ensure_tensor_on_device(lowerCAmelCase__ , device=self.device ) lowercase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) lowercase = image_embeddings lowercase = grid_points.shape[1] lowercase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = grid_points[:, i : i + points_per_batch, :, :] lowercase = input_labels[:, i : i + points_per_batch] lowercase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE( self :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict=0.88 , lowerCAmelCase__ :Dict=0.95 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :int=1 , ) ->str: lowercase = model_inputs.pop("input_boxes" ) lowercase = model_inputs.pop("is_last" ) lowercase = model_inputs.pop("original_sizes" ).tolist() lowercase = model_inputs.pop("reshaped_input_sizes" ).tolist() lowercase = self.model(**lowerCAmelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase = model_outputs["pred_masks"] lowercase = self.image_processor.post_process_masks( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , binarize=lowerCAmelCase__ ) lowercase = model_outputs["iou_scores"] lowercase , lowercase , lowercase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :str=False , lowerCAmelCase__ :int=0.7 , ) ->List[Any]: lowercase = [] lowercase = [] lowercase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) lowercase = torch.cat(lowerCAmelCase__ ) lowercase = torch.cat(lowerCAmelCase__ ) lowercase , lowercase , lowercase , lowercase = self.image_processor.post_process_for_mask_generation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = defaultdict(lowerCAmelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase__ ) lowercase = {} if output_rle_mask: lowercase = rle_mask if output_bboxes_mask: lowercase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
441
0
import os def lowerCamelCase__ ( ): '''simple docstring''' with open(os.path.dirname(_A ) + "/p022_names.txt" ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace("\"" , "" ).split("," ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(_A ): for letter in name: name_score += ord(_A ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
139
import baseaa def lowerCamelCase__ ( _A ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' return baseaa.baadecode(_A ).decode("utf-8" ) if __name__ == "__main__": lowercase__ : str = "Hello World!" lowercase__ : Tuple = baseaa_encode(test) print(encoded) lowercase__ : Optional[Any] = baseaa_decode(encoded) print(decoded)
139
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowercase : Optional[int] = logging.get_logger(__name__) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): if "." in tensor_name: __a : List[str] = tensor_name.split('.' ) for split in splits[:-1]: __a : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __a : Union[str, Any] = new_module __a : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) __a : List[str] = tensor_name in module._buffers __a : Optional[int] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) __a : List[Any] = False __a : Dict = False if is_buffer or not is_bitsandbytes_available(): __a : Any = False __a : List[Any] = False else: __a : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __a : List[Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __a : int = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __a : List[str] = old_value.to(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , torch.Tensor ): __a : Tuple = value.to('cpu' ) if value.dtype == torch.inta: __a : Optional[Any] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: __a : int = torch.tensor(UpperCamelCase__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , UpperCamelCase__ ) and fpaa_statistics is None: __a : Any = new_value.T __a : Optional[Any] = old_value.__dict__ if is_abit: __a : int = bnb.nn.IntaParams(UpperCamelCase__ , requires_grad=UpperCamelCase__ , **UpperCamelCase__ ).to(UpperCamelCase__ ) elif is_abit: __a : Optional[int] = bnb.nn.Paramsabit(UpperCamelCase__ , requires_grad=UpperCamelCase__ , **UpperCamelCase__ ).to(UpperCamelCase__ ) __a : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(UpperCamelCase__ ) ) else: if value is None: __a : str = old_value.to(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , torch.Tensor ): __a : Union[str, Any] = value.to(UpperCamelCase__ ) else: __a : int = torch.tensor(UpperCamelCase__ , device=UpperCamelCase__ ) if is_buffer: __a : Optional[Any] = new_value else: __a : Optional[Any] = nn.Parameter(UpperCamelCase__ , requires_grad=old_value.requires_grad ) __a : List[str] = new_value def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=False ): for name, module in model.named_children(): if current_key_name is None: __a : List[Any] = [] current_key_name.append(UpperCamelCase__ ) if (isinstance(UpperCamelCase__ , nn.Linear ) or isinstance(UpperCamelCase__ , UpperCamelCase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(UpperCamelCase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __a , __a : Optional[int] = module.weight.shape else: __a : List[str] = module.in_features __a : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": __a : Tuple = bnb.nn.LinearabitLt( UpperCamelCase__ , UpperCamelCase__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __a : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __a : Optional[int] = bnb.nn.Linearabit( UpperCamelCase__ , UpperCamelCase__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __a : Optional[int] = True # Store the module class in case we need to transpose the weight later __a : Any = type(UpperCamelCase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(UpperCamelCase__ ) if len(list(module.children() ) ) > 0: __a , __a : Union[str, Any] = _replace_with_bnb_linear( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , has_been_replaced=UpperCamelCase__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=None ): __a : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert __a , __a : List[str] = _replace_with_bnb_linear( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Tuple , **_SCREAMING_SNAKE_CASE : Dict ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , UpperCamelCase__ , ) return replace_with_bnb_linear(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Dict , **_SCREAMING_SNAKE_CASE : Optional[Any] ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , UpperCamelCase__ , ) return set_module_quantized_tensor_to_device(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): __a : int = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __a : int = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __a : str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __a : str = sum(UpperCamelCase__ , [] ) __a : str = len(UpperCamelCase__ ) > 0 # Check if it is a base model __a : Dict = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __a : List[Any] = list(model.named_children() ) __a : str = [list_modules[-1][0]] # add last module together with tied weights __a : Union[str, Any] = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) __a : Tuple = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys __a : Tuple = ['.weight', '.bias'] __a : Dict = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __a : Optional[int] = name.replace(UpperCamelCase__ , '' ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names
476
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : List[str] = None _lowercase : List[str] = logging.get_logger(__name__) _lowercase : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowercase : str = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _lowercase : List[str] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowercase : Dict = "▁" class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = AlbertTokenizer def __init__( self , a__=None , a__=None , a__=True , a__=True , a__=False , a__="[CLS]" , a__="[SEP]" , a__="<unk>" , a__="[SEP]" , a__="<pad>" , a__="[CLS]" , a__="[MASK]" , **a__ , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A = ( AddedToken(a__ , lstrip=a__ , rstrip=a__ , normalized=a__ ) if isinstance(a__ , a__ ) else mask_token ) super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , a__ , a__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
641
0
'''simple docstring''' _snake_case = 65_521 def __lowerCamelCase ( _lowercase ) -> int: UpperCamelCase = 1 UpperCamelCase = 0 for plain_chr in plain_text: UpperCamelCase = (a + ord(_lowercase )) % MOD_ADLER UpperCamelCase = (b + a) % MOD_ADLER return (b << 16) | a
707
def __lowerCamelCase ( _lowercase ) -> int: assert ( isinstance(_lowercase , _lowercase ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase , UpperCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase , UpperCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
170
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : List[Any] = """roberta""" def __init__( self :List[Any] , __lowercase :str=5_0265 , __lowercase :int=768 , __lowercase :List[Any]=12 , __lowercase :Any=12 , __lowercase :Tuple=3072 , __lowercase :str="gelu" , __lowercase :Tuple=0.1 , __lowercase :Tuple=0.1 , __lowercase :List[Any]=512 , __lowercase :int=2 , __lowercase :Any=0.02 , __lowercase :Tuple=1e-1_2 , __lowercase :Tuple=1 , __lowercase :Optional[Any]=0 , __lowercase :Optional[Any]=2 , __lowercase :Union[str, Any]="absolute" , __lowercase :int=True , __lowercase :List[str]=None , **__lowercase :List[Any] , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCamelCase : List[Any] =vocab_size __lowerCamelCase : Optional[Any] =hidden_size __lowerCamelCase : Optional[int] =num_hidden_layers __lowerCamelCase : Optional[Any] =num_attention_heads __lowerCamelCase : List[Any] =hidden_act __lowerCamelCase : Optional[int] =intermediate_size __lowerCamelCase : Tuple =hidden_dropout_prob __lowerCamelCase : List[Any] =attention_probs_dropout_prob __lowerCamelCase : str =max_position_embeddings __lowerCamelCase : Optional[int] =type_vocab_size __lowerCamelCase : Optional[int] =initializer_range __lowerCamelCase : Tuple =layer_norm_eps __lowerCamelCase : Dict =position_embedding_type __lowerCamelCase : Optional[int] =use_cache __lowerCamelCase : str =classifier_dropout class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" @property def __lowercase ( self :Dict ): if self.task == "multiple-choice": __lowerCamelCase : Tuple ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase : Optional[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
179
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Dict ): __lowerCamelCase : Union[str, Any] =inspect.getfile(accelerate.test_utils ) __lowerCamelCase : Union[str, Any] =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __lowerCamelCase : List[str] =test_metrics @require_cpu def __lowercase ( self :Optional[Any] ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __lowercase ( self :int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __lowercase ( self :int ): self.test_metrics.main() @require_multi_gpu def __lowercase ( self :Dict ): print(f'Found {torch.cuda.device_count()} devices.' ) __lowerCamelCase : Union[str, Any] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() )
179
1
'''simple docstring''' from __future__ import annotations from typing import Any class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : Any = num_of_nodes snake_case__ : list[list[int]] = [] snake_case__ : dict[int, int] = {} def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: snake_case__ : str = self.find_component(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if component_size[u_node] <= component_size[v_node]: snake_case__ : str = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: snake_case__ : Union[str, Any] = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def lowercase__ ( self ) -> None: """simple docstring""" snake_case__ : str = [] snake_case__ : int = 0 snake_case__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case__ : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case__ : Tuple = edge snake_case__ : List[Any] = self.m_component[u] snake_case__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case__ : Any = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Union[str, Any] = edge snake_case__ : int = self.m_component[u] snake_case__ : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 snake_case__ : Dict = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def _A ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
"""simple docstring""" import re from filelock import FileLock try: import nltk __lowerCAmelCase : List[str] =True except (ImportError, ModuleNotFoundError): __lowerCAmelCase : int =False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Any: '''simple docstring''' re.sub("""<n>""" , """""" , lowerCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase__ ) )
359
a__ = [0, 2, 4, 6, 8] a__ = [1, 3, 5, 7, 9] def _UpperCAmelCase ( a : int , a : int , a : list[int] , a : int ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case__ = 0 for digit in range(10 ): snake_case__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a , a ) return result snake_case__ = 0 for digita in range(10 ): snake_case__ = digita if (remainder + digita) % 2 == 0: snake_case__ = ODD_DIGITS else: snake_case__ = EVEN_DIGITS for digita in other_parity_digits: snake_case__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a , a , ) return result def _UpperCAmelCase ( a : int = 9 ): snake_case__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a , 0 , [0] * length , a ) return result if __name__ == "__main__": print(F'''{solution() = }''')
654
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] A__ : Tuple = DisjunctiveConstraint(UpperCamelCase_ ) self.assertTrue(isinstance(dc.token_ids , UpperCamelCase_ ) ) with self.assertRaises(UpperCamelCase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCamelCase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCamelCase_ ): DisjunctiveConstraint(UpperCamelCase_ ) # fails here def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[Any] = [[1, 2, 3], [1, 2, 4]] A__ : Optional[int] = DisjunctiveConstraint(UpperCamelCase_ ) A__ : Any = dc.update(1 ) A__ : Dict = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ : Dict = dc.update(2 ) A__ : int = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ : Optional[int] = dc.update(3 ) A__ : str = stepped is True and completed is True and reset is False self.assertTrue(UpperCamelCase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A__ : Union[str, Any] = DisjunctiveConstraint(UpperCamelCase_ ) A__ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A__ : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A__ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A__ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
704
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } A_ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str] ) ->str: for attribute in key.split(""".""" ): A__ : Any = getattr(UpperCAmelCase__, UpperCAmelCase__ ) if weight_type is not None: A__ : Union[str, Any] = getattr(UpperCAmelCase__, UpperCAmelCase__ ).shape else: A__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A__ : List[Any] = value elif weight_type == "weight_g": A__ : Any = value elif weight_type == "weight_v": A__ : Optional[int] = value elif weight_type == "bias": A__ : Any = value else: A__ : Any = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any ) ->Union[str, Any]: A__ : Dict = [] A__ : int = fairseq_model.state_dict() A__ : Dict = hf_model.feature_extractor A__ : Any = hf_model.adapter for name, value in fairseq_dict.items(): A__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, hf_model.config.feat_extract_norm == """group""", ) A__ : Union[str, Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A__ : List[Any] = True if "*" in mapped_key: A__ : Union[str, Any] = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] A__ : Union[str, Any] = mapped_key.replace("""*""", UpperCAmelCase__ ) if "weight_g" in name: A__ : List[str] = """weight_g""" elif "weight_v" in name: A__ : Optional[Any] = """weight_v""" elif "bias" in name: A__ : Optional[int] = """bias""" elif "weight" in name: A__ : int = """weight""" else: A__ : Optional[Any] = None set_recursively(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any ) ->List[Any]: A__ : Dict = full_name.split("""conv_layers.""" )[-1] A__ : Optional[int] = name.split(""".""" ) A__ : int = int(items[0] ) A__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A__ : Optional[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A__ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict ) ->str: A__ : Tuple = full_name.split("""adaptor.""" )[-1] A__ : Optional[int] = name.split(""".""" ) if items[1].isdigit(): A__ : Optional[Any] = int(items[1] ) else: A__ : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A__ : Union[str, Any] = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A__ : Tuple = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A__ : str = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A__ : Union[str, Any] = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A__ : Dict = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A__ : Optional[int] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[Any]: A__ , A__ : Union[str, Any] = emb.weight.shape A__ : List[str] = nn.Linear(UpperCAmelCase__, UpperCAmelCase__, bias=UpperCAmelCase__ ) A__ : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, ) ->str: A__ : Tuple = WavaVecaConfig.from_pretrained( UpperCAmelCase__, add_adapter=UpperCAmelCase__, adapter_stride=UpperCAmelCase__, adapter_kernel_size=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, output_hidden_size=UpperCAmelCase__, ) A__ : List[Any] = MBartConfig.from_pretrained(UpperCAmelCase__ ) # load model A__ , A__ , A__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, }, ) A__ : List[Any] = model[0].eval() # load feature extractor A__ : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__, use_auth_token=UpperCAmelCase__ ) # set weights for wav2vec2 encoder A__ : Dict = WavaVecaModel(UpperCAmelCase__ ) recursively_load_weights_wavaveca(model.encoder, UpperCAmelCase__ ) # load decoder weights A__ : Any = MBartForCausalLM(UpperCAmelCase__ ) A__ , A__ : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=UpperCAmelCase__ ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A__ : Dict = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__, decoder=UpperCAmelCase__ ) A__ : Optional[Any] = False A__ : Optional[Any] = MBartaaTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(UpperCAmelCase__ ) A__ : Dict = hf_wavavec.config.to_dict() A__ : List[Any] = tokenizer.pad_token_id A__ : Optional[Any] = tokenizer.bos_token_id A__ : List[Any] = tokenizer.eos_token_id A__ : Tuple = """mbart50""" A__ : List[str] = """wav2vec2""" A__ : Optional[int] = tokenizer.eos_token_id A__ : int = 2_5_0_0_0_4 A__ : Dict = tokenizer.eos_token_id A__ : str = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=25_0004, type=int, help='''`decoder_start_token_id` of model config''') A_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
498
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=8 ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCAmelCase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __snake_case ( SCREAMING_SNAKE_CASE ): def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ ,): """simple docstring""" super().__init__() self.register_modules( text_encoder=a_ ,tokenizer=a_ ,unet=a_ ,scheduler=a_ ,movq=a_ ,) lowerCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" if latents is None: lowerCAmelCase__ = randn_tensor(a_ ,generator=a_ ,device=a_ ,dtype=a_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase__ = latents.to(a_ ) lowerCAmelCase__ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_=None ,): """simple docstring""" lowerCAmelCase__ = len(a_ ) if isinstance(a_ ,a_ ) else 1 # get prompt text embeddings lowerCAmelCase__ = self.tokenizer( a_ ,padding='max_length' ,truncation=a_ ,max_length=77 ,return_attention_mask=a_ ,add_special_tokens=a_ ,return_tensors='pt' ,) lowerCAmelCase__ = text_inputs.input_ids lowerCAmelCase__ = self.tokenizer(a_ ,padding='longest' ,return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a_ ,a_ ): lowerCAmelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCAmelCase__ = text_input_ids.to(a_ ) lowerCAmelCase__ = text_inputs.attention_mask.to(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = self.text_encoder( input_ids=a_ ,attention_mask=a_ ) lowerCAmelCase__ = prompt_embeds.repeat_interleave(a_ ,dim=0 ) lowerCAmelCase__ = text_encoder_hidden_states.repeat_interleave(a_ ,dim=0 ) lowerCAmelCase__ = text_mask.repeat_interleave(a_ ,dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ = 42 if negative_prompt is None: lowerCAmelCase__ = [''] * batch_size elif type(a_ ) is not type(a_ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(a_ )} !=' f' {type(a_ )}.' ) elif isinstance(a_ ,a_ ): lowerCAmelCase__ = [negative_prompt] elif batch_size != len(a_ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(a_ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: lowerCAmelCase__ = negative_prompt lowerCAmelCase__ = self.tokenizer( a_ ,padding='max_length' ,max_length=77 ,truncation=a_ ,return_attention_mask=a_ ,add_special_tokens=a_ ,return_tensors='pt' ,) lowerCAmelCase__ = uncond_input.input_ids.to(a_ ) lowerCAmelCase__ = uncond_input.attention_mask.to(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = self.text_encoder( input_ids=a_ ,attention_mask=a_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ = negative_prompt_embeds.shape[1] lowerCAmelCase__ = negative_prompt_embeds.repeat(1 ,a_ ) lowerCAmelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,a_ ) lowerCAmelCase__ = uncond_text_encoder_hidden_states.shape[1] lowerCAmelCase__ = uncond_text_encoder_hidden_states.repeat(1 ,a_ ,1 ) lowerCAmelCase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,a_ ,-1 ) lowerCAmelCase__ = uncond_text_mask.repeat_interleave(a_ ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCAmelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCAmelCase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def SCREAMING_SNAKE_CASE_ ( self ,a_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCAmelCase__ = torch.device(f'cuda:{gpu_id}' ) lowerCAmelCase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ,a_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCAmelCase__ = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=a_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(a_ ,a_ ,prev_module_hook=a_ ) if self.safety_checker is not None: lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(self.safety_checker ,a_ ,prev_module_hook=a_ ) # We'll offload the last model manually. lowerCAmelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(a_ ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a_ ) def __call__( self ,a_ ,a_ ,a_ ,a_ = None ,a_ = 512 ,a_ = 512 ,a_ = 100 ,a_ = 4.0 ,a_ = 1 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,): """simple docstring""" if isinstance(a_ ,a_ ): lowerCAmelCase__ = 1 elif isinstance(a_ ,a_ ): lowerCAmelCase__ = len(a_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(a_ )}' ) lowerCAmelCase__ = self._execution_device lowerCAmelCase__ = batch_size * num_images_per_prompt lowerCAmelCase__ = guidance_scale > 1.0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._encode_prompt( a_ ,a_ ,a_ ,a_ ,a_ ) if isinstance(a_ ,a_ ): lowerCAmelCase__ = torch.cat(a_ ,dim=0 ) if isinstance(a_ ,a_ ): lowerCAmelCase__ = torch.cat(a_ ,dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ = image_embeds.repeat_interleave(a_ ,dim=0 ) lowerCAmelCase__ = negative_image_embeds.repeat_interleave(a_ ,dim=0 ) lowerCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=a_ ) self.scheduler.set_timesteps(a_ ,device=a_ ) lowerCAmelCase__ = self.scheduler.timesteps lowerCAmelCase__ = self.unet.config.in_channels lowerCAmelCase__ , lowerCAmelCase__ = get_new_h_w(a_ ,a_ ,self.movq_scale_factor ) # create initial latent lowerCAmelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,a_ ,a_ ,a_ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(a_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} lowerCAmelCase__ = self.unet( sample=a_ ,timestep=a_ ,encoder_hidden_states=a_ ,added_cond_kwargs=a_ ,return_dict=a_ ,)[0] if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] ,dim=1 ) lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ , lowerCAmelCase__ = variance_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase__ = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step( a_ ,a_ ,a_ ,generator=a_ ,).prev_sample # post-processing lowerCAmelCase__ = self.movq.decode(a_ ,force_not_quantize=a_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase__ = image * 0.5 + 0.5 lowerCAmelCase__ = image.clamp(0 ,1 ) lowerCAmelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
193
from typing import Dict from .base import GenericTensor, Pipeline class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_=None ,a_=None ,a_=None ,**a_ ): """simple docstring""" if tokenize_kwargs is None: lowerCAmelCase__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) lowerCAmelCase__ = truncation lowerCAmelCase__ = tokenize_kwargs lowerCAmelCase__ = {} if return_tensors is not None: lowerCAmelCase__ = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.framework lowerCAmelCase__ = self.tokenizer(a_ ,return_tensors=a_ ,**a_ ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=False ): """simple docstring""" # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self ,*a_ ,**a_ ): """simple docstring""" return super().__call__(*a_ ,**a_ )
193
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _SCREAMING_SNAKE_CASE : List[Any] = True from torch.cuda.amp import autocast _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass class A : '''simple docstring''' lowerCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowerCamelCase : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowerCamelCase : Optional[bool] = field( default=lowerCamelCase_ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowerCamelCase : Optional[bool] = field( default=lowerCamelCase_ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) lowerCamelCase : Optional[float] = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) lowerCamelCase : Optional[float] = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) lowerCamelCase : Optional[float] = field( default=0.999_995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowercase: Union[str, Any] = logging.WARNING if model_args.verbose_logging: _lowercase: int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowercase: Tuple = logging.INFO logger.setLevel(__magic_name__ ) @dataclass class A : '''simple docstring''' lowerCamelCase : str = field( default=lowerCamelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowerCamelCase : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase : Optional[str] = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) lowerCamelCase : Optional[str] = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) lowerCamelCase : Optional[str] = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) lowerCamelCase : bool = field( default=lowerCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowerCamelCase : Optional[int] = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) lowerCamelCase : Optional[int] = field( default=lowerCamelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowerCamelCase : Optional[float] = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class A : '''simple docstring''' lowerCamelCase : WavaVecaForPreTraining lowerCamelCase : WavaVecaFeatureExtractor lowerCamelCase : Union[bool, str] = "longest" lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__( self : Dict , _UpperCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]]): # reformat list to dict and set to pytorch format _lowercase: Union[str, Any] = self.feature_extractor.pad( _UpperCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _lowercase: Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowercase: str = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowercase: Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowercase: Optional[int] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowercase: int = 1 _lowercase: Optional[Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowercase: str = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCamelCase , min_masks=2 , ) return batch class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : Any , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : Dict=0 , _UpperCamelCase : Union[str, Any]=1.0 , **_UpperCamelCase : List[str]): super().__init__(*_UpperCamelCase , **_UpperCamelCase) _lowercase: Tuple = 0 _lowercase: Optional[Any] = max_gumbel_temp _lowercase: Optional[Any] = min_gumbel_temp _lowercase: List[Any] = gumbel_temp_decay def UpperCAmelCase__ ( self : Optional[Any] , _UpperCamelCase : nn.Module , _UpperCamelCase : Dict[str, Union[torch.Tensor, Any]]): model.train() _lowercase: Union[str, Any] = self._prepare_inputs(_UpperCamelCase) if self.use_amp: with autocast(): _lowercase: Optional[Any] = self.compute_loss(_UpperCamelCase , _UpperCamelCase) else: _lowercase: Tuple = self.compute_loss(_UpperCamelCase , _UpperCamelCase) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowercase: int = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowercase: List[str] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowercase: Optional[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) return loss.detach() def __lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase: Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowercase , _lowercase , _lowercase: int = parser.parse_args_into_dataclasses() configure_logger(__magic_name__ , __magic_name__ ) # Downloading and loading a dataset from the hub. _lowercase: Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowercase: int = DatasetDict() _lowercase: List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowercase: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowercase: Any = DatasetDict() _lowercase: Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowercase: Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowercase: List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__magic_name__ ) def prepare_dataset(__magic_name__ ): # check that all files have the correct sampling rate _lowercase , _lowercase: List[str] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowercase: Any = datasets.map( __magic_name__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowercase: List[str] = vectorized_datasets.filter( lambda __magic_name__ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__magic_name__ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowercase: List[str] = vectorized_datasets.map( __magic_name__ , batched=__magic_name__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowercase: List[Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowercase: Tuple = WavaVecaForPreTraining(__magic_name__ ) _lowercase: Union[str, Any] = DataCollatorForWavaVecaPretraining(model=__magic_name__ , feature_extractor=__magic_name__ ) _lowercase: int = WavaVecaPreTrainer( model=__magic_name__ , data_collator=__magic_name__ , args=__magic_name__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__magic_name__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
206
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Optional[int] = """data2vec-text""" def __init__( self : List[str] , _UpperCamelCase : List[str]=30_522 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Dict=12 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : Optional[Any]=3_072 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : Dict=1e-12 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : Dict=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : Any=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : Tuple , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowercase: str = vocab_size _lowercase: Tuple = hidden_size _lowercase: Optional[int] = num_hidden_layers _lowercase: Optional[Any] = num_attention_heads _lowercase: Any = hidden_act _lowercase: Any = intermediate_size _lowercase: List[Any] = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: Optional[Any] = max_position_embeddings _lowercase: str = type_vocab_size _lowercase: List[Any] = initializer_range _lowercase: List[str] = layer_norm_eps _lowercase: int = position_embedding_type _lowercase: Union[str, Any] = use_cache _lowercase: Any = classifier_dropout class A ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Optional[Any]): if self.task == "multiple-choice": _lowercase: str = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase: Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
206
1
"""simple docstring""" from math import pow, sqrt def UpperCAmelCase ( *_lowercase : str ) -> bool: """simple docstring""" lowerCAmelCase_ = len(_A ) > 0 and all(value > 0.0 for value in values ) return result def UpperCAmelCase ( _lowercase : Union[str, Any] , _lowercase : Optional[int] ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_A , _A ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def UpperCAmelCase ( _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[Any] ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_A , _A , _A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def UpperCAmelCase ( _lowercase : int , _lowercase : List[Any] , _lowercase : str ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_A , _A , _A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def UpperCAmelCase ( _lowercase : List[str] , _lowercase : int , _lowercase : Tuple ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_A , _A , _A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def UpperCAmelCase ( _lowercase : int , _lowercase : Tuple , _lowercase : int ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_A , _A , _A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
552
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : str = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class a_ ( _UpperCAmelCase ): a : Any = 'camembert' def __init__( self : Dict , __UpperCamelCase : Union[str, Any]=3_05_22 , __UpperCamelCase : Tuple=7_68 , __UpperCamelCase : Optional[Any]=12 , __UpperCamelCase : int=12 , __UpperCamelCase : int=30_72 , __UpperCamelCase : int="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[Any]=5_12 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : Optional[int]=1e-12 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : int=0 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Optional[int]="absolute" , __UpperCamelCase : int=True , __UpperCamelCase : Dict=None , **__UpperCamelCase : List[str] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class a_ ( _UpperCAmelCase ): @property def _snake_case ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
555
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") _lowercase = logging.getLogger(__name__) @dataclass class a_ : lowercase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowercase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class a_ : lowercase_ : Optional[str] = field(default=UpperCAmelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowercase__ ( self : List[Any] ): if self.train_file is not None: __snake_case = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class a_ : lowercase_ : PreTrainedTokenizerBase lowercase_ : Union[bool, str, PaddingStrategy] = True lowercase_ : Optional[int] = None lowercase_ : Optional[int] = None def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): __snake_case = 'label' if 'label' in features[0].keys() else 'labels' __snake_case = [feature.pop(__lowerCAmelCase ) for feature in features] __snake_case = len(__lowerCAmelCase ) __snake_case = len(features[0]['input_ids'] ) __snake_case = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCAmelCase )] for feature in features ] __snake_case = list(chain(*__lowerCAmelCase ) ) __snake_case = self.tokenizer.pad( __lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case = {k: v.view(__lowerCAmelCase , __lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case = torch.tensor(__lowerCAmelCase , dtype=torch.intaa ) return batch def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , a , a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(a ) datasets.utils.logging.set_verbosity(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case = {} if data_args.train_file is not None: __snake_case = data_args.train_file if data_args.validation_file is not None: __snake_case = data_args.validation_file __snake_case = data_args.train_file.split('.' )[-1] __snake_case = load_dataset( a , data_files=a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case = [f'ending{i}' for i in range(4 )] __snake_case = 'sent1' __snake_case = 'sent2' if data_args.max_seq_length is None: __snake_case = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __snake_case = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a ): __snake_case = [[context] * 4 for context in examples[context_name]] __snake_case = examples[question_header_name] __snake_case = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(a ) ] # Flatten out __snake_case = list(chain(*a ) ) __snake_case = list(chain(*a ) ) # Tokenize __snake_case = tokenizer( a , a , truncation=a , max_length=a , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(a ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case = min(len(a ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(a ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case = train_dataset.map( a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case = min(len(a ) , data_args.max_eval_samples ) __snake_case = eval_dataset.select(range(a ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case = eval_dataset.map( a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a ): __snake_case , __snake_case = eval_predictions __snake_case = np.argmax(a , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case = Trainer( model=a , args=a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a , data_collator=a , compute_metrics=a , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=a ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a ) ) __snake_case = min(a , len(a ) ) trainer.log_metrics('train' , a ) trainer.save_metrics('train' , a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a ) __snake_case = min(a , len(a ) ) trainer.log_metrics('eval' , a ) trainer.save_metrics('eval' , a ) __snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) def lowerCamelCase__ ( a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
427
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): def lowercase__ ( self : List[str] ): __snake_case = 0 @slow def lowercase__ ( self : str ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCAmelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCAmelCase ) , 0 ) def lowercase__ ( self : Optional[int] ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowercase__ ( self : Tuple ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowercase__ ( self : Any ): __snake_case = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) # Check that tokenizer_type ≠ model_type __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowercase__ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(__lowerCAmelCase , 'vocab.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='bert' , use_fast=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(__lowerCAmelCase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(__lowerCAmelCase , 'merges.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='gpt2' , use_fast=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers def lowercase__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(__lowerCAmelCase , 'vocab.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='bert' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(__lowerCAmelCase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(__lowerCAmelCase , 'merges.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='gpt2' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : int ): with pytest.raises(__lowerCAmelCase ): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx' ) @require_tokenizers def lowercase__ ( self : Union[str, Any] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __snake_case = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowercase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __snake_case = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def lowercase__ ( self : Any ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __snake_case = TOKENIZER_MAPPING.values() __snake_case = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCAmelCase ) @require_tokenizers def lowercase__ ( self : List[str] ): self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) , __lowerCAmelCase ) @require_tokenizers def lowercase__ ( self : Optional[int] ): __snake_case = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=__lowerCAmelCase ) __snake_case = 'Hello, world. How are you?' __snake_case = tokenizer.tokenize(__lowerCAmelCase ) self.assertEqual('[UNK]' , tokens[0] ) __snake_case = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=__lowerCAmelCase ) __snake_case = tokenizer.tokenize(__lowerCAmelCase ) self.assertEqual('[UNK]' , tokens[0] ) @require_tokenizers def lowercase__ ( self : Optional[Any] ): __snake_case = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '[UNK]' ) self.assertEqual(tokenizer.padding_side , 'right' ) self.assertEqual(tokenizer.truncation_side , 'right' ) def lowercase__ ( self : List[str] ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowercase__ ( self : Tuple ): __snake_case = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. __snake_case = get_tokenizer_config('bert-base-cased' ) __snake_case = config.pop('_commit_hash' , __lowerCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCAmelCase , {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. __snake_case = get_tokenizer_config(__lowerCAmelCase ) self.assertDictEqual(__lowerCAmelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = get_tokenizer_config(__lowerCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer' ) def lowercase__ ( self : List[str] ): try: AutoConfig.register('custom' , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) __snake_case = CustomTokenizer.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase__ ( self : Union[str, Any] ): try: AutoConfig.register('custom' , __lowerCAmelCase ) # Can register in two steps AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoTokenizer.register(__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = BertTokenizerFast.from_pretrained(__lowerCAmelCase ) bert_tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = CustomTokenizerFast.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , trust_remote_code=__lowerCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) @require_tokenizers def lowercase__ ( self : str ): class a_ ( UpperCAmelCase__ ): lowercase_ : str = False class a_ ( UpperCAmelCase__ ): lowercase_ : Optional[Any] = NewTokenizer lowercase_ : str = False try: AutoConfig.register('custom' , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) # If remote code is not set, the default is to use local __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Optional[Any] ): __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def lowercase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): __snake_case = AutoTokenizer.from_pretrained('bert-base' ) def lowercase__ ( self : str ): with self.assertRaisesRegex( __lowerCAmelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , revision='aaaaaa' ) def lowercase__ ( self : int ): # Make sure we have cached the tokenizer. __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
427
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
'''simple docstring''' from math import pi def UpperCamelCase__ ( _lowercase : int , _lowercase : int ) -> float: return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
523
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = IFPipeline _SCREAMING_SNAKE_CASE :str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} _SCREAMING_SNAKE_CASE :Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE :Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def _a ( self ) -> Union[str, Any]: """simple docstring""" return self._get_dummy_components() def _a ( self , _a , _a=0 ) -> int: """simple docstring""" if str(_a ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.manual_seed(_a ) else: SCREAMING_SNAKE_CASE__ : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _a ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _a ( self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _a ( self ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : str = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_a , tokenizer=_a ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : Dict = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_a , _a , _a , _a ) def _a ( self , _a , _a , _a , _a ) -> str: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , num_inference_steps=2 , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_a , _a ) def _a ( self , _a , _a , _a , _a ) -> Optional[Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , num_inference_steps=2 , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Any = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE__ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_a , _a ) def _a ( self , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , num_inference_steps=2 , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Any = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_a , _a ) def _lowercase ( ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
12
"""simple docstring""" import os a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 while index < len(__lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] = """""" SCREAMING_SNAKE_CASE__ : int = num // 1000 numerals += m_count * "M" num %= 1000 SCREAMING_SNAKE_CASE__ : List[str] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 SCREAMING_SNAKE_CASE__ : List[Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int: SCREAMING_SNAKE_CASE__ : int = 0 with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE__ : str = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip() SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase ) savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase ) return savings if __name__ == "__main__": print(f'{solution() = }')
12
1
"""simple docstring""" import os import string import sys _A = 1 << 8 _A = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } _A = KEYMAP["""up"""] _A = KEYMAP["""left"""] if sys.platform == "win32": _A = [] _A = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): _A = ord(str(i)) def a__ ( ) -> List[str]: if os.name == "nt": import msvcrt UpperCAmelCase__ : Optional[Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__A ) == 0: # Read the keystroke UpperCAmelCase__ : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase__ : int = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase__ : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__A ) if ord(__A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) UpperCAmelCase__ : Tuple = chr(KEYMAP["""esc"""] ) except KeyError: UpperCAmelCase__ : Any = cha[1] else: UpperCAmelCase__ : int = ch.decode(__A ) else: UpperCAmelCase__ : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase__ : Dict = sys.stdin.fileno() UpperCAmelCase__ : Optional[Any] = termios.tcgetattr(__A ) try: tty.setraw(__A ) UpperCAmelCase__ : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(__A , termios.TCSADRAIN , __A ) return ch def a__ ( ) -> Tuple: UpperCAmelCase__ : List[Any] = get_raw_chars() if ord(__A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__A ) == KEYMAP["esc"]: UpperCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(__A ) == KEYMAP["mod_int"]: UpperCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(__A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Any = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __A : int = logging.get_logger(__name__) set_seed(770) __A : Dict = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } __A : str = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } __A : Optional[int] = os.path.dirname(os.path.abspath(__file__)) __A : int = os.path.join(os.path.expanduser("~"), ".cache") __A : Union[str, Any] = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Dict: """simple docstring""" _A = model_type if use_small: key += "_small" return os.path.join(_SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]['file_name'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , local_dir=_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) -> int: """simple docstring""" if model_type == "text": _A = BarkSemanticModel _A = BarkSemanticConfig _A = BarkSemanticGenerationConfig elif model_type == "coarse": _A = BarkCoarseModel _A = BarkCoarseConfig _A = BarkCoarseGenerationConfig elif model_type == "fine": _A = BarkFineModel _A = BarkFineConfig _A = BarkFineGenerationConfig else: raise NotImplementedError() _A = F"{model_type}_small" if use_small else model_type _A = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) _A = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) # this is a hack _A = checkpoint['model_args'] if "input_vocab_size" not in model_args: _A = model_args['vocab_size'] _A = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _A = model_args.pop('n_head' ) _A = model_args.pop('n_embd' ) _A = model_args.pop('n_layer' ) _A = ConfigClass(**checkpoint['model_args'] ) _A = ModelClass(config=_SCREAMING_SNAKE_CASE ) _A = GenerationConfigClass() _A = model_generation_config _A = checkpoint['model'] # fixup checkpoint _A = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(_SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation _A = k[len(_SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: _A = new_k.replace(_SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) _A = state_dict.pop(_SCREAMING_SNAKE_CASE ) _A = set(state_dict.keys() ) - set(model.state_dict().keys() ) _A = {k for k in extra_keys if not k.endswith('.attn.bias' )} _A = set(model.state_dict().keys() ) - set(state_dict.keys() ) _A = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) _A = model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) _A = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(_SCREAMING_SNAKE_CASE , 3 )} loss" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) -> List[str]: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _A = 'cpu' # do conversion on cpu _A = _get_ckpt_path(_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) _A = _load_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) # load bark initial model _A = _bark_load_model(_SCREAMING_SNAKE_CASE , 'cpu' , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) if model_type == "text": _A = bark_model['model'] if model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _A = 5 _A = 10 if model_type in ["text", "coarse"]: _A = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _A = bark_model(_SCREAMING_SNAKE_CASE )[0] _A = model(_SCREAMING_SNAKE_CASE ) # take last logits _A = output_new_model_total.logits[:, [-1], :] else: _A = 3 _A = 8 _A = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _A = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = bark_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" _A = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = BarkSemanticConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) _A = BarkCoarseConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) _A = BarkFineConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) _A = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _A = BarkSemanticModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _A = BarkCoarseModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _A = BarkFineModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _A = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _A = BarkConfig.from_sub_model_configs( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _A = BarkModel(_SCREAMING_SNAKE_CASE ) _A = semantic _A = coarseAcoustic _A = fineAcoustic _A = codec _A = bark_generation_config Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) bark.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") __A : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
1
from typing import List from .keymap import KEYMAP, get_character def A ( _lowerCamelCase ): '''simple docstring''' def decorator(_lowerCamelCase ): _lowerCAmelCase : Dict = getattr(__UpperCamelCase , "handle_key" , [] ) handle += [key] setattr(__UpperCamelCase , "handle_key" , __UpperCamelCase ) return func return decorator def A ( *_lowerCamelCase ): '''simple docstring''' def decorator(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = getattr(__UpperCamelCase , "handle_key" , [] ) handle += keys setattr(__UpperCamelCase , "handle_key" , __UpperCamelCase ) return func return decorator class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): def __new__( cls, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = super().__new__(cls, _lowercase, _lowercase, _lowercase) if not hasattr(_lowercase, "key_handler"): setattr(_lowercase, "key_handler", {}) setattr(_lowercase, "handle_input", KeyHandler.handle_input) for value in attrs.values(): _lowerCAmelCase : List[str] = getattr(_lowercase, "handle_key", []) for key in handled_keys: _lowerCAmelCase : List[str] = value return new_cls @staticmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_character() if char != KEYMAP["undefined"]: _lowerCAmelCase : int = ord(_lowercase) _lowerCAmelCase : Tuple = cls.key_handler.get(_lowercase) if handler: _lowerCAmelCase : Union[str, Any] = char return handler(cls) else: return None def A ( cls ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( __UpperCAmelCase ): @staticmethod @abstractmethod def lowerCamelCase ( lowercase_ : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" raise NotImplementedError()
464
'''simple docstring''' from typing import Any class A : def __init__( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self ) -> str: '''simple docstring''' return F'''Node({self.data})''' class A : def __init__( self ) -> int: '''simple docstring''' lowercase__ = None def __iter__( self ) -> Any: '''simple docstring''' lowercase__ = self.head while node: yield node.data lowercase__ = node.next def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ) -> str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __getitem__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) lowercase__ = self.head for _ in range(lowerCamelCase__ ): lowercase__ = current.next lowercase__ = data def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(0 , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) lowercase__ = Node(lowerCamelCase__ ) if self.head is None: lowercase__ = new_node elif index == 0: lowercase__ = self.head # link new_node to head lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node def A__ ( self ) -> None: # print every node data '''simple docstring''' print(self ) def A__ ( self ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , lowerCamelCase__ = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) lowercase__ = self.head # default first node if index == 0: lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next return delete_node.data def A__ ( self ) -> bool: '''simple docstring''' return self.head is None def A__ ( self ) -> None: '''simple docstring''' lowercase__ = None lowercase__ = self.head while current: # Store the current node's next node. lowercase__ = current.next # Make the current node's next point backwards lowercase__ = prev # Make the previous node be the current node lowercase__ = current # Make the current node the next node (to progress iteration) lowercase__ = next_node # Return prev in order to put the head at the end lowercase__ = prev def _A ( ): lowercase__ = LinkedList() assert linked_list.is_empty() is True assert str(lowercase__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase__ ) == i linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase__ ) == 9 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowercase__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(-8 , 1 ) ) def _A ( ): lowercase__ = [ -9, 100, Node(77345112 ), """dlrow olleH""", 7, 5555, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] lowercase__ = LinkedList() for i in test_input: linked_list.insert_tail(lowercase__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowercase__ = linked_list.delete_head() assert result == -9 assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowercase__ = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowercase__ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(lowercase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase__ ) assert ( str(lowercase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ): from doctest import testmod testmod() lowercase__ = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(lowercase__ ) print("""\nReading/changing Node data using indexing:""" ) print(f'''Element at Position 1: {linked_list[1]}''' ) lowercase__ = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(lowercase__ ) print(f'''length of linked_list is : {len(lowercase__ )}''' ) if __name__ == "__main__": main()
325
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int , lowerCamelCase : Optional[int] )-> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): snake_case__ : Any = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase ) def __lowerCAmelCase ( self : Optional[int] )-> Optional[int]: snake_case__ : Dict = """sshleifer/tiny-gpt2""" snake_case__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : List[Any] = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : int )-> List[str]: snake_case__ : Tuple = """sgugger/tiny-distilbert-classification""" snake_case__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , only_pretrain_model=lowerCamelCase , ) snake_case__ : Any = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : Optional[Any] )-> str: snake_case__ : str = """sshleifer/tiny-gpt2""" snake_case__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , torchscript=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Tuple = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def __lowerCAmelCase ( self : List[str] )-> Dict: snake_case__ : Dict = """sshleifer/tiny-gpt2""" snake_case__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , fpaa=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Tuple = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Any = """sshleifer/tiny-gpt2""" snake_case__ : int = AutoConfig.from_pretrained(lowerCamelCase ) # set architectures equal to `None` snake_case__ : List[str] = None snake_case__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Dict = PyTorchBenchmark(lowerCamelCase , configs=[config] ) snake_case__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : Optional[Any] )-> Dict: snake_case__ : Union[str, Any] = """sshleifer/tiny-gpt2""" snake_case__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Union[str, Any] = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def __lowerCAmelCase ( self : Optional[Any] )-> int: snake_case__ : List[Any] = """sshleifer/tiny-gpt2""" snake_case__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCamelCase , multi_process=lowerCamelCase , ) snake_case__ : Optional[int] = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self : str )-> Any: snake_case__ : List[str] = """sshleifer/tiny-gpt2""" snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase ) snake_case__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Any = PyTorchBenchmark(lowerCamelCase , configs=[config] ) snake_case__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : List[Any] )-> Union[str, Any]: snake_case__ : List[str] = """sshleifer/tinier_bart""" snake_case__ : Tuple = AutoConfig.from_pretrained(lowerCamelCase ) snake_case__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Tuple = PyTorchBenchmark(lowerCamelCase , configs=[config] ) snake_case__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : List[Any] )-> str: snake_case__ : List[str] = """sshleifer/tiny-gpt2""" snake_case__ : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase ) snake_case__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : Optional[int] = PyTorchBenchmark(lowerCamelCase , configs=[config] ) snake_case__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case__ : int = """sshleifer/tinier_bart""" snake_case__ : Dict = AutoConfig.from_pretrained(lowerCamelCase ) snake_case__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase , ) snake_case__ : int = PyTorchBenchmark(lowerCamelCase , configs=[config] ) snake_case__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self : List[Any] )-> Union[str, Any]: snake_case__ : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , save_to_csv=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(lowerCamelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(lowerCamelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(lowerCamelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(lowerCamelCase , """env.csv""" ) , multi_process=lowerCamelCase , ) snake_case__ : int = PyTorchBenchmark(lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase , """env.csv""" ) ).exists() ) def __lowerCAmelCase ( self : Optional[Any] )-> List[str]: snake_case__ : Tuple = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowerCamelCase : Dict ): self.assertTrue(hasattr(lowerCamelCase , """sequential""" ) ) self.assertTrue(hasattr(lowerCamelCase , """cumulative""" ) ) self.assertTrue(hasattr(lowerCamelCase , """current""" ) ) self.assertTrue(hasattr(lowerCamelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase , inference=lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase , """log.txt""" ) , log_print=lowerCamelCase , trace_memory_line_by_line=lowerCamelCase , multi_process=lowerCamelCase , ) snake_case__ : List[str] = PyTorchBenchmark(lowerCamelCase ) snake_case__ : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCamelCase , """log.txt""" ) ).exists() )
172
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _A : '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : int=13 , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : Tuple=99 , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : Dict=4 , lowerCamelCase : Tuple=37 , lowerCamelCase : Dict="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Tuple=2 , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Tuple=4 , lowerCamelCase : Union[str, Any]=None , )-> List[Any]: snake_case__ : str = parent snake_case__ : Optional[int] = 13 snake_case__ : List[str] = 7 snake_case__ : Tuple = True snake_case__ : List[str] = True snake_case__ : List[str] = True snake_case__ : Tuple = True snake_case__ : List[str] = 99 snake_case__ : str = 384 snake_case__ : int = 2 snake_case__ : int = 4 snake_case__ : str = 37 snake_case__ : Optional[Any] = """gelu""" snake_case__ : Dict = 0.1 snake_case__ : str = 0.1 snake_case__ : str = 512 snake_case__ : List[Any] = 16 snake_case__ : List[Any] = 2 snake_case__ : str = 0.02 snake_case__ : int = 3 snake_case__ : int = 4 snake_case__ : Optional[int] = 128 snake_case__ : Tuple = 2 snake_case__ : str = 9 snake_case__ : Optional[int] = 1 snake_case__ : str = None def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : Optional[Any] = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] )-> Optional[int]: snake_case__ : str = TFConvBertModel(config=lowerCamelCase ) snake_case__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Optional[Any] = [input_ids, input_mask] snake_case__ : Optional[Any] = model(lowerCamelCase ) snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Optional[int] )-> Tuple: snake_case__ : str = TFConvBertForMaskedLM(config=lowerCamelCase ) snake_case__ : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] )-> Optional[int]: snake_case__ : Optional[int] = self.num_labels snake_case__ : List[str] = TFConvBertForSequenceClassification(config=lowerCamelCase ) snake_case__ : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple )-> Dict: snake_case__ : Optional[Any] = self.num_choices snake_case__ : Tuple = TFConvBertForMultipleChoice(config=lowerCamelCase ) snake_case__ : Optional[Any] = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Dict = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : str = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Any = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] )-> Optional[int]: snake_case__ : str = self.num_labels snake_case__ : Dict = TFConvBertForTokenClassification(config=lowerCamelCase ) snake_case__ : List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] )-> Optional[Any]: snake_case__ : int = TFConvBertForQuestionAnswering(config=lowerCamelCase ) snake_case__ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Any )-> Tuple: snake_case__ : Dict = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : List[Any] = config_and_inputs snake_case__ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' _lowercase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def __lowerCAmelCase ( self : str )-> Optional[Any]: snake_case__ : Optional[Any] = TFConvBertModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self : int )-> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int )-> Optional[Any]: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> Any: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def __lowerCAmelCase ( self : Optional[Any] )-> Tuple: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def __lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def __lowerCAmelCase ( self : List[Any] )-> int: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> List[str]: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def __lowerCAmelCase ( self : Optional[Any] )-> List[str]: snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = True snake_case__ : List[Any] = True if hasattr(lowerCamelCase , """use_cache""" ): snake_case__ : List[Any] = True snake_case__ : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : List[Any] = getattr(self.model_tester , """key_length""" , lowerCamelCase ) for model_class in self.all_model_classes: snake_case__ : Optional[Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : Any = len(model(lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase , saved_model=lowerCamelCase ) snake_case__ : Any = os.path.join(lowerCamelCase , """saved_model""" , """1""" ) snake_case__ : Dict = tf.keras.models.load_model(lowerCamelCase ) snake_case__ : Any = model(lowerCamelCase ) if self.is_encoder_decoder: snake_case__ : Optional[int] = outputs["""encoder_hidden_states"""] snake_case__ : str = outputs["""encoder_attentions"""] else: snake_case__ : int = outputs["""hidden_states"""] snake_case__ : List[Any] = outputs["""attentions"""] self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) snake_case__ : Any = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Any )-> List[Any]: snake_case__ : Dict = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(lowerCamelCase ) def __lowerCAmelCase ( self : List[Any] )-> int: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = True snake_case__ : int = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : Optional[Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : Any = getattr(self.model_tester , """key_length""" , lowerCamelCase ) snake_case__ : Any = getattr(self.model_tester , """key_length""" , lowerCamelCase ) def check_decoder_attentions_output(lowerCamelCase : List[Any] ): snake_case__ : Tuple = len(lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : str = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase : List[Any] ): snake_case__ : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Dict = True snake_case__ : Any = False snake_case__ : List[Any] = model_class(lowerCamelCase ) snake_case__ : int = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Any = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: snake_case__ : List[str] = model_class(lowerCamelCase ) snake_case__ : Dict = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Tuple = True snake_case__ : Any = model_class(lowerCamelCase ) snake_case__ : str = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine snake_case__ : List[Any] = True snake_case__ : List[Any] = True snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : Optional[Any] = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @require_tf class _A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : str )-> str: snake_case__ : List[Any] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) snake_case__ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Optional[Any] = model(lowerCamelCase )[0] snake_case__ : List[str] = [1, 6, 768] self.assertEqual(output.shape , lowerCamelCase ) snake_case__ : int = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1e-4 )
172
1
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _UpperCAmelCase : Any = '''path-to-your-trained-model''' _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') _UpperCAmelCase : Dict = '''A photo of sks dog in a bucket''' _UpperCAmelCase : Optional[int] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
107
from __future__ import annotations def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case_ , snake_case_ = array[indexa], array[indexa] def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if length > 1: snake_case_ = int(length / 2 ) for i in range(lowercase__ , low + middle ): comp_and_swap(lowercase__ , lowercase__ , i + middle , lowercase__ ) bitonic_merge(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) bitonic_merge(lowercase__ , low + middle , lowercase__ , lowercase__ ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if length > 1: snake_case_ = int(length / 2 ) bitonic_sort(lowercase__ , lowercase__ , lowercase__ , 1 ) bitonic_sort(lowercase__ , low + middle , lowercase__ , 0 ) bitonic_merge(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": A = input('Enter numbers separated by a comma:\n').strip() A = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
187
0
from __future__ import annotations import requests def _lowerCAmelCase ( UpperCamelCase__: str ) -> dict: """simple docstring""" A = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(UpperCamelCase__ ).json() def _lowerCAmelCase ( UpperCamelCase__: int = 10 ) -> list[dict]: """simple docstring""" A = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" A = requests.get(UpperCamelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCamelCase__ ) for story_id in story_ids] def _lowerCAmelCase ( UpperCamelCase__: int = 10 ) -> str: """simple docstring""" A = hackernews_top_stories(UpperCamelCase__ ) return "\n".join("""* [{title}]({url})""".format(**UpperCamelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
705
import sys from collections import defaultdict class _UpperCamelCase : """simple docstring""" def __init__( self ) -> Any: A = [] def _UpperCAmelCase ( self , a__ ) -> List[str]: return self.node_position[vertex] def _UpperCAmelCase ( self , a__ , a__ ) -> Optional[int]: A = pos def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ ) -> Any: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a__ ) self.top_to_bottom(a__ , a__ , a__ , a__ ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] , a__ ) else: A = val A = temp self.set_position(a__ , a__ ) break A = parent else: A = val A = temp self.set_position(a__ , 0 ) def _UpperCAmelCase ( self , a__ , a__ ) -> Optional[int]: A = len(a__ ) // 2 - 1 for i in range(a__ , -1 , -1 ): self.top_to_bottom(a__ , a__ , len(a__ ) , a__ ) def _UpperCAmelCase ( self , a__ , a__ ) -> Any: A = positions[0] A = sys.maxsize self.top_to_bottom(a__ , 0 , len(a__ ) , a__ ) return temp def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> List[str]: """simple docstring""" A = Heap() A = [0] * len(UpperCamelCase__ ) A = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): A = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): A = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase : Tuple = int(input("Enter number of edges: ").strip()) _lowercase : int = defaultdict(list) for _ in range(edges_number): _lowercase : Optional[Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
546
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] =SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowerCamelCase : Tuple =4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowerCamelCase : Union[str, Any] =4 _lowerCamelCase : int =48 _lowerCamelCase : Optional[int] ='pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowerCamelCase : Dict =[6, 6, 6, 6] _lowerCamelCase : List[Any] =60 _lowerCamelCase : Optional[Any] =[6, 6, 6, 6] _lowerCamelCase : List[str] ='pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowerCamelCase : int =4 _lowerCamelCase : List[Any] ='nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowerCamelCase : Optional[int] =1 _lowerCamelCase : List[Any] =1 _lowerCamelCase : Union[str, Any] =126 _lowerCamelCase : int =7 _lowerCamelCase : Any =255.0 _lowerCamelCase : Dict ='' return config def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: _lowerCamelCase : Union[str, Any] =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCamelCase : str =name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowerCamelCase : Union[str, Any] =name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: _lowerCamelCase : Dict =name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: _lowerCamelCase : Any =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : Any =name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : Dict =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : Optional[int] =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Any =name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: _lowerCamelCase : Union[str, Any] =name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: _lowerCamelCase : Dict =name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: _lowerCamelCase : List[Any] =name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: _lowerCamelCase : int =name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowerCamelCase : int =name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": _lowerCamelCase : Union[str, Any] ='layernorm.weight' if name == "norm.bias": _lowerCamelCase : int ='layernorm.bias' if "conv_first" in name: _lowerCamelCase : Optional[Any] =name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowerCamelCase : List[Any] =name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowerCamelCase : Any =name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: _lowerCamelCase : Union[str, Any] =name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: _lowerCamelCase : Optional[Any] =name.replace('upsample.2' , 'upsample.convolution_1' ) _lowerCamelCase : Optional[int] ='upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowerCamelCase : Tuple =name.replace('upsample.0.weight' , 'upsample.conv.weight' ) _lowerCamelCase : int =name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: _lowerCamelCase : List[str] ='swin2sr.' + name return name def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase : Any =orig_state_dict.pop(lowercase__ ) if "qkv" in key: _lowerCamelCase : Optional[Any] =key.split('.' ) _lowerCamelCase : Tuple =int(key_split[1] ) _lowerCamelCase : Optional[int] =int(key_split[4] ) _lowerCamelCase : List[str] =config.embed_dim if "weight" in key: _lowerCamelCase : str =val[:dim, :] _lowerCamelCase : Any =val[dim : dim * 2, :] _lowerCamelCase : Union[str, Any] =val[-dim:, :] else: _lowerCamelCase : str =val[:dim] _lowerCamelCase : List[str] =val[dim : dim * 2] _lowerCamelCase : str =val[-dim:] pass else: _lowerCamelCase : Dict =val return orig_state_dict def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =get_config(lowercase__ ) _lowerCamelCase : str =SwinaSRForImageSuperResolution(lowercase__ ) model.eval() _lowerCamelCase : Dict =torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' ) _lowerCamelCase : List[str] =convert_state_dict(lowercase__ , lowercase__ ) _lowerCamelCase , _lowerCamelCase : Dict =model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(lowercase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values _lowerCamelCase : int ='https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowerCamelCase : Optional[int] =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) _lowerCamelCase : Union[str, Any] =SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowerCamelCase : List[Any] =126 if 'Jpeg' in checkpoint_url else 256 _lowerCamelCase : Union[str, Any] =Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowerCamelCase : int =transforms(lowercase__ ).unsqueeze(0 ) if config.num_channels == 1: _lowerCamelCase : Optional[Any] =pixel_values[:, 0, :, :].unsqueeze(1 ) _lowerCamelCase : List[Any] =model(lowercase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowerCamelCase : Any =torch.Size([1, 3, 512, 512] ) _lowerCamelCase : Union[str, Any] =torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowerCamelCase : str =torch.Size([1, 3, 1_024, 1_024] ) _lowerCamelCase : Optional[Any] =torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowerCamelCase : Optional[Any] =torch.Size([1, 3, 1_024, 1_024] ) _lowerCamelCase : List[Any] =torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowerCamelCase : Optional[int] =torch.Size([1, 3, 512, 512] ) _lowerCamelCase : int =torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowerCamelCase : Dict =torch.Size([1, 3, 1_024, 1_024] ) _lowerCamelCase : Tuple =torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase__ , atol=1e-3 ) print('Looks ok!' ) _lowerCamelCase : Dict ={ 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowerCamelCase : List[Any] =url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') lowerCamelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
464
'''simple docstring''' from typing import Any class A : def __init__( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self ) -> str: '''simple docstring''' return F'''Node({self.data})''' class A : def __init__( self ) -> int: '''simple docstring''' lowercase__ = None def __iter__( self ) -> Any: '''simple docstring''' lowercase__ = self.head while node: yield node.data lowercase__ = node.next def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ) -> str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __getitem__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) lowercase__ = self.head for _ in range(lowerCamelCase__ ): lowercase__ = current.next lowercase__ = data def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(0 , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) lowercase__ = Node(lowerCamelCase__ ) if self.head is None: lowercase__ = new_node elif index == 0: lowercase__ = self.head # link new_node to head lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node def A__ ( self ) -> None: # print every node data '''simple docstring''' print(self ) def A__ ( self ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , lowerCamelCase__ = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) lowercase__ = self.head # default first node if index == 0: lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next return delete_node.data def A__ ( self ) -> bool: '''simple docstring''' return self.head is None def A__ ( self ) -> None: '''simple docstring''' lowercase__ = None lowercase__ = self.head while current: # Store the current node's next node. lowercase__ = current.next # Make the current node's next point backwards lowercase__ = prev # Make the previous node be the current node lowercase__ = current # Make the current node the next node (to progress iteration) lowercase__ = next_node # Return prev in order to put the head at the end lowercase__ = prev def _A ( ): lowercase__ = LinkedList() assert linked_list.is_empty() is True assert str(lowercase__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase__ ) == i linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase__ ) == 9 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowercase__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(-8 , 1 ) ) def _A ( ): lowercase__ = [ -9, 100, Node(77345112 ), """dlrow olleH""", 7, 5555, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] lowercase__ = LinkedList() for i in test_input: linked_list.insert_tail(lowercase__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowercase__ = linked_list.delete_head() assert result == -9 assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowercase__ = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowercase__ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(lowercase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase__ ) assert ( str(lowercase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ): from doctest import testmod testmod() lowercase__ = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(lowercase__ ) print("""\nReading/changing Node data using indexing:""" ) print(f'''Element at Position 1: {linked_list[1]}''' ) lowercase__ = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(lowercase__ ) print(f'''length of linked_list is : {len(lowercase__ )}''' ) if __name__ == "__main__": main()
325
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device a_ = False class __lowerCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=__UpperCAmelCase , text_to_image_strength=0.75 , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained(__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = generator.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=__UpperCAmelCase , text_to_image_strength=0.75 , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = '''cyberpunk 2077''' __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt=__UpperCAmelCase , image=__UpperCAmelCase , text_to_image_strength=0.75 , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowerCamelCase = '''A painting of a squirrel eating a burger ''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.text_to_image( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowerCamelCase = pipe.image_variation(__UpperCAmelCase , generator=__UpperCAmelCase , output_type='''numpy''' ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
714
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """lxmert""" lowerCAmelCase__ = {} def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=9500 , __UpperCAmelCase=1600 , __UpperCAmelCase=400 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=9 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=2048 , __UpperCAmelCase=4 , __UpperCAmelCase=6.67 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = num_qa_labels __lowerCamelCase = num_object_labels __lowerCamelCase = num_attr_labels __lowerCamelCase = l_layers __lowerCamelCase = x_layers __lowerCamelCase = r_layers __lowerCamelCase = visual_feat_dim __lowerCamelCase = visual_pos_dim __lowerCamelCase = visual_loss_normalizer __lowerCamelCase = task_matched __lowerCamelCase = task_mask_lm __lowerCamelCase = task_obj_predict __lowerCamelCase = task_qa __lowerCamelCase = visual_obj_loss __lowerCamelCase = visual_attr_loss __lowerCamelCase = visual_feat_loss __lowerCamelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__UpperCAmelCase )
622
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _a ( __a , unittest.TestCase ): """simple docstring""" A_ = DebertaVaTokenizer A_ = DebertaVaTokenizerFast A_ = True A_ = True def lowerCamelCase__ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = DebertaVaTokenizer(lowercase_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : str ): '''simple docstring''' lowercase_ = """this is a test""" lowercase_ = """this is a test""" return input_text, output_text def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(lowercase_ ) , 30_001 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = """ \tHeLLo!how \n Are yoU? """ lowercase_ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on lowercase_ = DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on lowercase_ = DebertaVaTokenizer(lowercase_ , split_by_punct=lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , split_by_punct=lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on lowercase_ = DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on lowercase_ = DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on lowercase_ = DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = """ \tHeLLo!how \n Are yoU? """ lowercase_ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on lowercase_ = DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowercase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowercase_ ) lowercase_ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = """This is a test""" lowercase_ = [13, 1, 4_398, 25, 21, 1_289] lowercase_ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] lowercase_ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] lowercase_ = DebertaVaTokenizer(lowercase_ , keep_accents=lowercase_ ) lowercase_ = DebertaVaTokenizerFast(lowercase_ , keep_accents=lowercase_ ) lowercase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # fmt: off lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowercase_ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] lowercase_ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on lowercase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ = rust_tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = DebertaVaTokenizer(lowercase_ ) lowercase_ = tokenizer.encode("""sequence builders""" ) lowercase_ = tokenizer.encode("""multi-sequence build""" ) lowercase_ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowercase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowercase_ , ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
451
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __snake_case = 10 def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if array[i] == target: return i return -1 def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: lowercase_ = 0 lowercase_ = len(SCREAMING_SNAKE_CASE_ ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase_ = one_third - 1 elif array[two_third] < target: lowercase_ = two_third + 1 else: lowercase_ = one_third + 1 lowercase_ = two_third - 1 else: return -1 def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE_ , one_third - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input("""Enter numbers separated by comma:\n""").strip() __snake_case = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __snake_case = int(input("""Enter the number to be found in the list:\n""").strip()) __snake_case = ite_ternary_search(collection, target) __snake_case = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
451
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[Any] = [] for line in lines: lowerCAmelCase__ : Optional[Any] = re.sub(R"#.*" , "" , __lowercase ) # remove comments if line: filtered_lines.append(__lowercase ) lowerCAmelCase__ : List[Any] = '\n'.join(__lowercase ) # Make a hash from all this code lowerCAmelCase__ : int = full_str.encode("utf-8" ) return shaaaa(__lowercase ).hexdigest() # get importable module names and hash for caching snake_case = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions snake_case = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) snake_case = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name snake_case = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
704
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() snake_case = logging.get_logger("""transformers.models.speecht5""") def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase__ : Tuple = checkpoint["input_conv.weight_g"] lowerCAmelCase__ : Dict = checkpoint["input_conv.weight_v"] lowerCAmelCase__ : Tuple = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowerCAmelCase__ : int = checkpoint[f'''upsamples.{i}.1.weight_g'''] lowerCAmelCase__ : List[Any] = checkpoint[f'''upsamples.{i}.1.weight_v'''] lowerCAmelCase__ : List[Any] = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase__ : List[str] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] lowerCAmelCase__ : List[Any] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] lowerCAmelCase__ : List[str] = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] lowerCAmelCase__ : Optional[int] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] lowerCAmelCase__ : Union[str, Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] lowerCAmelCase__ : Union[str, Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] lowerCAmelCase__ : int = checkpoint["output_conv.1.weight_g"] lowerCAmelCase__ : Optional[int] = checkpoint["output_conv.1.weight_v"] lowerCAmelCase__ : str = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , ): """simple docstring""" if config_path is not None: lowerCAmelCase__ : int = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase_ ) else: lowerCAmelCase__ : int = SpeechTaHifiGanConfig() lowerCAmelCase__ : Tuple = SpeechTaHifiGan(lowerCamelCase_ ) lowerCAmelCase__ : Tuple = torch.load(lowerCamelCase_ ) load_weights(orig_checkpoint["model"]["generator"] , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : int = np.load(lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = stats[0].reshape(-1 ) lowerCAmelCase__ : int = stats[1].reshape(-1 ) lowerCAmelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).float() lowerCAmelCase__ : List[Any] = torch.from_numpy(lowerCamelCase_ ).float() model.save_pretrained(lowerCamelCase_ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) snake_case = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
568
0
from __future__ import annotations UpperCAmelCase__ : Optional[Any] = [] def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: if row >= len(__SCREAMING_SNAKE_CASE ): solution.append(__SCREAMING_SNAKE_CASE ) printboard(__SCREAMING_SNAKE_CASE ) print() return True for i in range(len(__SCREAMING_SNAKE_CASE ) ): if is_safe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = 1 solve(__SCREAMING_SNAKE_CASE , row + 1 ) UpperCamelCase__ : Union[str, Any] = 0 return False def _lowercase ( __SCREAMING_SNAKE_CASE ) -> None: for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase__ : int = 8 UpperCAmelCase__ : List[str] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
410
import math def _lowercase ( __SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( __SCREAMING_SNAKE_CASE = 1_0001 ) -> int: try: UpperCamelCase__ : Any = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) UpperCamelCase__ : list[int] = [] UpperCamelCase__ : Any = 2 while len(__SCREAMING_SNAKE_CASE ) < nth: if is_prime(__SCREAMING_SNAKE_CASE ): primes.append(__SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(__SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
410
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """allenai/led-base-16384""": 1_6_3_8_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> int: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ) -> dict: '''simple docstring''' lowercase_ = super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase_ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["global_attention_mask"] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase_ = len(UpperCAmelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
601
from typing import Any class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = data lowercase_ = None class __lowerCamelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = None def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.head while temp is not None: print(temp.data , end=" " ) lowercase_ = temp.next print() def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = Node(UpperCAmelCase ) lowercase_ = self.head lowercase_ = new_node def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' if node_data_a == node_data_a: return else: lowercase_ = self.head while node_a is not None and node_a.data != node_data_a: lowercase_ = node_a.next lowercase_ = self.head while node_a is not None and node_a.data != node_data_a: lowercase_ = node_a.next if node_a is None or node_a is None: return lowercase_ , lowercase_ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
601
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) class lowercase_ ( __snake_case ): _lowerCamelCase = ['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ): super().__init__(**_lowerCAmelCase ) _snake_case : Tuple = size if size is not None else {"shortest_edge": 384} _snake_case : List[Any] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _snake_case : Optional[Any] = do_resize _snake_case : List[Any] = size # Default value set here for backwards compatibility where the value in config is None _snake_case : List[str] = crop_pct if crop_pct is not None else 224 / 256 _snake_case : str = resample _snake_case : List[str] = do_rescale _snake_case : str = rescale_factor _snake_case : Optional[Any] = do_normalize _snake_case : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ): _snake_case : int = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}""" ) _snake_case : Optional[int] = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _snake_case : Tuple = int(shortest_edge / crop_pct ) _snake_case : Optional[int] = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _snake_case : Tuple = resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): _snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize _snake_case : Union[str, Any] = crop_pct if crop_pct is not None else self.crop_pct _snake_case : Dict = resample if resample is not None else self.resample _snake_case : int = do_rescale if do_rescale is not None else self.do_rescale _snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Tuple = do_normalize if do_normalize is not None else self.do_normalize _snake_case : Any = image_mean if image_mean is not None else self.image_mean _snake_case : Dict = image_std if image_std is not None else self.image_std _snake_case : int = size if size is not None else self.size _snake_case : int = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _snake_case : Union[str, Any] = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _snake_case : str = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _snake_case : Union[str, Any] = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: _snake_case : int = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: _snake_case : Optional[int] = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] _snake_case : Optional[int] = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
670
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument SCREAMING_SNAKE_CASE :Tuple = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _lowerCAmelCase ( lowerCAmelCase_ :Any )->Any: '''simple docstring''' snake_case_ = list(s_dict.keys() ) for key in keys: snake_case_ = r".*/layers_(\d+)" snake_case_ = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = re.sub(r"layers_(\d+)" , r"block/\1/layer" , lowerCAmelCase_ ) snake_case_ = r"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": snake_case_ = re.sub(r"/mlp/" , r"/1/mlp/" , lowerCAmelCase_ ) snake_case_ = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": snake_case_ = re.sub(r"/mlp/" , r"/2/mlp/" , lowerCAmelCase_ ) snake_case_ = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: snake_case_ = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(F'''{key} -> {new_key}''' ) snake_case_ = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case_ = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case_ = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: snake_case_ = s_dict[key].shape[0] snake_case_ = s_dict[key] for idx in range(lowerCAmelCase_ ): snake_case_ = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(lowerCAmelCase_ ) return s_dict SCREAMING_SNAKE_CASE :Optional[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Any )->Optional[int]: '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: snake_case_ = f.read() snake_case_ = re.findall(r"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) snake_case_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": snake_case_ = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) snake_case_ = re.findall(r"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] snake_case_ = str(activation[1] ) snake_case_ = num_experts snake_case_ = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Dict=None , lowerCAmelCase_ :str="./" , lowerCAmelCase_ :Optional[int]=8 )->List[str]: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) snake_case_ = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: snake_case_ = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: snake_case_ = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) snake_case_ = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) snake_case_ = flax_params["target"] snake_case_ = flatten_dict(lowerCAmelCase_ , sep="/" ) snake_case_ = rename_keys(lowerCAmelCase_ ) snake_case_ = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') SCREAMING_SNAKE_CASE :int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
283
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _lowercase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' __UpperCamelCase =str(id_ ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =[] __UpperCamelCase ={} # {vertex:distance} def __lt__( self : Dict , UpperCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' return self.key < other.key def __repr__( self : int ) -> Tuple: '''simple docstring''' return self.id def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : int ) -> Optional[Any]: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ) -> Tuple: '''simple docstring''' __UpperCamelCase =weight def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : Vertex ): """simple docstring""" __UpperCamelCase =[] for u in graph: __UpperCamelCase =math.inf __UpperCamelCase =None __UpperCamelCase =0 __UpperCamelCase =graph[:] while q: __UpperCamelCase =min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCamelCase =u __UpperCamelCase =u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : Vertex ): """simple docstring""" for u in graph: __UpperCamelCase =math.inf __UpperCamelCase =None __UpperCamelCase =0 __UpperCamelCase =list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: __UpperCamelCase =hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCamelCase =u __UpperCamelCase =u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase (): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
296
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __magic_name__ ( unittest.TestCase): _UpperCAmelCase : Union[str, Any] = MODEL_FOR_MASKED_LM_MAPPING _UpperCAmelCase : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self : Any ): UpperCAmelCase = pipeline(task="fill-mask" ,model="sshleifer/tiny-distilroberta-base" ,top_k=2 ,framework="tf" ) UpperCAmelCase = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 3_8_0_1_5, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 2_5_5_0_6, "token_str": " accuser"}, ] ,) UpperCAmelCase = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 3_8_0_1_5, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 2_5_5_0_6, "token_str": " accuser", }, ] ,) UpperCAmelCase = unmasker("My name is <mask>" ,targets=[" Patrick", " Clara", " Teven"] ,top_k=3 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ {"sequence": "My name is Clara", "score": 2e-05, "token": 1_3_6_0_6, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2_9_4_1, "token_str": " Te"}, ] ,) @require_torch def _UpperCAmelCase ( self : str ): UpperCAmelCase = pipeline(task="fill-mask" ,model="sshleifer/tiny-distilroberta-base" ,top_k=2 ,framework="pt" ) UpperCAmelCase = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 3_5_6_7_6, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 1_6_4_1_6, "token_str": "ELS"}, ] ,) UpperCAmelCase = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 3_5_6_7_6, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 1_6_4_1_6, "token_str": "ELS"}, ] ,) UpperCAmelCase = unmasker("My name is <mask>" ,targets=[" Patrick", " Clara", " Teven"] ,top_k=3 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2_9_4_1, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 1_3_6_0_6, "token_str": " Clara"}, ] ,) UpperCAmelCase = unmasker("My name is <mask> <mask>" ,top_k=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ,decimals=6 ) ,[ [ { "score": 2.2e-05, "token": 3_5_6_7_6, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 1_6_4_1_6, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 3_5_6_7_6, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 1_6_4_1_6, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] ,) @require_torch_gpu def _UpperCAmelCase ( self : Any ): UpperCAmelCase = pipeline("fill-mask" ,model="hf-internal-testing/tiny-random-distilbert" ,device=0 ,framework="pt" ) # convert model to fp16 pipe.model.half() UpperCAmelCase = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) @slow @require_torch def _UpperCAmelCase ( self : Optional[int] ): UpperCAmelCase = pipeline(task="fill-mask" ,model="distilroberta-base" ,top_k=2 ,framework="pt" ) self.run_large_test(__SCREAMING_SNAKE_CASE ) @slow @require_tf def _UpperCAmelCase ( self : str ): UpperCAmelCase = pipeline(task="fill-mask" ,model="distilroberta-base" ,top_k=2 ,framework="tf" ) self.run_large_test(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) ,[ {"sequence": "My name is John", "score": 0.008, "token": 6_1_0, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1_5_7_3, "token_str": " Chris"}, ] ,) UpperCAmelCase = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) ,[ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2_2_0_1, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_2_7_9_0, "token_str": " Lyon", }, ] ,) UpperCAmelCase = unmasker("My name is <mask>" ,targets=[" Patrick", " Clara", " Teven"] ,top_k=3 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) ,[ {"sequence": "My name is Patrick", "score": 0.005, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_3_6_0_6, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2_9_4_1, "token_str": " Te"}, ] ,) @require_torch def _UpperCAmelCase ( self : Any ): UpperCAmelCase = pipeline(task="fill-mask" ,model="sshleifer/tiny-distilroberta-base" ,framework="pt" ) UpperCAmelCase = None UpperCAmelCase = None self.run_pipeline_test(__SCREAMING_SNAKE_CASE ,[] ) @require_tf def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = pipeline(task="fill-mask" ,model="sshleifer/tiny-distilroberta-base" ,framework="tf" ) UpperCAmelCase = None UpperCAmelCase = None self.run_pipeline_test(__SCREAMING_SNAKE_CASE ,[] ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Dict ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCAmelCase = fill_masker.tokenizer UpperCAmelCase = fill_masker.model UpperCAmelCase = fill_masker( f'''This is a {tokenizer.mask_token}''' ,) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ] ,) UpperCAmelCase = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ] ,) UpperCAmelCase = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ [ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ], ] ,) with self.assertRaises(__SCREAMING_SNAKE_CASE ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__SCREAMING_SNAKE_CASE ): fill_masker("This is" ) self.run_test_top_k(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.run_test_targets(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.run_test_top_k_targets(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.fill_mask_with_duplicate_targets_and_top_k(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.fill_mask_with_multiple_masks(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = tokenizer.get_vocab() UpperCAmelCase = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ,targets=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ] ,) UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} ,set(__SCREAMING_SNAKE_CASE ) ) # Call argument UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ] ,) UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} ,set(__SCREAMING_SNAKE_CASE ) ) # Score equivalence UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = [top_mask["token_str"] for top_mask in outputs] UpperCAmelCase = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__SCREAMING_SNAKE_CASE ) == set(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) ,nested_simplify(__SCREAMING_SNAKE_CASE ) ) # Raises with invalid with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[""] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets="" ) def _UpperCAmelCase ( self : Any ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ,top_k=2 ) UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ] ,) UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ] ,) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) ,nested_simplify(__SCREAMING_SNAKE_CASE ) ) def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = tokenizer.get_vocab() UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ) # top_k=2, ntargets=3 UpperCAmelCase = sorted(vocab.keys() )[:3] UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ,targets=__SCREAMING_SNAKE_CASE ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase = [el["token_str"] for el in sorted(__SCREAMING_SNAKE_CASE ,key=lambda __SCREAMING_SNAKE_CASE : x["score"] ,reverse=__SCREAMING_SNAKE_CASE )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__SCREAMING_SNAKE_CASE ).issubset(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=3 ,targets=__SCREAMING_SNAKE_CASE ) # They should yield exactly the same result self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) ,nested_simplify(__SCREAMING_SNAKE_CASE ) ) def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase = sorted(vocab.keys() )[:3] UpperCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase = fill_masker(f'''My name is {tokenizer.mask_token}''' ,targets=__SCREAMING_SNAKE_CASE ,top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,3 ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = FillMaskPipeline(model=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( __SCREAMING_SNAKE_CASE ,[ [ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, {"sequence": ANY(__SCREAMING_SNAKE_CASE ), "score": ANY(__SCREAMING_SNAKE_CASE ), "token": ANY(__SCREAMING_SNAKE_CASE ), "token_str": ANY(__SCREAMING_SNAKE_CASE )}, ], ] ,)
333
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =[ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
172
0
from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> int: if len(A_ ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) a_ : str = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=1.0, SCREAMING_SNAKE_CASE__=None, SCREAMING_SNAKE_CASE__=None ) -> Tuple: if rng is None: a_ : Any = global_rng a_ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case_ ( unittest.TestCase ): def __init__( self , a_ , a_=7 , a_=4_0_0 , a_=2_0_0_0 , a_=2_0_4_8 , a_=1_2_8 , a_=1 , a_=5_1_2 , a_=3_0 , a_=4_4_1_0_0 , ): a_ : Optional[Any] = parent a_ : Tuple = batch_size a_ : Union[str, Any] = min_seq_length a_ : Dict = max_seq_length a_ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a_ : int = spectrogram_length a_ : Optional[Any] = feature_size a_ : Optional[int] = num_audio_channels a_ : List[str] = hop_length a_ : Optional[int] = chunk_length a_ : List[str] = sampling_rate def snake_case_ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case_ ( self , a_=False , a_=False ): def _flatten(a_ ): return list(itertools.chain(*a_ ) ) if equal_length: a_ : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a_ : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a_ : Tuple = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = TvltFeatureExtractor def snake_case_ ( self ): a_ : Dict = TvltFeatureExtractionTester(self ) def snake_case_ ( self ): a_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a_ , "spectrogram_length" ) ) self.assertTrue(hasattr(a_ , "feature_size" ) ) self.assertTrue(hasattr(a_ , "num_audio_channels" ) ) self.assertTrue(hasattr(a_ , "hop_length" ) ) self.assertTrue(hasattr(a_ , "chunk_length" ) ) self.assertTrue(hasattr(a_ , "sampling_rate" ) ) def snake_case_ ( self ): a_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : List[Any] = feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) a_ : Tuple = self.feature_extraction_class.from_pretrained(a_ ) a_ : Dict = feat_extract_first.to_dict() a_ : List[str] = feat_extract_second.to_dict() a_ : List[Any] = dict_first.pop("mel_filters" ) a_ : str = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertEqual(a_ , a_ ) def snake_case_ ( self ): a_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = os.path.join(a_ , "feat_extract.json" ) feat_extract_first.to_json_file(a_ ) a_ : str = self.feature_extraction_class.from_json_file(a_ ) a_ : Dict = feat_extract_first.to_dict() a_ : str = feat_extract_second.to_dict() a_ : int = dict_first.pop("mel_filters" ) a_ : List[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertEqual(a_ , a_ ) def snake_case_ ( self ): # Initialize feature_extractor a_ : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 a_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a_ : Union[str, Any] = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input a_ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched a_ : int = feature_extractor(a_ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking a_ : Optional[int] = feature_extractor( a_ , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=a_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. a_ : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a_ : Union[str, Any] = np.asarray(a_ ) a_ : Dict = feature_extractor(a_ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case_ ( self , a_ ): a_ : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a_ : List[str] = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case_ ( self ): a_ : List[str] = self._load_datasamples(1 ) a_ : Any = TvltFeatureExtractor() a_ : Union[str, Any] = feature_extractor(a_ , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) a_ : Dict = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a_ , atol=1e-4 ) )
370
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowerCamelCase__ : Dict = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowerCamelCase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[str] = 'whisper' __lowerCAmelCase : str = ['past_key_values'] __lowerCAmelCase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=5_18_65 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=15_36 , SCREAMING_SNAKE_CASE_=15_36 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=5_02_57 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=15_00 , SCREAMING_SNAKE_CASE_=4_48 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[2_20, 5_02_56] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : str = vocab_size lowercase__ : Tuple = num_mel_bins lowercase__ : int = d_model lowercase__ : str = encoder_layers lowercase__ : str = encoder_attention_heads lowercase__ : Any = decoder_layers lowercase__ : Optional[int] = decoder_attention_heads lowercase__ : List[str] = decoder_ffn_dim lowercase__ : Dict = encoder_ffn_dim lowercase__ : Dict = dropout lowercase__ : Dict = attention_dropout lowercase__ : List[str] = activation_dropout lowercase__ : List[str] = activation_function lowercase__ : Dict = init_std lowercase__ : int = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : List[str] = use_cache lowercase__ : Tuple = encoder_layers lowercase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : int = max_source_positions lowercase__ : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ : Tuple = classifier_proj_size lowercase__ : Optional[int] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : Optional[int] = apply_spec_augment lowercase__ : Any = mask_time_prob lowercase__ : str = mask_time_length lowercase__ : int = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : List[Any] = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks lowercase__ : Dict = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' lowercase__ : int = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ]) if self.use_past: lowercase__ : List[str] = {0: """batch"""} else: lowercase__ : int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="""inputs""") return common_inputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 2_20_50 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 2_20 , ): '''simple docstring''' lowercase__ : str = OrderedDict() lowercase__ : List[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = encoder_inputs["""input_features"""].shape[2] lowercase__ : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = encoder_inputs.pop("""input_features""") lowercase__ : Optional[Any] = decoder_inputs.pop("""decoder_input_ids""") if "past_key_values" in decoder_inputs: lowercase__ : Dict = decoder_inputs.pop("""past_key_values""") return dummy_inputs @property def lowercase__ ( self): '''simple docstring''' return 1E-3
12
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
1
"""simple docstring""" import os def a ( __UpperCAmelCase : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) as input_file: __magic_name__: Optional[int] = [ [int(__UpperCAmelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] __magic_name__: Dict = len(__UpperCAmelCase ) __magic_name__: int = len(matrix[0] ) __magic_name__: Union[str, Any] = [[-1 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase ): __magic_name__: List[Any] = matrix[i][0] for j in range(1 , __UpperCAmelCase ): for i in range(__UpperCAmelCase ): __magic_name__: int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __UpperCAmelCase ): __magic_name__: Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __magic_name__: Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
213
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __A ( unittest.TestCase ): UpperCAmelCase__ = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: __magic_name__: int = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output __magic_name__: Dict = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) __magic_name__: Dict = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) __magic_name__: Optional[Any] = text_generator("""This is a test""" , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ] , ) __magic_name__: List[str] = text_generator.model.config.eos_token_id __magic_name__: Dict = """<pad>""" __magic_name__: Dict = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__: int = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output __magic_name__: Optional[Any] = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) __magic_name__: Optional[int] = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Tuple ) -> Any: __magic_name__: int = TextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return text_generator, ["This is a test", "Another test"] def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: Tuple = """Hello I believe in""" __magic_name__: List[str] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) __magic_name__: List[Any] = text_generator(__snake_case ) self.assertEqual( __snake_case , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) __magic_name__: List[str] = text_generator(__snake_case , stop_sequence=""" fe""" ) self.assertEqual(__snake_case , [{"""generated_text""": """Hello I believe in fe"""}] ) def lowerCamelCase__ ( self : Any , __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> str: __magic_name__: Optional[int] = text_generator.model __magic_name__: Union[str, Any] = text_generator.tokenizer __magic_name__: Union[str, Any] = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) __magic_name__: str = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) __magic_name__: Optional[int] = pipeline(task="""text-generation""" , model=__snake_case , tokenizer=__snake_case , return_full_text=__snake_case ) __magic_name__: Tuple = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) __magic_name__: Optional[int] = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) __magic_name__: List[str] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: __magic_name__: Union[str, Any] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): __magic_name__: Any = text_generator("""test""" , return_full_text=__snake_case , return_text=__snake_case ) with self.assertRaises(__snake_case ): __magic_name__: List[str] = text_generator("""test""" , return_full_text=__snake_case , return_tensors=__snake_case ) with self.assertRaises(__snake_case ): __magic_name__: Tuple = text_generator("""test""" , return_text=__snake_case , return_tensors=__snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __magic_name__: int = text_generator("""""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __magic_name__: Any = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __magic_name__: Union[str, Any] = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0 ) __magic_name__: List[str] = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(__snake_case ): text_generator( """This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : List[str] ) -> List[str]: import torch # Classic `model_kwargs` __magic_name__: Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __magic_name__: Optional[int] = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __magic_name__: Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __magic_name__: Optional[Any] = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __magic_name__: int = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __magic_name__: Any = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def lowerCamelCase__ ( self : List[str] ) -> Any: import torch __magic_name__: List[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : Dict ) -> Any: import torch __magic_name__: List[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__snake_case , top_p=0.5 ) def lowerCamelCase__ ( self : List[str] ) -> Any: __magic_name__: Optional[int] = """Hello world""" __magic_name__: List[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": __magic_name__: str = logging.get_logger("""transformers.generation.tf_utils""" ) else: __magic_name__: Any = logging.get_logger("""transformers.generation.utils""" ) __magic_name__: Union[str, Any] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__snake_case ) as cl: __magic_name__: Dict = text_generator(__snake_case , max_length=1_0 , max_new_tokens=1 ) self.assertIn(__snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(__snake_case ) as cl: __magic_name__: str = text_generator(__snake_case , max_new_tokens=1 ) self.assertNotIn(__snake_case , cl.out ) with CaptureLogger(__snake_case ) as cl: __magic_name__: Dict = text_generator(__snake_case , max_length=1_0 ) self.assertNotIn(__snake_case , cl.out )
213
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=None , ): SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Tuple = use_mc_token_ids SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : str = self.vocab_size - 1 def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = self.get_config() SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _A ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _A ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , *UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : str = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _A ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def _A ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Dict = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCamelCase_ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCamelCase_ : Dict = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : List[str] = True UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[str] = False def _A ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _A ( self : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = CTRLModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def _A ( self : Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _A ( self : Optional[Any] ): self.config_tester.run_common_tests() def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self : int ): pass @slow def _A ( self : Any ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _A ( self : Dict ): pass @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Union[str, Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Dict = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase_ ) # Legal the president is SCREAMING_SNAKE_CASE : List[str] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE : str = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
62
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = jnp.floataa SCREAMING_SNAKE_CASE = True def _UpperCamelCase ( self ): super().setup() UpperCAmelCase = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*A ,**A ): UpperCAmelCase = super().__call__(*A ,**A ) UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = FlaxBigBirdForNaturalQuestionsModule def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" def cross_entropy(_snake_case , _snake_case , _snake_case=None ): UpperCAmelCase = logits.shape[-1] UpperCAmelCase = (labels[..., None] == jnp.arange(_snake_case )[None]).astype("""f4""" ) UpperCAmelCase = jax.nn.log_softmax(_snake_case , axis=-1 ) UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: UpperCAmelCase = reduction(_snake_case ) return loss UpperCAmelCase = partial(_snake_case , reduction=jnp.mean ) UpperCAmelCase = cross_entropy(_snake_case , _snake_case ) UpperCAmelCase = cross_entropy(_snake_case , _snake_case ) UpperCAmelCase = cross_entropy(_snake_case , _snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE = "google/bigbird-roberta-base" SCREAMING_SNAKE_CASE = 3_000 SCREAMING_SNAKE_CASE = 10_500 SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 5 # tx_args SCREAMING_SNAKE_CASE = 3e-5 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 20_000 SCREAMING_SNAKE_CASE = 0.00_95 SCREAMING_SNAKE_CASE = "bigbird-roberta-natural-questions" SCREAMING_SNAKE_CASE = "training-expt" SCREAMING_SNAKE_CASE = "data/nq-training.jsonl" SCREAMING_SNAKE_CASE = "data/nq-validation.jsonl" def _UpperCamelCase ( self ): os.makedirs(self.base_dir ,exist_ok=A ) UpperCAmelCase = os.path.join(self.base_dir ,self.save_dir ) UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 4_096 # no dynamic padding on TPUs def __call__( self ,A ): UpperCAmelCase = self.collate_fn(A ) UpperCAmelCase = jax.tree_util.tree_map(A ,A ) return batch def _UpperCamelCase ( self ,A ): UpperCAmelCase , UpperCAmelCase = self.fetch_inputs(features["""input_ids"""] ) UpperCAmelCase = { """input_ids""": jnp.array(A ,dtype=jnp.intaa ), """attention_mask""": jnp.array(A ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _UpperCamelCase ( self ,A ): UpperCAmelCase = [self._fetch_inputs(A ) for ids in input_ids] return zip(*A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = [1 for _ in range(len(A ) )] while len(A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _a ( _snake_case , _snake_case , _snake_case=None ): """simple docstring""" if seed is not None: UpperCAmelCase = dataset.shuffle(seed=_snake_case ) for i in range(len(_snake_case ) // batch_size ): UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_snake_case ) @partial(jax.pmap , axis_name="""batch""" ) def _a ( _snake_case , _snake_case , **_snake_case ): """simple docstring""" def loss_fn(_snake_case ): UpperCAmelCase = model_inputs.pop("""start_labels""" ) UpperCAmelCase = model_inputs.pop("""end_labels""" ) UpperCAmelCase = model_inputs.pop("""pooled_labels""" ) UpperCAmelCase = state.apply_fn(**_snake_case , params=_snake_case , dropout_rng=_snake_case , train=_snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs return state.loss_fn( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) UpperCAmelCase , UpperCAmelCase = jax.random.split(_snake_case ) UpperCAmelCase = jax.value_and_grad(_snake_case ) UpperCAmelCase , UpperCAmelCase = grad_fn(state.params ) UpperCAmelCase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) UpperCAmelCase = jax.lax.pmean(_snake_case , """batch""" ) UpperCAmelCase = state.apply_gradients(grads=_snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _a ( _snake_case , **_snake_case ): """simple docstring""" UpperCAmelCase = model_inputs.pop("""start_labels""" ) UpperCAmelCase = model_inputs.pop("""end_labels""" ) UpperCAmelCase = model_inputs.pop("""pooled_labels""" ) UpperCAmelCase = state.apply_fn(**_snake_case , params=state.params , train=_snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs UpperCAmelCase = state.loss_fn(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) UpperCAmelCase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class lowerCamelCase__ ( train_state.TrainState ): SCREAMING_SNAKE_CASE = struct.field(pytree_node=snake_case ) @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None def _UpperCamelCase ( self ,A ,A ,A ,A=None ): UpperCAmelCase = model.params UpperCAmelCase = TrainState.create( apply_fn=model.__call__ ,params=A ,tx=A ,loss_fn=A ,) if ckpt_dir is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = restore_checkpoint(A ,A ) UpperCAmelCase = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } UpperCAmelCase , UpperCAmelCase = build_tx(**A ) UpperCAmelCase = train_state.TrainState( step=A ,apply_fn=model.__call__ ,params=A ,tx=A ,opt_state=A ,) UpperCAmelCase = args UpperCAmelCase = data_collator UpperCAmelCase = lr UpperCAmelCase = params UpperCAmelCase = jax_utils.replicate(A ) return state def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = self.args UpperCAmelCase = len(A ) // args.batch_size UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = jax.random.split(A ,jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase = jnp.array(0 ,dtype=jnp.floataa ) UpperCAmelCase = get_batched_dataset(A ,args.batch_size ,seed=A ) UpperCAmelCase = 0 for batch in tqdm(A ,total=A ,desc=F'''Running EPOCH-{epoch}''' ): UpperCAmelCase = self.data_collator(A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.train_step_fn(A ,A ,**A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase = jax_utils.unreplicate(state.step ) UpperCAmelCase = running_loss.item() / i UpperCAmelCase = self.scheduler_fn(state_step - 1 ) UpperCAmelCase = self.evaluate(A ,A ) UpperCAmelCase = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(A ) ) self.logger.log(A ,commit=A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' ,state=A ) def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = get_batched_dataset(A ,self.args.batch_size ) UpperCAmelCase = len(A ) // self.args.batch_size UpperCAmelCase = jnp.array(0 ,dtype=jnp.floataa ) UpperCAmelCase = 0 for batch in tqdm(A ,total=A ,desc="""Evaluating ... """ ): UpperCAmelCase = self.data_collator(A ) UpperCAmelCase = self.val_step_fn(A ,**A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = jax_utils.unreplicate(A ) print(F'''SAVING CHECKPOINT IN {save_dir}''' ,end=""" ... """ ) self.model_save_fn(A ,params=state.params ) with open(os.path.join(A ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(A ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(A ,"""data_collator.joblib""" ) ) with open(os.path.join(A ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,A ) print("""DONE""" ) def _a ( _snake_case , _snake_case ): """simple docstring""" print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(_snake_case , """flax_model.msgpack""" ) , """rb""" ) as f: UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(_snake_case , """opt_state.msgpack""" ) , """rb""" ) as f: UpperCAmelCase = from_bytes(state.opt_state , f.read() ) UpperCAmelCase = joblib.load(os.path.join(_snake_case , """args.joblib""" ) ) UpperCAmelCase = joblib.load(os.path.join(_snake_case , """data_collator.joblib""" ) ) with open(os.path.join(_snake_case , """training_state.json""" ) , """r""" ) as f: UpperCAmelCase = json.load(_snake_case ) UpperCAmelCase = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = num_train_steps - warmup_steps UpperCAmelCase = optax.linear_schedule(init_value=_snake_case , end_value=_snake_case , transition_steps=_snake_case ) UpperCAmelCase = optax.linear_schedule(init_value=_snake_case , end_value=1E-7 , transition_steps=_snake_case ) UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" def weight_decay_mask(_snake_case ): UpperCAmelCase = traverse_util.flatten_dict(_snake_case ) UpperCAmelCase = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(_snake_case ) UpperCAmelCase = scheduler_fn(_snake_case , _snake_case , _snake_case , _snake_case ) UpperCAmelCase = optax.adamw(learning_rate=_snake_case , weight_decay=_snake_case , mask=_snake_case ) return tx, lr
74
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _UpperCamelCase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _UpperCamelCase = concatenate_datasets _UpperCamelCase = DownloadConfig _UpperCamelCase = DownloadManager _UpperCamelCase = DownloadMode _UpperCamelCase = DownloadConfig _UpperCamelCase = DownloadMode _UpperCamelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
74
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE = frozenset([] ) def A ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) __snake_case = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case = CLIPTextModel(a_ ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : Any , a_ : Optional[Any] , a_ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((64, 64) ) __snake_case = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : Optional[Any] ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = StableDiffusionInpaintPipeline(**a_ ) __snake_case = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = sd_pipe(**a_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = StableDiffusionInpaintPipeline.from_pretrained(a_ , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A ( self : int ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = StableDiffusionInpaintPipeline.from_pretrained( a_ , torch_dtype=torch.floataa , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = PNDMScheduler.from_pretrained(a_ , subfolder="scheduler" ) __snake_case = StableDiffusionInpaintPipeline.from_pretrained( a_ , safety_checker=a_ , scheduler=a_ , torch_dtype=torch.floataa , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
69
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase (a_ ): snake_case_ = (PNDMScheduler,) snake_case_ = (("""num_inference_steps""", 50),) def __UpperCAmelCase ( self , **__UpperCamelCase )-> int: __lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__UpperCamelCase ) return config def __UpperCAmelCase ( self , __UpperCamelCase=0 , **__UpperCamelCase )-> Optional[int]: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self )-> Dict: pass def __UpperCAmelCase ( self , __UpperCamelCase=0 , **__UpperCamelCase )-> Dict: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self , **__UpperCamelCase )-> Tuple: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) __lowerCAmelCase = 1_0 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): __lowerCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowerCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): __lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self )-> List[str]: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCamelCase ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __UpperCAmelCase ( self )-> int: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __UpperCAmelCase ( self )-> List[Any]: for t in [1, 5, 1_0]: self.check_over_forward(time_step=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[Any]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__UpperCamelCase ) def __UpperCAmelCase ( self )-> int: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowerCAmelCase = 2_7 for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample def __UpperCAmelCase ( self )-> Dict: with self.assertRaises(__UpperCamelCase ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __UpperCAmelCase ( self )-> Any: # We specify different beta, so that the first alpha is 0.99 __lowerCAmelCase = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.0_1 ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __UpperCAmelCase ( self )-> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 __lowerCAmelCase = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.0_1 ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
367
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( __a , unittest.TestCase ): __A : Optional[int] = UnCLIPImageVariationPipeline __A : Any = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __A : str = IMAGE_VARIATION_BATCH_PARAMS __A : List[Any] = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __A : Any = False @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return self.time_input_dim @property def UpperCAmelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ): return 100 @property def UpperCAmelCase_ ( self ): lowerCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCamelCase ) @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(_lowerCamelCase ) @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } lowerCAmelCase_ = UnCLIPTextProjModel(**_lowerCamelCase ) return model @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } lowerCAmelCase_ = UNetaDConditionModel(**_lowerCamelCase ) return model @property def UpperCAmelCase_ ( self ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def UpperCAmelCase_ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowerCAmelCase_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.dummy_decoder lowerCAmelCase_ = self.dummy_text_proj lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = self.dummy_tokenizer lowerCAmelCase_ = self.dummy_super_res_first lowerCAmelCase_ = self.dummy_super_res_last lowerCAmelCase_ = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) lowerCAmelCase_ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) lowerCAmelCase_ = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase_ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ): lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase_ = torch.manual_seed(_lowerCamelCase ) else: lowerCAmelCase_ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) if pil_image: lowerCAmelCase_ = input_image * 0.5 + 0.5 lowerCAmelCase_ = input_image.clamp(0 , 1 ) lowerCAmelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase_ = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_lowerCamelCase ) lowerCAmelCase_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = pipe(**_lowerCamelCase ) lowerCAmelCase_ = output.images lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = pipe( **_lowerCamelCase , return_dict=_lowerCamelCase , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_lowerCamelCase ) lowerCAmelCase_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = pipe(**_lowerCamelCase ) lowerCAmelCase_ = output.images lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = pipe( **_lowerCamelCase , return_dict=_lowerCamelCase , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_lowerCamelCase ) lowerCAmelCase_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] lowerCAmelCase_ = pipe(**_lowerCamelCase ) lowerCAmelCase_ = output.images lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] lowerCAmelCase_ = pipe( **_lowerCamelCase , return_dict=_lowerCamelCase , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase_ = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = torch.device('''cpu''' ) class __UpperCAmelCase : __A : Union[str, Any] = 1 lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_lowerCamelCase ) lowerCAmelCase_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) lowerCAmelCase_ = pipe.decoder.dtype lowerCAmelCase_ = 1 lowerCAmelCase_ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase_ = pipe.prepare_latents( _lowerCamelCase , dtype=_lowerCamelCase , device=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , scheduler=DummyScheduler() ) lowerCAmelCase_ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase_ = pipe.prepare_latents( _lowerCamelCase , dtype=_lowerCamelCase , device=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , scheduler=DummyScheduler() ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) lowerCAmelCase_ = pipe( **_lowerCamelCase , decoder_latents=_lowerCamelCase , super_res_latents=_lowerCamelCase ).images lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase , pil_image=_lowerCamelCase ) # Don't pass image, instead pass embedding lowerCAmelCase_ = pipeline_inputs.pop('''image''' ) lowerCAmelCase_ = pipe.image_encoder(_lowerCamelCase ).image_embeds lowerCAmelCase_ = pipe( **_lowerCamelCase , decoder_latents=_lowerCamelCase , super_res_latents=_lowerCamelCase , image_embeddings=_lowerCamelCase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def UpperCAmelCase_ ( self ): lowerCAmelCase_ = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase_ = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=_lowerCamelCase , expected_max_diff=_lowerCamelCase ) @skip_mps def UpperCAmelCase_ ( self ): lowerCAmelCase_ = torch_device == '''cpu''' lowerCAmelCase_ = True lowerCAmelCase_ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=_lowerCamelCase , relax_max_difference=_lowerCamelCase , additional_params_copy_to_batched_inputs=_lowerCamelCase , ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase_ = [2, 3] self._test_inference_batch_consistent( batch_sizes=_lowerCamelCase , additional_params_copy_to_batched_inputs=_lowerCamelCase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_lowerCamelCase ) @skip_mps def UpperCAmelCase_ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self ): return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) lowerCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) lowerCAmelCase_ = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase_ = pipeline( _lowerCamelCase , generator=_lowerCamelCase , output_type='''np''' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase , 15 )
606
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ : List[str] =logging.get_logger(__name__) A_ : int ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } A_ : Dict =[ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str) -> List[Any]: for attribute in key.split('''.'''): lowerCAmelCase_ = getattr(__snake_case , __snake_case) if weight_type is not None: lowerCAmelCase_ = getattr(__snake_case , __snake_case).shape else: lowerCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''') if weight_type == "weight": lowerCAmelCase_ = value elif weight_type == "weight_g": lowerCAmelCase_ = value elif weight_type == "weight_v": lowerCAmelCase_ = value elif weight_type == "bias": lowerCAmelCase_ = value elif weight_type == "running_mean": lowerCAmelCase_ = value elif weight_type == "running_var": lowerCAmelCase_ = value elif weight_type == "num_batches_tracked": lowerCAmelCase_ = value elif weight_type == "inv_freq": lowerCAmelCase_ = value else: lowerCAmelCase_ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def snake_case_ ( __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Any) -> Union[str, Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = fairseq_model.state_dict() lowerCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase_ = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase_ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: lowerCAmelCase_ = True if "*" in mapped_key: lowerCAmelCase_ = name.split(__snake_case)[0].split('''.''')[-2] lowerCAmelCase_ = mapped_key.replace('''*''' , __snake_case) if "pos_bias_u" in name: lowerCAmelCase_ = None elif "pos_bias_v" in name: lowerCAmelCase_ = None elif "weight_g" in name: lowerCAmelCase_ = '''weight_g''' elif "weight_v" in name: lowerCAmelCase_ = '''weight_v''' elif "bias" in name: lowerCAmelCase_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase_ = '''weight''' elif "running_mean" in name: lowerCAmelCase_ = '''running_mean''' elif "inv_freq" in name: lowerCAmelCase_ = '''inv_freq''' elif "running_var" in name: lowerCAmelCase_ = '''running_var''' elif "num_batches_tracked" in name: lowerCAmelCase_ = '''num_batches_tracked''' else: lowerCAmelCase_ = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case) continue if not is_used: unused_weights.append(__snake_case) logger.warning(F'''Unused weights: {unused_weights}''') def snake_case_ ( __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Optional[Any]) -> List[Any]: lowerCAmelCase_ = full_name.split('''conv_layers.''')[-1] lowerCAmelCase_ = name.split('''.''') lowerCAmelCase_ = int(items[0]) lowerCAmelCase_ = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') lowerCAmelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') lowerCAmelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') lowerCAmelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') lowerCAmelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__snake_case) @torch.no_grad() def snake_case_ ( __snake_case : Any , __snake_case : List[Any] , __snake_case : List[str]=None , __snake_case : int=None , __snake_case : Union[str, Any]=True) -> Union[str, Any]: if config_path is not None: lowerCAmelCase_ = WavaVecaConformerConfig.from_pretrained(__snake_case , hidden_act='''swish''') else: lowerCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase_ = '''rotary''' if is_finetuned: if dict_path: lowerCAmelCase_ = Dictionary.load(__snake_case) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase_ = target_dict.pad_index lowerCAmelCase_ = target_dict.bos_index lowerCAmelCase_ = target_dict.eos_index lowerCAmelCase_ = len(target_dict.symbols) lowerCAmelCase_ = os.path.join(__snake_case , '''vocab.json''') if not os.path.isdir(__snake_case): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case)) return os.makedirs(__snake_case , exist_ok=__snake_case) lowerCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 with open(__snake_case , '''w''' , encoding='''utf-8''') as vocab_handle: json.dump(__snake_case , __snake_case) lowerCAmelCase_ = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__snake_case , ) lowerCAmelCase_ = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) lowerCAmelCase_ = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case) processor.save_pretrained(__snake_case) lowerCAmelCase_ = WavaVecaConformerForCTC(__snake_case) else: lowerCAmelCase_ = WavaVecaConformerForPreTraining(__snake_case) if is_finetuned: lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1])}) else: lowerCAmelCase_ = argparse.Namespace(task='''audio_pretraining''') lowerCAmelCase_ = fairseq.tasks.setup_task(__snake_case) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__snake_case) lowerCAmelCase_ = model[0].eval() recursively_load_weights(__snake_case , __snake_case , not is_finetuned) hf_wavavec.save_pretrained(__snake_case) if __name__ == "__main__": A_ : Any =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A_ : Union[str, Any] =parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
606
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
52
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__ = model(_snake_case )["last_hidden_state"] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
159
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Dict= logging.get_logger(__name__) _a : str= {"tokenizer_file": "tokenizer.json"} _a : str= { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Optional[int] = None def __init__(self : List[Any] , _A : Optional[Any]=None , _A : Any=None , _A : Dict=None , _A : Optional[Any]="<unk>" , _A : str="<s>" , _A : Dict="</s>" , _A : Union[str, Any]="<pad>" , _A : Any=False , _A : List[str]=False , **_A : str , ) -> List[Any]: super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , ) __snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , __a) != add_prefix_space: __snake_case : List[Any] = getattr(__a , pre_tok_state.pop('type')) __snake_case : int = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__a) __snake_case : Tuple = add_prefix_space def _lowercase (self : str , *_A : List[Any] , **_A : Tuple) -> BatchEncoding: __snake_case : List[str] = kwargs.get('is_split_into_words' , __a) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.') return super()._batch_encode_plus(*__a , **__a) def _lowercase (self : List[str] , *_A : Optional[int] , **_A : List[str]) -> BatchEncoding: __snake_case : Dict = kwargs.get('is_split_into_words' , __a) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.') return super()._encode_plus(*__a , **__a) def _lowercase (self : Union[str, Any] , _A : Optional[Any] , _A : str = None) -> Tuple[str]: __snake_case : Union[str, Any] = self._tokenizer.model.save(__a , name=__a) return tuple(__a) def _lowercase (self : int , _A : List[Any]) -> List[int]: __snake_case : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a) + [self.eos_token_id]) if len(__a) > self.model_max_length: __snake_case : int = input_ids[-self.model_max_length :] return input_ids
712
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' __snake_case : Union[str, Any] = [True] * limit __snake_case : Tuple = False __snake_case : Union[str, Any] = False __snake_case : List[str] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __snake_case : List[str] = i * 2 while index < limit: __snake_case : List[str] = False __snake_case : Union[str, Any] = index + i __snake_case : str = [2] for i in range(3 , UpperCAmelCase_ , 2 ): if is_prime[i]: primes.append(UpperCAmelCase_ ) return primes def __UpperCAmelCase ( UpperCAmelCase_ : int = 1_00_00_00 ) -> int: '''simple docstring''' __snake_case : Tuple = prime_sieve(UpperCAmelCase_ ) __snake_case : int = 0 __snake_case : str = 0 for i in range(len(UpperCAmelCase_ ) ): for j in range(i + length , len(UpperCAmelCase_ ) ): __snake_case : Union[str, Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __snake_case : List[Any] = j - i __snake_case : Optional[Any] = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
192
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ = "▁" , a__ = True , a__ = "<unk>" , a__ = "</s>" , a__ = "<pad>" , ): _lowerCAmelCase : List[str] = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _lowerCAmelCase : Union[str, Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowerCAmelCase : Optional[Any] = token_dict["""token"""] _lowerCAmelCase : List[str] = Tokenizer(Unigram() ) _lowerCAmelCase : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) _lowerCAmelCase : Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=a__ , add_prefix_space=a__ ), pre_tokenizers.Digits(individual_digits=a__ ), pre_tokenizers.Punctuation(), ] ) _lowerCAmelCase : int = decoders.Metaspace(replacement=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) _lowerCAmelCase : Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(a__ , a__ ) def __A ( self , a__ , a__ = 8000 , a__ = True , ): _lowerCAmelCase : Dict = trainers.UnigramTrainer( vocab_size=a__ , special_tokens=self.special_tokens_list , show_progress=a__ , ) if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = [files] self._tokenizer.train(a__ , trainer=a__ ) self.add_unk_id() def __A ( self , a__ , a__ = 8000 , a__ = True , ): _lowerCAmelCase : Optional[Any] = trainers.UnigramTrainer( vocab_size=a__ , special_tokens=self.special_tokens_list , show_progress=a__ , ) self._tokenizer.train_from_iterator(a__ , trainer=a__ ) self.add_unk_id() def __A ( self ): _lowerCAmelCase : List[str] = json.loads(self._tokenizer.to_str() ) _lowerCAmelCase : List[Any] = self.special_tokens["""unk"""]["""id"""] _lowerCAmelCase : List[Any] = Tokenizer.from_str(json.dumps(a__ ) )
213
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int=0 ) -> List[str]: # Format the message. if name is None: _lowerCAmelCase : Optional[Any] = None else: _lowerCAmelCase : int = """.""" * max(0 ,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _lowerCAmelCase : int = fmt.format(_lowerCamelCase ) # Print and recurse (if needed). if isinstance(_lowerCamelCase ,_lowerCamelCase ): if msg is not None: print(_lowerCamelCase ) for k in val.keys(): recursive_print(_lowerCamelCase ,val[k] ,spaces + 2 ) elif isinstance(_lowerCamelCase ,torch.Tensor ): print(_lowerCamelCase ,""":""" ,val.size() ) else: print(_lowerCamelCase ,""":""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ) -> int: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCAmelCase : int = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCAmelCase : Tuple = param.view(*_lowerCamelCase ) _lowerCAmelCase : str = param.transpose(0 ,2 ) _lowerCAmelCase : str = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCAmelCase : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCAmelCase : str = param.view(*_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = param.transpose(0 ,1 ).contiguous() _lowerCAmelCase : Optional[Any] = param.view(*_lowerCamelCase ) return param def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ) -> Any: # The converted output model. _lowerCAmelCase : Optional[int] = {} # old versions did not store training args _lowerCAmelCase : Dict = input_state_dict.get("""args""" ,_lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCAmelCase : Optional[Any] = ds_args.padded_vocab_size _lowerCAmelCase : Tuple = ds_args.max_position_embeddings _lowerCAmelCase : Optional[Any] = ds_args.hidden_size _lowerCAmelCase : Union[str, Any] = ds_args.num_layers _lowerCAmelCase : Dict = ds_args.num_attention_heads _lowerCAmelCase : Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCAmelCase : List[str] = config.n_head # The hidden_size per head. _lowerCAmelCase : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCAmelCase : Tuple = input_state_dict["""checkpoint_version"""] else: _lowerCAmelCase : Union[str, Any] = 0.0 # The model. _lowerCAmelCase : Any = input_state_dict["""model"""] # The language model. _lowerCAmelCase : Any = model["""language_model"""] # The embeddings. _lowerCAmelCase : Union[str, Any] = lm["""embedding"""] # The word embeddings. _lowerCAmelCase : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _lowerCAmelCase : Dict = word_embeddings[: config.vocab_size, :] _lowerCAmelCase : Optional[int] = word_embeddings # The position embeddings. _lowerCAmelCase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCAmelCase : Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _lowerCAmelCase : Optional[Any] = pos_embeddings # The transformer. _lowerCAmelCase : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _lowerCAmelCase : Any = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _lowerCAmelCase : Optional[Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCAmelCase : Tuple = layer_re.match(_lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCAmelCase : Optional[int] = int(m.group(1 ) ) # The name of the operation. _lowerCAmelCase : Tuple = m.group(2 ) # Is it a weight or a bias? _lowerCAmelCase : List[Any] = m.group(3 ) # The name of the layer. _lowerCAmelCase : str = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _lowerCAmelCase : Optional[Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _lowerCAmelCase : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCAmelCase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCAmelCase : Dict = torch.tensor(-1e4 ,dtype=torch.floataa ) _lowerCAmelCase : Dict = masked_bias _lowerCAmelCase : List[Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCAmelCase : int = out_val.transpose(0 ,1 ).contiguous() # Store. _lowerCAmelCase : List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCAmelCase : Union[str, Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Store. No change of shape. _lowerCAmelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCAmelCase : Any = megatron_to_transformers[op_name] _lowerCAmelCase : Optional[Any] = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCAmelCase : str = megatron_to_transformers[op_name] _lowerCAmelCase : Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCAmelCase : int = transformer["""final_layernorm.weight"""] _lowerCAmelCase : Union[str, Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCAmelCase : int = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE ( ) -> List[str]: # Create the argument parser. _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" ,action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" ,type=_lowerCamelCase ,help="""Path to the checkpoint file (.zip archive or direct .pt file)""" ,) parser.add_argument( """--config_file""" ,default="""""" ,type=_lowerCamelCase ,help="""An optional config json file describing the pre-trained model.""" ,) _lowerCAmelCase : List[Any] = parser.parse_args() # Extract the basename. _lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint ,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _lowerCAmelCase : Any = torch.load(_lowerCamelCase ,map_location="""cpu""" ) else: _lowerCAmelCase : Optional[int] = torch.load(args.path_to_checkpoint ,map_location="""cpu""" ) _lowerCAmelCase : Optional[int] = input_state_dict.get("""args""" ,_lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCAmelCase : Optional[Any] = """gelu_fast""" elif ds_args.openai_gelu: _lowerCAmelCase : Any = """gelu_new""" else: _lowerCAmelCase : str = """gelu""" else: # in the very early days this used to be "gelu_new" _lowerCAmelCase : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _lowerCAmelCase : Tuple = GPTaConfig( vocab_size=50257 ,n_positions=1024 ,n_embd=1024 ,n_layer=24 ,n_head=16 ,n_inner=4096 ,activation_function=_lowerCamelCase ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1e-5 ,initializer_range=0.02 ,summary_type="""cls_index""" ,summary_use_proj=_lowerCamelCase ,summary_activation=_lowerCamelCase ,summary_proj_to_labels=_lowerCamelCase ,summary_first_dropout=0.1 ,scale_attn_weights=_lowerCamelCase ,use_cache=_lowerCamelCase ,bos_token_id=50256 ,eos_token_id=50256 ,) else: _lowerCAmelCase : Optional[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCAmelCase : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _lowerCAmelCase : Tuple = convert_megatron_checkpoint(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase ,_lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCAmelCase : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCAmelCase : Dict = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: _lowerCAmelCase : Optional[Any] = """gpt2""" _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = type(_lowerCamelCase ).__name__ _lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_lowerCamelCase ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_lowerCamelCase ) # Store the state_dict to file. _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase ,"""pytorch_model.bin""" ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_lowerCamelCase ,_lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
213
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" for param in module.parameters(): A__ : Optional[Any] =False def lowercase ( ): """simple docstring""" A__ : Optional[Any] ="cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): A__ : Union[str, Any] ="mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Union[str, Any] =plt.imshow(UpperCamelCase ) fig.axes.get_xaxis().set_visible(UpperCamelCase ) fig.axes.get_yaxis().set_visible(UpperCamelCase ) plt.show() def lowercase ( ): """simple docstring""" A__ : Optional[Any] =datetime.now() A__ : Dict =current_time.strftime("%H:%M:%S" ) return timestamp
595
"""simple docstring""" from __future__ import annotations __A : Union[str, Any] = [] def lowercase ( UpperCamelCase : list[list[int]] , UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" for i in range(len(UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def lowercase ( UpperCamelCase : list[list[int]] , UpperCamelCase : int ): """simple docstring""" if row >= len(UpperCamelCase ): solution.append(UpperCamelCase ) printboard(UpperCamelCase ) print() return True for i in range(len(UpperCamelCase ) ): if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ): A__ : Optional[Any] =1 solve(UpperCamelCase , row + 1 ) A__ : Union[str, Any] =0 return False def lowercase ( UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(len(UpperCamelCase ) ): for j in range(len(UpperCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) __A : List[Any] = 8 __A : Dict = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
595
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] UpperCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] UpperCamelCase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCamelCase_ = False @property def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase_ ( self : Tuple ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return 1_00 @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase_ : Any = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.dummy_unet lowerCAmelCase_ : Tuple = self.dummy_movq lowerCAmelCase_ : Tuple = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase_ : Dict = DDIMScheduler(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Optional[int]=0 ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCAmelCase_ : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : Any = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = "cpu" lowerCAmelCase_ : Any = self.get_dummy_components() lowerCAmelCase_ : List[str] = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[Any] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) ,return_dict=lowerCAmelCase__ ,)[0] lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : str = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) lowerCAmelCase_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase_ : str = init_image.resize((5_12, 5_12) ) lowerCAmelCase_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) lowerCAmelCase_ : List[str] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 255.0 lowerCAmelCase_ : Optional[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) lowerCAmelCase_ : Any = "A robot, 4k photo" lowerCAmelCase_ : Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" ,torch_dtype=torch.floataa ) lowerCAmelCase_ : int = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ : str = pipe_prior( lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.85 ,generator=lowerCAmelCase__ ,negative_prompt="" ,).to_tuple() lowerCAmelCase_ : str = pipeline( image=lowerCAmelCase__ ,image_embeds=lowerCAmelCase__ ,negative_image_embeds=lowerCAmelCase__ ,hint=lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=1_00 ,height=5_12 ,width=5_12 ,strength=0.5 ,output_type="np" ,) lowerCAmelCase_ : Any = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCAmelCase__ ,lowerCAmelCase__ )
659
from typing import TYPE_CHECKING from ....utils import _LazyModule _lowercase = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
659
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :int , __magic_name__ :int , __magic_name__ :int=13 , __magic_name__ :Optional[Any]=7 , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[Any]=True , __magic_name__ :Optional[Any]=True , __magic_name__ :Optional[int]=99 , __magic_name__ :Dict=32 , __magic_name__ :Optional[int]=5 , __magic_name__ :List[Any]=4 , __magic_name__ :Optional[Any]=4 , __magic_name__ :Any="gelu" , __magic_name__ :List[Any]=0.0 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Tuple=True , __magic_name__ :Any=512 , __magic_name__ :str=16 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :List[Any]=3 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :List[str]=None , ) -> Union[str, Any]: '''simple docstring''' a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_multiple_size a__ = hidden_act a__ = hidden_dropout a__ = attention_dropout a__ = weight_tying a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope def _UpperCamelCase ( self :Tuple ) -> List[str]: '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self :Any ) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ = self.prepare_config_and_inputs() a__ = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self :Dict , __magic_name__ :Union[str, Any] , __magic_name__ :Dict , __magic_name__ :str ) -> Dict: '''simple docstring''' a__ = GPTNeoXJapaneseModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ ) a__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :Dict , __magic_name__ :List[Any] , __magic_name__ :List[str] ) -> Dict: '''simple docstring''' a__ = True a__ = GPTNeoXJapaneseModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :str , __magic_name__ :List[str] ) -> int: '''simple docstring''' a__ = GPTNeoXJapaneseForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :int , __magic_name__ :List[Any] , __magic_name__ :Optional[int] ) -> int: '''simple docstring''' a__ = True a__ = GPTNeoXJapaneseForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass a__ = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) a__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a__ = torch.cat([input_ids, next_tokens] , dim=-1 ) a__ = torch.cat([input_mask, next_mask] , dim=-1 ) a__ = model(__magic_name__ , attention_mask=__magic_name__ , output_hidden_states=__magic_name__ ) a__ = output_from_no_past['''hidden_states'''][0] a__ = model( __magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )['''hidden_states'''][0] # select random slice a__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() a__ = output_from_no_past[:, -3:, random_slice_idx].detach() a__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def _UpperCamelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ = config_and_inputs a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () snake_case__ : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () snake_case__ : List[str] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) snake_case__ : Tuple = False snake_case__ : Any = False snake_case__ : str = False snake_case__ : Tuple = False def _UpperCamelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' a__ = GPTNeoXJapaneseModelTester(self ) a__ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def _UpperCamelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self :Tuple ) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :Dict ) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__magic_name__ , __magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ = self.model_tester.prepare_config_and_inputs_for_decoder() a__ = None self.model_tester.create_and_check_model_as_decoder(__magic_name__ , __magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :str ) -> List[Any]: '''simple docstring''' a__ , a__ , a__ , a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__magic_name__ , __magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__magic_name__ ) @slow def _UpperCamelCase ( self :str ) -> List[str]: '''simple docstring''' a__ = '''abeja/gpt-neox-japanese-2.7b''' a__ = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] a__ = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] a__ = GPTNeoXJapaneseTokenizer.from_pretrained(__magic_name__ ) a__ = GPTNeoXJapaneseForCausalLM.from_pretrained(__magic_name__ ) a__ = [] for prompt in prompts: a__ = tokenizer(__magic_name__ , return_tensors='''pt''' ).input_ids a__ = model.generate(__magic_name__ , max_length=50 ) a__ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ )
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : str = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
158
0
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case__ , unittest.TestCase ): """simple docstring""" _a : Union[str, Any] = OpenAIGPTTokenizer _a : Tuple = OpenAIGPTTokenizerFast _a : Tuple = True _a : Tuple = False def UpperCAmelCase__( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowercase__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__ : int = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> Dict: return "lower newer", "lower newer" def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ : Tuple = "lower" lowercase__ : int = ["low", "er</w>"] lowercase__ : str = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : List[Any] = tokens + ["<unk>"] lowercase__ : str = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__=15 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # Simple input lowercase__ : List[str] = "This is a simple input" lowercase__ : Any = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : List[Any] = ("This is a simple input", "This is a pair") lowercase__ : Optional[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , ) def UpperCAmelCase__( self ) -> Union[str, Any]: pass @require_ftfy @require_spacy @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case__ ): """simple docstring""" pass
200
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _lowercase = True from torch.cuda.amp import autocast _lowercase = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) UpperCamelCase_ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) UpperCamelCase_ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) UpperCamelCase_ = field( default=0.99_99_95 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def UpperCamelCase ( snake_case__ , snake_case__): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) lowerCAmelCase_ : str = logging.WARNING if model_args.verbose_logging: lowerCAmelCase_ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): lowerCAmelCase_ : Any = logging.INFO logger.setLevel(snake_case__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCamelCase_ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) UpperCamelCase_ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) UpperCamelCase_ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase_ = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = "longest" UpperCamelCase_ = None UpperCamelCase_ = None def __call__( self : str ,lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.feature_extractor.pad( lowerCAmelCase__ ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowerCAmelCase_ : List[str] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCAmelCase_ : Tuple = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowerCAmelCase_ : Optional[Any] = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCAmelCase_ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=lowerCAmelCase__ ,min_masks=2 ,) return batch class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : List[str] ,*lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple=1 ,lowerCAmelCase__ : Optional[int]=0 ,lowerCAmelCase__ : Optional[Any]=1.0 ,**lowerCAmelCase__ : Any ) -> str: '''simple docstring''' super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : int = max_gumbel_temp lowerCAmelCase_ : Union[str, Any] = min_gumbel_temp lowerCAmelCase_ : str = gumbel_temp_decay def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : nn.Module ,lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() lowerCAmelCase_ : str = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) else: lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase_ : List[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase_ : Optional[Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase_ : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses() configure_logger(snake_case__ , snake_case__) # Downloading and loading a dataset from the hub. lowerCAmelCase_ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Any = DatasetDict() lowerCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Union[str, Any] = DatasetDict() lowerCAmelCase_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCAmelCase_ : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=snake_case__) def prepare_dataset(snake_case__): # check that all files have the correct sampling rate lowerCAmelCase_ , lowerCAmelCase_ : str = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays lowerCAmelCase_ : int = datasets.map( snake_case__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names) # filter audio files that are too long lowerCAmelCase_ : int = vectorized_datasets.filter( lambda snake_case__: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)) def normalize(snake_case__): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` lowerCAmelCase_ : str = vectorized_datasets.map( snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCAmelCase_ : Optional[Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'") lowerCAmelCase_ : Dict = WavaVecaForPreTraining(snake_case__) lowerCAmelCase_ : int = DataCollatorForWavaVecaPretraining(model=snake_case__ , feature_extractor=snake_case__) lowerCAmelCase_ : List[Any] = WavaVecaPreTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=snake_case__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
659
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __magic_name__ : List[str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCAmelCase ( snake_case__ : str = "dhaka" , snake_case__ : int = 5 )-> Optional[Any]: A_ = min(__lowerCAmelCase , 50 ) # Prevent abuse! A_ = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } A_ = requests.get("https://www.google.com/search" , params=__lowerCAmelCase , headers=__lowerCAmelCase ) A_ = BeautifulSoup(html.text , "html.parser" ) A_ = "".join( re.findall(r"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) A_ = json.dumps(__lowerCAmelCase ) A_ = json.loads(__lowerCAmelCase ) A_ = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __lowerCAmelCase , ) if not matched_google_image_data: return 0 A_ = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__lowerCAmelCase ) , ) A_ = re.findall( r"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(__lowerCAmelCase ): if index >= max_images: return index A_ = bytes(__lowerCAmelCase , "ascii" ).decode( "unicode-escape" ) A_ = bytes(__lowerCAmelCase , "ascii" ).decode( "unicode-escape" ) A_ = urllib.request.build_opener() A_ = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__lowerCAmelCase ) A_ = f'query_{query.replace(" " , "_" )}' if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 __lowerCAmelCase , f'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: __magic_name__ : Optional[Any] = download_images_from_google_query(sys.argv[1]) print(f"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
709
from __future__ import annotations __magic_name__ : List[Any] = 8.9_8_8e9 # units = N * m^s * C^-2 def lowerCAmelCase ( snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float )-> dict[str, float]: A_ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: A_ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: A_ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: A_ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: A_ = (COULOMBS_CONSTANT * charge_product / abs(snake_case__ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
608
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __magic_name__ = "src/transformers" __magic_name__ = "docs/source/en" __magic_name__ = "." def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Dict: '''simple docstring''' with open(UpperCAmelCase__,'r',encoding='utf-8',newline='\n' ) as f: a__ = f.readlines() # Find the start prompt. a__ = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 a__ = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __magic_name__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. __magic_name__ = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __magic_name__ = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __magic_name__ = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. __magic_name__ = direct_transformers_import(TRANSFORMERS_PATH) def _lowerCamelCase ( UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)',UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> List[str]: '''simple docstring''' a__ = 2 if text == '✅' or text == '❌' else len(UpperCAmelCase__ ) a__ = (width - text_length) // 2 a__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowerCamelCase ( ) -> Any: '''simple docstring''' a__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES a__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } a__ = {name: config.replace('Config','' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. a__ = collections.defaultdict(UpperCAmelCase__ ) a__ = collections.defaultdict(UpperCAmelCase__ ) a__ = collections.defaultdict(UpperCAmelCase__ ) a__ = collections.defaultdict(UpperCAmelCase__ ) a__ = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): a__ = None if attr_name.endswith('Tokenizer' ): a__ = slow_tokenizers a__ = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): a__ = fast_tokenizers a__ = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: a__ = tf_models a__ = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: a__ = flax_models a__ = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: a__ = pt_models a__ = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): a__ = True break # Try again after removing the last word in the name a__ = ''.join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! a__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) a__ = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). a__ = [len(UpperCAmelCase__ ) + 2 for c in columns] a__ = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se a__ = '|' + '|'.join([_center_text(UpperCAmelCase__,UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__,UpperCAmelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" a__ = {True: '✅', False: '❌'} for name in model_names: a__ = model_name_to_prefix[name] a__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__,UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__,UpperCAmelCase__ )] ) + "|\n" return table def _lowerCamelCase ( UpperCAmelCase__=False ) -> Dict: '''simple docstring''' a__ , a__ , a__ , a__ = _find_text_in_file( filename=os.path.join(UpperCAmelCase__,'index.md' ),start_prompt='<!--This table is updated automatically from the auto modules',end_prompt='<!-- End table-->',) a__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__,'index.md' ),'w',encoding='utf-8',newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __magic_name__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
232
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
232
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __A (__magic_name__ ): snake_case :int = (DDIMParallelScheduler,) snake_case :Tuple = (("eta", 0.0), ("num_inference_steps", 50)) def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Dict = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "clip_sample": True, } config.update(**UpperCamelCase_ ) return config def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : int = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : Any = 10, 0.0 __UpperCAmelCase : List[Any] = self.dummy_model() __UpperCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for t in scheduler.timesteps: __UpperCAmelCase : Tuple = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def _snake_case ( self ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) __UpperCAmelCase : List[str] = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase : List[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def _snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def _snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def _snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _snake_case ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def _snake_case ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase_ ) def _snake_case ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ ) def _snake_case ( self ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def _snake_case ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCamelCase_ ) def _snake_case ( self ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ ) def _snake_case ( self ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.scheduler_classes[0] __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.0_2 ) ) < 1E-5 def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : int = 10, 0.0 scheduler.set_timesteps(UpperCamelCase_ ) __UpperCAmelCase : Any = self.dummy_model() __UpperCAmelCase : str = self.dummy_sample_deter __UpperCAmelCase : Optional[Any] = self.dummy_sample_deter + 0.1 __UpperCAmelCase : List[str] = self.dummy_sample_deter - 0.1 __UpperCAmelCase : str = samplea.shape[0] __UpperCAmelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCAmelCase : List[Any] = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ ) __UpperCAmelCase : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCAmelCase : Tuple = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ ) __UpperCAmelCase : int = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : str = self.full_loop() __UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" ) __UpperCAmelCase : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
_snake_case : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def _A ( __snake_case :bytes ) -> Dict: """simple docstring""" if not isinstance(_a , _a ): __SCREAMING_SNAKE_CASE = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_a ) __SCREAMING_SNAKE_CASE = "".join(bin(_a )[2:].zfill(8 ) for byte in data ) __SCREAMING_SNAKE_CASE = len(_a ) % 6 != 0 if padding_needed: # The padding that will be added later __SCREAMING_SNAKE_CASE = b"=" * ((6 - len(_a ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_a ) % 6) else: __SCREAMING_SNAKE_CASE = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_a ) , 6 ) ).encode() + padding ) def _A ( __snake_case :str ) -> Tuple: """simple docstring""" if not isinstance(_a , _a ) and not isinstance(_a , _a ): __SCREAMING_SNAKE_CASE = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_a ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_a , _a ): try: __SCREAMING_SNAKE_CASE = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) __SCREAMING_SNAKE_CASE = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_a ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __SCREAMING_SNAKE_CASE = encoded_data[:-padding] __SCREAMING_SNAKE_CASE = "".join( bin(B64_CHARSET.index(_a ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __SCREAMING_SNAKE_CASE = "".join( bin(B64_CHARSET.index(_a ) )[2:].zfill(6 ) for char in encoded_data ) __SCREAMING_SNAKE_CASE = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_a ) , 8 ) ] return bytes(_a ) if __name__ == "__main__": import doctest doctest.testmod()
693
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowercase : int = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase__ ( _a : Dict , _a : Optional[int]=None , _a : Union[str, Any]=None , _a : List[Any]=None ): snake_case_ : Optional[Any] = True while ask_again: snake_case_ : str = input(_a ) try: if default is not None and len(_a ) == 0: return default return convert_value(_a ) if convert_value is not None else result except Exception: if error_message is not None: print(_a ) def lowerCAmelCase__ ( _a : Dict , _a : str=[] , _a : Union[str, Any]=None , _a : Optional[int]=0 ): snake_case_ : List[Any] = BulletMenu(_a , _a ) snake_case_ : Union[str, Any] = menu.run(default_choice=_a ) return convert_value(_a ) if convert_value is not None else result def lowerCAmelCase__ ( _a : List[str] ): snake_case_ : str = int(_a ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def lowerCAmelCase__ ( _a : int ): snake_case_ : str = int(_a ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : int = int(_a ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase__ ( _a : Dict ): snake_case_ : str = int(_a ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def lowerCAmelCase__ ( _a : int ): snake_case_ : Optional[int] = int(_a ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def lowerCAmelCase__ ( _a : str ): return {"yes": True, "no": False}[value.lower()] class UpperCAmelCase_ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ : Tuple = super()._format_usage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Any = usage.replace("<command> [<args>] " , "" ) return usage
568
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="sequence-classification" def __init__( self , _A ) -> Optional[Any]: if type(_A ) == dict: SCREAMING_SNAKE_CASE_ = Namespace(**_A ) SCREAMING_SNAKE_CASE_ = glue_output_modes[hparams.task] SCREAMING_SNAKE_CASE_ = glue_tasks_num_labels[hparams.task] super().__init__(_A , _A , self.mode ) def _UpperCamelCase ( self , **_A ) -> Optional[Any]: return self.model(**_A ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None SCREAMING_SNAKE_CASE_ = self(**_A ) SCREAMING_SNAKE_CASE_ = outputs[0] SCREAMING_SNAKE_CASE_ = self.trainer.lr_schedulers[0]['''scheduler'''] SCREAMING_SNAKE_CASE_ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.hparams SCREAMING_SNAKE_CASE_ = processors[args.task]() SCREAMING_SNAKE_CASE_ = processor.get_labels() for mode in ["train", "dev"]: SCREAMING_SNAKE_CASE_ = self._feature_file(_A ) if os.path.exists(_A ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , _A ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) SCREAMING_SNAKE_CASE_ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) SCREAMING_SNAKE_CASE_ = convert_examples_to_features( _A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , _A ) torch.save(_A , _A ) def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = '''dev''' if mode == '''test''' else mode SCREAMING_SNAKE_CASE_ = self._feature_file(_A ) logger.info('''Loading features from cached file %s''' , _A ) SCREAMING_SNAKE_CASE_ = torch.load(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE_ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE_ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_A , _A , _A , _A ) , batch_size=_A , shuffle=_A , ) def _UpperCamelCase ( self , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None SCREAMING_SNAKE_CASE_ = self(**_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs[:2] SCREAMING_SNAKE_CASE_ = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE_ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCamelCase ( self , _A ) -> tuple: SCREAMING_SNAKE_CASE_ = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() SCREAMING_SNAKE_CASE_ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE_ = np.argmax(_A , axis=1 ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE_ = np.squeeze(_A ) SCREAMING_SNAKE_CASE_ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE_ = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE_ = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE_ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , _A , _A )} SCREAMING_SNAKE_CASE_ = dict(results.items() ) SCREAMING_SNAKE_CASE_ = results return ret, preds_list, out_label_list def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._eval_end(_A ) SCREAMING_SNAKE_CASE_ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._eval_end(_A ) SCREAMING_SNAKE_CASE_ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCamelCase ( _A , _A ) -> str: BaseTransformer.add_model_specific_args(_A , _A ) parser.add_argument( '''--max_seq_length''' , default=128 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=_A , required=_A , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=_A , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def A__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() add_generic_args(__lowerCamelCase, os.getcwd() ) SCREAMING_SNAKE_CASE_ = GLUETransformer.add_model_specific_args(__lowerCamelCase, os.getcwd() ) SCREAMING_SNAKE_CASE_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: SCREAMING_SNAKE_CASE_ = os.path.join( '''./results''', F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''', ) os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE_ = GLUETransformer(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = generic_train(__lowerCamelCase, __lowerCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt''' ), recursive=__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCamelCase ) if __name__ == "__main__": main()
597
def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1 ): SCREAMING_SNAKE_CASE_ = False for i in range(1, arr_len + 1 ): for j in range(1, required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
597
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _snake_case : Union[str, Any] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , *lowerCamelCase : str , **lowerCamelCase : Any ) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = IFInpaintingPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return self._get_dummy_components() def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> Any: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self._test_save_load_local() def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
627
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Dict = """vivit""" def __init__( self: int , snake_case: str=224 , snake_case: Tuple=32 , snake_case: List[str]=[2, 16, 16] , snake_case: Optional[int]=3 , snake_case: int=768 , snake_case: Optional[Any]=12 , snake_case: str=12 , snake_case: Any=3_072 , snake_case: int="gelu_fast" , snake_case: Optional[Any]=0.0 , snake_case: List[str]=0.0 , snake_case: Dict=0.0_2 , snake_case: Optional[Any]=1E-06 , snake_case: List[str]=True , **snake_case: Union[str, Any] , ) -> Union[str, Any]: snake_case_ :Dict = hidden_size snake_case_ :Union[str, Any] = num_hidden_layers snake_case_ :List[Any] = num_attention_heads snake_case_ :str = intermediate_size snake_case_ :Optional[Any] = hidden_act snake_case_ :int = hidden_dropout_prob snake_case_ :str = attention_probs_dropout_prob snake_case_ :str = initializer_range snake_case_ :int = layer_norm_eps snake_case_ :int = image_size snake_case_ :Tuple = num_frames snake_case_ :str = tubelet_size snake_case_ :Union[str, Any] = num_channels snake_case_ :Optional[Any] = qkv_bias super().__init__(**snake_case )
310
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ConditionalDetrFeatureExtractor"] __a = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
310
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case ( _a: str , _a: str )-> List[Any]: '''simple docstring''' lowerCamelCase__ = old_name if "patch_embed" in old_name: lowerCamelCase__ = old_name.split('.' ) if layer == "0": lowerCamelCase__ = old_name.replace('0' , 'convolution1' ) elif layer == "1": lowerCamelCase__ = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": lowerCamelCase__ = old_name.replace('3' , 'convolution2' ) else: lowerCamelCase__ = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , _a ): lowerCamelCase__ = R'''\b\d{2}\b''' if bool(re.search(_a , _a ) ): lowerCamelCase__ = re.search(R'\d\.\d\d.' , _a ).group() else: lowerCamelCase__ = re.search(R'\d\.\d.' , _a ).group() if int(match[0] ) < 6: lowerCamelCase__ = old_name.replace(_a , '' ) lowerCamelCase__ = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) lowerCamelCase__ = '''intermediate_stages.''' + trimmed_name else: lowerCamelCase__ = old_name.replace(_a , '' ) if int(match[2] ) < num_meta4D_last_stage: lowerCamelCase__ = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: lowerCamelCase__ = str(int(match[2] ) - num_meta4D_last_stage ) lowerCamelCase__ = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: lowerCamelCase__ = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: lowerCamelCase__ = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: lowerCamelCase__ = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: lowerCamelCase__ = trimmed_name.replace('fc2' , 'linear_out' ) lowerCamelCase__ = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'.\d.' , _a ): lowerCamelCase__ = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: lowerCamelCase__ = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCamelCase__ = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCamelCase__ = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: lowerCamelCase__ = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: lowerCamelCase__ = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: lowerCamelCase__ = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: lowerCamelCase__ = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCamelCase__ = new_name.replace('norm' , 'layernorm' ) lowerCamelCase__ = '''efficientformer.''' + new_name else: lowerCamelCase__ = '''efficientformer.encoder.''' + new_name return new_name def snake_case ( _a: Tuple , _a: Optional[int] )-> Tuple: '''simple docstring''' for key in checkpoint.copy().keys(): lowerCamelCase__ = checkpoint.pop(_a ) lowerCamelCase__ = val return checkpoint def snake_case ( )-> Dict: '''simple docstring''' lowerCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ = Image.open(requests.get(_a , stream=_a ).raw ) return image def snake_case ( _a: Path , _a: Path , _a: Path , _a: bool )-> List[str]: '''simple docstring''' lowerCamelCase__ = torch.load(_a , map_location='cpu' )['''model'''] lowerCamelCase__ = EfficientFormerConfig.from_json_file(_a ) lowerCamelCase__ = EfficientFormerForImageClassificationWithTeacher(_a ) lowerCamelCase__ = '''_'''.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) lowerCamelCase__ = config.depths[-1] - config.num_metaad_blocks + 1 lowerCamelCase__ = convert_torch_checkpoint(_a , _a ) model.load_state_dict(_a ) model.eval() lowerCamelCase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowerCamelCase__ = prepare_img() lowerCamelCase__ = 256 lowerCamelCase__ = 224 lowerCamelCase__ = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) lowerCamelCase__ = processor(images=_a , return_tensors='pt' ).pixel_values # original processing pipeline lowerCamelCase__ = Compose( [ Resize(_a , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_a ), ToTensor(), Normalize(_a , _a ), ] ) lowerCamelCase__ = image_transforms(_a ).unsqueeze(0 ) assert torch.allclose(_a , _a ) lowerCamelCase__ = model(_a ) lowerCamelCase__ = outputs.logits lowerCamelCase__ = (1, 1000) if "l1" in model_name: lowerCamelCase__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _a , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCamelCase__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _a , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCamelCase__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_a ).mkdir(exist_ok=_a ) model.save_pretrained(_a ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_a ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_a , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_a , ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _snake_case = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
510
from math import log from scipy.constants import Boltzmann, physical_constants __SCREAMING_SNAKE_CASE : int = 3_00 # TEMPERATURE (unit = K) def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ): '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
348
0
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = len(UpperCamelCase__ ) // 2 # choose the middle 3 elements snake_case_ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
717
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
108
0
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __snake_case : List[Any] = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class UpperCamelCase ( a ): """simple docstring""" _lowerCamelCase : Optional[Any] ="ernie_m" _lowerCamelCase : Dict[str, str] ={"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Any , _lowerCamelCase : int = 2_5_0_0_0_2 , _lowerCamelCase : int = 7_6_8 , _lowerCamelCase : int = 1_2 , _lowerCamelCase : int = 1_2 , _lowerCamelCase : int = 3_0_7_2 , _lowerCamelCase : str = "gelu" , _lowerCamelCase : float = 0.1 , _lowerCamelCase : float = 0.1 , _lowerCamelCase : int = 5_1_4 , _lowerCamelCase : float = 0.02 , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1E-05 , _lowerCamelCase : List[Any]=None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : str=0.0 , **_lowerCamelCase : Optional[Any] , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = classifier_dropout A__ = is_decoder A__ = act_dropout
571
"""simple docstring""" def a_ ( __a ): assert ( isinstance(__a , __a ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A__ , A__ = 1, 1 for _ in range(number_of_steps - 1 ): A__ , A__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
571
1
"""simple docstring""" def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowercase : Any = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" _lowercase : Optional[Any] = str(bin(__UpperCAmelCase ) )[2:] _lowercase : Optional[int] = max(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) ,b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
283
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["input_features", "attention_mask"] def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2768.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = feature_size _lowercase : Dict = sampling_rate _lowercase : Tuple = padding_value _lowercase : int = hop_length _lowercase : Any = win_length _lowercase : Union[str, Any] = frame_signal_scale _lowercase : Tuple = preemphasis_coeff _lowercase : Tuple = mel_floor _lowercase : Tuple = normalize_means _lowercase : List[Any] = normalize_vars _lowercase : List[str] = win_function _lowercase : int = return_attention_mask _lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0 _lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0 _lowercase : str = optimal_fft_length(self.sample_size ) _lowercase : Dict = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": _lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ ) else: _lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function ) _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowercase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" if self.normalize_means: _lowercase : Optional[int] = x[:input_length].mean(axis=0 ) _lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ ) if self.normalize_vars: _lowercase : int = x[:input_length].std(axis=0 ) _lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ ) if input_length < x.shape[0]: _lowercase : Dict = padding_value # make sure array is in float32 _lowercase : Tuple = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ): """simple docstring""" _lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )] def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : str = [raw_speech] # extract fbank features _lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding _lowercase : Optional[int] = BatchFeature({'input_features': features} ) _lowercase : Tuple = self.pad( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) # make sure list is in array format _lowercase : Dict = padded_inputs.get('input_features' ) if isinstance(input_features[0] , lowerCamelCase_ ): _lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features] _lowercase : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowercase : int = ( np.array(lowerCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowercase : List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=lowerCamelCase_ ) if return_tensors is not None: _lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
283
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = 42 lowercase = None def __magic_name__ ( lowercase_ , lowercase_=0.999 , lowercase_="cosine" , ) -> List[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase_ ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCamelCase = [] for i in range(lowercase_ ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase_ ) / alpha_bar_fn(lowercase_ ) , lowercase_ ) ) return torch.tensor(lowercase_ , dtype=torch.floataa ) class __UpperCAmelCase ( snake_case__ , snake_case__ ): """simple docstring""" lowercase = 1 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE = 1000 , SCREAMING_SNAKE_CASE = 0.0_001 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = "linear" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = "epsilon" , SCREAMING_SNAKE_CASE = 1.0 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" if kwargs.get("set_alpha_to_one" , SCREAMING_SNAKE_CASE ) is not None: UpperCamelCase = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs["set_alpha_to_one"] if trained_betas is not None: UpperCamelCase = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase = betas_for_alpha_bar(SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCamelCase = 1.0 - self.betas UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCamelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # setable values UpperCamelCase = None UpperCamelCase = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> torch.FloatTensor: """simple docstring""" return sample def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[str]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) UpperCamelCase = num_inference_steps UpperCamelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase = (np.arange(0 , SCREAMING_SNAKE_CASE ) * step_ratio).round().copy().astype(np.intaa ) UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" # 1. get previous step value (=t+1) UpperCamelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCamelCase = self.alphas_cumprod[timestep] UpperCamelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCamelCase = model_output elif self.config.prediction_type == "sample": UpperCamelCase = model_output UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCamelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCamelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE ) def __len__( self ) -> Any: """simple docstring""" return self.config.num_train_timesteps
606
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __a : Optional[int] = 1_0 def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' for i in range(lowercase_ , lowercase_ ): if array[i] == target: return i return -1 def __magic_name__ ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = len(lowercase_ ) while left <= right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = (left + right) // 3 + 1 UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCamelCase = one_third - 1 elif array[two_third] < target: UpperCamelCase = two_third + 1 else: UpperCamelCase = one_third + 1 UpperCamelCase = two_third - 1 else: return -1 def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = (left + right) // 3 + 1 UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase_ , one_third - 1 , lowercase_ , lowercase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase_ , lowercase_ , lowercase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase_ , lowercase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __a : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() __a : Tuple = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __a : Optional[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) __a : Optional[Any] = ite_ternary_search(collection, target) __a : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print("""Not found""")
606
1
"""simple docstring""" def snake_case ( A__ ,A__ ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
463
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase_ : __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: UpperCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[Any] = os.path.join(lowerCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) UpperCAmelCase_ : Any = self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[Any] = feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) UpperCAmelCase_ : Any = self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
463
1
def __UpperCAmelCase ( UpperCAmelCase )-> int: """simple docstring""" if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
604
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number | (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number & ~(1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number ^ (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
244
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _lowerCamelCase : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): """simple docstring""" _SCREAMING_SNAKE_CASE = 10_000 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None class SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): """simple docstring""" _SCREAMING_SNAKE_CASE = ParquetConfig def A ( self : Tuple ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def A ( self : Union[str, Any] , UpperCamelCase__ : str ): """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowercase , (str, list, tuple) ): UpperCamelCase = data_files if isinstance(_lowercase , _lowercase ): UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase = [dl_manager.iter_files(_lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase ): UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase = [dl_manager.iter_files(_lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowercase ): with open(_lowercase , 'rb' ) as f: UpperCamelCase = datasets.Features.from_arrow_schema(pq.read_schema(_lowercase ) ) break splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={'files': files} ) ) return splits def A ( self : Union[str, Any] , UpperCamelCase__ : int ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase = table_cast(_lowercase , self.info.features.arrow_schema ) return pa_table def A ( self : Dict , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowercase ) ): with open(_lowercase , 'rb' ) as f: UpperCamelCase = pq.ParquetFile(_lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCamelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(_lowercase ) except ValueError as e: logger.error(f"""Failed to read file \'{file}\' with error {type(_lowercase )}: {e}""" ) raise
721
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : str = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCamelCase : List[str] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } _lowerCamelCase : Tuple = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } _lowerCamelCase : int = "▁" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = BigBirdTokenizer _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE = [] def __init__( self : List[str] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]="<unk>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Any="<pad>" , UpperCamelCase__ : List[Any]="[SEP]" , UpperCamelCase__ : List[str]="[MASK]" , UpperCamelCase__ : Union[str, Any]="[CLS]" , **UpperCamelCase__ : Any , ): """simple docstring""" UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def A ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def A ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
324
0
from math import factorial def lowerCAmelCase ( UpperCamelCase__ : int = 100 ) -> int: """simple docstring""" return sum(map(UpperCamelCase__ , str(factorial(UpperCamelCase__ ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
202
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : str = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a =logging.get_logger(__name__) a ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } a =[ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __lowerCamelCase : int = '''lm_head''' __lowerCamelCase : List[str] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: __lowerCamelCase : Tuple = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: __lowerCamelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCamelCase : Optional[Any] = value elif weight_type == "weight_g": __lowerCamelCase : Tuple = value elif weight_type == "weight_v": __lowerCamelCase : Optional[Any] = value elif weight_type == "bias": __lowerCamelCase : str = value else: __lowerCamelCase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Dict = [] __lowerCamelCase : Optional[int] = fairseq_model.state_dict() __lowerCamelCase : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase : str = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase : Any = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase : Dict = True if "*" in mapped_key: __lowerCamelCase : Tuple = name.split(lowerCamelCase__ )[0].split('.' )[-2] __lowerCamelCase : int = mapped_key.replace('*' , lowerCamelCase__ ) if "weight_g" in name: __lowerCamelCase : Optional[Any] = '''weight_g''' elif "weight_v" in name: __lowerCamelCase : List[str] = '''weight_v''' elif "bias" in name: __lowerCamelCase : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase : Optional[Any] = '''weight''' else: __lowerCamelCase : Optional[int] = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: __lowerCamelCase : Optional[int] = full_name.split('conv_layers.' )[-1] __lowerCamelCase : Optional[int] = name.split('.' ) __lowerCamelCase : List[Any] = int(items[0] ) __lowerCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCamelCase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCamelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCamelCase : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCamelCase : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ) -> Optional[Any]: if config_path is not None: __lowerCamelCase : List[str] = UniSpeechConfig.from_pretrained(lowerCamelCase__ ) else: __lowerCamelCase : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: __lowerCamelCase : str = Dictionary.load_from_json(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase : Optional[int] = target_dict.pad_index __lowerCamelCase : str = target_dict.bos_index __lowerCamelCase : List[Any] = target_dict.eos_index __lowerCamelCase : int = len(target_dict.symbols ) __lowerCamelCase : str = os.path.join(lowerCamelCase__ , 'vocab.json' ) if not os.path.isdir(lowerCamelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __lowerCamelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCamelCase : str = 4_2 __lowerCamelCase : List[str] = 4_3 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Dict = WavaVecaPhonemeCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase__ , ) __lowerCamelCase : int = True if config.feat_extract_norm == '''layer''' else False __lowerCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) __lowerCamelCase : int = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) __lowerCamelCase : Dict = UniSpeechForCTC(lowerCamelCase__ ) else: __lowerCamelCase : Dict = UniSpeechForPreTraining(lowerCamelCase__ ) if is_finetuned: __lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: __lowerCamelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowerCamelCase : Optional[int] = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) hf_unispeech.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
718
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a ={ """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""MaskFormerFeatureExtractor"""] a =["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] a =[ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
337
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCAmelCase = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class __lowercase : snake_case_ = 42 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = _str_to_version_tuple(self.version_str ) def __repr__( self : Tuple ): '''simple docstring''' return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def __lowercase ( self : List[str] ): '''simple docstring''' return self.major, self.minor, self.patch def __lowercase ( self : Any ,A : List[Any] ): '''simple docstring''' if isinstance(A ,A ): return Version(A ) elif isinstance(A ,A ): return other raise TypeError(f"{other} (type {type(A )}) cannot be compared to version." ) def __eq__( self : Union[str, Any] ,A : List[str] ): '''simple docstring''' try: UpperCAmelCase__ : Optional[Any] = self._validate_operand(A ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : str ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = self._validate_operand(A ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __lowercase ( cls : Any ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __lowercase ( self : List[Any] ): '''simple docstring''' return self.version_str def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = _VERSION_REG.match(__UpperCamelCase ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(__UpperCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return ".".join(str(__UpperCamelCase ) for v in version_tuple )
65
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _lowerCAmelCase = None _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _lowerCAmelCase = { 'google/fnet-base': 5_12, 'google/fnet-large': 5_12, } _lowerCAmelCase = '▁' class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = ["""input_ids""", """token_type_ids"""] _SCREAMING_SNAKE_CASE : Union[str, Any] = FNetTokenizer def __init__( self :Optional[Any] , __magic_name__ :Union[str, Any]=None , __magic_name__ :Any=None , __magic_name__ :List[str]=False , __magic_name__ :Any=True , __magic_name__ :Any=True , __magic_name__ :Union[str, Any]="<unk>" , __magic_name__ :List[Any]="[SEP]" , __magic_name__ :Union[str, Any]="<pad>" , __magic_name__ :Tuple="[CLS]" , __magic_name__ :Optional[int]="[MASK]" , **__magic_name__ :Optional[int] , ) ->Tuple: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase : Union[str, Any] = ( AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ , normalized=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token ) super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , **__magic_name__ , ) lowercase : Tuple = do_lower_case lowercase : Tuple = remove_space lowercase : List[str] = keep_accents lowercase : Union[str, Any] = vocab_file lowercase : int = False if not self.vocab_file else True def __snake_case ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ) ->List[int]: lowercase : List[str] = [self.sep_token_id] lowercase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self :int , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ) ->List[int]: lowercase : Tuple = [self.sep_token_id] lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self :int , __magic_name__ :str , __magic_name__ :Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : str = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
264
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__: Any = logging.get_logger(__name__) a__: List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''trocr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self,__lowerCamelCase=5_0265,__lowerCamelCase=1024,__lowerCamelCase=12,__lowerCamelCase=16,__lowerCamelCase=4096,__lowerCamelCase="gelu",__lowerCamelCase=512,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=0.0,__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,**__lowerCamelCase,): A__ = vocab_size A__ = d_model A__ = decoder_layers A__ = decoder_attention_heads A__ = decoder_ffn_dim A__ = activation_function A__ = max_position_embeddings A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = init_std A__ = decoder_layerdrop A__ = use_cache A__ = scale_embedding A__ = use_learned_position_embeddings A__ = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase,decoder_start_token_id=__lowerCamelCase,**__lowerCamelCase,)
212
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a__: Any = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) a__: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase__( )->Dict: A__ = '''https://pypi.org/pypi/diffusers/json''' A__ = json.loads(request.urlopen(UpperCamelCase__ ).read() )['''releases'''].keys() return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : version.Version(UpperCamelCase__ ) ) def UpperCamelCase__( )->List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = Path(UpperCamelCase__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def UpperCamelCase__( UpperCamelCase__ : Union[str, os.PathLike] )->Union[str, Any]: init_hf_modules() A__ = Path(UpperCamelCase__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->str: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: A__ = f.read() # Imports of the form `import .xxx` A__ = re.findall('''^\s*import\s+\.(\S+)\s*$''' , UpperCamelCase__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , UpperCamelCase__ , flags=re.MULTILINE ) # Unique-ify return list(set(UpperCamelCase__ ) ) def UpperCamelCase__( UpperCamelCase__ : Dict )->str: A__ = False A__ = [module_file] A__ = [] # Let's recurse through all relative imports while not no_change: A__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCamelCase__ ) ) A__ = Path(UpperCamelCase__ ).parent A__ = [str(module_path / m ) for m in new_imports] A__ = [f for f in new_import_files if f not in all_relative_imports] A__ = [f"{f}.py" for f in new_import_files] A__ = len(UpperCamelCase__ ) == 0 all_relative_imports.extend(UpperCamelCase__ ) return all_relative_imports def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->List[Any]: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: A__ = f.read() # Imports of the form `import xxx` A__ = re.findall('''^\s*import\s+(\S+)\s*$''' , UpperCamelCase__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , UpperCamelCase__ , flags=re.MULTILINE ) # Only keep the top-level module A__ = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all A__ = list(set(UpperCamelCase__ ) ) A__ = [] for imp in imports: try: importlib.import_module(UpperCamelCase__ ) except ImportError: missing_packages.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f"{', '.join(UpperCamelCase__ )}. Run `pip install {' '.join(UpperCamelCase__ )}`" ) return get_relative_imports(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple )->Optional[int]: A__ = module_path.replace(os.path.sep , '''.''' ) A__ = importlib.import_module(UpperCamelCase__ ) if class_name is None: return find_pipeline_class(UpperCamelCase__ ) return getattr(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->int: from ..pipelines import DiffusionPipeline A__ = dict(inspect.getmembers(UpperCamelCase__ , inspect.isclass ) ) A__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , UpperCamelCase__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) A__ = cls return pipeline_class def UpperCamelCase__( UpperCamelCase__ : Union[str, os.PathLike] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[Dict[str, str]] = None , UpperCamelCase__ : Optional[Union[bool, str]] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , )->List[Any]: A__ = str(UpperCamelCase__ ) A__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.isfile(UpperCamelCase__ ): A__ = module_file_or_url A__ = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: A__ = get_diffusers_versions() # cut ".dev0" A__ = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: A__ = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f"Defaulting to latest_version: {revision}." ) elif revision in available_versions: A__ = f"v{revision}" elif revision == "main": A__ = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub A__ = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase__ , pipeline=UpperCamelCase__ ) try: A__ = cached_download( UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , proxies=UpperCamelCase__ , resume_download=UpperCamelCase__ , local_files_only=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , ) A__ = '''git''' A__ = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached A__ = hf_hub_download( UpperCamelCase__ , UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , proxies=UpperCamelCase__ , resume_download=UpperCamelCase__ , local_files_only=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , ) A__ = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment A__ = check_imports(UpperCamelCase__ ) # Now we move the module inside our cached dynamic modules. A__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCamelCase__ ) A__ = Path(UpperCamelCase__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCamelCase__ , submodule_path / module_file ) for module_needed in modules_needed: A__ = f"{module_needed}.py" shutil.copy(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = use_auth_token elif use_auth_token is True: A__ = HfFolder.get_token() else: A__ = None A__ = model_info(UpperCamelCase__ , revision=UpperCamelCase__ , token=UpperCamelCase__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A__ = submodule_path / commit_hash A__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCamelCase__ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCamelCase__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCamelCase__ , f"{module_needed}.py" , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , resume_download=UpperCamelCase__ , proxies=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , local_files_only=UpperCamelCase__ , ) return os.path.join(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Union[str, os.PathLike] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[Dict[str, str]] = None , UpperCamelCase__ : Optional[Union[bool, str]] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , )->Optional[Any]: A__ = get_cached_module_file( UpperCamelCase__ , UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , resume_download=UpperCamelCase__ , proxies=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , local_files_only=UpperCamelCase__ , ) return get_class_in_module(UpperCamelCase__ , final_module.replace('''.py''' , '''''' ) )
212
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase_ = "hf-internal-testing/tiny-random-bert" lowercase_ = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") lowercase_ = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> List[Any]: """simple docstring""" _a = cached_file(A , A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A , A ) ) ) with open(os.path.join(A , '''refs''' , '''main''' ) ) as f: _a = f.read() self.assertEqual(A , os.path.join(A , '''snapshots''' , A , A ) ) self.assertTrue(os.path.isfile(A ) ) # File is cached at the same place the second time. _a = cached_file(A , A ) self.assertEqual(A , A ) # Using a specific revision to test the full commit hash. _a = cached_file(A , A , revision='''9b8c223''' ) self.assertEqual(A , os.path.join(A , '''snapshots''' , A , A ) ) def a__ (self ) -> Dict: """simple docstring""" with self.assertRaisesRegex(A , '''is not a valid model identifier''' ): _a = cached_file('''tiny-random-bert''' , A ) with self.assertRaisesRegex(A , '''is not a valid git identifier''' ): _a = cached_file(A , A , revision='''aaaa''' ) with self.assertRaisesRegex(A , '''does not appear to have a file named''' ): _a = cached_file(A , '''conf''' ) def a__ (self ) -> int: """simple docstring""" with self.assertRaisesRegex(A , '''does not appear to have a file named''' ): _a = cached_file(A , '''conf''' ) with open(os.path.join(A , '''refs''' , '''main''' ) ) as f: _a = f.read() self.assertTrue(os.path.isfile(os.path.join(A , '''.no_exist''' , A , '''conf''' ) ) ) _a = cached_file(A , '''conf''' , _raise_exceptions_for_missing_entries=A ) self.assertIsNone(A ) _a = cached_file(A , '''conf''' , local_files_only=A , _raise_exceptions_for_missing_entries=A ) self.assertIsNone(A ) _a = mock.Mock() _a = 500 _a = {} _a = HTTPError _a = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: _a = cached_file(A , '''conf''' , _raise_exceptions_for_connection_errors=A ) self.assertIsNone(A ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ) -> int: """simple docstring""" self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A ) ) def a__ (self ) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , A , revision='''ahaha''' ) _a = get_file_from_repo('''bert-base-cased''' , A ) # The name is the cached name which is not very easy to test, so instead we load the content. _a = json.loads(open(A , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def a__ (self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a = Path(A ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(A , '''a.txt''' ) , str(A ) ) self.assertIsNone(get_file_from_repo(A , '''b.txt''' ) )
11
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def a ( __snake_case : int = 3 ): '''simple docstring''' if isinstance(__snake_case, __snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) UpperCAmelCase_ :Optional[int] = QuantumRegister(__snake_case, '''qr''' ) UpperCAmelCase_ :int = ClassicalRegister(__snake_case, '''cr''' ) UpperCAmelCase_ :str = QuantumCircuit(__snake_case, __snake_case ) UpperCAmelCase_ :List[str] = number_of_qubits for i in range(__snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j), __snake_case, __snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__snake_case, number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__snake_case, __snake_case ) # simulate with 10000 shots UpperCAmelCase_ :List[Any] = Aer.get_backend('''qasm_simulator''' ) UpperCAmelCase_ :Dict = execute(__snake_case, __snake_case, shots=10000 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
608
0
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
529
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowercase () -> Optional[Any]: '''simple docstring''' lowerCAmelCase = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCAmelCase = get_sagemaker_input() else: lowerCAmelCase = get_cluster_input() return config def lowercase (snake_case__ : List[str]=None ) -> int: '''simple docstring''' if subparsers is not None: lowerCAmelCase = subparsers.add_parser("""config""" , description=snake_case__ ) else: lowerCAmelCase = argparse.ArgumentParser("""Accelerate config command""" , description=snake_case__ ) parser.add_argument( """--config_file""" , default=snake_case__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def lowercase (snake_case__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = get_user_input() if args.config_file is not None: lowerCAmelCase = args.config_file else: if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) lowerCAmelCase = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(snake_case__ ) else: config.to_yaml_file(snake_case__ ) print(f'''accelerate configuration saved at {config_file}''' ) def lowercase () -> Optional[int]: '''simple docstring''' lowerCAmelCase = config_command_parser() lowerCAmelCase = parser.parse_args() config_command(snake_case__ ) if __name__ == "__main__": main()
529
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case ): def get_masked_lm_array(__snake_case ): _UpperCamelCase = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_array(__snake_case ): _UpperCamelCase = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_layer_array(__snake_case , __snake_case ): _UpperCamelCase = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_attention_layer_array(__snake_case , __snake_case , __snake_case ): _UpperCamelCase = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) _UpperCamelCase = array.reshape(__snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) print(f"""Loading model based on config from {config_path}...""" ) _UpperCamelCase = BertConfig.from_json_file(__snake_case ) _UpperCamelCase = BertForMaskedLM(__snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _UpperCamelCase = model.bert.encoder.layer[layer_index] # Self-attention _UpperCamelCase = layer.attention.self _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output _UpperCamelCase = layer.attention.output _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/beta''' ) # Intermediate _UpperCamelCase = layer.intermediate _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/bias''' ) # Output _UpperCamelCase = layer.output _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_dense/bias''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/beta''' ) # Embeddings _UpperCamelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head _UpperCamelCase = model.cls.predictions.transform _UpperCamelCase = get_masked_lm_array('''dense/kernel''' ) _UpperCamelCase = get_masked_lm_array('''dense/bias''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/gamma''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/beta''' ) _UpperCamelCase = get_masked_lm_array('''embedding_table''' ) # Pooling _UpperCamelCase = BertPooler(config=__snake_case ) _UpperCamelCase = get_encoder_array('''_pooler_layer/kernel''' ) _UpperCamelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__snake_case ) # Integration test - should load without any errors ;) _UpperCamelCase = BertForMaskedLM.from_pretrained(__snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A: List[Any] = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( __lowerCAmelCase, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = GPTSwaTokenizer SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = False def lowerCamelCase__ ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Dict = GPTSwaTokenizer(_UpperCamelCase , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[int] = """This is a test""" lowercase_ : Any = """This is a test""" return input_text, output_text def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[str] = """<s>""" lowercase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCamelCase ) , 2000 ) def lowerCamelCase__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = GPTSwaTokenizer(_UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [465, 287, 265, 631, 842] ) lowercase_ : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _UpperCamelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowercase_ : Any = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) # fmt: off self.assertListEqual( _UpperCamelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = GPTSwaTokenizer(_UpperCamelCase ) lowercase_ : Optional[int] = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowercase_ : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_UpperCamelCase , _UpperCamelCase ): self.assertListEqual(tokenizer.encode_fast(_UpperCamelCase ) , _UpperCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(tokenizer.decode_fast(_UpperCamelCase ) , _UpperCamelCase ) @slow def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowercase_ : List[str] = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_UpperCamelCase , )
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
def _lowerCAmelCase ( __magic_name__ :int ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _lowerCamelCase : Tuple = int(input('Enter number: ').strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
121
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCamelCase : List[Any] = logging.getLogger(__name__) class snake_case__ ( __snake_case ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : Tuple=-1 ) -> List[Any]: # in NER datasets, the last column is usually reserved for NER label UpperCAmelCase_ = label_idx def UpperCamelCase ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[Split, str] ) -> List[InputExample]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = mode.value UpperCAmelCase_ = os.path.join(lowerCAmelCase_ , F'''{mode}.txt''' ) UpperCAmelCase_ = 1 UpperCAmelCase_ = [] with open(lowerCAmelCase_ , encoding='''utf-8''' ) as f: UpperCAmelCase_ = [] UpperCAmelCase_ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=lowerCAmelCase_ , labels=lowerCAmelCase_ ) ) guid_index += 1 UpperCAmelCase_ = [] UpperCAmelCase_ = [] else: UpperCAmelCase_ = line.split(''' ''' ) words.append(splits[0] ) if len(lowerCAmelCase_ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=lowerCAmelCase_ , labels=lowerCAmelCase_ ) ) return examples def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : List ) -> str: UpperCAmelCase_ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(lowerCAmelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase_ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(lowerCAmelCase_ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> List[str]: if path: with open(lowerCAmelCase_ , '''r''' ) as f: UpperCAmelCase_ = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class snake_case__ ( __snake_case ): '''simple docstring''' def __init__( self : str ) -> Dict: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> List[str]: if path: with open(lowerCAmelCase_ , '''r''' ) as f: UpperCAmelCase_ = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class snake_case__ ( __snake_case ): '''simple docstring''' def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[Split, str] ) -> List[InputExample]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = mode.value UpperCAmelCase_ = os.path.join(lowerCAmelCase_ , F'''{mode}.txt''' ) UpperCAmelCase_ = 1 UpperCAmelCase_ = [] with open(lowerCAmelCase_ , encoding='''utf-8''' ) as f: for sentence in parse_incr(lowerCAmelCase_ ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=lowerCAmelCase_ , labels=lowerCAmelCase_ ) ) guid_index += 1 return examples def UpperCamelCase ( self : int , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : List ) -> List[str]: UpperCAmelCase_ = 0 for sentence in parse_incr(lowerCAmelCase_ ): UpperCAmelCase_ = preds_list[example_id] UpperCAmelCase_ = '''''' for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCAmelCase_ ) example_id += 1 def UpperCamelCase ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: if path: with open(lowerCAmelCase_ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
121
1
def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowerCAmelCase ( __lowerCamelCase : dict[int, list[int]] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) # No of vertices in graph __SCREAMING_SNAKE_CASE : Tuple = [0] * n __SCREAMING_SNAKE_CASE : Dict = [False] * n def dfs(__lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any ): __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , id_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __SCREAMING_SNAKE_CASE : List[Any] = min(low[at] , low[to] ) __SCREAMING_SNAKE_CASE : list[tuple[int, int]] = [] for i in range(__lowerCamelCase ): if not visited[i]: dfs(__lowerCamelCase , -1 , __lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
447
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCamelCase = 128022 _lowerCamelCase = 128028 @require_sentencepiece class _SCREAMING_SNAKE_CASE (UpperCamelCase , unittest.TestCase ): lowerCAmelCase = MaMaaaTokenizer lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True def __snake_case ( self : Union[str, Any] )->Optional[Any]: super().setUp() __SCREAMING_SNAKE_CASE : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __SCREAMING_SNAKE_CASE : List[str] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : int = Path(self.tmpdirname ) save_json(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[int] , **UpperCamelCase : Any )->Dict: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def __snake_case ( self : Dict , UpperCamelCase : List[str] )->int: return ( "This is a test", "This is a test", ) def __snake_case ( self : str )->Tuple: __SCREAMING_SNAKE_CASE : List[Any] = "</s>" __SCREAMING_SNAKE_CASE : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def __snake_case ( self : Tuple )->Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(UpperCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __snake_case ( self : Dict )->Dict: pass def __snake_case ( self : Union[str, Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [2, 3, 4, 5, 6] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_string(UpperCamelCase ) self.assertEqual(UpperCamelCase , "This is a test" ) @slow def __snake_case ( self : Any )->Union[str, Any]: # fmt: off __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = """facebook/m2m100_418M""" lowerCAmelCase = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCAmelCase = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCAmelCase = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __snake_case ( cls : List[Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __SCREAMING_SNAKE_CASE : Optional[Any] = 1 return cls def __snake_case ( self : Dict )->Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __snake_case ( self : Any )->Union[str, Any]: __SCREAMING_SNAKE_CASE : str = self.tokenizer.get_vocab() self.assertEqual(len(UpperCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , UpperCamelCase ) def __snake_case ( self : List[Any] )->str: __SCREAMING_SNAKE_CASE : Union[str, Any] = "en" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def __snake_case ( self : Union[str, Any] )->List[Any]: self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off __SCREAMING_SNAKE_CASE : Dict = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def __snake_case ( self : Any )->List[Any]: __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCamelCase ) @require_torch def __snake_case ( self : Any )->int: __SCREAMING_SNAKE_CASE : List[str] = "en" __SCREAMING_SNAKE_CASE : Dict = "fr" __SCREAMING_SNAKE_CASE : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __SCREAMING_SNAKE_CASE : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : Optional[Any] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __SCREAMING_SNAKE_CASE : Optional[int] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __snake_case ( self : Optional[Any] )->List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __SCREAMING_SNAKE_CASE : Optional[int] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __snake_case ( self : Tuple )->Optional[int]: __SCREAMING_SNAKE_CASE : Any = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
447
1
'''simple docstring''' import unittest import numpy as np def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , ): """simple docstring""" lowercase = np.shape(lowerCAmelCase_ ) lowercase = np.shape(lowerCAmelCase_ ) lowercase = np.shape(lowerCAmelCase_ ) if shape_a[0] != shape_b[0]: lowercase = ( "Expected the same number of rows for A and B. " f'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(lowerCAmelCase_ ) if shape_b[1] != shape_c[1]: lowercase = ( "Expected the same number of columns for B and C. " f'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(lowerCAmelCase_ ) lowercase = pseudo_inv if a_inv is None: try: lowercase = np.linalg.inv(lowerCAmelCase_ ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase__ (self : Optional[int] ) -> None: lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase = np.array([[2, 1], [6, 3]] ) lowercase = schur_complement(A__ , A__ , A__ ) lowercase = np.block([[a, b], [b.T, c]] ) lowercase = np.linalg.det(A__ ) lowercase = np.linalg.det(A__ ) lowercase = np.linalg.det(A__ ) self.assertAlmostEqual(A__ , det_a * det_s ) def UpperCAmelCase__ (self : Optional[int] ) -> None: lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(A__ ): schur_complement(A__ , A__ , A__ ) def UpperCAmelCase__ (self : List[str] ) -> None: lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(A__ ): schur_complement(A__ , A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
310
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[Any] = 256 class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = ['''melgan'''] def __init__(self : Optional[Any] , A__ : SpectrogramNotesEncoder , A__ : SpectrogramContEncoder , A__ : TaFilmDecoder , A__ : DDPMScheduler , A__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase = math.log(1e-5 ) # Matches MelGAN training. lowercase = 4.0 # Largest value for most examples lowercase = 1_2_8 self.register_modules( notes_encoder=A__ , continuous_encoder=A__ , decoder=A__ , scheduler=A__ , melgan=A__ , ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Any , A__ : Tuple=(-1.0, 1.0) , A__ : Any=False ) -> Any: lowercase , lowercase = output_range if clip: lowercase = torch.clip(A__ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCAmelCase__ (self : Tuple , A__ : Any , A__ : List[str]=(-1.0, 1.0) , A__ : Any=False ) -> str: lowercase , lowercase = input_range lowercase = torch.clip(A__ , A__ , A__ ) if clip else outputs # Scale to [0, 1]. lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCAmelCase__ (self : List[str] , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[Any] ) -> Dict: lowercase = input_tokens > 0 lowercase , lowercase = self.notes_encoder( encoder_input_tokens=A__ , encoder_inputs_mask=A__ ) lowercase , lowercase = self.continuous_encoder( encoder_inputs=A__ , encoder_inputs_mask=A__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCAmelCase__ (self : int , A__ : int , A__ : Optional[int] , A__ : List[Any] ) -> str: lowercase = noise_time if not torch.is_tensor(A__ ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.decoder( encodings_and_masks=A__ , decoder_input_tokens=A__ , decoder_noise_time=A__ ) return logits @torch.no_grad() def __call__(self : int , A__ : List[List[int]] , A__ : Optional[torch.Generator] = None , A__ : int = 1_0_0 , A__ : bool = True , A__ : str = "numpy" , A__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__ )}.' ) lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) for i, encoder_input_tokens in enumerate(A__ ): if i == 0: lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase = ones lowercase = self.scale_features( A__ , output_range=[-1.0, 1.0] , clip=A__ ) lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A__ , continuous_mask=A__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.decode( encodings_and_masks=A__ , input_tokens=A__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase = self.scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample lowercase = self.scale_to_features(A__ , input_range=[-1.0, 1.0] ) lowercase = mel[:1] lowercase = mel.cpu().float().numpy() lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ ) logger.info("Generated segment" , A__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A__ )
310
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): super().__init__() self.register_modules( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def lowerCamelCase(self , lowerCAmelCase_ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def lowerCamelCase(self ): self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__(self , lowerCAmelCase_ , lowerCAmelCase_ = 512 , lowerCAmelCase_ = 512 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = 7.5 , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[str] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : str = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_SCREAMING_SNAKE_CASE )}.""" ) # get prompt text embeddings A_ : List[str] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A_ : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A_ : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : Union[str, Any] = text_embeddings.shape A_ : Tuple = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) A_ : Any = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : Any = 42 if negative_prompt is None: A_ : List[str] = [""""""] elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=""" f""" {type(_SCREAMING_SNAKE_CASE )}.""" ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Any = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: A_ : Union[str, Any] = negative_prompt A_ : Union[str, Any] = text_input_ids.shape[-1] A_ : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) A_ : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Any = uncond_embeddings.shape[1] A_ : str = uncond_embeddings.repeat(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) A_ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Dict = torch.randn( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="""cpu""" , dtype=_SCREAMING_SNAKE_CASE ).to(self.device ) A_ : Tuple = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="""cpu""" , dtype=_SCREAMING_SNAKE_CASE ).to( self.device ) else: A_ : int = torch.randn( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) A_ : Tuple = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) A_ : Dict = latents_reference.to(self.device ) A_ : Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : Optional[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : int = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : List[str] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Any = 0 if dx < 0 else dx A_ : Dict = 0 if dy < 0 else dy A_ : Optional[int] = max(-dx , 0 ) A_ : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Any = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : Optional[int] = {} if accepts_eta: A_ : str = eta for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance A_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : List[Any] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual A_ : List[str] = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : str = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = 1 / 0.18215 * latents A_ : str = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample A_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) , return_tensors="""pt""" ).to( self.device ) A_ , A_ : Union[str, Any] = self.safety_checker( images=_SCREAMING_SNAKE_CASE , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : Optional[int] = None if output_type == "pil": A_ : str = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE )
713
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def lowerCamelCase(self ): A_ : Optional[int] = get_activation("""swish""" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : Dict = get_activation("""silu""" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : Optional[Any] = get_activation("""mish""" ) self.assertIsInstance(lowerCAmelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : int = get_activation("""gelu""" ) self.assertIsInstance(lowerCAmelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
480
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE (UpperCAmelCase_ ): _UpperCamelCase : Dict = '''unispeech-sat''' def __init__( self : List[Any] , a : List[str]=32 , a : Optional[int]=768 , a : int=12 , a : Union[str, Any]=12 , a : Optional[Any]=3_072 , a : List[str]="gelu" , a : List[str]=0.1 , a : int=0.1 , a : Optional[int]=0.1 , a : Any=0.0 , a : List[Any]=0.0 , a : List[str]=0.1 , a : List[str]=0.1 , a : Optional[Any]=0.02 , a : Dict=1E-5 , a : List[Any]="group" , a : Union[str, Any]="gelu" , a : Dict=(512, 512, 512, 512, 512, 512, 512) , a : Dict=(5, 2, 2, 2, 2, 2, 2) , a : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , a : Tuple=False , a : int=128 , a : Optional[int]=16 , a : int=False , a : List[Any]=True , a : List[str]=0.05 , a : List[str]=10 , a : str=2 , a : Union[str, Any]=0.0 , a : Optional[Any]=10 , a : Tuple=0 , a : Union[str, Any]=320 , a : str=2 , a : List[Any]=0.1 , a : Optional[int]=100 , a : Optional[int]=256 , a : Dict=256 , a : List[str]=0.1 , a : List[Any]="mean" , a : str=False , a : Tuple=False , a : str=256 , a : Dict=(512, 512, 512, 512, 1_500) , a : Optional[Any]=(5, 3, 3, 1, 1) , a : Any=(1, 2, 3, 1, 1) , a : List[str]=512 , a : Union[str, Any]=0 , a : Any=1 , a : Union[str, Any]=2 , a : List[str]=504 , **a : Tuple , )-> int: """simple docstring""" super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(lowerCamelCase__ ) lowercase__ = list(lowerCamelCase__ ) lowercase__ = list(lowerCamelCase__ ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = num_clusters lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(lowerCamelCase__ ) lowercase__ = list(lowerCamelCase__ ) lowercase__ = list(lowerCamelCase__ ) lowercase__ = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Optional[int]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
235
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCamelCase = 'CompVis/stable-diffusion-v1-1' UpperCamelCase = 'CompVis/stable-diffusion-v1-2' UpperCamelCase = 'CompVis/stable-diffusion-v1-3' UpperCamelCase = 'CompVis/stable-diffusion-v1-4' class _A ( UpperCAmelCase_ ): def __init__( self : List[str] , lowerCamelCase__ : AutoencoderKL , lowerCamelCase__ : CLIPTextModel , lowerCamelCase__ : CLIPTokenizer , lowerCamelCase__ : UNetaDConditionModel , lowerCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase__ : StableDiffusionSafetyChecker , lowerCamelCase__ : CLIPImageProcessor , lowerCamelCase__ : bool = True , ): """simple docstring""" super()._init_() __UpperCamelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : int = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : List[str] = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : str = StableDiffusionPipeline( vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , requires_safety_checker=lowerCamelCase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def a ( self : Optional[Any] ): """simple docstring""" return {k: getattr(self , lowerCamelCase__ ) for k in self.config.keys() if not k.startswith("""_""" )} def a ( self : List[str] , lowerCamelCase__ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __UpperCamelCase : Dict = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def a ( self : str ): """simple docstring""" self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def a ( self : Any , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def a ( self : Union[str, Any] , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Dict , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def a ( self : Union[str, Any] , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def a ( self : Dict , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : List[Any] , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def a ( self : Optional[Any] , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 5_12 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Dict , ): """simple docstring""" __UpperCamelCase : Optional[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowerCamelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` must be divisible by 8 but are {height} and {width}.' ) # Get first result from Stable Diffusion Checkpoint v1.1 __UpperCamelCase : Optional[int] = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __UpperCamelCase : int = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __UpperCamelCase : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __UpperCamelCase : List[Any] = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
269
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __snake_case (_a ): lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "OwlViTImageProcessor" lowerCAmelCase__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Union[str, Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' _lowerCAmelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCAmelCase , ) _lowerCAmelCase : int = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : str , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]="max_length" , _UpperCAmelCase : Dict="np" , **_UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(text[0] , _UpperCAmelCase )): _lowerCAmelCase : Optional[Any] = [self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(text[0] , _UpperCAmelCase ): _lowerCAmelCase : Any = [] # Maximum number of queries across batch _lowerCAmelCase : Any = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: _lowerCAmelCase : List[str] = t + [""" """] * (max_num_queries - len(_UpperCAmelCase )) _lowerCAmelCase : Any = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": _lowerCAmelCase : Union[str, Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _lowerCAmelCase : Union[str, Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _lowerCAmelCase : List[Any] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _lowerCAmelCase : Optional[int] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _lowerCAmelCase : Optional[Any] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) _lowerCAmelCase : Any = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _lowerCAmelCase : Optional[Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _lowerCAmelCase : Union[str, Any] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) _lowerCAmelCase : Optional[Any] = BatchEncoding() _lowerCAmelCase : Optional[int] = input_ids _lowerCAmelCase : Optional[Any] = attention_mask if query_images is not None: _lowerCAmelCase : Tuple = BatchEncoding() _lowerCAmelCase : Optional[int] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ).pixel_values _lowerCAmelCase : List[str] = query_pixel_values if images is not None: _lowerCAmelCase : Optional[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _lowerCAmelCase : Optional[int] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.image_processor.post_process(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' return self.image_processor.post_process_object_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : int ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCAmelCase , ) return self.image_processor
196
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case (_a ): lowerCAmelCase__ = (PNDMScheduler,) lowerCAmelCase__ = (("num_inference_steps", 5_0),) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : str ) -> Any: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : str = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : List[str] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase : str = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[:] _lowerCAmelCase : int = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : List[str] = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Tuple = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[int] = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : int = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : Any = dummy_past_residuals[:] _lowerCAmelCase : Tuple = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : str = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Any = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Any = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Any , **_UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase : List[str] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : Any = self.dummy_model() _lowerCAmelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Tuple = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Dict = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Tuple = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase : str = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): _lowerCAmelCase : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase : List[str] = dummy_past_residuals[:] _lowerCAmelCase : Optional[int] = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase : Tuple = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[Any] = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Any = 0.1 * sample _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase : List[Any] = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : str = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : str = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : int = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase : List[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
196
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self : str , _lowercase : Dict , _lowercase : Dict=13 , _lowercase : List[Any]=7 , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : int=False , _lowercase : Optional[Any]=True , _lowercase : int=99 , _lowercase : Dict=32 , _lowercase : Dict=5 , _lowercase : List[str]=4 , _lowercase : Optional[Any]=64 , _lowercase : Any="gelu" , _lowercase : List[str]=0.1 , _lowercase : Optional[Any]=0.1 , _lowercase : Any=512 , _lowercase : List[str]=16 , _lowercase : Union[str, Any]=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Dict=3 , _lowercase : List[Any]=4 , _lowercase : int=None , _lowercase : Optional[int]=2 , _lowercase : Tuple=2 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=2 , _lowercase : List[str]=4 , _lowercase : Dict=1 , ) -> List[Any]: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = q_groups A_ = k_groups A_ = v_groups A_ = post_attention_groups A_ = intermediate_groups A_ = output_groups def __snake_case ( self : str) -> str: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length]) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A_ = ids_tensor([self.batch_size] , self.num_choices) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Union[str, Any]) -> List[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __snake_case ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Dict , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : List[str]) -> List[str]: A_ = SqueezeBertModel(config=_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , _lowercase) A_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : List[Any]) -> Optional[Any]: A_ = SqueezeBertForMaskedLM(config=_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : int , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : int , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str]) -> Optional[Any]: A_ = SqueezeBertForQuestionAnswering(config=_lowercase) model.to(_lowercase) model.eval() A_ = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __snake_case ( self : Tuple , _lowercase : str , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Any) -> Any: A_ = self.num_labels A_ = SqueezeBertForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : int , _lowercase : Any , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Optional[Any]) -> List[str]: A_ = self.num_labels A_ = SqueezeBertForTokenClassification(config=_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __snake_case ( self : Optional[int] , _lowercase : int , _lowercase : Dict , _lowercase : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : int) -> Tuple: A_ = self.num_choices A_ = SqueezeBertForMultipleChoice(config=_lowercase) model.to(_lowercase) model.eval() A_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A_ = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __snake_case ( self : Optional[Any]) -> Optional[int]: A_ = self.prepare_config_and_inputs() (A_) = config_and_inputs A_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _UpperCamelCase = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def __snake_case ( self : Union[str, Any]) -> Dict: A_ = SqueezeBertModelTester(self) A_ = ConfigTester(self , config_class=_lowercase , dim=37) def __snake_case ( self : str) -> str: self.config_tester.run_common_tests() def __snake_case ( self : str) -> int: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_lowercase) def __snake_case ( self : Union[str, Any]) -> Tuple: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_lowercase) def __snake_case ( self : Union[str, Any]) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_lowercase) def __snake_case ( self : Union[str, Any]) -> List[str]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_lowercase) def __snake_case ( self : Optional[int]) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_lowercase) def __snake_case ( self : Any) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_lowercase) @slow def __snake_case ( self : Optional[int]) -> Dict: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = SqueezeBertModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @require_sentencepiece @require_tokenizers @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : Optional[Any]) -> List[str]: A_ = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') A_ = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]]) A_ = model(_lowercase)[0] A_ = torch.Size((1, 3)) self.assertEqual(output.shape , _lowercase) A_ = torch.tensor([[0.64_01, -0.03_49, -0.60_41]]) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-4))
366
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Any ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ : int = controlnet_params lowerCamelCase__ : Any = 'bird' lowerCamelCase__ : Dict = jax.device_count() lowerCamelCase__ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCamelCase__ : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[int] = jax.random.split(UpperCAmelCase , jax.device_count() ) lowerCamelCase__ : List[Any] = replicate(UpperCAmelCase ) lowerCamelCase__ : Dict = shard(UpperCAmelCase ) lowerCamelCase__ : Any = shard(UpperCAmelCase ) lowerCamelCase__ : Any = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] = images[0, 253:256, 253:256, -1] lowerCamelCase__ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Tuple = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] = controlnet_params lowerCamelCase__ : Any = 'Chef in the kitchen' lowerCamelCase__ : str = jax.device_count() lowerCamelCase__ : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCamelCase__ : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple = jax.random.PRNGKey(0 ) lowerCamelCase__ : List[str] = jax.random.split(UpperCAmelCase , jax.device_count() ) lowerCamelCase__ : Dict = replicate(UpperCAmelCase ) lowerCamelCase__ : List[str] = shard(UpperCAmelCase ) lowerCamelCase__ : Tuple = shard(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : int = images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : int = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
295
0
def _a ( lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( lowercase__ : int = 50_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = [(i * (3 * i - 1)) // 2 for i in range(1 , lowercase__ )] for i, pentagonal_i in enumerate(lowercase__ ): for j in range(lowercase__ , len(lowercase__ ) ): SCREAMING_SNAKE_CASE__ : str = pentagonal_nums[j] SCREAMING_SNAKE_CASE__ : List[str] = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE__ : Tuple = pentagonal_j - pentagonal_i if is_pentagonal(lowercase__ ) and is_pentagonal(lowercase__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
636
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE__ : Any = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : List[Any] , a_ : Optional[int] , a_ : Dict=7 , a_ : Any=3 , a_ : Any=18 , a_ : int=30 , a_ : int=400 , a_ : List[Any]=None , a_ : int=True , a_ : int=True , a_ : Dict=None , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'height': 20, 'width': 20} SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Any = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = image_size SCREAMING_SNAKE_CASE__ : List[str] = min_resolution SCREAMING_SNAKE_CASE__ : Dict = max_resolution SCREAMING_SNAKE_CASE__ : List[Any] = size SCREAMING_SNAKE_CASE__ : Tuple = do_normalize SCREAMING_SNAKE_CASE__ : Optional[Any] = do_convert_rgb SCREAMING_SNAKE_CASE__ : List[str] = [512, 1024, 2048, 4096] SCREAMING_SNAKE_CASE__ : Union[str, Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def __lowercase( self : Optional[Any] )-> str: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowercase( self : Dict )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' SCREAMING_SNAKE_CASE__ : str = Image.open(requests.get(a_ , stream=a_ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = PixaStructImageProcessor if is_vision_available() else None def __lowercase( self : List[str] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = PixaStructImageProcessingTester(self ) @property def __lowercase( self : Dict )-> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowercase( self : Any )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , 'do_normalize' ) ) self.assertTrue(hasattr(a_ , 'do_convert_rgb' ) ) def __lowercase( self : List[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.image_processor_tester.prepare_dummy_image() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ : List[Any] = 2048 SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(a_ , return_tensors='pt' , max_patches=a_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowercase( self : Any )-> Tuple: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : str = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processor( a_ , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowercase( self : Any )-> Any: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : str = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 SCREAMING_SNAKE_CASE__ : int = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(a_ ): SCREAMING_SNAKE_CASE__ : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a_ ).flattened_patches SCREAMING_SNAKE_CASE__ : List[Any] = 'Hello' SCREAMING_SNAKE_CASE__ : List[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a_ , header_text=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processor( a_ , return_tensors='pt' , max_patches=a_ , header_text=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowercase( self : List[Any] )-> Dict: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) SCREAMING_SNAKE_CASE__ : str = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processor( a_ , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowercase( self : str )-> Optional[Any]: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = image_processor( a_ , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = PixaStructImageProcessor if is_vision_available() else None def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = PixaStructImageProcessingTester(self , num_channels=4 ) SCREAMING_SNAKE_CASE__ : Dict = 3 @property def __lowercase( self : Any )-> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowercase( self : Dict )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , 'do_normalize' ) ) self.assertTrue(hasattr(a_ , 'do_convert_rgb' ) ) def __lowercase( self : str )-> Union[str, Any]: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processor( a_ , return_tensors='pt' , max_patches=a_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
636
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowercase ( unittest.TestCase ): _UpperCAmelCase = JukeboxTokenizer _UpperCAmelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCamelCase ( self ) -> Optional[int]: import torch snake_case = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) snake_case = tokenizer(**self.metas )['''input_ids'''] # fmt: off snake_case = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: import torch snake_case = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) snake_case = tokenizer(**self.metas )['''input_ids'''] # fmt: off snake_case = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
342
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> Any: snake_case = '''ylacombe/bark-small''' snake_case = tempfile.mkdtemp() snake_case = '''en_speaker_1''' snake_case = '''This is a test string''' snake_case = '''speaker_embeddings_path.json''' snake_case = '''speaker_embeddings''' def UpperCamelCase ( self , **A__ ) -> int: return AutoTokenizer.from_pretrained(self.checkpoint , **A__ ) def UpperCamelCase ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ) -> List[Any]: snake_case = self.get_tokenizer() snake_case = BarkProcessor(tokenizer=A__ ) processor.save_pretrained(self.tmpdirname ) snake_case = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase ( self ) -> Tuple: snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase ( self ) -> List[Any]: snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case = 35 snake_case = 2 snake_case = 8 snake_case = { '''semantic_prompt''': np.ones(A__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case = processor(text=self.input_string , voice_preset=A__ ) snake_case = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(A__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(A__ , **A__ ) snake_case = processor(text=self.input_string , voice_preset=A__ ) snake_case = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(A__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase ( self ) -> int: snake_case = self.get_tokenizer() snake_case = BarkProcessor(tokenizer=A__ ) snake_case = processor(text=self.input_string ) snake_case = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=A__ , return_attention_mask=A__ , return_token_type_ids=A__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) A_ = logging.getLogger(__name__) def A_ ( ): SCREAMING_SNAKE_CASE:Optional[int] = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=snake_case , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=snake_case , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=snake_case , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=snake_case , default="data/dump" , help="The dump file prefix." ) SCREAMING_SNAKE_CASE:Any = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE:Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE:Any = tokenizer.special_tokens_map["cls_token"] # `[CLS]` SCREAMING_SNAKE_CASE:int = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE:Any = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE:Optional[int] = tokenizer.special_tokens_map["cls_token"] # `<s>` SCREAMING_SNAKE_CASE:Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE:List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE:int = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` SCREAMING_SNAKE_CASE:Any = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: SCREAMING_SNAKE_CASE:Any = fp.readlines() logger.info("Start encoding" ) logger.info(F'''{len(snake_case )} examples to process.''' ) SCREAMING_SNAKE_CASE:List[Any] = [] SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:int = 10000 SCREAMING_SNAKE_CASE:int = time.time() for text in data: SCREAMING_SNAKE_CASE:List[str] = F'''{bos} {text.strip()} {sep}''' SCREAMING_SNAKE_CASE:Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE:int = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) SCREAMING_SNAKE_CASE:Optional[int] = time.time() logger.info("Finished binarization" ) logger.info(F'''{len(snake_case )} examples processed.''' ) SCREAMING_SNAKE_CASE:str = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' SCREAMING_SNAKE_CASE:Union[str, Any] = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE:Union[str, Any] = [np.uintaa(snake_case ) for d in rslt] else: SCREAMING_SNAKE_CASE:str = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , "wb" ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_a ): _A : Any = ['''torch''', '''torchsde'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Tuple ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : Dict ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["torch", "torchsde"] )
465
0
from __future__ import annotations def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = len(_lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase_ : Tuple = i + 1 else: UpperCAmelCase_ : Union[str, Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
30
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __A : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = {} with open(UpperCamelCase__ , '''r''' ) as file: for line_number, line in enumerate(UpperCamelCase__ ): UpperCAmelCase = line.strip() if line: UpperCAmelCase = line.split() UpperCAmelCase = line_number UpperCAmelCase = words[0] UpperCAmelCase = value return result def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = shape_pointer.shape # let's reduce dimension UpperCAmelCase = value[0] else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase = key UpperCAmelCase = value if '''lm_head''' in full_key else value[0] __A : str = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = False for key, mapped_key in MAPPING.items(): UpperCAmelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] UpperCAmelCase = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: UpperCAmelCase = '''weight_g''' elif "weight_v" in name: UpperCAmelCase = '''weight_v''' elif "bias" in name: UpperCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = '''weight''' else: UpperCAmelCase = None if hf_dict is not None: rename_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return is_used return is_used def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase = True else: UpperCAmelCase = load_wavaveca_layer(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase = name.split('''.''' ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) else: UpperCAmelCase = WavaVecaConfig() if is_seq_class: UpperCAmelCase = read_txt_into_dict(UpperCamelCase__ ) UpperCAmelCase = idalabel UpperCAmelCase = WavaVecaForSequenceClassification(UpperCamelCase__ ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) feature_extractor.save_pretrained(UpperCamelCase__ ) elif is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(UpperCamelCase__ , '''vocab.json''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase = 0 UpperCAmelCase = 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=UpperCamelCase__ , ) UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) UpperCAmelCase = WavaVecaForCTC(UpperCamelCase__ ) else: UpperCAmelCase = WavaVecaForPreTraining(UpperCamelCase__ ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase = fairseq.tasks.setup_task(UpperCamelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase__ ) UpperCAmelCase = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __A : Dict = parser.parse_args() __A : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
130
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowerCamelCase__ ( _UpperCAmelCase ): def __init__(self : List[str] , _snake_case : Distribution , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : Union[str, Any]=0 ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : List[Any] = 1.0 if scale is None else scale lowerCamelCase_ : Optional[Any] = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def UpperCAmelCase_ (self : Union[str, Any] ) -> int: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase_ (self : Any ) -> str: """simple docstring""" return self.variance.sqrt() class lowerCamelCase__ ( nn.Module ): def __init__(self : Any , _snake_case : int , _snake_case : Dict[str, int] , _snake_case : Callable[..., Tuple[torch.Tensor]] , **_snake_case : int ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ : Optional[int] = args_dim lowerCamelCase_ : List[str] = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) lowerCamelCase_ : Union[str, Any] = domain_map def UpperCAmelCase_ (self : str , _snake_case : torch.Tensor ) -> Tuple[torch.Tensor]: """simple docstring""" lowerCamelCase_ : List[str] = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class lowerCamelCase__ ( nn.Module ): def __init__(self : List[Any] , _snake_case : Union[str, Any] ) -> int: """simple docstring""" super().__init__() lowerCamelCase_ : int = function def UpperCAmelCase_ (self : Dict , _snake_case : Dict , *_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.function(A_ , *A_ ) class lowerCamelCase__ : lowerCamelCase_ : type lowerCamelCase_ : int lowerCamelCase_ : Dict[str, int] def __init__(self : Optional[int] , _snake_case : int = 1 ) -> None: """simple docstring""" lowerCamelCase_ : Optional[int] = dim lowerCamelCase_ : List[str] = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase_ (self : str , _snake_case : Optional[int] ) -> List[str]: """simple docstring""" if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def UpperCAmelCase_ (self : Any , _snake_case : Union[str, Any] , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None , ) -> Distribution: """simple docstring""" lowerCamelCase_ : Optional[int] = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def UpperCAmelCase_ (self : str ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase_ (self : str ) -> int: """simple docstring""" return len(self.event_shape ) @property def UpperCAmelCase_ (self : Any ) -> float: """simple docstring""" return 0.0 def UpperCAmelCase_ (self : List[str] , _snake_case : int ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def UpperCAmelCase_ (self : str , *_snake_case : torch.Tensor ) -> Optional[int]: """simple docstring""" raise NotImplementedError() @staticmethod def UpperCAmelCase_ (_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class lowerCamelCase__ ( _UpperCAmelCase ): lowerCamelCase_ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} lowerCamelCase_ : type = StudentT @classmethod def UpperCAmelCase_ (cls : Optional[int] , _snake_case : torch.Tensor , _snake_case : torch.Tensor , _snake_case : torch.Tensor ) -> Tuple: """simple docstring""" lowerCamelCase_ : Dict = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase_ : str = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCamelCase__ ( _UpperCAmelCase ): lowerCamelCase_ : Dict[str, int] = {"loc": 1, "scale": 1} lowerCamelCase_ : type = Normal @classmethod def UpperCAmelCase_ (cls : Any , _snake_case : torch.Tensor , _snake_case : torch.Tensor ) -> List[str]: """simple docstring""" lowerCamelCase_ : List[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCamelCase__ ( _UpperCAmelCase ): lowerCamelCase_ : Dict[str, int] = {"total_count": 1, "logits": 1} lowerCamelCase_ : type = NegativeBinomial @classmethod def UpperCAmelCase_ (cls : Union[str, Any] , _snake_case : torch.Tensor , _snake_case : torch.Tensor ) -> str: """simple docstring""" lowerCamelCase_ : Optional[Any] = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def UpperCAmelCase_ (self : Optional[int] , _snake_case : Union[str, Any] ) -> Distribution: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def UpperCAmelCase_ (self : Tuple , _snake_case : Dict , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[torch.Tensor] = None ) -> Distribution: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
705
def _a ( lowerCamelCase__ ) -> int: lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : int = set({'(', '[', '{'} ) lowerCamelCase_ : Optional[Any] = set({')', ']', '}'} ) lowerCamelCase_ : Dict = {'{': '}', '[': ']', '(': ')'} for i in range(len(lowerCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase__ ) == 0 or (len(lowerCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase__ ) == 0 def _a ( ) -> str: lowerCamelCase_ : Dict = input('Enter sequence of brackets: ' ) if is_balanced(lowerCamelCase__ ): print(lowerCamelCase__ , 'is balanced' ) else: print(lowerCamelCase__ , 'is not balanced' ) if __name__ == "__main__": main()
144
0
from __future__ import annotations def __lowerCAmelCase ( __magic_name__ ): if len(__magic_name__ ) == 0: return array _lowercase , _lowercase: List[Any] = min(__magic_name__ ), max(__magic_name__ ) # Compute the variables _lowercase: Optional[int] = _max - _min + 1 _lowercase , _lowercase: Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowercase: List[Any] = i - _min _lowercase: int = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowercase: Dict = 0 for i in range(__magic_name__ ): while holes_repeat[i] > 0: _lowercase: Dict = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n') _SCREAMING_SNAKE_CASE : List[Any] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
226
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : Any = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } _SCREAMING_SNAKE_CASE : Optional[Any] = '▁' class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = AlbertTokenizer def __init__( self : Any , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Tuple=True , _UpperCamelCase : Any=True , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : int="[CLS]" , _UpperCamelCase : List[str]="[SEP]" , _UpperCamelCase : int="<unk>" , _UpperCamelCase : List[Any]="[SEP]" , _UpperCamelCase : str="<pad>" , _UpperCamelCase : Optional[int]="[CLS]" , _UpperCamelCase : str="[MASK]" , **_UpperCamelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowercase: Any = ( AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase , normalized=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token ) super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , remove_space=_UpperCamelCase , keep_accents=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , ) _lowercase: str = do_lower_case _lowercase: Optional[Any] = remove_space _lowercase: Dict = keep_accents _lowercase: List[Any] = vocab_file _lowercase: Tuple = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Any , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None): _lowercase: Optional[int] = [self.sep_token_id] _lowercase: List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None): _lowercase: Optional[int] = [self.sep_token_id] _lowercase: Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(_UpperCamelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowercase: int = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCamelCase): copyfile(self.vocab_file , _UpperCamelCase) return (out_vocab_file,)
226
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case : int = logging.get_logger(__name__) snake_case : int = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowerCAmelCase__ ( UpperCamelCase ): __A : Tuple = 'bart' __A : Optional[Any] = ['past_key_values'] __A : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , _A : Any=5_0265 , _A : Optional[int]=1024 , _A : Any=12 , _A : Union[str, Any]=4096 , _A : Optional[int]=16 , _A : List[Any]=12 , _A : Any=4096 , _A : Tuple=16 , _A : List[str]=0.0 , _A : Union[str, Any]=0.0 , _A : List[Any]="gelu" , _A : List[Any]=1024 , _A : Dict=0.1 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=0.0 , _A : Any=0.02 , _A : Tuple=0.0 , _A : Union[str, Any]=False , _A : Dict=True , _A : str=3 , _A : List[Any]=1 , _A : Union[str, Any]=0 , _A : List[Any]=2 , _A : Optional[int]=True , _A : Optional[Any]=2 , _A : Dict=2 , **_A : Tuple , ): A__ : Optional[int] = vocab_size A__ : List[Any] = max_position_embeddings A__ : Optional[Any] = d_model A__ : Optional[Any] = encoder_ffn_dim A__ : int = encoder_layers A__ : int = encoder_attention_heads A__ : List[str] = decoder_ffn_dim A__ : str = decoder_layers A__ : Any = decoder_attention_heads A__ : Any = dropout A__ : Optional[int] = attention_dropout A__ : Any = activation_dropout A__ : List[str] = activation_function A__ : List[Any] = init_std A__ : Optional[int] = encoder_layerdrop A__ : Optional[int] = decoder_layerdrop A__ : Tuple = classifier_dropout A__ : Optional[Any] = use_cache A__ : Dict = encoder_layers A__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , _A): A__ : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' "The config can simply be saved and uploaded again to be fixed.") class lowerCAmelCase__ ( UpperCamelCase ): @property def _lowercase ( self : str): if self.task in ["default", "seq2seq-lm"]: A__ : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: A__ : Union[str, Any] = {0: "batch"} A__ : Tuple = {0: "batch", 1: "past_decoder_sequence + sequence"} else: A__ : List[Any] = {0: "batch", 1: "decoder_sequence"} A__ : List[str] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_A , direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. A__ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: A__ , A__ : List[str] = self.num_layers for i in range(_A): A__ : int = {0: "batch", 2: "past_sequence + sequence"} A__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} else: A__ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ]) return common_inputs @property def _lowercase ( self : Tuple): if self.task in ["default", "seq2seq-lm"]: A__ : str = super().outputs else: A__ : str = super(_A , self).outputs if self.use_past: A__ , A__ : Any = self.num_layers for i in range(_A): A__ : int = {0: "batch", 2: "past_sequence + sequence"} A__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowercase ( self : List[str] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): A__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A) # Generate decoder inputs A__ : Any = seq_length if not self.use_past else 1 A__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A) A__ : List[str] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A__ : int = dict(**_A , **_A) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch A__ , A__ : Tuple = common_inputs["input_ids"].shape A__ : Tuple = common_inputs["decoder_input_ids"].shape[1] A__ , A__ : Optional[Any] = self.num_attention_heads A__ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ : Tuple = decoder_seq_length + 3 A__ : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A__ : Dict = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_A , _A)] , dim=1) A__ : List[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A__ , A__ : str = self.num_layers A__ : int = min(_A , _A) A__ : List[Any] = max(_A , _A) - min_num_layers A__ : Optional[Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_A): common_inputs["past_key_values"].append( ( torch.zeros(_A), torch.zeros(_A), torch.zeros(_A), torch.zeros(_A), )) # TODO: test this. A__ : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_A , _A): common_inputs["past_key_values"].append((torch.zeros(_A), torch.zeros(_A))) return common_inputs def _lowercase ( self : Optional[Any] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): A__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch A__ , A__ : List[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values A__ : Dict = seqlen + 2 A__ , A__ : str = self.num_layers A__ , A__ : Any = self.num_attention_heads A__ : List[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ : Union[str, Any] = common_inputs["attention_mask"].dtype A__ : Optional[int] = torch.cat( [common_inputs["attention_mask"], torch.ones(_A , _A , dtype=_A)] , dim=1) A__ : Optional[int] = [ (torch.zeros(_A), torch.zeros(_A)) for _ in range(_A) ] return common_inputs def _lowercase ( self : Dict , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ : Dict = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ : Tuple = tokenizer.num_special_tokens_to_add(_A) A__ : Tuple = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A) # Generate dummy inputs according to compute batch and sequence A__ : Optional[Any] = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size A__ : Tuple = dict(tokenizer(_A , return_tensors=_A)) return common_inputs def _lowercase ( self : List[str] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A__ : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) elif self.task == "causal-lm": A__ : Dict = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) else: A__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) return common_inputs def _lowercase ( self : Optional[Any] , _A : Optional[Any] , _A : Tuple , _A : Dict , _A : Any): if self.task in ["default", "seq2seq-lm"]: A__ : Optional[int] = super()._flatten_past_key_values_(_A , _A , _A , _A) else: A__ : Union[str, Any] = super(_A , self)._flatten_past_key_values_( _A , _A , _A , _A)
182
from collections.abc import Callable import numpy as np def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> np.array: """simple docstring""" A__ : Any = int(np.ceil((x_end - xa) / step_size ) ) A__ : Union[str, Any] = np.zeros((n + 1,) ) A__ : Any = ya A__ : Union[str, Any] = xa for k in range(__lowercase ): A__ : Any = y[k] + step_size * ode_func(__lowercase , y[k] ) A__ : Any = y[k] + ( (step_size / 2) * (ode_func(__lowercase , y[k] ) + ode_func(x + step_size , __lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
182
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def A (__lowerCamelCase :int ): _lowerCAmelCase = botoa.client("""iam""" ) _lowerCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) ) _lowerCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__lowerCamelCase , PolicyName=f'{role_name}_policy_permission' , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'role {role_name} already exists. Using existing one' ) def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"] def A (): _lowerCAmelCase = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __lowerCamelCase , ) _lowerCAmelCase = None if credentials_configuration == 0: _lowerCAmelCase = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) _lowerCAmelCase = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) _lowerCAmelCase = _ask_field("""AWS Access Key ID: """ ) _lowerCAmelCase = aws_access_key_id _lowerCAmelCase = _ask_field("""AWS Secret Access Key: """ ) _lowerCAmelCase = aws_secret_access_key _lowerCAmelCase = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) _lowerCAmelCase = aws_region _lowerCAmelCase = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __lowerCamelCase , ) if role_management == 0: _lowerCAmelCase = _ask_field("""Enter your IAM role name: """ ) else: _lowerCAmelCase = """accelerate_sagemaker_execution_role""" print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(__lowerCamelCase ) _lowerCAmelCase = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = None if is_custom_docker_image: _lowerCAmelCase = _ask_field("""Enter your Docker image: """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() ) _lowerCAmelCase = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = None if is_sagemaker_inputs_enabled: _lowerCAmelCase = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) _lowerCAmelCase = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = None if is_sagemaker_metrics_enabled: _lowerCAmelCase = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) _lowerCAmelCase = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) _lowerCAmelCase = {} _lowerCAmelCase = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) if use_dynamo: _lowerCAmelCase = """dynamo_""" _lowerCAmelCase = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _lowerCAmelCase = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) if use_custom_options: _lowerCAmelCase = _ask_options( """Which mode do you want to use?""" , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default="""default""" , ) _lowerCAmelCase = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: _lowerCAmelCase = _ask_options( __lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _lowerCAmelCase = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default="""ml.p3.2xlarge""" ) _lowerCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _lowerCAmelCase = _ask_field( """How many machines do you want use? [1]: """ , __lowerCamelCase , default=1 , ) _lowerCAmelCase = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
5
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' _UpperCamelCase = ["""image_processor""", """tokenizer"""] _UpperCamelCase = """BlipImageProcessor""" _UpperCamelCase = """AutoTokenizer""" def __init__( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[str]) -> Union[str, Any]: super().__init__(_lowercase , _lowercase) # add QFormer tokenizer A_ = qformer_tokenizer def __call__( self : Optional[int] , _lowercase : ImageInput = None , _lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowercase : bool = True , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Union[bool, str, TruncationStrategy] = None , _lowercase : Optional[int] = None , _lowercase : int = 0 , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : Optional[Union[str, TensorType]] = None , **_lowercase : List[Any] , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.') A_ = BatchFeature() if text is not None: A_ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) encoding.update(_lowercase) A_ = self.qformer_tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) A_ = qformer_text_encoding.pop('input_ids') A_ = qformer_text_encoding.pop('attention_mask') if images is not None: A_ = self.image_processor(_lowercase , return_tensors=_lowercase) encoding.update(_lowercase) return encoding def __snake_case ( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : List[Any]) -> Union[str, Any]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def __snake_case ( self : Optional[int] , *_lowercase : List[Any] , **_lowercase : List[str]) -> str: return self.tokenizer.decode(*_lowercase , **_lowercase) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self : Any) -> Optional[int]: A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def __snake_case ( self : Optional[Any] , _lowercase : Optional[int] , **_lowercase : int) -> Tuple: if os.path.isfile(_lowercase): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(_lowercase , exist_ok=_lowercase) A_ = os.path.join(_lowercase , 'qformer_tokenizer') self.qformer_tokenizer.save_pretrained(_lowercase) return super().save_pretrained(_lowercase , **_lowercase) @classmethod def __snake_case ( cls : Dict , _lowercase : Dict , **_lowercase : int) -> Any: A_ = AutoTokenizer.from_pretrained(_lowercase , subfolder='qformer_tokenizer') A_ = cls._get_arguments_from_pretrained(_lowercase , **_lowercase) args.append(_lowercase) return cls(*_lowercase)
366
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def snake_case_ ( lowercase__ : Union[str, Any] ): '''simple docstring''' return EnvironmentCommand() def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ : ArgumentParser ): _lowerCAmelCase =parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCamelCase_ ) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCamelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self : List[Any] , lowerCamelCase_ : List[Any] , *lowerCamelCase_ : List[str] ): _lowerCAmelCase =accelerate_config_file def lowerCAmelCase__ ( self : str ): _lowerCAmelCase ="""not installed""" if is_safetensors_available(): import safetensors _lowerCAmelCase =safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _lowerCAmelCase =F"{safetensors.__version__} but is ignored because of PyTorch version too old." _lowerCAmelCase ="""not installed""" _lowerCAmelCase =_lowerCAmelCase ="""not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowerCAmelCase =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCamelCase_ ): _lowerCAmelCase =load_config_from_file(self._accelerate_config_file ).to_dict() _lowerCAmelCase =( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else F"\t{accelerate_config}" ) _lowerCAmelCase ="""not installed""" _lowerCAmelCase ="""NA""" if is_torch_available(): import torch _lowerCAmelCase =torch.__version__ _lowerCAmelCase =torch.cuda.is_available() _lowerCAmelCase ="""not installed""" _lowerCAmelCase ="""NA""" if is_tf_available(): import tensorflow as tf _lowerCAmelCase =tf.__version__ try: # deprecated in v2.1 _lowerCAmelCase =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowerCAmelCase =bool(tf.config.list_physical_devices("""GPU""" ) ) _lowerCAmelCase ="""not installed""" _lowerCAmelCase ="""not installed""" _lowerCAmelCase ="""not installed""" _lowerCAmelCase ="""NA""" if is_flax_available(): import flax import jax import jaxlib _lowerCAmelCase =flax.__version__ _lowerCAmelCase =jax.__version__ _lowerCAmelCase =jaxlib.__version__ _lowerCAmelCase =jax.lib.xla_bridge.get_backend().platform _lowerCAmelCase ={ """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCamelCase_ ) ) return info @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ): return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
707
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: Dict = StableDiffusionInstructPixaPixPipeline a_: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} a_: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS a_: str = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self : Dict ): torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _lowerCAmelCase =PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowerCAmelCase =CLIPTextModel(lowerCamelCase_ ) _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : str=0 ): _lowerCAmelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("""RGB""" ) if str(lowerCamelCase_ ).startswith("""mps""" ): _lowerCAmelCase =torch.manual_seed(lowerCamelCase_ ) else: _lowerCAmelCase =torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowerCAmelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase =sd_pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : str ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase ="""french fries""" _lowerCAmelCase =sd_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) _lowerCAmelCase =output.images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Union[str, Any] ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase =[inputs["""prompt"""]] * 2 _lowerCAmelCase =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _lowerCAmelCase =torch.from_numpy(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) _lowerCAmelCase =image / 2 + 0.5 _lowerCAmelCase =image.permute(0 , 3 , 1 , 2 ) _lowerCAmelCase =image.repeat(2 , 1 , 1 , 1 ) _lowerCAmelCase =sd_pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _lowerCAmelCase =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Union[str, Any] ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase =sd_pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =[round(lowerCamelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =VaeImageProcessor(do_resize=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =pipe(**self.get_dummy_inputs_by_type(lowerCamelCase_ , input_image_type="""pt""" ) )[0] _lowerCAmelCase =components["""vae"""] _lowerCAmelCase =self.get_dummy_inputs_by_type(lowerCamelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _lowerCAmelCase =vae.encode(inputs[image_param] ).latent_dist.mode() _lowerCAmelCase =pipe(**lowerCamelCase_ )[0] _lowerCAmelCase =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Optional[int]=0 ): _lowerCAmelCase =torch.manual_seed(lowerCamelCase_ ) _lowerCAmelCase =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _lowerCAmelCase ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ ) _lowerCAmelCase =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ ) _lowerCAmelCase =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =0 def callback_fn(lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor ) -> None: _lowerCAmelCase =True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase =latents[0, -3:, -3:, -1] _lowerCAmelCase =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _lowerCAmelCase =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase =latents[0, -3:, -3:, -1] _lowerCAmelCase =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _lowerCAmelCase =False _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() pipe(**lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase__ ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase =inputs["""image"""].resize((504, 504) ) _lowerCAmelCase ="""timbrooks/instruct-pix2pix""" _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =pipe(**lowerCamelCase_ ) _lowerCAmelCase =output.images[0] _lowerCAmelCase =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _lowerCAmelCase =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
149
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''', '''False''' ) ) is not True, reason='''Skipping test because should only be run when releasing minor transformers version''', ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_a , ) assert hasattr(self , '''env''' ) def A_ ( self : Union[str, Any] , _a : Tuple=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def A_ ( self : List[Any] , _a : Dict ): TrainingJobAnalytics(_a ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def A_ ( self : Union[str, Any] ): # create estimator UpperCamelCase__ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _a )
240
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowercase = HfArgumentParser(InitializationArguments) lowercase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowercase = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) lowercase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowercase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
240
1
'''simple docstring''' from math import factorial _lowercase = {str(digit): factorial(digit) for digit in range(10)} def lowerCamelCase__ ( a ): if not isinstance(a , a ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) ) def lowerCamelCase__ ( a = 60 , a = 1000000 ): if not isinstance(a , a ) or not isinstance(a , a ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length __snake_case = 0 # the cached sizes of the previous chains __snake_case = {} for start_chain_element in range(1 , a ): # The temporary set will contain the elements of the chain __snake_case = set() __snake_case = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __snake_case = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a ) chain_set_length += 1 __snake_case = digit_factorial_sum(a ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __snake_case = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
427
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): def lowercase__ ( self : List[str] ): __snake_case = 0 @slow def lowercase__ ( self : str ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCAmelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCAmelCase ) , 0 ) def lowercase__ ( self : Optional[int] ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowercase__ ( self : Tuple ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowercase__ ( self : Any ): __snake_case = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) # Check that tokenizer_type ≠ model_type __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowercase__ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(__lowerCAmelCase , 'vocab.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='bert' , use_fast=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(__lowerCAmelCase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(__lowerCAmelCase , 'merges.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='gpt2' , use_fast=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers def lowercase__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(__lowerCAmelCase , 'vocab.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='bert' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(__lowerCAmelCase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(__lowerCAmelCase , 'merges.txt' ) ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , tokenizer_type='gpt2' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : int ): with pytest.raises(__lowerCAmelCase ): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx' ) @require_tokenizers def lowercase__ ( self : Union[str, Any] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __snake_case = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowercase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __snake_case = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def lowercase__ ( self : Any ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __snake_case = TOKENIZER_MAPPING.values() __snake_case = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCAmelCase ) @require_tokenizers def lowercase__ ( self : List[str] ): self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) , __lowerCAmelCase ) @require_tokenizers def lowercase__ ( self : Optional[int] ): __snake_case = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=__lowerCAmelCase ) __snake_case = 'Hello, world. How are you?' __snake_case = tokenizer.tokenize(__lowerCAmelCase ) self.assertEqual('[UNK]' , tokens[0] ) __snake_case = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=__lowerCAmelCase ) __snake_case = tokenizer.tokenize(__lowerCAmelCase ) self.assertEqual('[UNK]' , tokens[0] ) @require_tokenizers def lowercase__ ( self : Optional[Any] ): __snake_case = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '[UNK]' ) self.assertEqual(tokenizer.padding_side , 'right' ) self.assertEqual(tokenizer.truncation_side , 'right' ) def lowercase__ ( self : List[str] ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowercase__ ( self : Tuple ): __snake_case = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. __snake_case = get_tokenizer_config('bert-base-cased' ) __snake_case = config.pop('_commit_hash' , __lowerCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCAmelCase , {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. __snake_case = get_tokenizer_config(__lowerCAmelCase ) self.assertDictEqual(__lowerCAmelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = get_tokenizer_config(__lowerCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer' ) def lowercase__ ( self : List[str] ): try: AutoConfig.register('custom' , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) __snake_case = CustomTokenizer.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase__ ( self : Union[str, Any] ): try: AutoConfig.register('custom' , __lowerCAmelCase ) # Can register in two steps AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoTokenizer.register(__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = BertTokenizerFast.from_pretrained(__lowerCAmelCase ) bert_tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = CustomTokenizerFast.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , trust_remote_code=__lowerCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) @require_tokenizers def lowercase__ ( self : str ): class a_ ( UpperCAmelCase__ ): lowercase_ : str = False class a_ ( UpperCAmelCase__ ): lowercase_ : Optional[Any] = NewTokenizer lowercase_ : str = False try: AutoConfig.register('custom' , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , fast_tokenizer_class=__lowerCAmelCase ) # If remote code is not set, the default is to use local __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Optional[Any] ): __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def lowercase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): __snake_case = AutoTokenizer.from_pretrained('bert-base' ) def lowercase__ ( self : str ): with self.assertRaisesRegex( __lowerCAmelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , revision='aaaaaa' ) def lowercase__ ( self : int ): # Make sure we have cached the tokenizer. __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
427
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "owlvit_text_model" def __init__( self , _a=4_9_4_0_8 , _a=5_1_2 , _a=2_0_4_8 , _a=1_2 , _a=8 , _a=1_6 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9_4_0_6 , _a=4_9_4_0_7 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : Tuple = vocab_size _a : Tuple = hidden_size _a : Optional[int] = intermediate_size _a : Any = num_hidden_layers _a : int = num_attention_heads _a : Tuple = max_position_embeddings _a : List[Any] = hidden_act _a : str = layer_norm_eps _a : Dict = attention_dropout _a : Any = initializer_range _a : Union[str, Any] = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Optional[int] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : int = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "owlvit_vision_model" def __init__( self , _a=7_6_8 , _a=3_0_7_2 , _a=1_2 , _a=1_2 , _a=3 , _a=7_6_8 , _a=3_2 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Dict: super().__init__(**_a ) _a : Dict = hidden_size _a : Optional[Any] = intermediate_size _a : Optional[Any] = num_hidden_layers _a : int = num_attention_heads _a : int = num_channels _a : int = image_size _a : Dict = patch_size _a : List[str] = hidden_act _a : Tuple = layer_norm_eps _a : int = attention_dropout _a : Any = initializer_range _a : Dict = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Tuple = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "owlvit" UpperCAmelCase__ : str = True def __init__( self , _a=None , _a=None , _a=5_1_2 , _a=2.6592 , _a=True , **_a , ) -> Any: super().__init__(**_a ) if text_config is None: _a : Union[str, Any] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a : List[str] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a : str = OwlViTTextConfig(**_a ) _a : Dict = OwlViTVisionConfig(**_a ) _a : int = projection_dim _a : Optional[int] = logit_scale_init_value _a : List[Any] = return_dict _a : Optional[Any] = 1.0 @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Dict = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) @classmethod def __lowercase ( cls , _a , _a , **_a ) -> Dict: _a : int = {} _a : Optional[int] = text_config _a : Optional[Any] = vision_config return cls.from_dict(_a , **_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Any = copy.deepcopy(self.__dict__ ) _a : Optional[int] = self.text_config.to_dict() _a : Optional[Any] = self.vision_config.to_dict() _a : Union[str, Any] = self.__class__.model_type return output class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __lowercase ( self ) -> float: return 1e-4 def __lowercase ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]: _a : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) _a : Optional[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def __lowercase ( self ) -> int: return 1_4
14
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = random.Random() def __lowercase ( snake_case, snake_case=1.0, snake_case=None, snake_case=None ): """simple docstring""" if rng is None: __magic_name__ :Optional[Any] = global_rng __magic_name__ :str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=2_0_0_0 , __lowerCAmelCase=1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1_6_0_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=8_0 , __lowerCAmelCase=1_6 , __lowerCAmelCase=6_4 , __lowerCAmelCase="hann_window" , __lowerCAmelCase=8_0 , __lowerCAmelCase=7_6_0_0 , __lowerCAmelCase=1E-10 , __lowerCAmelCase=True , ): """simple docstring""" __magic_name__ :List[Any] = parent __magic_name__ :int = batch_size __magic_name__ :str = min_seq_length __magic_name__ :List[str] = max_seq_length __magic_name__ :Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ :Dict = feature_size __magic_name__ :List[str] = padding_value __magic_name__ :List[str] = sampling_rate __magic_name__ :Dict = do_normalize __magic_name__ :Union[str, Any] = num_mel_bins __magic_name__ :Optional[int] = hop_length __magic_name__ :Union[str, Any] = win_length __magic_name__ :Tuple = win_function __magic_name__ :Optional[Any] = fmin __magic_name__ :Union[str, Any] = fmax __magic_name__ :str = mel_floor __magic_name__ :Tuple = return_attention_mask def A ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def A ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): """simple docstring""" def _flatten(__lowerCAmelCase ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: __magic_name__ :Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __magic_name__ :Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ :List[str] = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs def A ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): """simple docstring""" if equal_length: __magic_name__ :List[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __magic_name__ :Optional[Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ :int = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): a__ = SpeechTaFeatureExtractor def A ( self ): """simple docstring""" __magic_name__ :List[Any] = SpeechTaFeatureExtractionTester(self ) def A ( self , __lowerCAmelCase ): """simple docstring""" self.assertTrue(np.all(np.mean(__lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def A ( self ): """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus __magic_name__ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ :Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ :str = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input __magic_name__ :str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values __magic_name__ :int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched __magic_name__ :Optional[int] = feat_extract(__lowerCAmelCase , return_tensors='''np''' ).input_values __magic_name__ :List[str] = feat_extract(__lowerCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ :Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ :Any = ['''longest''', '''max_length''', '''do_not_pad'''] __magic_name__ :Optional[Any] = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Optional[int] = feat_extract(__lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors='''np''' ) __magic_name__ :Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ :int = range(8_0_0 , 1_4_0_0 , 2_0_0 ) __magic_name__ :str = [floats_list((1, x) )[0] for x in lengths] __magic_name__ :Any = ['''longest''', '''max_length''', '''do_not_pad'''] __magic_name__ :List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Optional[int] = feat_extract(__lowerCAmelCase , max_length=__lowerCAmelCase , padding=__lowerCAmelCase ) __magic_name__ :Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ :int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ :Optional[int] = feat_extract( __lowerCAmelCase , truncation=__lowerCAmelCase , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) __magic_name__ :Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ :List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ :Dict = feat_extract( __lowerCAmelCase , truncation=__lowerCAmelCase , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) __magic_name__ :Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) __magic_name__ :List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ :List[str] = feat_extract( __lowerCAmelCase , truncation=__lowerCAmelCase , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) __magic_name__ :Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ :Tuple = np.random.rand(1_0_0 ).astype(np.floataa ) __magic_name__ :Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __magic_name__ :List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __magic_name__ :Union[str, Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def A ( self ): """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus __magic_name__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ :Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ :List[Any] = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size __magic_name__ :List[Any] = feature_extractor(audio_target=__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __magic_name__ :str = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values __magic_name__ :Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched __magic_name__ :Optional[Any] = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_values __magic_name__ :Union[str, Any] = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __magic_name__ :str = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __magic_name__ :Optional[Any] = np.asarray(__lowerCAmelCase ) __magic_name__ :List[str] = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_values __magic_name__ :str = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ :int = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ :List[str] = feat_extract.model_input_names[0] __magic_name__ :Optional[int] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCAmelCase ) == len(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , processed_features[input_name] ) ) ) __magic_name__ :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCAmelCase ) __magic_name__ :Tuple = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) __magic_name__ :Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__ :Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def A ( self ): """simple docstring""" __magic_name__ :int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCAmelCase ) __magic_name__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ :List[str] = feat_extract.model_input_names[0] __magic_name__ :int = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) __magic_name__ :Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__ :Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ :Union[str, Any] = feat_extract.model_input_names[0] __magic_name__ :List[Any] = BatchFeature({input_name: speech_inputs} ) __magic_name__ :Dict = feat_extract.num_mel_bins # hack! __magic_name__ :Any = feat_extract.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] __magic_name__ :str = feat_extract.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.feat_extract_dict __magic_name__ :List[Any] = True __magic_name__ :int = self.feature_extraction_class(**__lowerCAmelCase ) __magic_name__ :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ :List[str] = [len(__lowerCAmelCase ) for x in speech_inputs] __magic_name__ :str = feat_extract.model_input_names[0] __magic_name__ :Optional[int] = BatchFeature({input_name: speech_inputs} ) __magic_name__ :str = feat_extract.num_mel_bins # hack! __magic_name__ :List[Any] = feat_extract.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.feat_extract_dict __magic_name__ :Optional[Any] = True __magic_name__ :Dict = self.feature_extraction_class(**__lowerCAmelCase ) __magic_name__ :int = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ :Optional[int] = [len(__lowerCAmelCase ) for x in speech_inputs] __magic_name__ :Optional[Any] = feat_extract.model_input_names[0] __magic_name__ :Optional[int] = BatchFeature({input_name: speech_inputs} ) __magic_name__ :str = min(__lowerCAmelCase ) __magic_name__ :List[Any] = feat_extract.num_mel_bins # hack! __magic_name__ :Tuple = feat_extract.pad( __lowerCAmelCase , padding='''max_length''' , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def A ( self , __lowerCAmelCase ): """simple docstring""" from datasets import load_dataset __magic_name__ :List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __magic_name__ :List[Any] = ds.sort('''id''' ).select(range(__lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A ( self ): """simple docstring""" # fmt: off __magic_name__ :Tuple = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on __magic_name__ :List[Any] = self._load_datasamples(1 ) __magic_name__ :Any = SpeechTaFeatureExtractor() __magic_name__ :List[str] = feature_extractor(__lowerCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , __lowerCAmelCase , atol=1E-6 ) ) def A ( self ): """simple docstring""" # fmt: off __magic_name__ :List[str] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on __magic_name__ :Union[str, Any] = self._load_datasamples(1 ) __magic_name__ :Optional[int] = SpeechTaFeatureExtractor() __magic_name__ :Optional[int] = feature_extractor(audio_target=__lowerCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __lowerCAmelCase , atol=1E-4 ) )
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
180
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Dict = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''gpt_bigcode''' SCREAMING_SNAKE_CASE__ = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[int] , lowercase : List[str]=5_02_57 , lowercase : Dict=10_24 , lowercase : Dict=7_68 , lowercase : int=12 , lowercase : int=12 , lowercase : Optional[int]=None , lowercase : List[Any]="gelu_pytorch_tanh" , lowercase : int=0.1 , lowercase : str=0.1 , lowercase : Optional[Any]=0.1 , lowercase : Any=1E-5 , lowercase : List[Any]=0.0_2 , lowercase : Dict=True , lowercase : Dict=True , lowercase : Optional[Any]=5_02_56 , lowercase : List[str]=5_02_56 , lowercase : Any=True , lowercase : Any=True , lowercase : List[Any]=True , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Union[str, Any] = n_positions UpperCAmelCase : Union[str, Any] = n_embd UpperCAmelCase : Dict = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Optional[Any] = n_inner UpperCAmelCase : int = activation_function UpperCAmelCase : Optional[int] = resid_pdrop UpperCAmelCase : int = embd_pdrop UpperCAmelCase : List[Any] = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : int = initializer_range UpperCAmelCase : str = scale_attn_weights UpperCAmelCase : List[Any] = use_cache UpperCAmelCase : Union[str, Any] = attention_softmax_in_fpaa UpperCAmelCase : str = scale_attention_softmax_in_fpaa UpperCAmelCase : Tuple = multi_query UpperCAmelCase : Any = bos_token_id UpperCAmelCase : Union[str, Any] = eos_token_id super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
595
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Any = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''vivit''' def __init__( self : Union[str, Any] , lowercase : int=2_24 , lowercase : Tuple=32 , lowercase : str=[2, 16, 16] , lowercase : str=3 , lowercase : Dict=7_68 , lowercase : Union[str, Any]=12 , lowercase : List[Any]=12 , lowercase : Dict=30_72 , lowercase : int="gelu_fast" , lowercase : Dict=0.0 , lowercase : Dict=0.0 , lowercase : List[str]=0.0_2 , lowercase : Tuple=1E-06 , lowercase : Any=True , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : List[Any] = image_size UpperCAmelCase : str = num_frames UpperCAmelCase : str = tubelet_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[int] = qkv_bias super().__init__(**lowercase )
595
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( _UpperCamelCase ): __a = ["pixel_values"] def __init__( self : int , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : bool = True , _lowerCamelCase : Union[int, float] = 1 / 255 , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : bool = True , **_lowerCamelCase : str , ): super().__init__(**__a ) _snake_case = size if size is not None else {"height": 384, "width": 384} _snake_case = get_size_dict(__a , default_to_square=__a ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowercase ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[str] , ): _snake_case = get_size_dict(__a , default_to_square=__a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) _snake_case = (size["height"], size["width"]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowercase ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[int, float] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[Any] , ): return rescale(__a , scale=__a , data_format=__a , **__a ) def lowercase ( self : List[str] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Tuple , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : ImageInput , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[Dict[str, int]] = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[float] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : bool = None , _lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCamelCase : Tuple , ): _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = size if size is not None else self.size _snake_case = get_size_dict(__a , default_to_square=__a ) _snake_case = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(__a ) for image in images] if do_resize: _snake_case = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: _snake_case = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _snake_case = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _snake_case = [to_channel_dimension_format(__a , __a ) for image in images] _snake_case = BatchFeature(data={'''pixel_values''': images} , tensor_type=__a ) return encoded_outputs
707
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ) -> List[Any]: _snake_case = os.path.abspath(__lowerCamelCase ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model _snake_case = tf.train.list_variables(__lowerCamelCase ) _snake_case = [] _snake_case = [] _snake_case = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _snake_case = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' _snake_case = name[1:] # figure out how many levels deep the name is _snake_case = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__lowerCamelCase ) # read data _snake_case = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) names.append('''/'''.join(__lowerCamelCase ) ) arrays.append(__lowerCamelCase ) logger.info(f'''Read a total of {len(__lowerCamelCase ):,} layers''' ) # Sanity check if len(set(__lowerCamelCase ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(__lowerCamelCase ) )})''' ) _snake_case = list(set(__lowerCamelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__lowerCamelCase , __lowerCamelCase ): _snake_case = full_name.split('''/''' ) _snake_case = model _snake_case = [] for i, m_name in enumerate(__lowerCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): _snake_case = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) _snake_case = getattr(__lowerCamelCase , '''embeddings''' ) _snake_case = getattr(__lowerCamelCase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) _snake_case = getattr(__lowerCamelCase , '''encoder''' ) _snake_case = getattr(__lowerCamelCase , '''layer''' ) _snake_case = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) _snake_case = getattr(__lowerCamelCase , '''pooler''' ) _snake_case = getattr(__lowerCamelCase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) _snake_case = getattr(__lowerCamelCase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) _snake_case = getattr(__lowerCamelCase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) _snake_case = getattr(__lowerCamelCase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) _snake_case = getattr(__lowerCamelCase , '''token_type_embeddings''' ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append('''weight''' ) _snake_case = getattr(__lowerCamelCase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) _snake_case = getattr(__lowerCamelCase , '''attention''' ) _snake_case = getattr(__lowerCamelCase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) _snake_case = getattr(__lowerCamelCase , '''attention''' ) _snake_case = getattr(__lowerCamelCase , '''output''' ) _snake_case = getattr(__lowerCamelCase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) _snake_case = getattr(__lowerCamelCase , '''attention''' ) _snake_case = getattr(__lowerCamelCase , '''output''' ) _snake_case = getattr(__lowerCamelCase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) _snake_case = getattr(__lowerCamelCase , '''output''' ) _snake_case = getattr(__lowerCamelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) _snake_case = getattr(__lowerCamelCase , '''output''' ) _snake_case = getattr(__lowerCamelCase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) _snake_case = getattr(__lowerCamelCase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) _snake_case = getattr(__lowerCamelCase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) _snake_case = getattr(__lowerCamelCase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) _snake_case = getattr(__lowerCamelCase , '''intermediate''' ) _snake_case = getattr(__lowerCamelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) _snake_case = getattr(__lowerCamelCase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) _snake_case = getattr(__lowerCamelCase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) _snake_case = getattr(__lowerCamelCase , '''weight''' ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary _snake_case = '''.'''.join(__lowerCamelCase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __lowerCamelCase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __lowerCamelCase ): _snake_case = array.reshape(pointer.data.shape ) if "kernel" in full_name: _snake_case = array.transpose() if pointer.shape == array.shape: _snake_case = torch.from_numpy(__lowerCamelCase ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> int: # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) _snake_case = BertConfig.from_json_file(__lowerCamelCase ) _snake_case = BertModel(__lowerCamelCase ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) UpperCAmelCase__ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
430
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = R""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class _snake_case ( lowerCamelCase ): """simple docstring""" @add_start_docstrings(a ) def __call__( self , a , a , **a ) -> bool: """simple docstring""" raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a , a = None ) -> Dict: """simple docstring""" _A = max_length _A = max_position_embeddings @add_start_docstrings(a ) def __call__( self , a , a , **a ) -> bool: """simple docstring""" _A = input_ids.shape[-1] _A = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' '''exceptions, performance degradation, or nothing at all.''' ) return is_done class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a , a ) -> Union[str, Any]: """simple docstring""" warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' '''with `max_length = start_length + max_new_tokens` instead.''' , a , ) _A = start_length _A = max_new_tokens _A = start_length + max_new_tokens @add_start_docstrings(a ) def __call__( self , a , a , **a ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a , a = None ) -> Dict: """simple docstring""" _A = max_time _A = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(a ) def __call__( self , a , a , **a ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class _snake_case ( lowerCamelCase ): """simple docstring""" @add_start_docstrings(a ) def __call__( self , a , a , **a ) -> bool: """simple docstring""" return any(criteria(a , a ) for criteria in self ) @property def lowercase_ ( self ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(a , a ): return stopping_criterium.max_length elif isinstance(a , a ): return stopping_criterium.max_length return None def UpperCAmelCase__ ( __snake_case , __snake_case ) -> StoppingCriteriaList: _A = stopping_criteria.max_length _A = deepcopy(__snake_case ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __snake_case ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__snake_case ) ) return new_stopping_criteria
317
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _snake_case ( lowerCamelCase ,lowerCamelCase ): """simple docstring""" lowerCamelCase_ = '''pixel_values''' lowerCamelCase_ = False lowerCamelCase_ = TimmBackboneConfig def __init__( self , a , **a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(a ) _A = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(a , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _A = getattr(a , '''use_pretrained_backbone''' , a ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _A = config.out_indices if getattr(a , '''out_indices''' , a ) is not None else (-1,) _A = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _A = self._backbone.return_layers _A = {layer['''module''']: str(a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(a ) @classmethod def lowercase_ ( cls , a , *a , **a ) -> int: """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _A = kwargs.pop('''config''' , TimmBackboneConfig() ) _A = kwargs.pop('''use_timm_backbone''' , a ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _A = kwargs.pop('''num_channels''' , config.num_channels ) _A = kwargs.pop('''features_only''' , config.features_only ) _A = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _A = kwargs.pop('''out_indices''' , config.out_indices ) _A = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a ) def lowercase_ ( self , a ) -> Optional[Any]: """simple docstring""" pass def lowercase_ ( self , a , a=None , a=None , a=None , **a ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" _A = return_dict if return_dict is not None else self.config.use_return_dict _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _A = self._all_layers _A = self._backbone(a , **a ) _A = self._return_layers _A = tuple(hidden_states[i] for i in self.out_indices ) else: _A = self._backbone(a , **a ) _A = None _A = tuple(a ) _A = tuple(a ) if hidden_states is not None else None if not return_dict: _A = (feature_maps,) if output_hidden_states: _A = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a )
317
1
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : list[Any] = [] __UpperCAmelCase : int = 0 __UpperCAmelCase : int = 0 def snake_case__ ( self : int ): '''simple docstring''' return self.head == self.tail def snake_case__ ( self : Optional[int] , a_ : Any ): '''simple docstring''' self.data.append(a_ ) __UpperCAmelCase : int = self.tail + 1 def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.data[self.head] __UpperCAmelCase : List[Any] = self.head + 1 return ret def snake_case__ ( self : Any ): '''simple docstring''' return self.tail - self.head def snake_case__ ( self : Optional[int] ): '''simple docstring''' print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , a_ : Any ): '''simple docstring''' __UpperCAmelCase : Dict = data __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : int = 1 def snake_case__ ( self : List[str] ): '''simple docstring''' return self.data def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return self.left def snake_case__ ( self : str ): '''simple docstring''' return self.right def snake_case__ ( self : Optional[int] ): '''simple docstring''' return self.height def snake_case__ ( self : List[str] , a_ : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = data def snake_case__ ( self : List[str] , a_ : MyNode | None ): '''simple docstring''' __UpperCAmelCase : Tuple = node def snake_case__ ( self : List[str] , a_ : MyNode | None ): '''simple docstring''' __UpperCAmelCase : int = node def snake_case__ ( self : int , a_ : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = height def a ( _UpperCAmelCase : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' if a > b: return a return b def a ( _UpperCAmelCase : MyNode ): '''simple docstring''' print('''left rotation node:''' , node.get_data() ) __UpperCAmelCase : int = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_UpperCAmelCase ) return ret def a ( _UpperCAmelCase : MyNode ): '''simple docstring''' print('''right rotation node:''' , node.get_data() ) __UpperCAmelCase : int = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_UpperCAmelCase ) __UpperCAmelCase : Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_UpperCAmelCase ) return ret def a ( _UpperCAmelCase : MyNode ): '''simple docstring''' __UpperCAmelCase : Optional[int] = node.get_left() assert left_child is not None node.set_left(left_rotation(_UpperCAmelCase ) ) return right_rotation(_UpperCAmelCase ) def a ( _UpperCAmelCase : MyNode ): '''simple docstring''' __UpperCAmelCase : Tuple = node.get_right() assert right_child is not None node.set_right(right_rotation(_UpperCAmelCase ) ) return left_rotation(_UpperCAmelCase ) def a ( _UpperCAmelCase : MyNode | None , _UpperCAmelCase : Any ): '''simple docstring''' if node is None: return MyNode(_UpperCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _UpperCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCAmelCase : int = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCAmelCase : str = right_rotation(_UpperCAmelCase ) else: __UpperCAmelCase : Union[str, Any] = lr_rotation(_UpperCAmelCase ) else: node.set_right(insert_node(node.get_right() , _UpperCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCAmelCase : List[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCAmelCase : Optional[Any] = rl_rotation(_UpperCAmelCase ) else: __UpperCAmelCase : List[str] = left_rotation(_UpperCAmelCase ) __UpperCAmelCase : Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_UpperCAmelCase ) return node def a ( _UpperCAmelCase : MyNode ): '''simple docstring''' while True: __UpperCAmelCase : Union[str, Any] = root.get_right() if right_child is None: break __UpperCAmelCase : List[Any] = right_child return root.get_data() def a ( _UpperCAmelCase : MyNode ): '''simple docstring''' while True: __UpperCAmelCase : List[Any] = root.get_left() if left_child is None: break __UpperCAmelCase : int = left_child return root.get_data() def a ( _UpperCAmelCase : MyNode , _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = root.get_left() __UpperCAmelCase : Optional[int] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCAmelCase : int = get_left_most(_UpperCAmelCase ) root.set_data(_UpperCAmelCase ) root.set_right(del_node(_UpperCAmelCase , _UpperCAmelCase ) ) elif left_child is not None: __UpperCAmelCase : List[Any] = left_child elif right_child is not None: __UpperCAmelCase : Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_UpperCAmelCase , _UpperCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_UpperCAmelCase , _UpperCAmelCase ) ) if get_height(_UpperCAmelCase ) - get_height(_UpperCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCAmelCase : Any = left_rotation(_UpperCAmelCase ) else: __UpperCAmelCase : Optional[Any] = rl_rotation(_UpperCAmelCase ) elif get_height(_UpperCAmelCase ) - get_height(_UpperCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCAmelCase : str = right_rotation(_UpperCAmelCase ) else: __UpperCAmelCase : List[str] = lr_rotation(_UpperCAmelCase ) __UpperCAmelCase : Tuple = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_UpperCAmelCase ) return root class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Tuple ): '''simple docstring''' __UpperCAmelCase : MyNode | None = None def snake_case__ ( self : int ): '''simple docstring''' return get_height(self.root ) def snake_case__ ( self : Any , a_ : Any ): '''simple docstring''' print('''insert:''' + str(a_ ) ) __UpperCAmelCase : Optional[int] = insert_node(self.root , a_ ) def snake_case__ ( self : Dict , a_ : Any ): '''simple docstring''' print('''delete:''' + str(a_ ) ) if self.root is None: print('''Tree is empty!''' ) return __UpperCAmelCase : Optional[Any] = del_node(self.root , a_ ) def __str__( self : List[Any] , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __UpperCAmelCase : int = '''''' __UpperCAmelCase : Optional[Any] = MyQueue() q.push(self.root ) __UpperCAmelCase : str = self.get_height() if layer == 0: return output __UpperCAmelCase : Optional[Any] = 0 while not q.is_empty(): __UpperCAmelCase : str = q.pop() __UpperCAmelCase : Optional[Any] = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a_ ) q.push(a_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCAmelCase : List[Any] = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , a_ ) - 1: __UpperCAmelCase : int = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def a ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __A =AVLtree() __A =list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
241
from functools import reduce __A =( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def a ( _UpperCAmelCase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
241
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class A_ ( A__ ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase_ :Optional[Any]=1 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Any=512 , lowerCamelCase_ :List[Any]="cls" , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :List[str]=True , **lowerCamelCase_ :Dict , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowerCamelCase__ : int =project_dim lowerCamelCase__ : Tuple =pooler_fn lowerCamelCase__ : Union[str, Any] =learn_encoder lowerCamelCase__ : Optional[Any] =use_attention_mask class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [r"""pooler""", r"""logit_scale"""] SCREAMING_SNAKE_CASE_ = [r"""position_ids""", r"""predictions.decoder.bias"""] SCREAMING_SNAKE_CASE_ = """roberta""" SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig def __init__( self :str , lowerCamelCase_ :str ): """simple docstring""" super().__init__(lowerCamelCase_ ) lowerCamelCase__ : List[str] =XLMRobertaModel(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =nn.Linear(config.hidden_size , config.project_dim ) lowerCamelCase__ : List[Any] =getattr(lowerCamelCase_ , 'has_pre_transformation' , lowerCamelCase_ ) if self.has_pre_transformation: lowerCamelCase__ : List[Any] =nn.Linear(config.hidden_size , config.project_dim ) lowerCamelCase__ : List[str] =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[bool] = None , lowerCamelCase_ :Optional[bool] = None , lowerCamelCase_ :Optional[bool] = None , ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Optional[int] =self.base_model( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_attentions=lowerCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCamelCase_ , ) if self.has_pre_transformation: lowerCamelCase__ : Optional[int] =outputs['hidden_states'][-2] lowerCamelCase__ : Optional[Any] =self.pre_LN(lowerCamelCase_ ) lowerCamelCase__ : List[str] =self.transformation_pre(lowerCamelCase_ ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowerCamelCase__ : str =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
174
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def lowerCAmelCase_ ( snake_case_ : str ) ->str: return "".join(sorted(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ : str ) ->list[str]: return word_by_signature[signature(snake_case_ )] lowerCAmelCase = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
174
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _a( __A ): lowerCamelCase__ :torch.FloatTensor class _a( __A , __A ): @register_to_config def __init__( self , __snake_case = 1_6 , __snake_case = 8_8 , __snake_case = None , __snake_case = None , __snake_case = 1 , __snake_case = 0.0 , __snake_case = 3_2 , __snake_case = None , __snake_case = False , __snake_case = None , __snake_case = "geglu" , __snake_case = True , __snake_case = True , ) -> List[str]: '''simple docstring''' super().__init__() _snake_case : List[str] = num_attention_heads _snake_case : str = attention_head_dim _snake_case : Optional[int] = num_attention_heads * attention_head_dim _snake_case : Optional[int] = in_channels _snake_case : Optional[int] = torch.nn.GroupNorm(num_groups=__snake_case , num_channels=__snake_case , eps=1E-6 , affine=__snake_case ) _snake_case : Optional[int] = nn.Linear(__snake_case , __snake_case ) # 3. Define transformers blocks _snake_case : Dict = nn.ModuleList( [ BasicTransformerBlock( __snake_case , __snake_case , __snake_case , dropout=__snake_case , cross_attention_dim=__snake_case , activation_fn=__snake_case , attention_bias=__snake_case , double_self_attention=__snake_case , norm_elementwise_affine=__snake_case , ) for d in range(__snake_case ) ] ) _snake_case : Tuple = nn.Linear(__snake_case , __snake_case ) def lowercase ( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=1 , __snake_case=None , __snake_case = True , ) -> int: '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = hidden_states.shape _snake_case : Optional[int] = batch_frames // num_frames _snake_case : Tuple = hidden_states _snake_case : int = hidden_states[None, :].reshape(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) _snake_case : Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _snake_case : List[Any] = self.norm(__snake_case ) _snake_case : Union[str, Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __snake_case , __snake_case ) _snake_case : List[str] = self.proj_in(__snake_case ) # 2. Blocks for block in self.transformer_blocks: _snake_case : Optional[Any] = block( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , class_labels=__snake_case , ) # 3. Output _snake_case : List[str] = self.proj_out(__snake_case ) _snake_case : Dict = ( hidden_states[None, None, :] .reshape(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _snake_case : Optional[Any] = hidden_states.reshape(__snake_case , __snake_case , __snake_case , __snake_case ) _snake_case : List[Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__snake_case )
278
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase :Tuple = logging.get_logger(__name__) __lowerCAmelCase :int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class _a( __A ): lowerCamelCase__ :Optional[Any] = 'timesformer' def __init__( self , __snake_case=2_2_4 , __snake_case=1_6 , __snake_case=3 , __snake_case=8 , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1E-6 , __snake_case=True , __snake_case="divided_space_time" , __snake_case=0 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) _snake_case : Optional[Any] = image_size _snake_case : Optional[int] = patch_size _snake_case : str = num_channels _snake_case : Tuple = num_frames _snake_case : Union[str, Any] = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Optional[Any] = attention_probs_dropout_prob _snake_case : Dict = initializer_range _snake_case : Optional[int] = layer_norm_eps _snake_case : str = qkv_bias _snake_case : List[str] = attention_type _snake_case : Optional[int] = drop_path_rate
278
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Any =logging.get_logger(__name__) def lowercase__ ( __lowercase : List[str] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: __UpperCamelCase = 1024 __UpperCamelCase = 4096 __UpperCamelCase = 24 __UpperCamelCase = 16 __UpperCamelCase = [5, 11, 17, 23] __UpperCamelCase = [256, 512, 1024, 1024] __UpperCamelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __UpperCamelCase = 768 __UpperCamelCase = [1, 1, 1, 0.5] __UpperCamelCase = [256, 512, 768, 768] __UpperCamelCase = 150 __UpperCamelCase = 16 __UpperCamelCase = (1, 384, 384) __UpperCamelCase = False __UpperCamelCase = 'project' if "ade" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = 768 __UpperCamelCase = [1, 1, 1, 0.5] __UpperCamelCase = 150 __UpperCamelCase = 16 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'ade20k-id2label.json' __UpperCamelCase = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase = {int(__lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} __UpperCamelCase = [1, 150, 480, 480] return config, expected_shape def lowercase__ ( __lowercase : int ) -> str: """simple docstring""" __UpperCamelCase = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def lowercase__ ( __lowercase : Dict ) -> Dict: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __UpperCamelCase = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __UpperCamelCase = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __UpperCamelCase = name.replace('patch_embed' , '' ) if "pos_embed" in name: __UpperCamelCase = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __UpperCamelCase = name.replace('proj' , 'projection' ) if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __UpperCamelCase = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __UpperCamelCase = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __UpperCamelCase = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __UpperCamelCase = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __UpperCamelCase = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __UpperCamelCase = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __UpperCamelCase = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __UpperCamelCase = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __UpperCamelCase = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __UpperCamelCase = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __UpperCamelCase = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __UpperCamelCase = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __UpperCamelCase = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __UpperCamelCase = name.replace('pretrained' , 'dpt' ) if "bn" in name: __UpperCamelCase = name.replace('bn' , 'batch_norm' ) if "head" in name: __UpperCamelCase = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __UpperCamelCase = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __UpperCamelCase = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: __UpperCamelCase = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: __UpperCamelCase = name.replace('..' , '.' ) if "stem.conv" in name: __UpperCamelCase = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: __UpperCamelCase = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: __UpperCamelCase = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: __UpperCamelCase = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: __UpperCamelCase = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: __UpperCamelCase = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : str ) -> List[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __UpperCamelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[: config.hidden_size, :] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def lowercase__ ( ) -> str: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def lowercase__ ( __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Optional[int] ) -> Any: """simple docstring""" __UpperCamelCase , __UpperCamelCase = get_dpt_config(__lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __UpperCamelCase = torch.load(__lowercase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__lowercase ) # rename keys for key in state_dict.copy().keys(): __UpperCamelCase = state_dict.pop(__lowercase ) __UpperCamelCase = val # read in qkv matrices read_in_q_k_v(__lowercase , __lowercase ) # load HuggingFace model __UpperCamelCase = DPTForSemanticSegmentation(__lowercase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__lowercase ) model.load_state_dict(__lowercase ) model.eval() # Check outputs on an image __UpperCamelCase = 480 if 'ade' in checkpoint_url else 384 __UpperCamelCase = DPTImageProcessor(size=__lowercase ) __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(__lowercase , return_tensors='pt' ) # forward pass __UpperCamelCase = model(**__lowercase ).logits if 'ade' in checkpoint_url else model(**__lowercase ).predicted_depth if show_prediction: __UpperCamelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=__lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": a__ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) a__ : Optional[Any] =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
399
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase__ ( __lowercase : Any ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def lowercase__ ( __lowercase : List[Any] ) -> List[str]: """simple docstring""" class snake_case : """simple docstring""" def __init__( self : Optional[Any] , __A : Any ): __UpperCamelCase = metric_id class snake_case : """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =[MetricMock(__lowerCamelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowerCamelCase ( self : str ): return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def lowercase__ ( __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[int] ) -> Optional[int]: """simple docstring""" if "tmp_path" in args: __UpperCamelCase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__lowercase , match='https://huggingface.co/docs/evaluate' ): func(*__lowercase )
399
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase ={ "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def _A ( _a : str ) -> Any: """simple docstring""" A = list(s_dict.keys() ) for key in keys: A = r""".*/layers_(\d+)""" A = key if re.match(_a , _a ): A = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , _a ) A = r"""(encoder|decoder)\/""" if re.match(_a , _a ): A = re.match(_a , _a ).groups() if groups[0] == "encoder": A = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , _a ) elif groups[0] == "decoder": A = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , _a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A = new_key.replace(_a , _a ) print(f'{key} -> {new_key}' ) A = s_dict.pop(_a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A = s_dict[key].shape[0] A = s_dict[key] for idx in range(_a ): A = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_a ) return s_dict UpperCAmelCase ={ "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def _A ( _a : Any , _a : Tuple ) -> Optional[Any]: """simple docstring""" import regex as re with open(_a , """r""" ) as f: A = f.read() A = re.findall(r"""(.*) = ([0-9.]*)""" , _a ) A = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A = float(_a ) if """.""" in value else int(_a ) A = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , _a )[0] A = str(activation[1] ) A = num_experts A = SwitchTransformersConfig(**_a ) return config def _A ( _a : int , _a : Dict , _a : List[str]=None , _a : Any="./" , _a : Any=8 ) -> Dict: """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) A = checkpoints.load_tax_checkpoint(_a ) if gin_file is not None: A = convert_gin_to_config(_a , _a ) else: A = SwitchTransformersConfig.from_pretrained(_a ) A = SwitchTransformersForConditionalGeneration(_a ) A = flax_params["""target"""] A = flatten_dict(_a , sep="""/""" ) A = rename_keys(_a ) A = unflatten_dict(_a , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_a , _a ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") UpperCAmelCase =parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
711
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase =get_logger(__name__) UpperCAmelCase =R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowerCamelCase__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> jnp.ndarray: for processor in self: A = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) A = processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) else: A = processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> List[str]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) A = temperature def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = scores / self.temperature return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ = -float("""Inf""" ) ,lowerCamelCase_ = 1 ) -> Dict: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) A = top_p A = filter_value A = min_tokens_to_keep def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A , A = lax.top_k(lowerCamelCase_ ,scores.shape[-1] ) A = jnp.full_like(lowerCamelCase_ ,self.filter_value ) A = jax.nn.softmax(lowerCamelCase_ ,axis=-1 ).cumsum(axis=-1 ) A = cumulative_probs < self.top_p # include the token that is higher than top_p as well A = jnp.roll(lowerCamelCase_ ,1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep A = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) A = jnp.where(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = jax.lax.sort_key_val(lowerCamelCase_ ,lowerCamelCase_ )[-1] return next_scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ = -float("""Inf""" ) ,lowerCamelCase_ = 1 ) -> List[Any]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) A = max(lowerCamelCase_ ,lowerCamelCase_ ) A = filter_value def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A , A = scores.shape A = jnp.full(batch_size * vocab_size ,self.filter_value ) A = min(self.top_k ,scores.shape[-1] ) # Safety check A , A = lax.top_k(lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() A = topk_scores.flatten() A = topk_indices.flatten() + shift A = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) A = next_scores_flat.reshape(lowerCamelCase_ ,lowerCamelCase_ ) return next_scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> List[Any]: A = bos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = jnp.full(scores.shape ,-float("""inf""" ) ) A = 1 - jnp.bool_(cur_len - 1 ) A = jnp.where(lowerCamelCase_ ,new_scores.at[:, self.bos_token_id].set(0 ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = max_length A = eos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = jnp.full(scores.shape ,-float("""inf""" ) ) A = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A = jnp.where(lowerCamelCase_ ,new_scores.at[:, self.eos_token_id].set(0 ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) A = min_length A = eos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied A = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) A = jnp.where(lowerCamelCase_ ,scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = list(lowerCamelCase_ ) A = begin_index def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: A = 1 - jnp.bool_(cur_len - self.begin_index ) A = jnp.where(lowerCamelCase_ ,scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> str: A = list(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> Union[str, Any]: A = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A = force_token_array.at[index].set(lowerCamelCase_ ) A = jnp.intaa(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: def _force_token(lowerCamelCase_ ): A = scores.shape[0] A = self.force_token_array[generation_idx] A = jnp.ones_like(lowerCamelCase_ ,dtype=scores.dtype ) * -float("""inf""" ) A = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) A = lax.dynamic_update_slice(lowerCamelCase_ ,lowerCamelCase_ ,(0, current_token) ) return new_scores A = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(lowerCamelCase_ ) ,lambda: scores ,) ,) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: A = generate_config.eos_token_id A = generate_config.no_timestamps_token_id A = generate_config.no_timestamps_token_id + 1 A = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ ,"""max_initial_timestamp_index""" ): A = generate_config.max_initial_timestamp_index else: A = model_config.vocab_size if self.max_initial_timestamp_index is None: A = model_config.vocab_size def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: # suppress <|notimestamps|> which is handled by without_timestamps A = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(lowerCamelCase_ ,lowerCamelCase_ ): A = jnp.where((cur_len - self.begin_index) >= 1 ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,lowerCamelCase_ ,) A = jnp.where((cur_len - self.begin_index) < 2 ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,lowerCamelCase_ ,lowerCamelCase_ ,) return jnp.where( lowerCamelCase_ ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) ,scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) ,) ,lowerCamelCase_ ,) A = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where(cur_len == self.begin_index ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,lowerCamelCase_ ,) A = self.timestamp_begin + self.max_initial_timestamp_index A = jnp.where( lowerCamelCase_ ,scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) ,lowerCamelCase_ ,) # if sum of probability over timestamps is above any other token, sample timestamp A = jax.nn.log_softmax(lowerCamelCase_ ,axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ ,lowerCamelCase_ ): A = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) A = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) ,lowerCamelCase_ ,) A = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ ,lowerCamelCase_ ) return scores
255
0
"""simple docstring""" def snake_case ( lowerCAmelCase_ = 10**12 ) -> int: _snake_case = 1 _snake_case = 0 _snake_case = 1 _snake_case = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"{solution() = }")
103
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } __UpperCAmelCase = '▁' class __a ( __UpperCamelCase ): __snake_case : int = VOCAB_FILES_NAMES __snake_case : int = PRETRAINED_VOCAB_FILES_MAP __snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Optional[Any] = BigBirdTokenizer __snake_case : Any = ["""input_ids""", """attention_mask"""] __snake_case : List[int] = [] def __init__( self : str , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : List[Any]="<pad>" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : str="[MASK]" , UpperCAmelCase : Any="[CLS]" , **UpperCAmelCase : List[str] , ): lowerCAmelCase_ : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowerCAmelCase_ : Optional[int] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowerCAmelCase_ : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowerCAmelCase_ : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token lowerCAmelCase_ : Tuple = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowerCAmelCase_ : Tuple = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = vocab_file lowerCAmelCase_ : Union[str, Any] = False if not self.vocab_file else True def A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : int = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
600
0
"""simple docstring""" import pprint import requests lowercase__ : Optional[Any] = '''https://zenquotes.io/api''' def __lowercase ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __lowercase ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowercase__ : List[Any] = random_quotes() pprint.pprint(response)
711
"""simple docstring""" from statistics import mean, stdev def __lowercase ( _a , _a = 3 ): snake_case_ : Optional[int] = min(_a ) snake_case_ : str = max(_a ) # normalize data return [round((x - x_min) / (x_max - x_min) , _a ) for x in data] def __lowercase ( _a , _a = 3 ): snake_case_ : Any = mean(_a ) snake_case_ : str = stdev(_a ) # standardize data return [round((x - mu) / (sigma) , _a ) for x in data]
485
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase ( A : str ): return EnvironmentCommand() def UpperCAmelCase ( A : List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase_ ( snake_case_ ): @staticmethod def __lowercase ( lowerCAmelCase__ : ArgumentParser ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=lowerCAmelCase__ ) download_parser.add_argument( '''--accelerate-config_file''' , default=lowerCAmelCase__ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self : int , lowerCAmelCase__ : Dict , *lowerCAmelCase__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = accelerate_config_file def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = '''not installed''' if is_safetensors_available(): import safetensors SCREAMING_SNAKE_CASE : Optional[Any] = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors SCREAMING_SNAKE_CASE : Tuple = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" SCREAMING_SNAKE_CASE : Optional[int] = '''not installed''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE : List[str] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = load_config_from_file(self._accelerate_config_file ).to_dict() SCREAMING_SNAKE_CASE : List[str] = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else F"""\t{accelerate_config}""" ) SCREAMING_SNAKE_CASE : Tuple = '''not installed''' SCREAMING_SNAKE_CASE : Optional[int] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE : int = torch.__version__ SCREAMING_SNAKE_CASE : List[str] = torch.cuda.is_available() SCREAMING_SNAKE_CASE : Dict = '''not installed''' SCREAMING_SNAKE_CASE : int = '''NA''' if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE : Any = tf.__version__ try: # deprecated in v2.1 SCREAMING_SNAKE_CASE : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool SCREAMING_SNAKE_CASE : Dict = bool(tf.config.list_physical_devices('''GPU''' ) ) SCREAMING_SNAKE_CASE : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE : List[str] = '''not installed''' SCREAMING_SNAKE_CASE : str = '''not installed''' SCREAMING_SNAKE_CASE : List[Any] = '''NA''' if is_flax_available(): import flax import jax import jaxlib SCREAMING_SNAKE_CASE : Union[str, Any] = flax.__version__ SCREAMING_SNAKE_CASE : Dict = jax.__version__ SCREAMING_SNAKE_CASE : List[Any] = jaxlib.__version__ SCREAMING_SNAKE_CASE : Any = jax.lib.xla_bridge.get_backend().platform SCREAMING_SNAKE_CASE : int = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"""{safetensors_version}""", '''Accelerate version''': F"""{accelerate_version}""", '''Accelerate config''': F"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""", '''Jax version''': F"""{jax_version}""", '''JaxLib version''': F"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(lowerCAmelCase__ ) ) return info @staticmethod def __lowercase ( lowerCAmelCase__ : List[Any] ): """simple docstring""" return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
527
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( A : list[int] , A : int ): if len(A ) < k or k < 0: raise ValueError('''Invalid Input''' ) SCREAMING_SNAKE_CASE : Dict = sum(array[:k] ) for i in range(len(A ) - k ): SCREAMING_SNAKE_CASE : Optional[Any] = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE : Union[str, Any] = max(A , A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase_ : Optional[int] = [randint(-1000, 1000) for i in range(100)] lowerCAmelCase_ : Optional[int] = randint(0, 110) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
527
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : List[Any] = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main A : Dict = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if exitstatus == 5: A : List[str] = 0 # Doctest custom flag to ignore output. lowercase : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') lowercase : Any = doctest.OutputChecker class A ( __snake_case ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase : Any = CustomOutputChecker lowercase : Dict = HfDoctestModule lowercase : int = HfDocTestParser
343
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = tempfile.mkdtemp() A : List[Any] = SamImageProcessor() A : Optional[int] = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A : Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Any = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) A : int = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = self.get_image_processor() A : Tuple = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.prepare_image_inputs() A : List[str] = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A : Any = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : str = self.get_image_processor() A : Union[str, Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) A : str = [torch.ones((1, 3, 5, 5) )] A : Union[str, Any] = [[1764, 2646]] A : Tuple = [[683, 1024]] A : Tuple = processor.post_process_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A : Union[str, Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np A : Optional[Any] = [np.ones((1, 3, 5, 5) )] A : Tuple = processor.post_process_masks(SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A : List[str] = [[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Union[str, Any] = processor.post_process_masks(SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) ) @require_vision @require_tf class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = tempfile.mkdtemp() A : Optional[int] = SamImageProcessor() A : List[Any] = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A : Any = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : List[str] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) A : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Any = self.get_image_processor() A : Union[str, Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) A : Tuple = self.prepare_image_inputs() A : Any = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Any = self.get_image_processor() A : Optional[int] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) A : List[Any] = [tf.ones((1, 3, 5, 5) )] A : Any = [[1764, 2646]] A : str = [[683, 1024]] A : List[Any] = processor.post_process_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A : List[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np A : Dict = [np.ones((1, 3, 5, 5) )] A : List[str] = processor.post_process_masks( SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A : Union[str, Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) , return_tensors='''tf''' ) @require_vision @require_torchvision class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = tempfile.mkdtemp() A : Tuple = SamImageProcessor() A : Dict = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def __lowerCAmelCase ( self ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A : Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Union[str, Any] = self.get_image_processor() A : int = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) A : Dict = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A : Tuple = [tf.convert_to_tensor(SCREAMING_SNAKE_CASE )] A : Optional[Any] = [torch.tensor(SCREAMING_SNAKE_CASE )] A : Dict = [[1764, 2646]] A : List[Any] = [[683, 1024]] A : List[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) A : Optional[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[int] = self.get_image_processor() A : Union[str, Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.prepare_image_inputs() A : Dict = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' )['''pixel_values'''].numpy() A : str = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )['''pixel_values'''].numpy() A : List[str] = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''tf''' )['''pixel_values'''].numpy() A : int = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
343
1