code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : str = emb.weight.shape lowercase : str = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) lowercase : Tuple = emb.weight.data return lin_layer def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : List[str] = torch.load(lowercase__ , map_location="""cpu""" ) lowercase : Optional[Any] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowercase : Tuple = mam_aaa['model'] remove_ignore_keys_(lowercase__ ) lowercase : List[str] = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase : str = MaMaaaConfig( vocab_size=lowercase__ , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowercase : Optional[int] = state_dict['decoder.embed_tokens.weight'] lowercase : int = MaMaaaForConditionalGeneration(lowercase__ ) model.model.load_state_dict(lowercase__ , strict=lowercase__ ) lowercase : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowercase : Any = parser.parse_args() lowercase : Union[str, Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
336
from pathlib import Path import numpy as np from PIL import Image def _a ( lowercase__ : np.ndarray ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def _a ( lowercase__ : np.ndarray ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros_like(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE__ : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE__ : List[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE__ : List[str] = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ : int = Path(__file__).resolve().parent / "image_data" / "lena.jpg" SCREAMING_SNAKE_CASE__ : int = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ : str = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ : Optional[int] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ : Optional[int] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
85
0
def UpperCAmelCase__ ( UpperCAmelCase__ :int = 10_00 ): '''simple docstring''' a = 3 a = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
32
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowercase ( UpperCAmelCase__ ): def A ( self : Optional[int] , __lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" with open(__lowerCAmelCase , encoding="utf-8" ) as input_file: a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) a = input_file.read() a = regexp.search(__lowerCAmelCase ) return match def A ( self : List[Any] , __lowerCAmelCase : str ) -> Dict: """simple docstring""" with open(__lowerCAmelCase , encoding="utf-8" ) as input_file: a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` a = regexp.finditer(__lowerCAmelCase ) a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A ( self : List[str] ) -> List[Any]: """simple docstring""" a = Path("./datasets" ) a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowerCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def A ( self : Tuple ) -> Union[str, Any]: """simple docstring""" a = Path("./datasets" ) a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowerCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
32
1
from __future__ import annotations from typing import Any def A__ ( snake_case_ : list[Any] ): create_state_space_tree(snake_case_ , [] , 0 ) def A__ ( snake_case_ : list[Any] , snake_case_ : list[Any] , snake_case_ : int ): if index == len(snake_case_ ): print(snake_case_ ) return create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowercase_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
64
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Any = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :str , __lowerCamelCase :List[str] ): if gpta_config_file == "": _lowerCAmelCase = GPTaConfig() else: _lowerCAmelCase = GPTaConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase = GPTaModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowerCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _lowerCamelCase ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowercase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
704
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.txt"""} _lowercase = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _lowercase = { """openbmb/cpm-ant-10b""": 1024, } def A (__lowerCamelCase :str ): _lowerCAmelCase = collections.OrderedDict() with open(__lowerCamelCase , """r""" , encoding="""utf-8""" ) as reader: _lowerCAmelCase = reader.readlines() for index, token in enumerate(__lowerCamelCase ): _lowerCAmelCase = token.rstrip("""\n""" ) _lowerCAmelCase = index return vocab class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase="<unk>" , _lowercase=200 ): """simple docstring""" _lowerCAmelCase = vocab _lowerCAmelCase = unk_token _lowerCAmelCase = max_input_chars_per_word def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = list(_lowercase ) if len(_lowercase ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase = 0 _lowerCAmelCase = [] while start < len(_lowercase ): _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = None while start < end: _lowerCAmelCase = """""".join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowercase ) _lowerCAmelCase = end return sub_tokens class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Dict = ['''input_ids''', '''attention_mask'''] _lowercase : Union[str, Any] = False def __init__( self , _lowercase , _lowercase="<d>" , _lowercase="</d>" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<pad>" , _lowercase="<unk>" , _lowercase="</n>" , _lowercase="</_>" , _lowercase="left" , **_lowercase , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_lowercase , eod_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , unk_token=_lowercase , line_token=_lowercase , space_token=_lowercase , padding_side=_lowercase , **_lowercase , ) _lowerCAmelCase = bod_token _lowerCAmelCase = eod_token _lowerCAmelCase = load_vocab(_lowercase ) _lowerCAmelCase = self.encoder[space_token] _lowerCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowercase ( self ): """simple docstring""" return self.encoder[self.bod_token] @property def _lowercase ( self ): """simple docstring""" return self.encoder[self.eod_token] @property def _lowercase ( self ): """simple docstring""" return self.encoder["\n"] @property def _lowercase ( self ): """simple docstring""" return len(self.encoder ) def _lowercase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = [] for x in jieba.cut(_lowercase , cut_all=_lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowercase ) ) return output_tokens def _lowercase ( self , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = [i for i in token_ids if i >= 0] _lowerCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowercase , **_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" return token in self.encoder def _lowercase ( self , _lowercase ): """simple docstring""" return "".join(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.decoder.get(_lowercase , self.unk_token ) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if os.path.isdir(_lowercase ): _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _lowerCAmelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _lowerCAmelCase = 0 if " " in self.encoder: _lowerCAmelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase = self.encoder["""\n"""] del self.encoder["\n"] _lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) _lowerCAmelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) return [1] + ([0] * len(_lowercase ))
162
0
"""simple docstring""" import math import os import sys def snake_case ( A__ ): UpperCAmelCase_ : Tuple = "" try: with open(A__ ,"rb" ) as binary_file: UpperCAmelCase_ : Tuple = binary_file.read() for dat in data: UpperCAmelCase_ : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def snake_case ( A__ ,A__ ,A__ ,A__ ): lexicon.pop(A__ ) UpperCAmelCase_ : List[str] = last_match_id if math.loga(A__ ).is_integer(): for curr_key in lexicon: UpperCAmelCase_ : Optional[Any] = "0" + lexicon[curr_key] UpperCAmelCase_ : Dict = bin(A__ )[2:] def snake_case ( A__ ): UpperCAmelCase_ : Tuple = {"0": "0", "1": "1"} UpperCAmelCase_ , UpperCAmelCase_ : Any = "", "" UpperCAmelCase_ : Dict = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(A__ ,A__ ,A__ ,A__ ) index += 1 UpperCAmelCase_ : List[str] = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCAmelCase_ : Union[str, Any] = lexicon[curr_string] result += last_match_id return result def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Dict = os.path.getsize(A__ ) UpperCAmelCase_ : int = bin(A__ )[2:] UpperCAmelCase_ : Optional[int] = len(A__ ) return "0" * (length_length - 1) + file_length_binary + compressed def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[int] = 8 try: with open(A__ ,"wb" ) as opened_file: UpperCAmelCase_ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 ,len(A__ ) ,A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A__ ,2 ).to_bytes(1 ,byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[Any] = read_file_binary(A__ ) UpperCAmelCase_ : List[str] = compress_data(A__ ) UpperCAmelCase_ : Tuple = add_file_length(A__ ,A__ ) write_file_binary(A__ ,A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
95
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : List[Any] = jnp.ones((batch_size, length) ) / length return scores def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Optional[Any] = None lowerCamelCase : Optional[Any] = 20 lowerCamelCase : List[Any] = self._get_uniform_logits(batch_size=2 , length=UpperCamelCase__ ) # tweak scores to not be uniform anymore lowerCamelCase : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase : List[Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase : List[Any] = jax.nn.softmax(UpperCamelCase__ , axis=-1 ) lowerCamelCase : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 ) lowerCamelCase : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Dict = None lowerCamelCase : List[str] = 10 lowerCamelCase : Optional[int] = 2 # create ramp distribution lowerCamelCase : Dict = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCamelCase : str = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase : Union[str, Any] = 5 lowerCamelCase : Tuple = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase : Union[str, Any] = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, length) ).copy() lowerCamelCase : Union[str, Any] = top_k_warp_safety_check(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Dict = None lowerCamelCase : Tuple = 10 lowerCamelCase : int = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase : int = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase : Dict = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase : List[str] = np.exp(top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase : List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase : List[str] = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase : str = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase : Optional[Any] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : int = 20 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) # check that min length is applied at length 5 lowerCamelCase : str = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase : Any = 5 lowerCamelCase : Optional[int] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase : Union[str, Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[Any] = 15 lowerCamelCase : str = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Any = 20 lowerCamelCase : List[str] = 4 lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCamelCase : Any = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase : Any = 1 lowerCamelCase : Tuple = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase : str = 3 lowerCamelCase : Union[str, Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Optional[int] = 20 lowerCamelCase : str = 4 lowerCamelCase : str = 0 lowerCamelCase : Any = 5 lowerCamelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase : List[str] = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase : Any = 4 lowerCamelCase : Any = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[str] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase : Optional[Any] = 3 lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : str = 4 lowerCamelCase : List[str] = 10 lowerCamelCase : List[str] = 15 lowerCamelCase : Optional[int] = 2 lowerCamelCase : List[Any] = 1 lowerCamelCase : str = 15 # dummy input_ids and scores lowerCamelCase : Dict = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ ) lowerCamelCase : Tuple = input_ids.copy() lowerCamelCase : List[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors lowerCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : str = FlaxTopKLogitsWarper(3 ) lowerCamelCase : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) lowerCamelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) lowerCamelCase : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[int] = 10 # no processor list lowerCamelCase : Dict = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Tuple = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : List[str] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[int] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # with processor list lowerCamelCase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Union[str, Any] = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _lowercase ( self ) -> Any: lowerCamelCase : List[Any] = 4 lowerCamelCase : Optional[int] = 10 lowerCamelCase : Dict = 15 lowerCamelCase : Optional[int] = 2 lowerCamelCase : Dict = 1 lowerCamelCase : Optional[Any] = 15 # dummy input_ids and scores lowerCamelCase : List[Any] = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ ) lowerCamelCase : Any = input_ids.copy() lowerCamelCase : Dict = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = scores.copy() # instantiate all dist processors lowerCamelCase : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCamelCase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) lowerCamelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Dict = 10 # no processor list def run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Dict = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Tuple = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[int] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : int = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Dict = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) return scores # with processor list def run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Tuple = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) return scores lowerCamelCase : Dict = jax.jit(UpperCamelCase__ ) lowerCamelCase : Optional[int] = jax.jit(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = jitted_run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = jitted_run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
311
0
'''simple docstring''' from PIL import Image def __UpperCAmelCase ( a_: Image, a_: int ): _UpperCAmelCase : Union[str, Any] = (259 * (level + 255)) / (255 * (259 - level)) def contrast(a_: int ) -> int: return int(128 + factor * (c - 128) ) return img.point(a_ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 __a = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
705
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = DebertaVaTokenizer UpperCamelCase_ : List[str] = DebertaVaTokenizerFast UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Tuple = True def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Tuple = DebertaVaTokenizer(lowerCAmelCase__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = "this is a test" _UpperCAmelCase : Dict = "this is a test" return input_text, output_text def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = "<pad>" _UpperCAmelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(lowerCAmelCase__ ) , 3_0_0_0_1 ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = " \tHeLLo!how \n Are yoU? " _UpperCAmelCase : Optional[int] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on _UpperCAmelCase : Dict = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" pass def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Optional[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : List[str] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _UpperCAmelCase : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = "I was born in 92000, and this is falsé." _UpperCAmelCase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = " \tHeLLo!how \n Are yoU? " _UpperCAmelCase : List[str] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on _UpperCAmelCase : List[Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) _UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = "This is a test" _UpperCAmelCase : Tuple = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] _UpperCAmelCase : Tuple = ["▁", "T", "his", "▁is", "▁a", "▁test"] _UpperCAmelCase : int = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] _UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = DebertaVaTokenizerFast(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # fmt: off _UpperCAmelCase : Any = "I was born in 92000, and this is falsé." _UpperCAmelCase : Tuple = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] _UpperCAmelCase : Optional[Any] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] _UpperCAmelCase : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _UpperCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = DebertaVaTokenizer(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode("sequence builders" ) _UpperCAmelCase : int = tokenizer.encode("multi-sequence build" ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase__ , ) @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
257
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCAmelCase : List[Any] = [p / w for p, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCAmelCase : List[str] = sorted(lowerCAmelCase__ ) # declaring useful variables _lowerCAmelCase : List[str] = len(lowerCAmelCase__ ) _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : Optional[int] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCAmelCase : Optional[Any] = sorted_profit_by_weight[length - i - 1] _lowerCAmelCase : Union[str, Any] = profit_by_weight.index(lowerCAmelCase__ ) _lowerCAmelCase : Any = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) _lowerCAmelCase = [int(x) for x in input("""Input profits separated by spaces: """).split()] _lowerCAmelCase = [int(x) for x in input("""Input weights separated by spaces: """).split()] _lowerCAmelCase = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCamelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCamelCase_ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCamelCase_ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCamelCase_ , default=0 , help='cuda_id.' , ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() return args def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" if not len(lowerCamelCase_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = imgs[0].size SCREAMING_SNAKE_CASE_ : int = Image.new('RGB' , size=(cols * w, rows * h) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = grid.size for i, img in enumerate(lowerCamelCase_ ): grid.paste(lowerCamelCase_ , box=(i % cols * w, i // cols * h) ) return grid def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any]="robotic cat with wings" , lowerCamelCase_ : Optional[int]=7.5 , lowerCamelCase_ : Any=50 , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Union[str, Any]=42 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.Generator(pipeline.device ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = pipeline( lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , ).images SCREAMING_SNAKE_CASE_ : Dict = int(math.sqrt(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_grid(lowerCamelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCamelCase__ : List[str] = parse_args() # Load models and create wrapper for stable diffusion UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') UpperCamelCase__ : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') UpperCamelCase__ : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') UpperCamelCase__ : Any = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') UpperCamelCase__ : List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCamelCase__ : int = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): UpperCamelCase__ : Any = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: UpperCamelCase__ : Any = unet.to(torch.device('''cuda''', args.cuda_id)) UpperCamelCase__ : Union[str, Any] = pipeline.to(unet.device) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) UpperCamelCase__ : Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
105
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = StableDiffusionDiffEditPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __A = frozenset([] ) def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , ) snake_case_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) snake_case_ = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_zero=__UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(__UpperCamelCase ) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" snake_case_ = floats_tensor((1, 16, 16) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): snake_case_ = torch.manual_seed(__UpperCamelCase ) else: snake_case_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case_ = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case_ = torch.manual_seed(__UpperCamelCase ) else: snake_case_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case_ = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case_ = torch.manual_seed(__UpperCamelCase ) else: snake_case_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case_ = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self ): """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) snake_case_ = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ = pipe(**__UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__UpperCamelCase ) snake_case_ = self.pipeline_class.from_pretrained(__UpperCamelCase ) pipe_loaded.to(__UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=__UpperCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__UpperCamelCase , __UpperCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) snake_case_ = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ = pipe_loaded(**__UpperCamelCase )[0] snake_case_ = np.abs(output - output_loaded ).max() self.assertLess(__UpperCamelCase , 1E-4 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = self.get_dummy_mask_inputs(__UpperCamelCase ) snake_case_ = pipe.generate_mask(**__UpperCamelCase ) snake_case_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) snake_case_ = np.array([0] * 9 ) snake_case_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = self.get_dummy_inversion_inputs(__UpperCamelCase ) snake_case_ = pipe.invert(**__UpperCamelCase ).images snake_case_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case_ = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) snake_case_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) def __lowerCAmelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} snake_case_ = DPMSolverMultistepScheduler(**__UpperCamelCase ) snake_case_ = DPMSolverMultistepInverseScheduler(**__UpperCamelCase ) snake_case_ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = self.get_dummy_inversion_inputs(__UpperCamelCase ) snake_case_ = pipe.invert(**__UpperCamelCase ).images snake_case_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case_ = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) snake_case_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowerCAmelCase ( cls ): """simple docstring""" snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) snake_case_ = raw_image.convert('RGB' ).resize((7_68, 7_68) ) snake_case_ = raw_image def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = torch.manual_seed(0 ) snake_case_ = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case_ = DDIMScheduler.from_config(pipe.scheduler.config ) snake_case_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = 'a bowl of fruit' snake_case_ = 'a bowl of pears' snake_case_ = pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCamelCase , target_prompt=__UpperCamelCase , generator=__UpperCamelCase , ) snake_case_ = pipe.invert( prompt=__UpperCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCamelCase ).latents snake_case_ = pipe( prompt=__UpperCamelCase , mask_image=__UpperCamelCase , image_latents=__UpperCamelCase , generator=__UpperCamelCase , negative_prompt=__UpperCamelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0] snake_case_ = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = torch.manual_seed(0 ) snake_case_ = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = 'a bowl of fruit' snake_case_ = 'a bowl of pears' snake_case_ = pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCamelCase , target_prompt=__UpperCamelCase , generator=__UpperCamelCase , ) snake_case_ = pipe.invert( prompt=__UpperCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCamelCase , num_inference_steps=25 , ).latents snake_case_ = pipe( prompt=__UpperCamelCase , mask_image=__UpperCamelCase , image_latents=__UpperCamelCase , generator=__UpperCamelCase , negative_prompt=__UpperCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] snake_case_ = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
187
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '''▁''' UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } UpperCamelCase = { '''google/pegasus-xsum''': 512, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : Any = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Any = PegasusTokenizer __snake_case : str = ["input_ids", "attention_mask"] def __init__( self: Tuple , UpperCAmelCase_: int=None , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]="<pad>" , UpperCAmelCase_: Dict="</s>" , UpperCAmelCase_: str="<unk>" , UpperCAmelCase_: Optional[int]="<mask_2>" , UpperCAmelCase_: Optional[int]="<mask_1>" , UpperCAmelCase_: List[Any]=None , UpperCAmelCase_: Union[str, Any]=103 , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( F'additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is' F' {type(UpperCAmelCase_ )}' ) _SCREAMING_SNAKE_CASE = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) _SCREAMING_SNAKE_CASE = additional_special_tokens_extended else: _SCREAMING_SNAKE_CASE = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase ( self: Any , UpperCAmelCase_: List , UpperCAmelCase_: Optional[List] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase ( self: str , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
709
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : int = "ctrl" __snake_case : Dict = ["past_key_values"] __snake_case : List[str] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: Optional[Any] , UpperCAmelCase_: int=246_534 , UpperCAmelCase_: List[Any]=256 , UpperCAmelCase_: int=1_280 , UpperCAmelCase_: str=8_192 , UpperCAmelCase_: Optional[Any]=48 , UpperCAmelCase_: Optional[Any]=16 , UpperCAmelCase_: Optional[int]=0.1 , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: Union[str, Any]=1E-6 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Dict=True , **UpperCAmelCase_: str , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = n_positions _SCREAMING_SNAKE_CASE = n_embd _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = dff _SCREAMING_SNAKE_CASE = resid_pdrop _SCREAMING_SNAKE_CASE = embd_pdrop _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = use_cache super().__init__(**UpperCAmelCase_ )
569
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 100_0000 ): '''simple docstring''' lowercase__ : List[Any] = set(range(3 , _lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCAmelCase , _lowerCAmelCase ) ) ) lowercase__ : List[str] = [float(_lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCAmelCase , limit + 1 , _lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
599
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a , a , a ) -> List[Any]: lowercase__ : List[str] = name lowercase__ : List[str] = value lowercase__ : Tuple = weight def __repr__( self ) -> Any: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _UpperCAmelCase ( self ) -> Any: return self.value def _UpperCAmelCase ( self ) -> int: return self.name def _UpperCAmelCase ( self ) -> str: return self.weight def _UpperCAmelCase ( self ) -> int: return self.value / self.weight def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) lowercase__ : int = [] lowercase__ , lowercase__ : Dict = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
599
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Dict: A = torch.nn.Linear(1_0 ,1_0 ) A = torch.optim.SGD(model.parameters() ,0.1 ) A = Accelerator() A = accelerator.prepare(lowerCamelCase_ ) try: pickle.loads(pickle.dumps(lowerCamelCase_ ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
255
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = (DDPMParallelScheduler,) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> List[Any]: A = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**lowerCamelCase_ ) return config def UpperCamelCase__ ( self ) -> Tuple: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Dict: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase_ ,beta_end=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> int: self.check_over_configs(thresholding=lowerCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase_ ,prediction_type=lowerCamelCase_ ,sample_max_value=lowerCamelCase_ ,) def UpperCamelCase__ ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] ,dim=0 ) A = torch.arange(lowerCamelCase_ )[0:3, None].repeat(1 ,lowerCamelCase_ ) A = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) A = scheduler.batch_step_no_noise(lowerCamelCase_ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 11_53.18_33 ) < 1E-2 assert abs(result_mean.item() - 0.50_05 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[int]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual A = model(lowerCamelCase_ ,lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def UpperCamelCase__ ( self ) -> int: A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type="""v_prediction""" ) A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual A = model(lowerCamelCase_ ,lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) A = scheduler.timesteps for i, timestep in enumerate(lowerCamelCase_ ): if i == len(lowerCamelCase_ ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(lowerCamelCase_ ) A = prev_t.item() self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCamelCase_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 1, 0] A = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ ,timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
255
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''SpeechT5FeatureExtractor''' __lowercase : List[str] = '''SpeechT5Tokenizer''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: super().__init__(__UpperCAmelCase ,__UpperCAmelCase ) def __call__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = kwargs.pop("""audio""" ,__UpperCAmelCase ) lowerCAmelCase__ : Any = kwargs.pop("""text""" ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = kwargs.pop("""text_target""" ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = kwargs.pop("""audio_target""" ,__UpperCAmelCase ) lowerCAmelCase__ : Any = kwargs.pop("""sampling_rate""" ,__UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: lowerCAmelCase__ : Union[str, Any] = self.feature_extractor(__UpperCAmelCase ,*__UpperCAmelCase ,sampling_rate=__UpperCAmelCase ,**__UpperCAmelCase ) elif text is not None: lowerCAmelCase__ : List[Any] = self.tokenizer(__UpperCAmelCase ,**__UpperCAmelCase ) else: lowerCAmelCase__ : int = None if audio_target is not None: lowerCAmelCase__ : Tuple = self.feature_extractor(audio_target=__UpperCAmelCase ,*__UpperCAmelCase ,sampling_rate=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = targets["""input_values"""] elif text_target is not None: lowerCAmelCase__ : Tuple = self.tokenizer(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : str = targets["""input_ids"""] else: lowerCAmelCase__ : Any = None if inputs is None: return targets if targets is not None: lowerCAmelCase__ : Dict = labels lowerCAmelCase__ : Optional[Any] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase__ : List[str] = decoder_attention_mask return inputs def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: lowerCAmelCase__ : Union[str, Any] = kwargs.pop("""input_values""" ,__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop("""input_ids""" ,__UpperCAmelCase ) lowerCAmelCase__ : str = kwargs.pop("""labels""" ,__UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: lowerCAmelCase__ : Tuple = self.feature_extractor.pad(__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ) elif input_ids is not None: lowerCAmelCase__ : Optional[Any] = self.tokenizer.pad(__UpperCAmelCase ,**__UpperCAmelCase ) else: lowerCAmelCase__ : Dict = None if labels is not None: if "input_ids" in labels or (isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and "input_ids" in labels[0]): lowerCAmelCase__ : str = self.tokenizer.pad(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = targets["""input_ids"""] else: lowerCAmelCase__ : int = self.feature_extractor.feature_size lowerCAmelCase__ : Optional[Any] = self.feature_extractor.num_mel_bins lowerCAmelCase__ : Dict = self.feature_extractor.pad(__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = feature_size_hack lowerCAmelCase__ : int = targets["""input_values"""] else: lowerCAmelCase__ : Tuple = None if inputs is None: return targets if targets is not None: lowerCAmelCase__ : Optional[Any] = labels lowerCAmelCase__ : Dict = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase__ : Any = decoder_attention_mask return inputs def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: return self.tokenizer.decode(*__UpperCAmelCase ,**__UpperCAmelCase )
565
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva _lowerCAmelCase = '''''' _lowerCAmelCase = '''''' _lowerCAmelCase = '''''' _lowerCAmelCase = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = get_dataset(UpperCamelCase , UpperCamelCase ) print("""Processing...""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = update_image_and_anno(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for index, image in enumerate(UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase__ : List[Any] = random_chars(32 ) lowerCAmelCase__ : Optional[Any] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCAmelCase__ : Dict = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(UpperCamelCase )} with {file_name}""" ) lowerCAmelCase__ : Tuple = [] for anno in new_annos[index]: lowerCAmelCase__ : Union[str, Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase ) with open(f"""/{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ : Tuple = [] for label_file in glob.glob(os.path.join(UpperCamelCase , """*.txt""" ) ): lowerCAmelCase__ : Tuple = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(UpperCamelCase ) as in_file: lowerCAmelCase__ : Any = in_file.readlines() lowerCAmelCase__ : str = os.path.join(UpperCamelCase , f"""{label_name}.jpg""" ) lowerCAmelCase__ : Tuple = [] for obj_list in obj_lists: lowerCAmelCase__ : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase ) labels.append(UpperCamelCase ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 ): """simple docstring""" lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Any = [] lowerCAmelCase__ : List[str] = [] for idx in range(len(UpperCamelCase ) ): lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Optional[int] = img_list[idx] path_list.append(UpperCamelCase ) lowerCAmelCase__ : List[Any] = anno_list[idx] lowerCAmelCase__ : Dict = cva.imread(UpperCamelCase ) if flip_type == 1: lowerCAmelCase__ : List[str] = cva.flip(UpperCamelCase , UpperCamelCase ) for bbox in img_annos: lowerCAmelCase__ : Dict = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCAmelCase__ : Union[str, Any] = cva.flip(UpperCamelCase , UpperCamelCase ) for bbox in img_annos: lowerCAmelCase__ : Any = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase ) new_imgs_list.append(UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase__ : Tuple = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase ) for _ in range(UpperCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
565
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __snake_case: List[str] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = 8 , **lowerCAmelCase_ , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) a_ : Optional[Any] = do_rescale a_ : Any = rescale_factor a_ : Optional[int] = do_pad a_ : Union[str, Any] = pad_size def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ): '''simple docstring''' return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ): '''simple docstring''' a_ : Any = get_image_size(lowerCAmelCase_ ) a_ : Union[str, Any] = (old_height // size + 1) * size - old_height a_ : str = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): '''simple docstring''' a_ : Dict = do_rescale if do_rescale is not None else self.do_rescale a_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : str = do_pad if do_pad is not None else self.do_pad a_ : Optional[Any] = pad_size if pad_size is not None else self.pad_size a_ : Dict = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. a_ : Any = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_rescale: a_ : Optional[int] = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_pad: a_ : Any = [self.pad(lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] a_ : Dict = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] a_ : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
707
'''simple docstring''' def _snake_case ( A_ : list ): """simple docstring""" if len(A_ ) <= 1: return [tuple(A_ )] a_ : List[Any] = [] def generate(A_ : int , A_ : list ): a_ : List[Any] = [0] * n res.append(tuple(A_ ) ) a_ : List[str] = 0 while i < n: if c[i] < i: if i % 2 == 0: a_ , a_ : Union[str, Any] = arr[i], arr[0] else: a_ , a_ : List[str] = arr[i], arr[c[i]] res.append(tuple(A_ ) ) c[i] += 1 a_ : Optional[Any] = 0 else: a_ : Union[str, Any] = 0 i += 1 generate(len(A_ ) , A_ ) return res if __name__ == "__main__": __snake_case: Dict = input("Enter numbers separated by a comma:\n").strip() __snake_case: Optional[Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
460
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = "altclip_text_model" def __init__( self , _A=250002 , _A=1024 , _A=24 , _A=16 , _A=4096 , _A="gelu" , _A=0.1 , _A=0.1 , _A=514 , _A=1 , _A=0.02 , _A=0.02 , _A=1e-05 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=768 , **_A , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : int = initializer_factor _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : List[str] = position_embedding_type _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : int = project_dim class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = "altclip_vision_model" def __init__( self , _A=768 , _A=3072 , _A=512 , _A=12 , _A=12 , _A=3 , _A=224 , _A=32 , _A="quick_gelu" , _A=1e-5 , _A=0.0 , _A=0.02 , _A=1.0 , **_A , ) -> Optional[int]: """simple docstring""" super().__init__(**_A) _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : int = projection_dim _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : int = num_channels _UpperCAmelCase : int = patch_size _UpperCAmelCase : Dict = image_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Any = initializer_factor _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = hidden_act @classmethod def snake_case__ ( cls , _A , **_A) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_A) _UpperCAmelCase : Union[str, Any] = cls.get_config_dict(_A , **_A) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''') == "altclip": _UpperCAmelCase : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(_A , **_A) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Tuple = "altclip" _SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self , _A=None , _A=None , _A=768 , _A=2.6592 , **_A) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = kwargs.pop('''text_config_dict''' , _A) _UpperCAmelCase : int = kwargs.pop('''vision_config_dict''' , _A) super().__init__(**_A) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _UpperCAmelCase : Optional[Any] = {} # This is the complete result when using `text_config_dict`. _UpperCAmelCase : Optional[Any] = AltCLIPTextConfig(**_A).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _UpperCAmelCase : Union[str, Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict[\"{key}\"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _UpperCAmelCase : int = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config[\"{key}\"]` will be overriden.''' ) logger.warning(_A) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: _UpperCAmelCase : int = {} # This is the complete result when using `vision_config_dict`. _UpperCAmelCase : Tuple = AltCLIPVisionConfig(**_A).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _UpperCAmelCase : Optional[Any] = { str(_A): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _UpperCAmelCase : str = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict[\"{key}\"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _UpperCAmelCase : List[Any] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config[\"{key}\"]` will be overriden.''' ) logger.warning(_A) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: _UpperCAmelCase : Any = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''') if vision_config is None: _UpperCAmelCase : Dict = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''') _UpperCAmelCase : Union[str, Any] = AltCLIPTextConfig(**_A) _UpperCAmelCase : str = AltCLIPVisionConfig(**_A) _UpperCAmelCase : str = projection_dim _UpperCAmelCase : Any = logit_scale_init_value _UpperCAmelCase : Union[str, Any] = 1.0 @classmethod def snake_case__ ( cls , _A , _A , **_A) -> List[str]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_A) def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__) _UpperCAmelCase : int = self.text_config.to_dict() _UpperCAmelCase : Any = self.vision_config.to_dict() _UpperCAmelCase : Any = self.__class__.model_type return output
485
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCAmelCase_ : List[str] = CLIPTextModel(_A ) UpperCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : List[str] , _A : Tuple , _A : str=0 ) -> int: UpperCAmelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : str = torch.manual_seed(_A ) else: UpperCAmelCase_ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : int = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : Tuple = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : str = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Union[str, Any] = sd_pipe(**_A ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : int ) -> str: UpperCAmelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Dict = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = '''french fries''' UpperCAmelCase_ : Optional[Any] = sd_pipe(**_A , negative_prompt=_A ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Dict ) -> str: UpperCAmelCase_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Any = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : int = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Any = [inputs['''prompt''']] * 2 UpperCAmelCase_ : int = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 UpperCAmelCase_ : int = torch.from_numpy(_A ).unsqueeze(0 ).to(_A ) UpperCAmelCase_ : List[str] = image / 2 + 0.5 UpperCAmelCase_ : str = image.permute(0 , 3 , 1 , 2 ) UpperCAmelCase_ : Any = image.repeat(2 , 1 , 1 , 1 ) UpperCAmelCase_ : List[Any] = sd_pipe(**_A ).images UpperCAmelCase_ : str = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Tuple = self.get_dummy_components() UpperCAmelCase_ : List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) UpperCAmelCase_ : List[Any] = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = sd_pipe(**_A ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [round(_A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_A ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Any = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : str ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.get_dummy_components() UpperCAmelCase_ : Tuple = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase_ : Any = VaeImageProcessor(do_resize=_A , do_normalize=_A ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = pipe(**self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) )[0] UpperCAmelCase_ : Union[str, Any] = components['''vae'''] UpperCAmelCase_ : Any = self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase_ : int = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCAmelCase_ : List[Any] = pipe(**_A )[0] UpperCAmelCase_ : int = np.abs(out - out_latents_inputs ).max() self.assertLess(_A , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[str] , _A : Optional[Any]=0 ) -> List[Any]: UpperCAmelCase_ : Dict = torch.manual_seed(_A ) UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) UpperCAmelCase_ : Optional[int] = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : List[str] = self.get_inputs() UpperCAmelCase_ : int = pipe(**_A ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) UpperCAmelCase_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : List[Any] = self.get_inputs() UpperCAmelCase_ : str = pipe(**_A ).images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) UpperCAmelCase_ : str = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : Any = self.get_inputs() UpperCAmelCase_ : Any = pipe(**_A ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Dict = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : List[str] = 0 def callback_fn(_A : int , _A : int , _A : torch.FloatTensor ) -> None: UpperCAmelCase_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ : Optional[Any] = latents[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCAmelCase_ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ : Dict = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : Any = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : Dict = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : int ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Dict = self.get_inputs() UpperCAmelCase_ : List[str] = pipe(**_A ) UpperCAmelCase_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A ( self : str ) -> int: UpperCAmelCase_ : List[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_ : List[str] = inputs['''image'''].resize((5_04, 5_04) ) UpperCAmelCase_ : int = '''timbrooks/instruct-pix2pix''' UpperCAmelCase_ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( _A , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase_ : Optional[Any] = pipe(**_A ) UpperCAmelCase_ : Union[str, Any] = output.images[0] UpperCAmelCase_ : List[str] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) UpperCAmelCase_ : List[str] = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
541
0
"""simple docstring""" import torch def _lowerCAmelCase ( ) ->Optional[int]: if torch.cuda.is_available(): A__ : str = torch.cuda.device_count() else: A__ : str = 0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
704
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } A_ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str] ) ->str: for attribute in key.split(""".""" ): A__ : Any = getattr(UpperCAmelCase__, UpperCAmelCase__ ) if weight_type is not None: A__ : Union[str, Any] = getattr(UpperCAmelCase__, UpperCAmelCase__ ).shape else: A__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A__ : List[Any] = value elif weight_type == "weight_g": A__ : Any = value elif weight_type == "weight_v": A__ : Optional[int] = value elif weight_type == "bias": A__ : Any = value else: A__ : Any = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any ) ->Union[str, Any]: A__ : Dict = [] A__ : int = fairseq_model.state_dict() A__ : Dict = hf_model.feature_extractor A__ : Any = hf_model.adapter for name, value in fairseq_dict.items(): A__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, hf_model.config.feat_extract_norm == """group""", ) A__ : Union[str, Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A__ : List[Any] = True if "*" in mapped_key: A__ : Union[str, Any] = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] A__ : Union[str, Any] = mapped_key.replace("""*""", UpperCAmelCase__ ) if "weight_g" in name: A__ : List[str] = """weight_g""" elif "weight_v" in name: A__ : Optional[Any] = """weight_v""" elif "bias" in name: A__ : Optional[int] = """bias""" elif "weight" in name: A__ : int = """weight""" else: A__ : Optional[Any] = None set_recursively(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any ) ->List[Any]: A__ : Dict = full_name.split("""conv_layers.""" )[-1] A__ : Optional[int] = name.split(""".""" ) A__ : int = int(items[0] ) A__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A__ : Optional[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A__ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict ) ->str: A__ : Tuple = full_name.split("""adaptor.""" )[-1] A__ : Optional[int] = name.split(""".""" ) if items[1].isdigit(): A__ : Optional[Any] = int(items[1] ) else: A__ : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A__ : Union[str, Any] = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A__ : Tuple = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A__ : str = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A__ : Union[str, Any] = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A__ : Dict = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A__ : Optional[int] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[Any]: A__ , A__ : Union[str, Any] = emb.weight.shape A__ : List[str] = nn.Linear(UpperCAmelCase__, UpperCAmelCase__, bias=UpperCAmelCase__ ) A__ : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, ) ->str: A__ : Tuple = WavaVecaConfig.from_pretrained( UpperCAmelCase__, add_adapter=UpperCAmelCase__, adapter_stride=UpperCAmelCase__, adapter_kernel_size=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, output_hidden_size=UpperCAmelCase__, ) A__ : List[Any] = MBartConfig.from_pretrained(UpperCAmelCase__ ) # load model A__ , A__ , A__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, }, ) A__ : List[Any] = model[0].eval() # load feature extractor A__ : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__, use_auth_token=UpperCAmelCase__ ) # set weights for wav2vec2 encoder A__ : Dict = WavaVecaModel(UpperCAmelCase__ ) recursively_load_weights_wavaveca(model.encoder, UpperCAmelCase__ ) # load decoder weights A__ : Any = MBartForCausalLM(UpperCAmelCase__ ) A__ , A__ : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=UpperCAmelCase__ ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A__ : Dict = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__, decoder=UpperCAmelCase__ ) A__ : Optional[Any] = False A__ : Optional[Any] = MBartaaTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(UpperCAmelCase__ ) A__ : Dict = hf_wavavec.config.to_dict() A__ : List[Any] = tokenizer.pad_token_id A__ : Optional[Any] = tokenizer.bos_token_id A__ : List[Any] = tokenizer.eos_token_id A__ : Tuple = """mbart50""" A__ : List[str] = """wav2vec2""" A__ : Optional[int] = tokenizer.eos_token_id A__ : int = 2_5_0_0_0_4 A__ : Dict = tokenizer.eos_token_id A__ : str = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=25_0004, type=int, help='''`decoder_start_token_id` of model config''') A_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
498
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'vocab_file': 'sentencepiece.model'} UpperCAmelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCAmelCase = { 'google/rembert': 256, } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_=False , A_=True , A_=True , A_="[CLS]" , A_="[SEP]" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , **A_ , ) -> Union[str, Any]: super().__init__( do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(A_ ) @property def __snake_case ( self ) -> str: return len(self.sp_model ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , A_ ) -> Union[str, Any]: lowerCAmelCase = d lowerCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __snake_case ( self , A_ , A_=False ) -> Union[str, Any]: lowerCAmelCase = self.sp_model.EncodeAsPieces(A_ ) return pieces def __snake_case ( self , A_ ) -> List[Any]: return self.sp_model.PieceToId(A_ ) def __snake_case ( self , A_ ) -> Optional[int]: return self.sp_model.IdToPiece(A_ ) def __snake_case ( self , A_ ) -> Tuple: lowerCAmelCase = self.sp_model.decode_pieces(A_ ) return out_string def __snake_case ( self , A_ , A_ = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def __snake_case ( self , A_ , A_ = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(A_ ) ) return lowerCAmelCase = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
433
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = "git_vision_model" def __init__( self , A_=768 , A_=3072 , A_=12 , A_=12 , A_=3 , A_=224 , A_=16 , A_="quick_gelu" , A_=1e-5 , A_=0.0 , A_=0.0_2 , **A_ , ) -> Dict: super().__init__(**A_ ) lowerCAmelCase = hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = num_channels lowerCAmelCase = patch_size lowerCAmelCase = image_size lowerCAmelCase = initializer_range lowerCAmelCase = attention_dropout lowerCAmelCase = layer_norm_eps lowerCAmelCase = hidden_act @classmethod def __snake_case ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) lowerCAmelCase, lowerCAmelCase = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = "git" def __init__( self , A_=None , A_=3_0522 , A_=768 , A_=6 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=1024 , A_=0.0_2 , A_=1e-12 , A_=0 , A_="absolute" , A_=True , A_=False , A_=101 , A_=102 , A_=None , **A_ , ) -> Tuple: super().__init__(bos_token_id=A_ , eos_token_id=A_ , pad_token_id=A_ , **A_ ) if vision_config is None: lowerCAmelCase = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) lowerCAmelCase = GitVisionConfig(**A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = tie_word_embeddings lowerCAmelCase = num_image_with_embedding lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id def __snake_case ( self ) -> List[Any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.vision_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
433
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Any = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _snake_case = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _snake_case = logging.WARNING def __snake_case ( ): """simple docstring""" _lowerCAmelCase = os.getenv('DATASETS_VERBOSITY' , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def __snake_case ( ): """simple docstring""" return __name__.split('.' )[0] def __snake_case ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def __snake_case ( ): """simple docstring""" _lowerCAmelCase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def __snake_case ( ): """simple docstring""" _lowerCAmelCase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def __snake_case ( SCREAMING_SNAKE_CASE: Optional[str] = None ): """simple docstring""" if name is None: _lowerCAmelCase = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" _lowerCAmelCase = False def __snake_case ( ): """simple docstring""" _lowerCAmelCase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ) -> str: # pylint: disable=unused-argument """simple docstring""" _lowerCAmelCase = args[0] if args else None def __iter__( self : Optional[Any] ) -> List[str]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : List[str] , UpperCAmelCase_ : Tuple ) -> str: """simple docstring""" def empty_fn(*UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int ) -> Optional[int]: """simple docstring""" return self def __exit__( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> Dict: """simple docstring""" return _snake_case = True class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : List[Any] , *UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=False , **UpperCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCAmelCase_ , **UpperCAmelCase_ ) else: return EmptyTqdm(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ) -> Dict: """simple docstring""" _lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _snake_case = _tqdm_cls() def __snake_case ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def __snake_case ( ): """simple docstring""" global _tqdm_active _lowerCAmelCase = True def __snake_case ( ): """simple docstring""" global _tqdm_active _lowerCAmelCase = False
580
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE_: Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } SCREAMING_SNAKE_CASE_: Optional[Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} SCREAMING_SNAKE_CASE_: Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_: Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_: Optional[int] = frozenset([] ) SCREAMING_SNAKE_CASE_: List[str] = True @property def __lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCAmelCase = 1 _lowerCAmelCase = 4 _lowerCAmelCase = (16, 16) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image def __lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=UpperCAmelCase_ , only_cross_attention=UpperCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _lowerCAmelCase = EulerDiscreteScheduler(prediction_type='sample' ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='quick_gelu' , projection_dim=512 , ) _lowerCAmelCase = CLIPTextModel(UpperCAmelCase_ ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=0 ) -> Optional[Any]: """simple docstring""" if str(UpperCAmelCase_ ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(UpperCAmelCase_ ) else: _lowerCAmelCase = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCAmelCase = 'cpu' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase = pipe(**UpperCAmelCase_ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _lowerCAmelCase = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3 ) def __lowerCamelCase ( self : str ) -> int: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __lowerCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __lowerCamelCase ( self : int ) -> List[str]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCamelCase ( self : Dict ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**UpperCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase = 2 _lowerCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCAmelCase = getattr(UpperCAmelCase_ , scheduler_enum.name ) _lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCAmelCase = pipe(**UpperCAmelCase_ )[0] outputs.append(UpperCAmelCase_ ) assert check_same_shape(UpperCAmelCase_ ) @require_torch_gpu @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = torch.manual_seed(33 ) _lowerCAmelCase = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _lowerCAmelCase = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _lowerCAmelCase = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='latent' ).images _lowerCAmelCase = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _lowerCAmelCase = torch.manual_seed(33 ) _lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _lowerCAmelCase = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _lowerCAmelCase = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
580
1
'''simple docstring''' import os import sys import transformers lowercase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
708
'''simple docstring''' from collections.abc import Generator def UpperCAmelCase_ ( ): '''simple docstring''' a_ , a_ =0, 1 while True: a_ , a_ =b, a + b yield b def UpperCAmelCase_ ( lowercase__ = 1_0_0_0 ): '''simple docstring''' a_ =1 a_ =fibonacci_generator() while len(str(next(lowercase__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
41
0
import flax.linen as nn import jax import jax.numpy as jnp class __UpperCamelCase ( nn.Module ): __A : int __A : jnp.dtype = jnp.floataa def UpperCamelCase( self ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape _UpperCAmelCase = jax.image.resize( _UpperCamelCase , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _UpperCAmelCase = self.conv(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): __A : int __A : jnp.dtype = jnp.floataa def UpperCamelCase( self ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _UpperCamelCase ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _UpperCAmelCase = self.conv(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): __A : int __A : int = None __A : float = 0.0 __A : bool = None __A : jnp.dtype = jnp.floataa def UpperCamelCase( self ): _UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Conv( _UpperCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = nn.Dense(_UpperCamelCase , dtype=self.dtype ) _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Dropout(self.dropout_prob ) _UpperCAmelCase = nn.Conv( _UpperCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCAmelCase = None if use_nin_shortcut: _UpperCAmelCase = nn.Conv( _UpperCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): _UpperCAmelCase = hidden_states _UpperCAmelCase = self.norma(_UpperCamelCase ) _UpperCAmelCase = nn.swish(_UpperCamelCase ) _UpperCAmelCase = self.conva(_UpperCamelCase ) _UpperCAmelCase = self.time_emb_proj(nn.swish(_UpperCamelCase ) ) _UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(_UpperCamelCase , 1 ) , 1 ) _UpperCAmelCase = hidden_states + temb _UpperCAmelCase = self.norma(_UpperCamelCase ) _UpperCAmelCase = nn.swish(_UpperCamelCase ) _UpperCAmelCase = self.dropout(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = self.conva(_UpperCamelCase ) if self.conv_shortcut is not None: _UpperCAmelCase = self.conv_shortcut(_UpperCamelCase ) return hidden_states + residual
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) _lowercase = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = '''focalnet''' def __init__( self , _lowercase=224 , _lowercase=4 , _lowercase=3 , _lowercase=96 , _lowercase=False , _lowercase=[192, 384, 768, 768] , _lowercase=[2, 2, 6, 2] , _lowercase=[2, 2, 2, 2] , _lowercase=[3, 3, 3, 3] , _lowercase="gelu" , _lowercase=4.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=False , _lowercase=1e-4 , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=0.02 , _lowercase=1e-5 , _lowercase=32 , _lowercase=None , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = use_conv_embed _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = focal_levels _lowerCAmelCase = focal_windows _lowerCAmelCase = hidden_act _lowerCAmelCase = mlp_ratio _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = use_layerscale _lowerCAmelCase = layerscale_value _lowerCAmelCase = use_post_layernorm _lowerCAmelCase = use_post_layernorm_in_modulation _lowerCAmelCase = normalize_modulator _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = encoder_stride _lowerCAmelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
162
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[Any] = DDIMPipeline _lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowercase : Any = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } _lowercase : Tuple = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowercase : Tuple = False def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""unet""": unet, """scheduler""": scheduler} return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs(_lowercase ) _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _lowerCAmelCase = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def _lowercase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def _lowercase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """google/ddpm-cifar10-32""" _lowerCAmelCase = UNetaDModel.from_pretrained(_lowercase ) _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddim.to(_lowercase ) ddim.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ddim(generator=_lowercase , eta=0.0 , output_type="""numpy""" ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """google/ddpm-ema-bedroom-256""" _lowerCAmelCase = UNetaDModel.from_pretrained(_lowercase ) _lowerCAmelCase = DDIMScheduler.from_pretrained(_lowercase ) _lowerCAmelCase = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddpm.to(_lowercase ) ddpm.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ddpm(generator=_lowercase , output_type="""numpy""" ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
162
1
def snake_case (UpperCamelCase : Optional[int] ): '''simple docstring''' return "".join([hex(__lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(__lowerCAmelCase )] ) def snake_case (UpperCamelCase : List[str] ): '''simple docstring''' if (len(__lowerCAmelCase ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__lowerCAmelCase ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
165
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> list[float]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Tuple = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__lowerCAmelCase ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__lowerCAmelCase ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__lowerCAmelCase ) if len(__lowerCAmelCase ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """Number of initial values must be equal to number of rows in coefficient """ F'''matrix but received {len(__lowerCAmelCase )} and {rowsa}''' ) raise ValueError(__lowerCAmelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = table.shape strictly_diagonally_dominant(__lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = [] for row in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[str] = 0 for col in range(__lowerCAmelCase ): if col == row: SCREAMING_SNAKE_CASE__ : int = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : Any = (temp + val) / denom new_val.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = new_val return [float(__lowerCAmelCase ) for i in new_val] def _lowercase ( __lowerCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = table.shape SCREAMING_SNAKE_CASE__ : str = True for i in range(0 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
680
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A = None A = logging.get_logger(__name__) A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } A = { """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off A = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = ["input_ids", "attention_mask"] lowercase_ = MBartTokenizer lowercase_ = [] lowercase_ = [] def __init__( self : int , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : Any="<s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : Any="<pad>" , UpperCamelCase_ : Any="<mask>" , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else mask_token super().__init__( vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : Dict = False if not self.vocab_file else True __UpperCAmelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) __UpperCAmelCase : List[str] = { lang_code: self.convert_tokens_to_ids(UpperCamelCase_) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase : Tuple = src_lang if src_lang is not None else "en_XX" __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(self._src_lang) __UpperCAmelCase : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self : str): """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : Dict , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : Optional[int]): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") __UpperCAmelCase : Dict = src_lang __UpperCAmelCase : int = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : Any = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : str = tgt_lang_id return inputs def a_ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str = "en_XX" , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "ro_RO" , **UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" __UpperCAmelCase : Tuple = src_lang __UpperCAmelCase : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_) def a_ ( self : str): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self : int): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self : List[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : Dict = [] __UpperCAmelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def a_ ( self : Optional[Any] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : int = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : int = [] __UpperCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def a_ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_): copyfile(self.vocab_file , UpperCamelCase_) return (out_vocab_file,)
487
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : List[str] = tau * frequency / samplerate __UpperCAmelCase : Optional[int] = sin(UpperCamelCase ) __UpperCAmelCase : Any = cos(UpperCamelCase ) __UpperCAmelCase : Tuple = _sin / (2 * q_factor) __UpperCAmelCase : Optional[Any] = (1 - _cos) / 2 __UpperCAmelCase : Any = 1 - _cos __UpperCAmelCase : List[str] = 1 + alpha __UpperCAmelCase : List[Any] = -2 * _cos __UpperCAmelCase : Dict = 1 - alpha __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : int = tau * frequency / samplerate __UpperCAmelCase : Optional[Any] = sin(UpperCamelCase ) __UpperCAmelCase : Dict = cos(UpperCamelCase ) __UpperCAmelCase : Tuple = _sin / (2 * q_factor) __UpperCAmelCase : Dict = (1 + _cos) / 2 __UpperCAmelCase : Tuple = -1 - _cos __UpperCAmelCase : Any = 1 + alpha __UpperCAmelCase : int = -2 * _cos __UpperCAmelCase : int = 1 - alpha __UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Tuple = tau * frequency / samplerate __UpperCAmelCase : Tuple = sin(UpperCamelCase ) __UpperCAmelCase : List[str] = cos(UpperCamelCase ) __UpperCAmelCase : List[Any] = _sin / (2 * q_factor) __UpperCAmelCase : Any = _sin / 2 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : int = -ba __UpperCAmelCase : Dict = 1 + alpha __UpperCAmelCase : List[str] = -2 * _cos __UpperCAmelCase : int = 1 - alpha __UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : str = tau * frequency / samplerate __UpperCAmelCase : List[Any] = sin(UpperCamelCase ) __UpperCAmelCase : Any = cos(UpperCamelCase ) __UpperCAmelCase : List[str] = _sin / (2 * q_factor) __UpperCAmelCase : Optional[Any] = 1 - alpha __UpperCAmelCase : Tuple = -2 * _cos __UpperCAmelCase : List[Any] = 1 + alpha __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Dict = tau * frequency / samplerate __UpperCAmelCase : Optional[int] = sin(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = cos(UpperCamelCase ) __UpperCAmelCase : List[Any] = _sin / (2 * q_factor) __UpperCAmelCase : List[Any] = 10 ** (gain_db / 40) __UpperCAmelCase : List[str] = 1 + alpha * big_a __UpperCAmelCase : Optional[Any] = -2 * _cos __UpperCAmelCase : int = 1 - alpha * big_a __UpperCAmelCase : Optional[int] = 1 + alpha / big_a __UpperCAmelCase : Union[str, Any] = -2 * _cos __UpperCAmelCase : Dict = 1 - alpha / big_a __UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : str = tau * frequency / samplerate __UpperCAmelCase : int = sin(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = cos(UpperCamelCase ) __UpperCAmelCase : str = _sin / (2 * q_factor) __UpperCAmelCase : str = 10 ** (gain_db / 40) __UpperCAmelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos __UpperCAmelCase : Optional[int] = (big_a + 1) + (big_a - 1) * _cos __UpperCAmelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos __UpperCAmelCase : List[Any] = (big_a - 1) + (big_a + 1) * _cos __UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCamelCase ) * alpha __UpperCAmelCase : Tuple = big_a * (pmc + aaa) __UpperCAmelCase : Union[str, Any] = 2 * big_a * mpc __UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) __UpperCAmelCase : Any = ppmc + aaa __UpperCAmelCase : Dict = -2 * pmpc __UpperCAmelCase : Any = ppmc - aaa __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Dict = tau * frequency / samplerate __UpperCAmelCase : Optional[int] = sin(UpperCamelCase ) __UpperCAmelCase : Dict = cos(UpperCamelCase ) __UpperCAmelCase : str = _sin / (2 * q_factor) __UpperCAmelCase : int = 10 ** (gain_db / 40) __UpperCAmelCase : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos __UpperCAmelCase : Optional[int] = (big_a + 1) + (big_a - 1) * _cos __UpperCAmelCase : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos __UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos __UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCamelCase ) * alpha __UpperCAmelCase : Tuple = big_a * (ppmc + aaa) __UpperCAmelCase : Any = -2 * big_a * pmpc __UpperCAmelCase : int = big_a * (ppmc - aaa) __UpperCAmelCase : int = pmc + aaa __UpperCAmelCase : Tuple = 2 * mpc __UpperCAmelCase : Union[str, Any] = pmc - aaa __UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
487
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Tuple = logging.get_logger(__name__) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" ,_snake_case ) if matches: SCREAMING_SNAKE_CASE__ : Optional[Any] = float(matches[1] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". SCREAMING_SNAKE_CASE__ : int = 1_001 SCREAMING_SNAKE_CASE__ : List[Any] = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ : Any = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ : Optional[Any] = json.load(open(hf_hub_download(_snake_case ,_snake_case ,repo_type="""dataset""" ) ,"""r""" ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {int(_snake_case ) + 1: v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Any = """background""" SCREAMING_SNAKE_CASE__ : int = idalabel SCREAMING_SNAKE_CASE__ : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ) return im @torch.no_grad() def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case=False ): SCREAMING_SNAKE_CASE__ : List[Any] = get_mobilenet_va_config(_snake_case ) # Load 🤗 model SCREAMING_SNAKE_CASE__ : Optional[int] = MobileNetVaForImageClassification(_snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_snake_case ,_snake_case ,_snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} ,size={"""shortest_edge""": config.image_size + 32} ,) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor(images=prepare_img() ,return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": SCREAMING_SNAKE_CASE__ : str = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: SCREAMING_SNAKE_CASE__ : Tuple = None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,_snake_case ,atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("""Pushing to the hub...""" ) SCREAMING_SNAKE_CASE__ : List[Any] = """google/""" + model_name image_processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
545
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : Tuple = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
545
1
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np _lowerCamelCase = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) _lowerCamelCase = None def a__ ( ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=_SCREAMING_SNAKE_CASE , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_SCREAMING_SNAKE_CASE , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" def remove_articles(_SCREAMING_SNAKE_CASE : Optional[int] ): return ARTICLES_REGEX.sub(" " , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : Optional[int] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase_ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = get_tokens(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = get_tokens(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase_ : Dict = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = (2 * precision * recall) / (precision + recall) return fa def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ : Union[str, Any] = qa["id"] UpperCAmelCase_ : str = [t for t in qa["answers"]["text"] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase_ : int = [""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue UpperCAmelCase_ : Dict = preds[qid] # Take max over all gold answers UpperCAmelCase_ : Any = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) UpperCAmelCase_ : str = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ : int = {} for qid, s in scores.items(): UpperCAmelCase_ : Dict = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase_ : Tuple = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase_ : Any = s return new_scores def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=None ) -> int: """simple docstring""" if not qid_list: UpperCAmelCase_ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: UpperCAmelCase_ : str = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for k in new_eval: UpperCAmelCase_ : int = new_eval[k] def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="b" , alpha=0.2 , where="post" ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) UpperCAmelCase_ : List[Any] = 0.0 UpperCAmelCase_ : Dict = 1.0 UpperCAmelCase_ : Union[str, Any] = 0.0 UpperCAmelCase_ : Dict = [1.0] UpperCAmelCase_ : List[str] = [0.0] UpperCAmelCase_ : Any = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase_ : Optional[Any] = true_pos / float(i + 1 ) UpperCAmelCase_ : Any = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase_ : Optional[int] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) UpperCAmelCase_ : Tuple = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) UpperCAmelCase_ : Union[str, Any] = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} UpperCAmelCase_ : Optional[int] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "pr_exact" ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "pr_f1" ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "pr_oracle" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" if not qid_list: return UpperCAmelCase_ : List[Any] = [na_probs[k] for k in qid_list] UpperCAmelCase_ : Dict = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase_ : List[str] = num_no_ans UpperCAmelCase_ : Optional[int] = cur_score UpperCAmelCase_ : Any = 0.0 UpperCAmelCase_ : List[str] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase_ : Tuple = scores[qid] else: if preds[qid]: UpperCAmelCase_ : int = -1 else: UpperCAmelCase_ : Optional[int] = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase_ : int = cur_score UpperCAmelCase_ : Tuple = na_probs[qid] return 100.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ : int = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = best_exact UpperCAmelCase_ : int = exact_thresh UpperCAmelCase_ : int = best_fa UpperCAmelCase_ : Union[str, Any] = fa_thresh def a__ ( ) -> str: """simple docstring""" with open(OPTS.data_file ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = dataset_json["data"] with open(OPTS.pred_file ) as f: UpperCAmelCase_ : int = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase_ : Dict = json.load(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[Any] = {k: 0.0 for k in preds} UpperCAmelCase_ : Tuple = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False UpperCAmelCase_ : Dict = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase_ : Dict = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) UpperCAmelCase_ : Dict = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) UpperCAmelCase_ : Optional[int] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: UpperCAmelCase_ : Optional[Any] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "HasAns" ) if no_ans_qids: UpperCAmelCase_ : Any = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": _lowerCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
71
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCamelCase : str , lowerCamelCase : Dict ) -> list[tuple[int, int]]: __magic_name__ : Optional[int] = position __magic_name__ : Tuple = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __magic_name__ : Any = [] for position in positions: __magic_name__ : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCamelCase_ ) return permissible_positions def UpperCamelCase_ ( lowerCamelCase : Union[str, Any] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def UpperCamelCase_ ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : str ) -> bool: if is_complete(lowerCamelCase_ ): return True for position in get_valid_pos(lowerCamelCase_ , len(lowerCamelCase_ ) ): __magic_name__ : str = position if board[y][x] == 0: __magic_name__ : Optional[Any] = curr + 1 if open_knight_tour_helper(lowerCamelCase_ , lowerCamelCase_ , curr + 1 ): return True __magic_name__ : List[str] = 0 return False def UpperCamelCase_ ( lowerCamelCase : Dict ) -> list[list[int]]: __magic_name__ : List[str] = [[0 for i in range(lowerCamelCase_ )] for j in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): __magic_name__ : Optional[int] = 1 if open_knight_tour_helper(lowerCamelCase_ , (i, j) , 1 ): return board __magic_name__ : List[Any] = 0 __magic_name__ : Dict = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A = datasets.utils.logging.get_logger(__name__) A = ["""names""", """prefix"""] A = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] A = ["""encoding_errors""", """on_bad_lines"""] A = ["""date_format"""] @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" snake_case_ = "," snake_case_ = None snake_case_ = "infer" snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = False snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = None snake_case_ = "." snake_case_ = None snake_case_ = '"' snake_case_ = 0 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = None snake_case_ = 1_0_0_0_0 snake_case_ = None snake_case_ = "strict" snake_case_ = "error" snake_case_ = None def _UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if self.delimiter is not None: __magic_name__ : Optional[Any] = self.delimiter if self.column_names is not None: __magic_name__ : Union[str, Any] = self.column_names @property def _UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _UpperCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" snake_case_ = CsvConfig def _UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _UpperCAmelCase ( self : Union[str, Any] , snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __magic_name__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): __magic_name__ : List[str] = data_files if isinstance(snake_case , snake_case ): __magic_name__ : Optional[int] = [files] __magic_name__ : List[Any] = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __magic_name__ : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): __magic_name__ : List[Any] = [files] __magic_name__ : Optional[int] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={'''files''': files} ) ) return splits def _UpperCAmelCase ( self : List[Any] , snake_case : pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: __magic_name__ : int = self.config.features.arrow_schema if all(not require_storage_cast(snake_case ) for feature in self.config.features.values() ): # cheaper cast __magic_name__ : List[str] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __magic_name__ : Optional[int] = table_cast(snake_case , snake_case ) return pa_table def _UpperCAmelCase ( self : Optional[int] , snake_case : Any ) -> Any: '''simple docstring''' __magic_name__ : str = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __magic_name__ : List[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): __magic_name__ : int = pd.read_csv(snake_case , iterator=snake_case , dtype=snake_case , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case ): __magic_name__ : str = pa.Table.from_pandas(snake_case ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(snake_case )}: {e}""" ) raise
147
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # TODO Update this lowerCamelCase_ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase_ (__A ): __magic_name__ = '''esm''' def __init__( self : Any , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]=768 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Optional[int]=3_072 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : int=1_026 , lowerCAmelCase_ : List[str]=0.0_2 , lowerCAmelCase_ : List[Any]=1e-12 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase_ , mask_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Any = position_embedding_type UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Union[str, Any] = emb_layer_norm_before UpperCAmelCase_ : List[str] = token_dropout UpperCAmelCase_ : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) UpperCAmelCase_ : str = EsmFoldConfig() elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Tuple = EsmFoldConfig(**lowerCAmelCase_ ) UpperCAmelCase_ : int = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) UpperCAmelCase_ : Dict = get_default_vocab_list() else: UpperCAmelCase_ : Optional[int] = vocab_list else: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , lowerCAmelCase_ ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase_ ): UpperCAmelCase_ : Union[str, Any] = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase_ : __magic_name__ = None __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = 1_28 __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: if self.trunk is None: UpperCAmelCase_ : List[str] = TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = TrunkConfig(**self.trunk ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: UpperCAmelCase_ : List[Any] = asdict(self ) UpperCAmelCase_ : Dict = self.trunk.to_dict() return output @dataclass class UpperCamelCase_ : __magic_name__ = 48 __magic_name__ = 10_24 __magic_name__ = 1_28 __magic_name__ = 32 __magic_name__ = 32 __magic_name__ = 32 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = False __magic_name__ = 4 __magic_name__ = 1_28 __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: if self.structure_module is None: UpperCAmelCase_ : int = StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase_ : Dict = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase_ : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: UpperCAmelCase_ : Optional[int] = asdict(self ) UpperCAmelCase_ : int = self.structure_module.to_dict() return output @dataclass class UpperCamelCase_ : __magic_name__ = 3_84 __magic_name__ = 1_28 __magic_name__ = 16 __magic_name__ = 1_28 __magic_name__ = 12 __magic_name__ = 4 __magic_name__ = 8 __magic_name__ = 0.1 __magic_name__ = 8 __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 7 __magic_name__ = 10 __magic_name__ = 1e-8 __magic_name__ = 1e5 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: return asdict(self ) def snake_case ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
95
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase (__lowerCamelCase ): _lowerCamelCase = (DDIMParallelScheduler,) _lowerCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __UpperCamelCase ( self : str , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Optional[int] = { 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCAmelCase_) return config def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : List[Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Dict = 10, 0.0 UpperCamelCase__ : Any = self.dummy_model() UpperCamelCase__ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_) for t in scheduler.timesteps: UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Tuple = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample return sample def __UpperCamelCase ( self : Any): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def __UpperCamelCase ( self : str): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_) UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config(steps_offset=1) UpperCamelCase__ : Any = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def __UpperCamelCase ( self : Any): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def __UpperCamelCase ( self : Any): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase_) def __UpperCamelCase ( self : Dict): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase_) def __UpperCamelCase ( self : int): self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Tuple): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase_) def __UpperCamelCase ( self : int): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase_ , eta=UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Tuple = scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.1_47_71)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.3_24_60)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.0_09_79)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config() UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : str = 10, 0.0 scheduler.set_timesteps(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.dummy_model() UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter + 0.1 UpperCamelCase__ : str = self.dummy_sample_deter - 0.1 UpperCamelCase__ : List[Any] = samplea.shape[0] UpperCamelCase__ : List[str] = torch.stack([samplea, samplea, samplea] , dim=0) UpperCamelCase__ : Optional[Any] = torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) UpperCamelCase__ : List[str] = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) UpperCamelCase__ : List[str] = scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase_) UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Union[str, Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 11_47.79_04) < 1e-2 assert abs(result_mean.item() - 0.49_82) < 1e-3 def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.full_loop() UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_72.00_67) < 1e-2 assert abs(result_mean.item() - 0.22_39_67) < 1e-3 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = self.full_loop(prediction_type='v_prediction') UpperCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 52.53_02) < 1e-2 assert abs(result_mean.item() - 0.06_84) < 1e-3 def __UpperCamelCase ( self : Tuple): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : int = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Optional[int] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.82_95) < 1e-2 assert abs(result_mean.item() - 0.19_51) < 1e-3 def __UpperCamelCase ( self : str): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : Dict = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : str = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.07_84) < 1e-2 assert abs(result_mean.item() - 0.19_41) < 1e-3
596
0
import os def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ : int = os.path.join(__UpperCamelCase , 'triangle.txt' ) with open(__UpperCamelCase ) as f: SCREAMING_SNAKE_CASE__ : Dict = f.readlines() SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for line in triangle: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__UpperCamelCase ) ) a.append(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): for j in range(len(a[i] ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 SCREAMING_SNAKE_CASE__ : List[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCamelCase , __UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
711
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : List[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowercase( self : int )-> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : List[Any] = PegasusTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase( self : Optional[Any] )-> Optional[int]: """simple docstring""" return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def __lowercase( self : Any , **a_ : Optional[Any] )-> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Union[str, Any] , a_ : List[Any] )-> Optional[int]: """simple docstring""" return ("This is a test", "This is a test") def __lowercase( self : Optional[int] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = '</s>' SCREAMING_SNAKE_CASE__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def __lowercase( self : Dict )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(a_ ) , 1103 ) def __lowercase( self : Optional[Any] )-> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __lowercase( self : List[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) def __lowercase( self : Any )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE__ : Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' SCREAMING_SNAKE_CASE__ : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer([raw_input_str] , return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) def __lowercase( self : int )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 SCREAMING_SNAKE_CASE__ : int = 'To ensure a smooth flow of bank resolutions.' SCREAMING_SNAKE_CASE__ : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer([raw_input_str] , return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ['This is going to be way too long.' * 150, 'short example'] SCREAMING_SNAKE_CASE__ : int = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE__ : int = self._large_tokenizer(a_ , padding=a_ , truncation=a_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._large_tokenizer( text_target=a_ , max_length=5 , padding=a_ , truncation=a_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. @slow def __lowercase( self : Any )-> str: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowercase( self : Any )-> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusTokenizer(a_ , offset=0 , mask_token_sent=a_ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def __lowercase( self : List[str] , **a_ : Optional[Any] )-> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Optional[Any] , a_ : Tuple )-> str: """simple docstring""" return ("This is a test", "This is a test") def __lowercase( self : str )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE__ : str = rust_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] SCREAMING_SNAKE_CASE__ : str = py_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) @require_torch def __lowercase( self : List[str] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ['This is going to be way too long.' * 1000, 'short example'] SCREAMING_SNAKE_CASE__ : Optional[int] = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE__ : str = self._large_tokenizer(a_ , padding=a_ , truncation=a_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : int = self._large_tokenizer( text_target=a_ , max_length=5 , padding=a_ , truncation=a_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._large_tokenizer(a_ ).input_ids self.assertListEqual( a_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
636
0
"""simple docstring""" import torch from diffusers import DiffusionPipeline class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def __call__( self ): _lowerCamelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _lowerCamelCase = 1 _lowerCamelCase = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample _lowerCamelCase = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample _lowerCamelCase = scheduler_output - scheduler_output + torch.ones_like(lowerCamelCase__ ) return result
661
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError('''Invalid input''' ) _lowerCamelCase = 10**n _lowerCamelCase = 2_84_33 * (pow(2 , 7_83_04_57 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
661
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ) -> List[Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : List[str] = R'.*/layers_(\d+)' UpperCAmelCase : List[Any] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Optional[Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Any = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : Optional[int] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : Optional[int] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Union[str, Any] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : List[str] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : str = s_dict[key].shape[0] UpperCAmelCase : List[str] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Any = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Optional[Any] = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Tuple = str(activation[1] ) UpperCAmelCase : Dict = num_experts UpperCAmelCase : Any = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ) -> str: # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : Optional[int] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = flax_params['target'] UpperCAmelCase : Tuple = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : List[str] = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Dict = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __snake_case ={ """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
133
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[str]=5_6 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[int]=9_9 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : List[Any]="gelu_new" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Tuple=5_1_2 , UpperCAmelCase__ : Union[str, Any]=1_6 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : List[str]="block_sparse" , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=3 , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices lowerCAmelCase = rescale_embeddings lowerCAmelCase = attention_type lowerCAmelCase = use_bias lowerCAmelCase = block_size lowerCAmelCase = num_random_blocks def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : int = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : int ) -> str: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : Dict ) -> Dict: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : Optional[int] ) -> int: super().test_hidden_states_output() @slow def __UpperCAmelCase ( self : str ) -> Dict: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Dict: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : str ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Optional[int] ): return model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest('JIT Enabled' ): lowerCAmelCase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=1E-5 , UpperCAmelCase__ : Union[str, Any]="outputs" , UpperCAmelCase__ : Optional[Any]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
133
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : str =logging.get_logger(__name__) __lowercase : List[Any] ={ """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A ( __lowercase ): _snake_case ='''deit''' def __init__( self: Optional[Any] , _lowerCAmelCase: Any=768 , _lowerCAmelCase: str=12 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: Optional[int]=3072 , _lowerCAmelCase: Tuple="gelu" , _lowerCAmelCase: List[Any]=0.0 , _lowerCAmelCase: int=0.0 , _lowerCAmelCase: Dict=0.02 , _lowerCAmelCase: Union[str, Any]=1e-12 , _lowerCAmelCase: Any=224 , _lowerCAmelCase: str=16 , _lowerCAmelCase: int=3 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Dict=16 , **_lowerCAmelCase: Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =initializer_range UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =qkv_bias UpperCAmelCase_ =encoder_stride class A ( __lowercase ): _snake_case =version.parse('''1.11''' ) @property def lowerCAmelCase__ ( self: str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self: Any ) -> float: '''simple docstring''' return 1e-4
718
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Optional[Any] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowercase : str =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =state_dict.pop(lowercase__ ) UpperCAmelCase_ =val def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ =key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ =value else: UpperCAmelCase_ =value return new_state_dict def a__ ( lowercase__ , lowercase__=False ): '''simple docstring''' UpperCAmelCase_ ="" if is_panoptic: UpperCAmelCase_ ="conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ =in_proj_weight[:2_5_6, :] UpperCAmelCase_ =in_proj_bias[:2_5_6] UpperCAmelCase_ =in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase_ =in_proj_bias[2_5_6:5_1_2] UpperCAmelCase_ =in_proj_weight[-2_5_6:, :] UpperCAmelCase_ =in_proj_bias[-2_5_6:] def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ ="resnet101" if "dc5" in model_name: UpperCAmelCase_ =True UpperCAmelCase_ ="panoptic" in model_name if is_panoptic: UpperCAmelCase_ =2_5_0 else: UpperCAmelCase_ =9_1 UpperCAmelCase_ ="huggingface/label-files" UpperCAmelCase_ ="coco-detection-id2label.json" UpperCAmelCase_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ ={int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ =idalabel UpperCAmelCase_ ={v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ ="coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ =ConditionalDetrImageProcessor(format=lowercase__ ) # prepare image UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=lowercase__ , return_tensors="pt" ) UpperCAmelCase_ =encoding["pixel_values"] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub UpperCAmelCase_ =torch.hub.load("DeppMeng/ConditionalDETR" , lowercase__ , pretrained=lowercase__ ).eval() UpperCAmelCase_ =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ ="conditional_detr." + src rename_key(lowercase__ , lowercase__ , lowercase__ ) UpperCAmelCase_ =rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__ , is_panoptic=lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ ="conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ =state_dict.pop(lowercase__ ) UpperCAmelCase_ =val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ =state_dict.pop(lowercase__ ) UpperCAmelCase_ =val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ =state_dict.pop(lowercase__ ) UpperCAmelCase_ =val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ =state_dict.pop(lowercase__ ) UpperCAmelCase_ =val # finally, create HuggingFace model and load state dict UpperCAmelCase_ =ConditionalDetrForSegmentation(lowercase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() model.push_to_hub(repo_id=lowercase__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ =conditional_detr(lowercase__ ) UpperCAmelCase_ =model(lowercase__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : Dict =argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowercase : Any =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
550
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def _lowercase ( __UpperCamelCase : Optional[int] ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCAmelCase : str = parser.parse_args() if args.check_lib: lowerCAmelCase : Any = importlib.import_module('''transformers''') lowerCAmelCase : str = Path(transformers_module.__file__).parent else: lowerCAmelCase : Dict = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
214
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , snake_case__ = 128 , snake_case__ = 256 , snake_case__ = 2_000.0 , snake_case__ = 768 , snake_case__ = 12 , snake_case__ = 12 , snake_case__ = 64 , snake_case__ = 2048 , snake_case__ = 0.1 , ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : List[str] = nn.Sequential( nn.Linear(snake_case__ , d_model * 4 , bias=snake_case__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=snake_case__ ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : Dict = nn.Embedding(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Dropout(p=snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList() for lyr_num in range(snake_case__ ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Union[str, Any] = DecoderLayer(d_model=snake_case__ , d_kv=snake_case__ , num_heads=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ ) self.decoders.append(snake_case__ ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(snake_case__ ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : List[str] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(snake_case__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : List[Any] = torch.broadcast_to( torch.arange(snake_case__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Any = self.position_encoding(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = self.continuous_inputs_projection(snake_case__ ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Tuple = self.dropout(snake_case__ ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : Any = [(x, self.encoder_decoder_mask(snake_case__ , snake_case__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : int = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Any = lyr( snake_case__ , conditioning_emb=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , )[0] _SCREAMING_SNAKE_CASE : Tuple = self.decoder_norm(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = self.spec_out(snake_case__ ) return spec_out class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=1E-6 ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=snake_case__ , d_kv=snake_case__ , num_heads=snake_case__ , dropout_rate=snake_case__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=snake_case__ , d_kv=snake_case__ , num_heads=snake_case__ , dropout_rate=snake_case__ , layer_norm_epsilon=snake_case__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , layer_norm_epsilon=snake_case__ ) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = self.layer[0]( snake_case__ , conditioning_emb=snake_case__ , attention_mask=snake_case__ , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : int = self.layer[1]( snake_case__ , key_value_states=snake_case__ , attention_mask=snake_case__ , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Union[str, Any] = self.layer[-1](snake_case__ , snake_case__ ) return (hidden_states,) class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(snake_case__ ) _SCREAMING_SNAKE_CASE : int = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case__ ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , out_bias=snake_case__ , scale_qk=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Dropout(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=None , snake_case__=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.layer_norm(snake_case__ ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : int = self.FiLMLayer(snake_case__ , snake_case__ ) # Self-attention block _SCREAMING_SNAKE_CASE : Tuple = self.attention(snake_case__ ) _SCREAMING_SNAKE_CASE : str = hidden_states + self.dropout(snake_case__ ) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = Attention(query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , out_bias=snake_case__ , scale_qk=snake_case__ ) _SCREAMING_SNAKE_CASE : int = TaLayerNorm(snake_case__ , eps=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=None , snake_case__=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self.layer_norm(snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.attention( snake_case__ , encoder_hidden_states=snake_case__ , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(snake_case__ ) return layer_output class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = TaLayerNorm(snake_case__ , eps=snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=None ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(snake_case__ ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Dict = self.film(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = self.DenseReluDense(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = hidden_states + self.dropout(snake_case__ ) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) _SCREAMING_SNAKE_CASE : str = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) _SCREAMING_SNAKE_CASE : Any = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Dropout(snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = NewGELUActivation() def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self.act(self.wi_a(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Tuple = self.wi_a(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Dict = self.dropout(snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.wo(snake_case__ ) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__=1E-6 ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Dict = eps def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase ( nn.Module ): def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(snake_case__ , 3.0 )) )) class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(snake_case__ , out_features * 2 , bias=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.scale_bias(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = torch.chunk(snake_case__ , 2 , -1 ) _SCREAMING_SNAKE_CASE : Dict = x * (1 + scale) + shift return x
572
0
__lowerCAmelCase : List[str] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase : Any =[{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase : str ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
260
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10 def __magic_name__( self :Dict , **lowerCAmelCase__ :Any ) -> int: __SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def __magic_name__( self :str ) -> Optional[Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __magic_name__( self :str ) -> List[str]: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Any = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __magic_name__( self :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Dict = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.prev_sample __SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def __magic_name__( self :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = self.dummy_model() __SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Any = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = output.prev_sample __SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
260
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a =logging.get_logger(__name__) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
530
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __UpperCAmelCase ( __lowerCAmelCase ): A__ : List[Any] = '''Wav2Vec2FeatureExtractor''' A__ : Any = '''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False @classmethod def _a ( cls , _lowerCamelCase , **_lowerCamelCase ): try: return super().from_pretrained(_lowerCamelCase , **_lowerCamelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _lowerCamelCase , ) lowerCamelCase__ =WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =WavaVecaCTCTokenizer.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) return cls(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase__ =kwargs.pop("raw_speech" ) else: lowerCamelCase__ =kwargs.pop("audio" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("sampling_rate" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("text" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase__ =self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowerCamelCase__ =self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ =encodings["input_ids"] return inputs def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =kwargs.pop("input_features" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("labels" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if input_features is not None: lowerCamelCase__ =self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if labels is not None: lowerCamelCase__ =self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase__ =labels["input_ids"] return input_features def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _a ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase__ =True lowerCamelCase__ =self.tokenizer yield lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False
530
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _UpperCamelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class _lowerCAmelCase( datasets.BuilderConfig): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = '''utf-8''' lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 10 << 20 # 10MB lowerCamelCase__ = None class _lowerCAmelCase( datasets.ArrowBasedBuilder): """simple docstring""" lowerCamelCase__ = JsonConfig def SCREAMING_SNAKE_CASE__ ( self )-> List[Any]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __A = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> List[str]: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) __A = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): __A = data_files if isinstance(__a , __a ): __A = [files] __A = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __A = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): __A = [files] __A = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __A = self.config.features.arrow_schema.field(__a ).type __A = pa_table.append_column(__a , pa.array([None] * len(__a ) , type=__a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __A = table_cast(__a , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Tuple: for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __A = json.load(__a ) # We keep only the field we are interested in __A = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__a , (list, tuple) ): __A = set().union(*[row.keys() for row in dataset] ) __A = {col: [row.get(__a ) for row in dataset] for col in keys} else: __A = dataset __A = pa.Table.from_pydict(__a ) yield file_idx, self._cast_table(__a ) # If the file has one json object per line else: with open(__a , '''rb''' ) as f: __A = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __A = max(self.config.chunksize // 32 , 16 << 10 ) __A = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __A = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __A = batch.decode(self.config.encoding , errors=__a ).encode('''utf-8''' ) try: while True: try: __A = paj.read_json( io.BytesIO(__a ) , read_options=paj.ReadOptions(block_size=__a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__a , pa.ArrowInvalid ) and "straddling" not in str(__a ) or block_size > len(__a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(__a )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __A = json.load(__a ) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(__a )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__a , __a ): # list is the only sequence type supported in JSON try: __A = set().union(*[row.keys() for row in dataset] ) __A = {col: [row.get(__a ) for row in dataset] for col in keys} __A = pa.Table.from_pydict(__a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(__a )}: {e}" ) raise ValueError(f"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(__a ) break else: logger.error(f"Failed to read file '{file}' with error {type(__a )}: {e}" ) raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a ) batch_idx += 1
717
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _UpperCamelCase : Dict = None _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase : Dict = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _UpperCamelCase : List[Any] = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } _UpperCamelCase : List[str] = """▁""" class _lowerCAmelCase( _a): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = AlbertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="[CLS]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<unk>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<pad>" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , **UpperCAmelCase , )-> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __A = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase = None )-> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __A = os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
341
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Tuple = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
293
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowercase ( __snake_case ) -> Dict: __lowerCAmelCase : Optional[int] = torch.exp(__snake_case ) __lowerCAmelCase : int = torch.sum(__snake_case ,dim=1 ) # sum of exp(x_i) __lowerCAmelCase : Optional[Any] = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Any , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" super().__init__() __lowerCAmelCase : Any = config.output_attentions __lowerCAmelCase : Optional[Any] = config.output_hidden_states __lowerCAmelCase : Tuple = nn.ModuleList([BertLayer(_SCREAMING_SNAKE_CASE) for _ in range(config.num_hidden_layers)]) __lowerCAmelCase : int = nn.ModuleList([BertHighway(_SCREAMING_SNAKE_CASE) for _ in range(config.num_hidden_layers)]) __lowerCAmelCase : List[str] = [-1 for _ in range(config.num_hidden_layers)] def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" if (type(_SCREAMING_SNAKE_CASE) is float) or (type(_SCREAMING_SNAKE_CASE) is int): for i in range(len(self.early_exit_entropy)): __lowerCAmelCase : List[Any] = x else: __lowerCAmelCase : str = x def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = () __lowerCAmelCase : Tuple = () __lowerCAmelCase : Optional[Any] = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: __lowerCAmelCase : Tuple = all_hidden_states + (hidden_states,) __lowerCAmelCase : Any = layer_module( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , head_mask[i] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = layer_outputs[0] if self.output_attentions: __lowerCAmelCase : List[Any] = all_attentions + (layer_outputs[1],) __lowerCAmelCase : Optional[int] = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase : Tuple = current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase : List[str] = current_outputs + (all_attentions,) __lowerCAmelCase : List[str] = self.highway[i](_SCREAMING_SNAKE_CASE) # logits, pooled_output if not self.training: __lowerCAmelCase : Union[str, Any] = highway_exit[0] __lowerCAmelCase : Dict = entropy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCAmelCase : Dict = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCAmelCase : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_SCREAMING_SNAKE_CASE , i + 1) else: __lowerCAmelCase : Optional[Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCAmelCase : Union[str, Any] = all_hidden_states + (hidden_states,) __lowerCAmelCase : str = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase : Union[str, Any] = outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase : Optional[int] = outputs + (all_attentions,) __lowerCAmelCase : List[str] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = config __lowerCAmelCase : str = BertEmbeddings(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = DeeBertEncoder(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = BertPooler(_SCREAMING_SNAKE_CASE) self.init_weights() def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" self.encoder.init_highway_pooler(self.pooler) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" return self.embeddings.word_embeddings def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = value def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_SCREAMING_SNAKE_CASE) @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , ) -> Dict: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: __lowerCAmelCase : Tuple = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") __lowerCAmelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase : Union[str, Any] = torch.ones(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) if encoder_attention_mask is None: __lowerCAmelCase : Tuple = torch.ones(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) if token_type_ids is None: __lowerCAmelCase : Union[str, Any] = torch.zeros(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCAmelCase : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCAmelCase : Optional[Any] = encoder_attention_mask[:, None, None, :] __lowerCAmelCase : List[str] = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility __lowerCAmelCase : Union[str, Any] = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase : Union[str, Any] = self.get_head_mask(_SCREAMING_SNAKE_CASE , self.config.num_hidden_layers) __lowerCAmelCase : Union[str, Any] = self.embeddings( input_ids=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , inputs_embeds=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.encoder( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = encoder_outputs[0] __lowerCAmelCase : Union[str, Any] = self.pooler(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = message __lowerCAmelCase : Union[str, Any] = exit_layer # start from 1! class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Dict) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = BertPooler(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = nn.Dropout(config.hidden_dropout_prob) __lowerCAmelCase : Optional[Any] = nn.Linear(config.hidden_size , config.num_labels) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: str) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = encoder_outputs[0] __lowerCAmelCase : Union[str, Any] = self.pooler(_SCREAMING_SNAKE_CASE) # "return" pooler_output # BertModel __lowerCAmelCase : str = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCAmelCase : Tuple = bmodel_output[1] __lowerCAmelCase : int = self.dropout(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.classifier(_SCREAMING_SNAKE_CASE) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = config.num_labels __lowerCAmelCase : Tuple = config.num_hidden_layers __lowerCAmelCase : Optional[Any] = DeeBertModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = nn.Dropout(config.hidden_dropout_prob) __lowerCAmelCase : Dict = nn.Linear(config.hidden_size , self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=-1 , _SCREAMING_SNAKE_CASE: str=False , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = self.num_layers try: __lowerCAmelCase : Optional[int] = self.bert( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , inputs_embeds=_SCREAMING_SNAKE_CASE , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCAmelCase : Tuple = outputs[1] __lowerCAmelCase : Union[str, Any] = self.dropout(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = self.classifier(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCAmelCase : str = e.message __lowerCAmelCase : Optional[Any] = e.exit_layer __lowerCAmelCase : Optional[Any] = outputs[0] if not self.training: __lowerCAmelCase : int = entropy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = [] __lowerCAmelCase : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCAmelCase : Optional[int] = MSELoss() __lowerCAmelCase : List[Any] = loss_fct(logits.view(-1) , labels.view(-1)) else: __lowerCAmelCase : Optional[int] = CrossEntropyLoss() __lowerCAmelCase : Tuple = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits __lowerCAmelCase : List[str] = [] for highway_exit in outputs[-1]: __lowerCAmelCase : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(_SCREAMING_SNAKE_CASE) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression __lowerCAmelCase : Optional[int] = MSELoss() __lowerCAmelCase : str = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: __lowerCAmelCase : int = CrossEntropyLoss() __lowerCAmelCase : Optional[Any] = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(_SCREAMING_SNAKE_CASE) if train_highway: __lowerCAmelCase : List[Any] = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: __lowerCAmelCase : int = (loss,) + outputs if not self.training: __lowerCAmelCase : Any = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCAmelCase : Any = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
293
1
import os def SCREAMING_SNAKE_CASE ( snake_case__ ): __UpperCAmelCase =len(grid[0] ) __UpperCAmelCase =len(snake_case__ ) __UpperCAmelCase =0 __UpperCAmelCase =0 __UpperCAmelCase =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case__ ): for j in range(n_rows - 3 ): __UpperCAmelCase =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __UpperCAmelCase =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __UpperCAmelCase =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __UpperCAmelCase =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __UpperCAmelCase =max( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if max_product > largest: __UpperCAmelCase =max_product return largest def SCREAMING_SNAKE_CASE ( ): __UpperCAmelCase =[] with open(os.path.dirname(snake_case__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __UpperCAmelCase =[[int(snake_case__ ) for i in grid[j]] for j in range(len(snake_case__ ) )] return largest_product(snake_case__ ) if __name__ == "__main__": print(solution())
708
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> List[Any]: if "xprophetnet" in prophetnet_checkpoint_path: __UpperCAmelCase =XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase =XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) else: __UpperCAmelCase =ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase =ProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) __UpperCAmelCase =['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCAmelCase ={ '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCAmelCase =key.split('''.''' ) if attributes[0] == "lm_head": __UpperCAmelCase =prophet __UpperCAmelCase =prophet_old else: __UpperCAmelCase =prophet.prophetnet __UpperCAmelCase =prophet_old.model __UpperCAmelCase =False for attribute in attributes: if attribute in mapping: __UpperCAmelCase =mapping[attribute] if not hasattr(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: __UpperCAmelCase =attribute elif hasattr(snake_case__ , snake_case__ ): __UpperCAmelCase =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCAmelCase =old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCAmelCase =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCAmelCase =old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCAmelCase =True break elif attribute in special_keys and hasattr(snake_case__ , '''in_proj_weight''' ): __UpperCAmelCase =old_model.in_proj_weight.shape[0] // 3 __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCAmelCase =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCAmelCase =nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCAmelCase =True break if attribute.isdigit(): __UpperCAmelCase =model[int(snake_case__ )] __UpperCAmelCase =old_model[int(snake_case__ )] else: __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) if old_attribute == "": __UpperCAmelCase =old_model else: if not hasattr(snake_case__ , snake_case__ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
142
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase ="""Create a default config file for Accelerate with only a few flags set.""" def _a ( lowerCamelCase="no", lowerCamelCase = default_json_config_file, lowerCamelCase = False ): lowerCamelCase : List[Any] = Path(lowerCamelCase ) path.parent.mkdir(parents=lowerCamelCase, exist_ok=lowerCamelCase ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowerCamelCase : Union[str, Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowerCamelCase : Union[str, Any] = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowerCamelCase : Any = torch.cuda.device_count() lowerCamelCase : Optional[Any] = num_gpus lowerCamelCase : Optional[int] = False if num_gpus > 1: lowerCamelCase : Any = """MULTI_GPU""" else: lowerCamelCase : Optional[int] = """NO""" elif is_xpu_available() and use_xpu: lowerCamelCase : str = torch.xpu.device_count() lowerCamelCase : Tuple = num_xpus lowerCamelCase : List[str] = False if num_xpus > 1: lowerCamelCase : str = """MULTI_XPU""" else: lowerCamelCase : List[Any] = """NO""" elif is_npu_available(): lowerCamelCase : List[str] = torch.npu.device_count() lowerCamelCase : Tuple = num_npus lowerCamelCase : List[Any] = False if num_npus > 1: lowerCamelCase : Union[str, Any] = """MULTI_NPU""" else: lowerCamelCase : Any = """NO""" else: lowerCamelCase : int = 0 lowerCamelCase : Union[str, Any] = True lowerCamelCase : List[Any] = 1 lowerCamelCase : int = """NO""" lowerCamelCase : Optional[int] = ClusterConfig(**lowerCamelCase ) config.to_json_file(lowerCamelCase ) return path def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : List[Any] = parser.add_parser("""default""", parents=lowerCamelCase, help=lowerCamelCase, formatter_class=lowerCamelCase ) parser.add_argument( """--config_file""", default=lowerCamelCase, help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ), dest="""save_location""", ) parser.add_argument( """--mixed_precision""", choices=["""no""", """fp16""", """bf16"""], type=lowerCamelCase, help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""", default="""no""", ) parser.set_defaults(func=lowerCamelCase ) return parser def _a ( lowerCamelCase ): lowerCamelCase : Tuple = write_basic_config(args.mixed_precision, args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
681
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[int] = """decision_transformer""" _UpperCAmelCase : str = ["""past_key_values"""] _UpperCAmelCase : Any = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __magic_name__=1_7 , __magic_name__=4 , __magic_name__=1_2_8 , __magic_name__=4_0_9_6 , __magic_name__=True , __magic_name__=1 , __magic_name__=1_0_2_4 , __magic_name__=3 , __magic_name__=1 , __magic_name__=None , __magic_name__="relu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1e-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=5_0_2_5_6 , __magic_name__=5_0_2_5_6 , __magic_name__=False , __magic_name__=False , **__magic_name__ , ): lowerCamelCase : Optional[int] = state_dim lowerCamelCase : int = act_dim lowerCamelCase : int = hidden_size lowerCamelCase : Union[str, Any] = max_ep_len lowerCamelCase : Optional[int] = action_tanh lowerCamelCase : Any = vocab_size lowerCamelCase : List[str] = n_positions lowerCamelCase : List[Any] = n_layer lowerCamelCase : Dict = n_head lowerCamelCase : Optional[Any] = n_inner lowerCamelCase : Tuple = activation_function lowerCamelCase : Tuple = resid_pdrop lowerCamelCase : str = embd_pdrop lowerCamelCase : Dict = attn_pdrop lowerCamelCase : Tuple = layer_norm_epsilon lowerCamelCase : Tuple = initializer_range lowerCamelCase : Tuple = scale_attn_weights lowerCamelCase : str = use_cache lowerCamelCase : List[Any] = scale_attn_by_inverse_layer_idx lowerCamelCase : List[str] = reorder_and_upcast_attn lowerCamelCase : Optional[Any] = bos_token_id lowerCamelCase : str = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
681
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase__ : Optional[int] = 1_6 lowercase__ : Tuple = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 , snake_case : str = "bert-base-cased" ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Dict ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader def A_ ( snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' __UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) __UpperCamelCase = args.model_name_or_path set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case , snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(snake_case , return_dict=snake_case ) # Instantiate optimizer __UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase = optimizer_cls(params=model.parameters() , lr=snake_case ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __UpperCamelCase = 1 __UpperCamelCase = (len(snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=0 , num_training_steps=snake_case , ) else: __UpperCamelCase = DummyScheduler(snake_case , total_num_steps=snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase = 0 # Now we train the model __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) __UpperCamelCase = 0 __UpperCamelCase = {} for epoch in range(snake_case , snake_case ): model.train() for step, batch in enumerate(snake_case ): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase , __UpperCamelCase = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case ) - 1: __UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) __UpperCamelCase = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __UpperCamelCase = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(snake_case , snake_case ) def A_ ( ) -> str: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case , ) parser.add_argument( '''--output_dir''' , type=snake_case , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=snake_case , default=snake_case , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case , default=3 , help='''Number of train epochs.''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
708
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase__ : int = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = {} if "candidate_labels" in kwargs: __UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a photo of {}." )-> Optional[int]: '''simple docstring''' __UpperCamelCase = load_image(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCamelCase = candidate_labels __UpperCamelCase = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels] __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [text_inputs] return inputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase = model_inputs.pop('''candidate_labels''' ) __UpperCamelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = text_inputs[0] else: # Batching case. __UpperCamelCase = text_inputs[0][0] __UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = model_outputs.pop('''candidate_labels''' ) __UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": __UpperCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCamelCase = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [scores] elif self.framework == "tf": __UpperCamelCase = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] ) ] return result
451
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase ( __snake_case ): @require_torch def _A ( self: Optional[Any] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCamelCase ) BertModel.from_pretrained(__UpperCamelCase ) BertTokenizer.from_pretrained(__UpperCamelCase ) pipeline(task='''fill-mask''' , model=__UpperCamelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _A ( self: str ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCamelCase ) BertModel.from_pretrained(__UpperCamelCase ) BertTokenizer.from_pretrained(__UpperCamelCase ) pipeline(task='''fill-mask''' , model=__UpperCamelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _A ( self: str ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _A ( self: Union[str, Any] ): _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _A ( self: int ): _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCamelCase , env=__UpperCamelCase , check=__UpperCamelCase , capture_output=__UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
487
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __snake_case ( _UpperCamelCase ) -> str: _a = model.config _a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) _a = MBartConfig( is_decoder=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , add_cross_attention=_UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_UpperCamelCase , add_final_layer_norm=_UpperCamelCase , ) return encoder_config, decoder_config def __snake_case ( _UpperCamelCase ) -> Dict: if "encoder.model" in name: _a = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _a = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _a = '''encoder.''' + name if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _a = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _a = '''encoder.layernorm.bias''' return name def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Dict: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[3] ) _a = int(key_split[5] ) _a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _a = val return orig_state_dict def __snake_case ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False ) -> Optional[int]: # load original model _a = DonutModel.from_pretrained(_UpperCamelCase ).eval() # load HuggingFace model _a , _a = get_configs(_UpperCamelCase ) _a = DonutSwinModel(_UpperCamelCase ) _a = MBartForCausalLM(_UpperCamelCase ) _a = VisionEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) model.eval() _a = original_model.state_dict() _a = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify results on scanned document _a = load_dataset('''hf-internal-testing/example-documents''' ) _a = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _a = XLMRobertaTokenizerFast.from_pretrained(_UpperCamelCase , from_slow=_UpperCamelCase ) _a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _a = DonutProcessor(_UpperCamelCase , _UpperCamelCase ) _a = processor(_UpperCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _a = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _a = '''When is the coffee break?''' _a = task_prompt.replace('''{user_input}''' , _UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _a = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _a = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _a = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _a = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _a = '''hello world''' else: raise ValueError('''Model name not supported''' ) _a = original_model.decoder.tokenizer(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] _a = original_model.encoder.model.patch_embed(_UpperCamelCase ) _a , _a = model.encoder.embeddings(_UpperCamelCase ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) # verify encoder hidden states _a = original_model.encoder(_UpperCamelCase ) _a = model.encoder(_UpperCamelCase ).last_hidden_state assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-2 ) # verify decoder hidden states _a = original_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).logits _a = model(_UpperCamelCase , decoder_input_ids=_UpperCamelCase ).logits assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowerCamelCase :Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
487
1
_snake_case = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} lowerCamelCase : List[Any] = 0 lowerCamelCase : int = 0 while place < len(SCREAMING_SNAKE_CASE_ ): if (place + 1 < len(SCREAMING_SNAKE_CASE_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = [] for arabic, roman in ROMAN: (lowerCamelCase) : str = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
705
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' lowerCamelCase : List[str] = XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowerCamelCase : int = finetuning_task lowerCamelCase : int = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCamelCase : Union[str, Any] = XLNetForSequenceClassification(SCREAMING_SNAKE_CASE_ ) elif "squad" in finetuning_task: lowerCamelCase : List[Any] = finetuning_task lowerCamelCase : str = XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : int = XLNetLMHeadModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model lowerCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(f"""Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(f"""Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
231
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __lowercase= AutoTokenizer.from_pretrained('google/mt5-small' ) __lowercase= tokenizer('Hello there' , return_tensors='tf' ).input_ids __lowercase= tokenizer('Hi I am' , return_tensors='tf' ).input_ids __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ).loss __lowercase= -tf.math.reduce_mean(lowerCAmelCase ).numpy() __lowercase= -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
230
from math import ceil def _lowerCamelCase( lowercase__ = 1_0_0_1 ) -> int: '''simple docstring''' __lowercase= 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowercase= 2 * i + 1 __lowercase= 2 * i __lowercase= total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
230
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """Hello world! cécé herlolip""" def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[int] = FairseqRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout A_ : Optional[int] = roberta.model.encoder.sentence_encoder A_ : Dict = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: A_ : List[Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = XLMRobertaXLForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings A_ : Optional[int] = roberta_sent_encoder.embed_tokens.weight A_ : str = roberta_sent_encoder.embed_positions.weight A_ : Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. A_ : List[str] = roberta_sent_encoder.layer_norm.weight A_ : Optional[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A_ : BertLayer = model.roberta.encoder.layer[i] A_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] A_ : RobertaAttention = layer.attention A_ : Optional[int] = roberta_layer.self_attn_layer_norm.weight A_ : Optional[int] = roberta_layer.self_attn_layer_norm.bias # self attention A_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) A_ : Optional[int] = roberta_layer.self_attn.q_proj.weight A_ : Optional[int] = roberta_layer.self_attn.q_proj.bias A_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight A_ : Dict = roberta_layer.self_attn.k_proj.bias A_ : Optional[Any] = roberta_layer.self_attn.v_proj.weight A_ : Tuple = roberta_layer.self_attn.v_proj.bias # self-attention output A_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape A_ : int = roberta_layer.self_attn.out_proj.weight A_ : Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm A_ : Optional[Any] = roberta_layer.final_layer_norm.weight A_ : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate A_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape A_ : Optional[int] = roberta_layer.fca.weight A_ : Optional[int] = roberta_layer.fca.bias # output A_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape A_ : int = roberta_layer.fca.weight A_ : Union[str, Any] = roberta_layer.fca.bias # end of layer if classification_head: A_ : str = roberta.model.classification_heads['''mnli'''].dense.weight A_ : List[Any] = roberta.model.classification_heads['''mnli'''].dense.bias A_ : Union[str, Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight A_ : List[Any] = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head A_ : str = roberta.model.encoder.lm_head.dense.weight A_ : Optional[int] = roberta.model.encoder.lm_head.dense.bias A_ : List[Any] = roberta.model.encoder.lm_head.layer_norm.weight A_ : Tuple = roberta.model.encoder.lm_head.layer_norm.bias A_ : str = roberta.model.encoder.lm_head.weight A_ : Optional[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. A_ : torch.Tensor = roberta.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 A_ : Any = model(SCREAMING_SNAKE_CASE )[0] if classification_head: A_ : Optional[Any] = roberta.model.classification_heads['''mnli'''](roberta.extract_features(SCREAMING_SNAKE_CASE ) ) else: A_ : Optional[int] = roberta.model(SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) A_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 A_ : Tuple = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
152
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = FunnelTokenizer snake_case = FunnelTokenizerFast snake_case = True snake_case = True def _snake_case ( self )->Tuple: '''simple docstring''' super().setUp() A_ : Dict = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Optional[int] = '''UNwant\u00E9d,running''' A_ : List[Any] = '''unwanted, running''' return input_text, output_text def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = self.tokenizer_class(self.vocab_file ) A_ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self )->str: '''simple docstring''' A_ : List[Any] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: A_ : Optional[Any] = tokenizer('''UNwant\u00E9d,running''' ) A_ : Tuple = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) A_ : str = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
152
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = (PNDMScheduler,) UpperCamelCase_ = (('''num_inference_steps''', 50),) def lowercase_ ( self , **A_ ) -> Any: """simple docstring""" _lowercase: int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A_ ) return config def lowercase_ ( self , A_=0 , **A_ ) -> Union[str, Any]: """simple docstring""" _lowercase: int = dict(self.forward_default_kwargs ) _lowercase: Tuple = kwargs.pop('''num_inference_steps''' , A_ ) _lowercase: List[Any] = self.dummy_sample _lowercase: Dict = 0.1 * sample _lowercase: Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowercase: Optional[int] = self.get_scheduler_config(**A_ ) _lowercase: str = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals _lowercase: Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _lowercase: Dict = scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals _lowercase: Any = dummy_past_residuals[:] _lowercase: Union[str, Any] = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _lowercase: int = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowercase: Dict = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _lowercase: List[str] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase_ ( self ) -> Tuple: """simple docstring""" pass def lowercase_ ( self , A_=0 , **A_ ) -> Tuple: """simple docstring""" _lowercase: List[str] = dict(self.forward_default_kwargs ) _lowercase: str = kwargs.pop('''num_inference_steps''' , A_ ) _lowercase: str = self.dummy_sample _lowercase: str = 0.1 * sample _lowercase: Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowercase: Optional[Any] = self.get_scheduler_config() _lowercase: List[str] = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) _lowercase: str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _lowercase: List[str] = scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) _lowercase: Tuple = dummy_past_residuals[:] _lowercase: Optional[Any] = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _lowercase: Tuple = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowercase: Optional[int] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _lowercase: Optional[Any] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase_ ( self , **A_ ) -> List[str]: """simple docstring""" _lowercase: Optional[int] = self.scheduler_classes[0] _lowercase: Optional[Any] = self.get_scheduler_config(**A_ ) _lowercase: Optional[Any] = scheduler_class(**A_ ) _lowercase: Any = 10 _lowercase: Tuple = self.dummy_model() _lowercase: List[Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.prk_timesteps ): _lowercase: Optional[int] = model(A_ , A_ ) _lowercase: List[Any] = scheduler.step_prk(A_ , A_ , A_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowercase: Union[str, Any] = model(A_ , A_ ) _lowercase: Optional[int] = scheduler.step_plms(A_ , A_ , A_ ).prev_sample return sample def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: Tuple = dict(self.forward_default_kwargs ) _lowercase: Dict = kwargs.pop('''num_inference_steps''' , A_ ) for scheduler_class in self.scheduler_classes: _lowercase: Tuple = self.get_scheduler_config() _lowercase: Tuple = scheduler_class(**A_ ) _lowercase: Dict = self.dummy_sample _lowercase: Any = 0.1 * sample if num_inference_steps is not None and hasattr(A_ , '''set_timesteps''' ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ , '''set_timesteps''' ): _lowercase: str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase: Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowercase: List[Any] = dummy_past_residuals[:] _lowercase: Union[str, Any] = scheduler.step_prk(A_ , 0 , A_ , **A_ ).prev_sample _lowercase: Dict = scheduler.step_prk(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowercase: int = scheduler.step_plms(A_ , 0 , A_ , **A_ ).prev_sample _lowercase: int = scheduler.step_plms(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) _lowercase: int = self.scheduler_classes[0] _lowercase: Optional[int] = self.get_scheduler_config(steps_offset=1 ) _lowercase: Optional[int] = scheduler_class(**A_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowercase_ ( self ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def lowercase_ ( self ) -> List[str]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def lowercase_ ( self ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowercase_ ( self ) -> str: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=A_ ) def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase: Dict = 27 for scheduler_class in self.scheduler_classes: _lowercase: Any = self.dummy_sample _lowercase: Any = 0.1 * sample _lowercase: Dict = self.get_scheduler_config() _lowercase: Any = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowercase: List[Any] = scheduler.step_prk(A_ , A_ , A_ ).prev_sample def lowercase_ ( self ) -> List[str]: """simple docstring""" with self.assertRaises(A_ ): _lowercase: Dict = self.scheduler_classes[0] _lowercase: int = self.get_scheduler_config() _lowercase: Union[str, Any] = scheduler_class(**A_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: int = self.full_loop() _lowercase: str = torch.sum(torch.abs(A_ ) ) _lowercase: Any = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowercase_ ( self ) -> List[str]: """simple docstring""" _lowercase: List[Any] = self.full_loop(prediction_type='''v_prediction''' ) _lowercase: str = torch.sum(torch.abs(A_ ) ) _lowercase: Tuple = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase: List[Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _lowercase: Optional[int] = torch.sum(torch.abs(A_ ) ) _lowercase: Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: Dict = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _lowercase: int = torch.sum(torch.abs(A_ ) ) _lowercase: Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
353
"""simple docstring""" import os from datetime import datetime as dt from github import Github A__ : Tuple = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Optional[int] = Github(os.environ['''GITHUB_TOKEN'''] ) _lowercase: Optional[int] = g.get_repo('''huggingface/diffusers''' ) _lowercase: Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: _lowercase: List[Any] = sorted(issue.get_comments() , key=lambda _UpperCamelCase : i.created_at , reverse=_UpperCamelCase ) _lowercase: Optional[Any] = comments[0] if len(_UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
353
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _snake_case : Dict = logging.get_logger(__name__) _snake_case : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } _snake_case : List[Any] = {'mobilebert-uncased': 512} _snake_case : Optional[int] = {} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = MobileBertTokenizer def __init__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple="[UNK]" , lowerCAmelCase_ : Optional[int]="[SEP]" , lowerCAmelCase_ : Optional[int]="[PAD]" , lowerCAmelCase_ : Tuple="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=None ) -> List[str]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = "unispeech" def __init__( self: List[str] , __UpperCamelCase: Tuple=32 , __UpperCamelCase: List[Any]=768 , __UpperCamelCase: Dict=12 , __UpperCamelCase: Any=12 , __UpperCamelCase: Dict=3072 , __UpperCamelCase: List[str]="gelu" , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: int=0.1 , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: Optional[Any]=0.0 , __UpperCamelCase: Optional[Any]=0.0 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: List[str]=0.1 , __UpperCamelCase: str=0.0_2 , __UpperCamelCase: List[str]=1E-5 , __UpperCamelCase: Tuple="group" , __UpperCamelCase: str="gelu" , __UpperCamelCase: Tuple=(512, 512, 512, 512, 512, 512, 512) , __UpperCamelCase: Any=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase: List[str]=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase: Dict=False , __UpperCamelCase: List[Any]=128 , __UpperCamelCase: Tuple=16 , __UpperCamelCase: List[Any]=False , __UpperCamelCase: List[str]=True , __UpperCamelCase: int=0.0_5 , __UpperCamelCase: Dict=10 , __UpperCamelCase: int=2 , __UpperCamelCase: str=0.0 , __UpperCamelCase: Tuple=10 , __UpperCamelCase: Optional[Any]=0 , __UpperCamelCase: List[Any]=320 , __UpperCamelCase: int=2 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: str=100 , __UpperCamelCase: Union[str, Any]=256 , __UpperCamelCase: List[Any]=256 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: Any="mean" , __UpperCamelCase: Any=False , __UpperCamelCase: Dict=False , __UpperCamelCase: Dict=256 , __UpperCamelCase: List[Any]=80 , __UpperCamelCase: str=0 , __UpperCamelCase: Tuple=1 , __UpperCamelCase: Union[str, Any]=2 , __UpperCamelCase: List[str]=0.5 , **__UpperCamelCase: List[Any] , ) -> List[Any]: super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) __magic_name__ : int = hidden_size __magic_name__ : int = feat_extract_norm __magic_name__ : str = feat_extract_activation __magic_name__ : Any = list(__UpperCamelCase ) __magic_name__ : List[str] = list(__UpperCamelCase ) __magic_name__ : Tuple = list(__UpperCamelCase ) __magic_name__ : Tuple = conv_bias __magic_name__ : Tuple = num_conv_pos_embeddings __magic_name__ : Optional[Any] = num_conv_pos_embedding_groups __magic_name__ : Tuple = len(self.conv_dim ) __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Any = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : str = num_attention_heads __magic_name__ : Union[str, Any] = hidden_dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : Any = activation_dropout __magic_name__ : List[str] = feat_proj_dropout __magic_name__ : Optional[int] = final_dropout __magic_name__ : Optional[Any] = layerdrop __magic_name__ : List[str] = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = num_ctc_classes __magic_name__ : Any = vocab_size __magic_name__ : int = do_stable_layer_norm __magic_name__ : str = use_weighted_layer_sum __magic_name__ : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ : Optional[int] = apply_spec_augment __magic_name__ : Tuple = mask_time_prob __magic_name__ : int = mask_time_length __magic_name__ : List[Any] = mask_time_min_masks __magic_name__ : List[Any] = mask_feature_prob __magic_name__ : Tuple = mask_feature_length __magic_name__ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __magic_name__ : Union[str, Any] = num_codevectors_per_group __magic_name__ : Optional[Any] = num_codevector_groups __magic_name__ : Tuple = contrastive_logits_temperature __magic_name__ : int = feat_quantizer_dropout __magic_name__ : List[str] = num_negatives __magic_name__ : int = codevector_dim __magic_name__ : Any = proj_codevector_dim __magic_name__ : Tuple = diversity_loss_weight # ctc loss __magic_name__ : Optional[int] = ctc_loss_reduction __magic_name__ : List[str] = ctc_zero_infinity # pretraining loss __magic_name__ : int = replace_prob @property def lowerCAmelCase__ ( self: int ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
436
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _A = datasets.utils.logging.get_logger(__name__) _A = ['names', 'prefix'] _A = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _A = ['encoding_errors', 'on_bad_lines'] _A = ['date_format'] @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): _lowerCamelCase : str = "," _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None _lowerCamelCase : Optional[Union[List[int], List[str]]] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = True _lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None _lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None _lowerCamelCase : Optional[list] = None _lowerCamelCase : Optional[list] = None _lowerCamelCase : bool = False _lowerCamelCase : Optional[Union[int, List[int]]] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[Union[str, List[str]]] = None _lowerCamelCase : bool = True _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None _lowerCamelCase : str = "." _lowerCamelCase : Optional[str] = None _lowerCamelCase : str = '"' _lowerCamelCase : int = 0 _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = True _lowerCamelCase : bool = True _lowerCamelCase : int = 0 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : Optional[str] = None _lowerCamelCase : int = 10000 _lowerCamelCase : Optional[datasets.Features] = None _lowerCamelCase : Optional[str] = "strict" _lowerCamelCase : Literal["error", "warn", "skip"] = "error" _lowerCamelCase : Optional[str] = None def __magic_name__ ( self ): if self.delimiter is not None: a_ = self.delimiter if self.column_names is not None: a_ = self.column_names @property def __magic_name__ ( self ): a_ = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): _lowerCamelCase : Optional[int] = CsvConfig def __magic_name__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) a_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_SCREAMING_SNAKE_CASE , (str, list, tuple) ): a_ = data_files if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = [files] a_ = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a_ = [] for split_name, files in data_files.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = [files] a_ = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=_SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): if self.config.features is not None: a_ = self.config.features.arrow_schema if all(not require_storage_cast(_SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast a_ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example a_ = table_cast(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return pa_table def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): a_ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str a_ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ): a_ = pd.read_csv(_SCREAMING_SNAKE_CASE , iterator=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_SCREAMING_SNAKE_CASE ): a_ = pa.Table.from_pandas(_SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_SCREAMING_SNAKE_CASE )}: {e}""" ) raise
720
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list[int] , UpperCamelCase : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(UpperCamelCase ) == len(UpperCamelCase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients a_ , a_ , a_ = equationa a_ , a_ , a_ = equationa # Calculate the determinants of the matrices a_ = aa * ba - aa * ba a_ = ca * ba - ca * ba a_ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: a_ = determinant_x / determinant a_ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
403
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A : lowerCamelCase : int lowerCamelCase : TreeNode | None = None lowerCamelCase : TreeNode | None = None __A = namedtuple("CoinsDistribResult", "moves excess") def _A ( lowercase__ ): if root is None: return 0 # Validation def count_nodes(lowercase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase__ ) != count_coins(lowercase__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ = get_distrib(node.left ) lowercase__ , lowercase__ = get_distrib(node.right ) lowercase__ = 1 - left_distrib_excess lowercase__ = 1 - right_distrib_excess lowercase__ = ( left_distrib_moves + right_distrib_moves + abs(lowercase__ ) + abs(lowercase__ ) ) lowercase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase__ , lowercase__ ) return get_distrib(lowercase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
325
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = DebertaTokenizer lowerCamelCase : Any = True lowerCamelCase : Dict = DebertaTokenizerFast def A__ ( self ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] lowercase__ = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) lowercase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__ = {"""unk_token""": """[UNK]"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) def A__ ( self , **lowerCamelCase__ ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' lowercase__ = """lower newer""" lowercase__ = """lower newer""" return input_text, output_text def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = """lower newer""" lowercase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase__ = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = tokenizer("""Hello""" , """World""" ) lowercase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , lowerCamelCase__ ) @slow def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowercase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase__ ) lowercase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase__ ) lowercase__ = tokenizer.encode( """sequence builders""" , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) lowercase__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowercase__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowercase__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] lowercase__ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ ) lowercase__ = [tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) for seq in encoding["""input_ids"""]] # fmt: off lowercase__ = { """input_ids""": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowercase__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , lowerCamelCase__ ) for expected, decoded in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
325
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _a = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=__a , cache_dir=__a ) _a = [t[-1] for t in os.walk(os.path.join(__a , os.listdir(__a )[0] , "snapshots" ) )] _a = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=__a ) _a = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _a = jax.random.PRNGKey(0 ) _a = 4 _a = jax.device_count() _a = num_samples * [prompt] _a = pipeline.prepare_inputs(__a ) # shard inputs and rng _a = replicate(__a ) _a = jax.random.split(__a , __a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(__a , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _a = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__a ) == num_samples def UpperCamelCase__ ( self : Any ): _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=__a ) _a = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _a = jax.random.PRNGKey(0 ) _a = 50 _a = jax.device_count() _a = num_samples * [prompt] _a = pipeline.prepare_inputs(__a ) # shard inputs and rng _a = replicate(__a ) _a = jax.random.split(__a , __a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCamelCase__ ( self : str ): _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=__a ) _a = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _a = jax.random.PRNGKey(0 ) _a = 50 _a = jax.device_count() _a = num_samples * [prompt] _a = pipeline.prepare_inputs(__a ) # shard inputs and rng _a = replicate(__a ) _a = jax.random.split(__a , __a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCamelCase__ ( self : Dict ): _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) _a = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _a = jax.random.PRNGKey(0 ) _a = 50 _a = jax.device_count() _a = num_samples * [prompt] _a = pipeline.prepare_inputs(__a ) # shard inputs and rng _a = replicate(__a ) _a = jax.random.split(__a , __a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCamelCase__ ( self : Optional[Any] ): _a = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=__a , steps_offset=1 , ) _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=__a , safety_checker=__a , ) _a = scheduler.create_state() _a = scheduler_state _a = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _a = jax.random.PRNGKey(0 ) _a = 50 _a = jax.device_count() _a = num_samples * [prompt] _a = pipeline.prepare_inputs(__a ) # shard inputs and rng _a = replicate(__a ) _a = jax.random.split(__a , __a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCamelCase__ ( self : str ): _a = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _a = jax.device_count() _a = num_samples * [prompt] _a = jax.random.split(jax.random.PRNGKey(0 ) , __a ) _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=__a , ) _a = replicate(__a ) _a = pipeline.prepare_inputs(__a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) _a = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention _a , _a = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=__a , use_memory_efficient_attention=__a , ) _a = replicate(__a ) _a = pipeline.prepare_inputs(__a ) _a = shard(__a ) _a = pipeline(__a , __a , __a , jit=__a ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) _a = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
521
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' lowerCAmelCase_ : Union[str, Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' lowerCAmelCase_ : Tuple = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] , __a : str , __a : int=None , __a : Dict=True , __a : Optional[int]=False ): if rouge_types is None: _a = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _a = rouge_scorer.RougeScorer(rouge_types=__a , use_stemmer=__a ) if use_aggregator: _a = scoring.BootstrapAggregator() else: _a = [] for ref, pred in zip(__a , __a ): _a = scorer.score(__a , __a ) if use_aggregator: aggregator.add_scores(__a ) else: scores.append(__a ) if use_aggregator: _a = aggregator.aggregate() else: _a = {} for key in scores[0]: _a = [score[key] for score in scores] return result
521
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = """▁""" _lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowerCamelCase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowerCamelCase = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowerCamelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class _snake_case (__SCREAMING_SNAKE_CASE): __A : List[Any] =VOCAB_FILES_NAMES __A : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Dict =PRETRAINED_VOCAB_FILES_MAP __A : Dict =["input_ids", "attention_mask"] __A : List[int] =[] __A : List[int] =[] def __init__( self ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case="</s>" ,_snake_case="</s>" ,_snake_case="<s>" ,_snake_case="<unk>" ,_snake_case="<pad>" ,_snake_case="<mask>" ,_snake_case = None ,**_snake_case ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Optional[Any] = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token UpperCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ : Optional[Any] = kwargs.get("additional_special_tokens" ,[] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_snake_case ,tgt_lang=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,mask_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) UpperCAmelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) UpperCAmelCase_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Union[str, Any] = len(self.sp_model ) UpperCAmelCase_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case ) } UpperCAmelCase_ : List[Any] = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : Optional[int] = src_lang if src_lang is not None else "en_XX" UpperCAmelCase_ : List[Any] = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self ): return self._src_lang @src_lang.setter def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): UpperCAmelCase_ : List[Any] = self.__dict__.copy() UpperCAmelCase_ : List[str] = None return state def __setstate__( self ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self ,_snake_case ): return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Dict = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self ,_snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : int = "" UpperCAmelCase_ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token UpperCAmelCase_ : int = True UpperCAmelCase_ : List[Any] = [] else: current_sub_tokens.append(_snake_case ) UpperCAmelCase_ : Any = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Optional[Any] = os.path.join( _snake_case ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,"wb" ) as fi: UpperCAmelCase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) UpperCAmelCase_ : Union[str, Any] = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case )) + suffix_ones return prefix_ones + ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ : str = src_lang UpperCAmelCase_ : Dict = self(_snake_case ,add_special_tokens=_snake_case ,return_tensors=_snake_case ,**_snake_case ) UpperCAmelCase_ : List[str] = self.convert_tokens_to_ids(_snake_case ) UpperCAmelCase_ : Optional[Any] = tgt_lang_id return inputs def UpperCamelCase__ ( self ,_snake_case ,_snake_case = "en_XX" ,_snake_case = None ,_snake_case = "ro_RO" ,**_snake_case ,): UpperCAmelCase_ : Optional[Any] = src_lang UpperCAmelCase_ : int = tgt_lang return super().prepare_seqaseq_batch(_snake_case ,_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[Any] = self.lang_code_to_id[src_lang] UpperCAmelCase_ : List[str] = [self.cur_lang_code_id] UpperCAmelCase_ : Dict = [self.eos_token_id] def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : int = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ : Optional[Any] = [self.cur_lang_code_id] UpperCAmelCase_ : int = [self.eos_token_id]
71
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[int] =DebertaVaTokenizer __A : Union[str, Any] =DebertaVaTokenizerFast __A : str =True __A : List[str] =True def UpperCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Optional[int] = DebertaVaTokenizer(_snake_case ,unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[Any] = "this is a test" UpperCAmelCase_ : Optional[Any] = "this is a test" return input_text, output_text def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = "<pad>" UpperCAmelCase_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) ,_snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<pad>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"[PAD]" ) self.assertEqual(len(_snake_case ) ,3_00_01 ) def UpperCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,3_00_00 ) def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : str = " \tHeLLo!how \n Are yoU? " UpperCAmelCase_ : Union[str, Any] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on UpperCAmelCase_ : Tuple = DebertaVaTokenizer(_snake_case ,do_lower_case=_snake_case ) UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Tuple = DebertaVaTokenizerFast(_snake_case ,do_lower_case=_snake_case ) UpperCAmelCase_ : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def UpperCamelCase__ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : Optional[int] = "I was born in 92000, and this is falsé." UpperCAmelCase_ : List[str] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase_ : List[Any] = DebertaVaTokenizer(_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : int = DebertaVaTokenizerFast(_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : Tuple = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Dict = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase_ : Optional[Any] = DebertaVaTokenizer(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : List[Any] = DebertaVaTokenizerFast(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : Optional[int] = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase_ : List[Any] = DebertaVaTokenizer(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[Any] = DebertaVaTokenizerFast(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : Optional[int] = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Optional[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase_ : List[str] = DebertaVaTokenizer(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = DebertaVaTokenizerFast(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : Tuple = " \tHeLLo!how \n Are yoU? " UpperCAmelCase_ : List[Any] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on UpperCAmelCase_ : Any = DebertaVaTokenizer(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : int = DebertaVaTokenizerFast(_snake_case ,do_lower_case=_snake_case ,split_by_punct=_snake_case ) UpperCAmelCase_ : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Tuple = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) UpperCAmelCase_ : int = rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(_snake_case ) UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = "This is a test" UpperCAmelCase_ : Optional[int] = [13, 1, 43_98, 25, 21, 12_89] UpperCAmelCase_ : Optional[Any] = ["▁", "T", "his", "▁is", "▁a", "▁test"] UpperCAmelCase_ : List[str] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] UpperCAmelCase_ : str = DebertaVaTokenizer(_snake_case ,keep_accents=_snake_case ) UpperCAmelCase_ : List[Any] = DebertaVaTokenizerFast(_snake_case ,keep_accents=_snake_case ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Any = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : List[str] = rust_tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # fmt: off UpperCAmelCase_ : List[str] = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Optional[int] = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCAmelCase_ : str = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] UpperCAmelCase_ : List[str] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase_ : List[str] = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : int = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) UpperCAmelCase_ : Any = rust_tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = DebertaVaTokenizer(_snake_case ) UpperCAmelCase_ : Optional[int] = tokenizer.encode("sequence builders" ) UpperCAmelCase_ : Dict = tokenizer.encode("multi-sequence build" ) UpperCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(_snake_case ) UpperCAmelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_snake_case ,_snake_case ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] ,_snake_case ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] ,_snake_case ,) @slow def UpperCamelCase__ ( self ): # fmt: off UpperCAmelCase_ : Union[str, Any] = {"input_ids": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case ,model_name="microsoft/deberta-v2-xlarge" ,revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" ,)
71
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
from __future__ import annotations class _snake_case : def __init__( self , _lowerCamelCase ): a :str = order # a_{0} ... a_{k} a :List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} a :Any = [1.0] + [0.0] * order # x[n-1] ... x[n-k] a :Optional[int] = [0.0] * self.order # y[n-1] ... y[n-k] a :int = [0.0] * self.order def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): if len(_lowerCamelCase ) < self.order: a :Tuple = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: a :Optional[Any] = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: a :List[str] = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) a :List[Any] = a_coeffs a :str = b_coeffs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) a :Union[str, Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] a :List[Any] = self.input_history[:-1] a :Any = self.output_history[:-1] a :Optional[int] = sample a :Optional[Any] = result return result
445
from __future__ import annotations from typing import Any class _snake_case ( _snake_case ): pass class _snake_case : def __init__( self , _lowerCamelCase ): a :Any = data a :Node | None = None def __iter__( self ): a :Dict = self a :Optional[int] = [] while node: if node in visited: raise ContainsLoopError visited.append(_lowerCamelCase ) yield node.data a :str = node.next_node @property def SCREAMING_SNAKE_CASE__ ( self ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case : int = Node(1) snake_case : int = Node(2) snake_case : Optional[int] = Node(3) snake_case : List[str] = Node(4) print(root_node.has_loop) # False snake_case : Optional[Any] = root_node.next_node print(root_node.has_loop) # True snake_case : Dict = Node(5) snake_case : List[Any] = Node(6) snake_case : Optional[int] = Node(5) snake_case : Union[str, Any] = Node(6) print(root_node.has_loop) # False snake_case : Tuple = Node(1) print(root_node.has_loop) # False
445
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( _snake_case , unittest.TestCase ): __lowerCamelCase = ShapEPipeline __lowerCamelCase = ["""prompt"""] __lowerCamelCase = ["""prompt"""] __lowerCamelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def UpperCAmelCase ( self :str ): '''simple docstring''' return 32 @property def UpperCAmelCase ( self :int ): '''simple docstring''' return 32 @property def UpperCAmelCase ( self :int ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase ( self :Tuple ): '''simple docstring''' return 8 @property def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(snake_case_ ) @property def UpperCAmelCase ( self :int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowercase__ = PriorTransformer(**snake_case_ ) return model @property def UpperCAmelCase ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**snake_case_ ) return model def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_text_encoder lowercase__ = self.dummy_tokenizer lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=snake_case_ , clip_sample=snake_case_ , clip_sample_range=1.0 , ) lowercase__ = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCAmelCase ( self :List[Any] , _lowercase :Optional[Any] , _lowercase :Any=0 ): '''simple docstring''' if str(snake_case_ ).startswith("mps" ): lowercase__ = torch.manual_seed(snake_case_ ) else: lowercase__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) lowercase__ = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**snake_case_ ) lowercase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__ = pipe(**self.get_dummy_inputs(snake_case_ ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self :int ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = torch_device == "cpu" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case_ , relax_max_difference=snake_case_ , ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**snake_case_ ) lowercase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(snake_case_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**snake_case_ , num_images_per_prompt=snake_case_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) lowercase__ = ShapEPipeline.from_pretrained("openai/shap-e" ) lowercase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__ = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowercase__ = pipe( "a shark" , generator=snake_case_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
721
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowercase_ )} , ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class lowerCAmelCase : __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __lowerCamelCase = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def UpperCAmelCase ( self :Any ): '''simple docstring''' if self.train_file is not None: lowercase__ = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase__ = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _A ( __magic_name__ , __magic_name__ ): with open(__magic_name__ , "r" , encoding="utf-8" ) as f: lowercase__ = [json.loads(__magic_name__ ) for line in f.read().splitlines() if (len(__magic_name__ ) > 0 and not line.isspace())] assert len(__magic_name__ ) == len(__magic_name__ ) lowercase__ = {c: dataset[c] for c in dataset.column_names} lowercase__ = refs return Dataset.from_dict(__magic_name__ ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowercase__ = {} if data_args.train_file is not None: lowercase__ = data_args.train_file if data_args.validation_file is not None: lowercase__ = data_args.validation_file lowercase__ = data_args.train_file.split("." )[-1] if extension == "txt": lowercase__ = "text" lowercase__ = load_dataset(__magic_name__ , data_files=__magic_name__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ = AutoConfig.from_pretrained(model_args.config_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) lowercase__ = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowercase__ = AutoModelForMaskedLM.from_config(__magic_name__ ) model.resize_token_embeddings(len(__magic_name__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase__ = datasets["train"].column_names else: lowercase__ = datasets["validation"].column_names lowercase__ = "text" if "text" in column_names else column_names[0] lowercase__ = "max_length" if data_args.pad_to_max_length else False def tokenize_function(__magic_name__ ): # Remove empty lines lowercase__ = [line for line in examples["text"] if len(__magic_name__ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=__magic_name__ , truncation=__magic_name__ , max_length=data_args.max_seq_length ) lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase__ = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase__ = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase__ = False # Data collator # This one will take care of randomly masking the tokens. lowercase__ = DataCollatorForWholeWordMask(tokenizer=__magic_name__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase__ = model_args.model_name_or_path else: lowercase__ = None lowercase__ = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase__ = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(__magic_name__ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate() lowercase__ = math.exp(eval_output["eval_loss"] ) lowercase__ = perplexity lowercase__ = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(__magic_name__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
611
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def a__ ( self : str ) -> List[Any]: """simple docstring""" super().setUp() def a__ ( self : int , **A_ : List[str] ) -> Optional[int]: """simple docstring""" return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **A_ ) def a__ ( self : List[str] , **A_ : Optional[int] ) -> Any: """simple docstring""" return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **A_ ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '永和服装饰品有限公司,今天天气非常好' lowerCamelCase_ = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ , lowerCamelCase_ = self.get_chinese_input_output_texts() lowerCamelCase_ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , output_text.split() ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ , lowerCamelCase_ = self.get_chinese_input_output_texts() lowerCamelCase_ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , output_text.split() ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" pass def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass
70
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = len(_snake_case ) for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if numbers[j] < numbers[i]: UpperCAmelCase , UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
341
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : str = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""", return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) A : List[str] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A : Tuple = tokenizer("""Hello there""", return_tensors="""pt""" ).input_ids A : Optional[int] = tokenizer("""Hi I am""", return_tensors="""pt""" ).input_ids A : int = model(input_ids.to(lowerCamelCase__ ), labels=labels.to(lowerCamelCase__ ) ).loss A : Any = -(labels.shape[-1] * loss.item()) A : Union[str, Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
707
import os import sys import unittest SCREAMING_SNAKE_CASE_:Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) SCREAMING_SNAKE_CASE_:Optional[int] = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") SCREAMING_SNAKE_CASE_:List[str] = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Optional[int] = get_test_to_tester_mapping(lowerCamelCase__ ) A : str = get_test_to_tester_mapping(lowerCamelCase__ ) A : int = {"""BertModelTest""": """BertModelTester"""} A : Tuple = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = get_model_to_test_mapping(lowerCamelCase__ ) A : str = get_model_to_test_mapping(lowerCamelCase__ ) A : Union[str, Any] = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A : str = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Tuple = get_model_to_tester_mapping(lowerCamelCase__ ) A : Optional[int] = get_model_to_tester_mapping(lowerCamelCase__ ) A : int = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A : Optional[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ), lowerCamelCase__ )
520
0
def __a ( __lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: SCREAMING_SNAKE_CASE : Any = set() # Replace all the whitespace in our sentence SCREAMING_SNAKE_CASE : List[str] = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCAmelCase ) == 26 def __a ( __lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: SCREAMING_SNAKE_CASE : Optional[Any] = [False] * 26 for char in input_str: if char.islower(): SCREAMING_SNAKE_CASE : Any = True elif char.isupper(): SCREAMING_SNAKE_CASE : Union[str, Any] = True return all(__lowerCAmelCase ) def __a ( __lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __a ( ) -> None: from timeit import timeit SCREAMING_SNAKE_CASE : Any = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__lowerCAmelCase ) ) print(timeit('is_pangram_faster()' , setup=__lowerCAmelCase ) ) print(timeit('is_pangram_fastest()' , setup=__lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
352
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCamelCase : Any = False class lowercase ( unittest.TestCase): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase ( unittest.TestCase): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Any = VersatileDiffusionPipeline.from_pretrained(snake_case , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : List[str] = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'cyberpunk 2077' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe.dual_guided( prompt=snake_case , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Any = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe.text_to_image( prompt=snake_case , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Optional[Any] = pipe.image_variation(snake_case , generator=snake_case , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
352
1
from torch import nn def lowerCamelCase__ ( _A ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
139
def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = [[0 for _ in range(_A )] for _ in range(m + 1 )] for i in range(m + 1 ): snake_case_ = 1 for n in range(m + 1 ): for k in range(1 , _A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase__ : str = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: lowercase__ : Optional[Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
139
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : str , snake_case_ : Optional[Any]=8 ) ->Tuple: lowerCamelCase__ : int =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase__ : int =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ ( A__ ): """simple docstring""" def __init__( self :List[str] , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :DDPMScheduler , lowerCamelCase_ :VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) lowerCamelCase__ : Optional[int] =2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): """simple docstring""" if latents is None: lowerCamelCase__ : List[str] =randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase__ : Any =latents.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :str=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ : Optional[Any] =torch.device(f"""cuda:{gpu_id}""" ) lowerCamelCase__ : Union[str, Any] =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :str=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCamelCase__ : Tuple =torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ : int =None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. lowerCamelCase__ : Tuple =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self :Any , lowerCamelCase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :int = 512 , lowerCamelCase_ :int = 512 , lowerCamelCase_ :int = 100 , lowerCamelCase_ :float = 4.0 , lowerCamelCase_ :int = 1 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , ): """simple docstring""" lowerCamelCase__ : Optional[int] =self._execution_device lowerCamelCase__ : Any =guidance_scale > 1.0 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : str =torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : Dict =torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : Union[str, Any] =torch.cat(lowerCamelCase_ , dim=0 ) lowerCamelCase__ : Dict =image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowerCamelCase__ : int =image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) lowerCamelCase__ : Optional[Any] =negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) lowerCamelCase__ : List[Any] =hint.repeat_interleave(lowerCamelCase_ , dim=0 ) lowerCamelCase__ : int =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) lowerCamelCase__ : str =torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) lowerCamelCase__ : List[Any] =self.scheduler.timesteps lowerCamelCase__ : Dict =self.movq.config.latent_channels lowerCamelCase__ , lowerCamelCase__ : int =downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent lowerCamelCase__ : Dict =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Any =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : List[Any] ={'image_embeds': image_embeds, 'hint': hint} lowerCamelCase__ : Union[str, Any] =self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase__ , lowerCamelCase__ : int =noise_pred.chunk(2 ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =variance_pred.chunk(2 ) lowerCamelCase__ : Dict =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ : Union[str, Any] =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ , lowerCamelCase__ : List[str] =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any =self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0] # post-processing lowerCamelCase__ : Dict =self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCamelCase__ : List[str] =image * 0.5 + 0.5 lowerCamelCase__ : Any =image.clamp(0 , 1 ) lowerCamelCase__ : Any =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase__ : Union[str, Any] =self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
174
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : str ) ->Union[str, Any]: lowerCamelCase__ : Tuple =DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCamelCase__ : Any =1_0_2_4 lowerCamelCase__ : Optional[Any] =4_0_9_6 lowerCamelCase__ : Optional[int] =2_4 lowerCamelCase__ : List[Any] =1_6 lowerCamelCase__ : List[str] =[5, 1_1, 1_7, 2_3] lowerCamelCase__ : Optional[Any] =[2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] lowerCamelCase__ : Any =(1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ : int =7_6_8 lowerCamelCase__ : Optional[Any] =[1, 1, 1, 0.5] lowerCamelCase__ : Dict =[2_5_6, 5_1_2, 7_6_8, 7_6_8] lowerCamelCase__ : Tuple =1_5_0 lowerCamelCase__ : Optional[Any] =1_6 lowerCamelCase__ : int =(1, 3_8_4, 3_8_4) lowerCamelCase__ : Optional[Any] =False lowerCamelCase__ : Any ='project' if "ade" in checkpoint_url: lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Dict =7_6_8 lowerCamelCase__ : List[Any] =[1, 1, 1, 0.5] lowerCamelCase__ : Any =1_5_0 lowerCamelCase__ : List[str] =1_6 lowerCamelCase__ : Any ='huggingface/label-files' lowerCamelCase__ : List[Any] ='ade20k-id2label.json' lowerCamelCase__ : List[Any] =json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int ={int(snake_case_ ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict =idalabel lowerCamelCase__ : Any ={v: k for k, v in idalabel.items()} lowerCamelCase__ : int =[1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowerCAmelCase_ ( snake_case_ : Tuple ) ->Any: lowerCamelCase__ : Union[str, Any] =['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any ) ->Tuple: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ : List[str] =name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCamelCase__ : Any =name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCamelCase__ : Tuple =name.replace('patch_embed' , '' ) if "pos_embed" in name: lowerCamelCase__ : int =name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCamelCase__ : Union[str, Any] =name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCamelCase__ : Dict =name.replace('proj' , 'projection' ) if "blocks" in name: lowerCamelCase__ : Any =name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCamelCase__ : Dict =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Any =name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ : Optional[Any] =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ : Optional[int] =name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCamelCase__ : List[str] =name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCamelCase__ : str =name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCamelCase__ : Union[str, Any] =name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCamelCase__ : List[Any] =name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCamelCase__ : Any =name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCamelCase__ : Dict =name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCamelCase__ : Optional[int] =int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ : Union[str, Any] =name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCamelCase__ : List[Any] =name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCamelCase__ : str =name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCamelCase__ : List[str] =name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCamelCase__ : Any =name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCamelCase__ : Any =name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ : int =name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ : Union[str, Any] =name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ : int =name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ : Optional[Any] =name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ : Optional[Any] =name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ : Optional[int] =name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ : Dict =name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ : List[str] =name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ : str =name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ : int =name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ : List[Any] =name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCamelCase__ : Union[str, Any] =name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCamelCase__ : Tuple =name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCamelCase__ : Any =name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCamelCase__ : Dict =name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCamelCase__ : int =name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: lowerCamelCase__ : str =name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: lowerCamelCase__ : Optional[int] =name.replace('..' , '.' ) if "stem.conv" in name: lowerCamelCase__ : List[Any] =name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCamelCase__ : Dict =name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: lowerCamelCase__ : List[Any] =name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: lowerCamelCase__ : List[Any] =name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ : int =name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: lowerCamelCase__ : List[str] =name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ : str =name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any ) ->List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Any =state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCamelCase__ : str =state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : List[Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Any =in_proj_bias[: config.hidden_size] lowerCamelCase__ : Union[str, Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : int =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Tuple =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : Tuple =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ) ->Union[str, Any]: lowerCamelCase__ : List[Any] ='http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Dict =Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : int ) ->int: lowerCamelCase__ , lowerCamelCase__ : List[Any] =get_dpt_config(snake_case_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ : Union[str, Any] =torch.load(snake_case_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(snake_case_ ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ : str =state_dict.pop(snake_case_ ) lowerCamelCase__ : Tuple =val # read in qkv matrices read_in_q_k_v(snake_case_ , snake_case_ ) # load HuggingFace model lowerCamelCase__ : str =DPTForSemanticSegmentation(snake_case_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Check outputs on an image lowerCamelCase__ : Optional[int] =4_8_0 if 'ade' in checkpoint_url else 3_8_4 lowerCamelCase__ : Optional[Any] =DPTImageProcessor(size=snake_case_ ) lowerCamelCase__ : Optional[int] =prepare_img() lowerCamelCase__ : Optional[int] =image_processor(snake_case_ , return_tensors='pt' ) # forward pass lowerCamelCase__ : int =model(**snake_case_ ).logits if 'ade' in checkpoint_url else model(**snake_case_ ).predicted_depth if show_prediction: lowerCamelCase__ : Optional[Any] =( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=snake_case_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) lowerCAmelCase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
174
1
from __future__ import annotations import numpy as np def __lowerCamelCase (UpperCAmelCase__ : list[float] ): return np.maximum(0 , UpperCAmelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
647
def __lowerCamelCase (UpperCAmelCase__ : list[int] ): if not numbers: return 0 if not isinstance(UpperCAmelCase__ , (list, tuple) ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = numbers[0] for i in range(1 , len(UpperCAmelCase__ ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE = numbers[i] if number < 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = min_till_now, max_till_now SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , max_till_now * number ) SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , UpperCAmelCase__ ) return max_prod
647
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowerCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" def UpperCamelCase ( a , a=100 , a=" " ) -> List[str]: '''simple docstring''' __magic_name__ = text.split(a__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(a__ ) , a__ )] def UpperCamelCase ( a ) -> dict: '''simple docstring''' __magic_name__ = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(a__ ): titles.append(title if title is not None else '''''' ) texts.append(a__ ) return {"title": titles, "text": texts} def UpperCamelCase ( a , a , a ) -> dict: '''simple docstring''' __magic_name__ = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=a__ , padding='''longest''' , return_tensors='''pt''' )['input_ids'] __magic_name__ = ctx_encoder(input_ids.to(device=a__ ) , return_dict=a__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase ( a , a , a , ) -> Optional[int]: '''simple docstring''' logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __magic_name__ = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __magic_name__ = dataset.map(a__ , batched=a__ , num_proc=processing_args.num_proc ) # And compute the embeddings __magic_name__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=a__ ) __magic_name__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __magic_name__ = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space __magic_name__ = dataset.map( partial(a__ , ctx_encoder=a__ , ctx_tokenizer=a__ ) , batched=a__ , batch_size=processing_args.batch_size , features=a__ , ) # And finally save your dataset __magic_name__ = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(a__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __magic_name__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=a__ ) # And save the index __magic_name__ = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(a__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :str = field( default=str(Path(lowercase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) ,metadata={"""help""": """Path to a tab-separated csv file with columns \'title\' and \'text\'"""} ,) __SCREAMING_SNAKE_CASE :Optional[str] = field( default=lowercase_ ,metadata={"""help""": """Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'."""} ,) __SCREAMING_SNAKE_CASE :str = field( default="""facebook/rag-sequence-nq""" ,metadata={"""help""": """The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\'"""} ,) __SCREAMING_SNAKE_CASE :str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" ,metadata={ """help""": ( """The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or""" """ \'facebook/dpr-ctx_encoder-multiset-base\'""" ) } ,) __SCREAMING_SNAKE_CASE :Optional[str] = field( default=str(Path(lowercase_ ).parent / """test_run""" / """dummy-kb""" ) ,metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} ,) @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :Optional[int] = field( default=lowercase_ ,metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } ,) __SCREAMING_SNAKE_CASE :int = field( default=16 ,metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } ,) @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :int = field( default=768 ,metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} ,) __SCREAMING_SNAKE_CASE :int = field( default=128 ,metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
432
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = 1 # (0 is vertical, 1 is horizontal) def lowerCamelCase__ ( ) -> None: """simple docstring""" _snake_case , _snake_case : Optional[Any] = get_dataset(a__ , a__) print('Processing...') _snake_case , _snake_case , _snake_case : Tuple = update_image_and_anno(a__ , a__ , a__) for index, image in enumerate(a__): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _snake_case : List[str] = random_chars(3_2) _snake_case : List[str] = paths[index].split(os.sep)[-1].rsplit('.' , 1)[0] _snake_case : Optional[Any] = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , a__ , [cva.IMWRITE_JPEG_QUALITY, 8_5]) print(F"""Success {index+1}/{len(a__)} with {file_name}""") _snake_case : str = [] for anno in new_annos[index]: _snake_case : Union[str, Any] = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a__) with open(F"""/{file_root}.txt""" , 'w') as outfile: outfile.write('\n'.join(line for line in annos_list)) def lowerCamelCase__ ( a__ , a__) -> tuple[list, list]: """simple docstring""" _snake_case : Optional[int] = [] _snake_case : int = [] for label_file in glob.glob(os.path.join(a__ , '*.txt')): _snake_case : List[str] = label_file.split(os.sep)[-1].rsplit('.' , 1)[0] with open(a__) as in_file: _snake_case : Union[str, Any] = in_file.readlines() _snake_case : str = os.path.join(a__ , F"""{label_name}.jpg""") _snake_case : Dict = [] for obj_list in obj_lists: _snake_case : Dict = obj_list.rstrip('\n').split(' ') boxes.append( [ int(obj[0]), float(obj[1]), float(obj[2]), float(obj[3]), float(obj[4]), ]) if not boxes: continue img_paths.append(a__) labels.append(a__) return img_paths, labels def lowerCamelCase__ ( a__ , a__ , a__ = 1) -> tuple[list, list, list]: """simple docstring""" _snake_case : Dict = [] _snake_case : List[str] = [] _snake_case : Optional[int] = [] for idx in range(len(a__)): _snake_case : Any = [] _snake_case : str = img_list[idx] path_list.append(a__) _snake_case : List[Any] = anno_list[idx] _snake_case : Union[str, Any] = cva.imread(a__) if flip_type == 1: _snake_case : Optional[int] = cva.flip(a__ , a__) for bbox in img_annos: _snake_case : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]]) elif flip_type == 0: _snake_case : Tuple = cva.flip(a__ , a__) for bbox in img_annos: _snake_case : List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]]) new_annos_lists.append(a__) new_imgs_list.append(a__) return new_imgs_list, new_annos_lists, path_list def lowerCamelCase__ ( a__ = 3_2) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _snake_case : int = ascii_lowercase + digits return "".join(random.choice(a__) for _ in range(a__)) if __name__ == "__main__": main() print("DONE ✅")
517
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a__ : List[str] =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =["input_features", "is_longer"] def __init__( self : int , __A : List[Any]=6_4 , __A : str=4_8_0_0_0 , __A : Optional[Any]=4_8_0 , __A : Optional[Any]=1_0 , __A : Union[str, Any]=1_0_2_4 , __A : Tuple=0.0 , __A : Optional[int]=False , __A : float = 0 , __A : float = 1_4_0_0_0 , __A : int = None , __A : str = "fusion" , __A : str = "repeatpad" , **__A : Optional[int] , ): super().__init__( feature_size=__A , sampling_rate=__A , padding_value=__A , return_attention_mask=__A , **__A , ) __UpperCamelCase = top_db __UpperCamelCase = truncation __UpperCamelCase = padding __UpperCamelCase = fft_window_size __UpperCamelCase = (fft_window_size >> 1) + 1 __UpperCamelCase = hop_length __UpperCamelCase = max_length_s __UpperCamelCase = max_length_s * sampling_rate __UpperCamelCase = sampling_rate __UpperCamelCase = frequency_min __UpperCamelCase = frequency_max __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__A , min_frequency=__A , max_frequency=__A , sampling_rate=__A , norm=__A , mel_scale='htk' , ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__A , min_frequency=__A , max_frequency=__A , sampling_rate=__A , norm='slaney' , mel_scale='slaney' , ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCamelCase ( self : Dict , __A : np.array , __A : Optional[np.array] = None ): __UpperCamelCase = spectrogram( __A , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__A , log_mel='dB' , ) return log_mel_spectrogram.T def _lowerCamelCase ( self : List[Any] , __A : str , __A : Dict , __A : int ): __UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] # randomly choose index for each part __UpperCamelCase = np.random.choice(ranges[0] ) __UpperCamelCase = np.random.choice(ranges[1] ) __UpperCamelCase = np.random.choice(ranges[2] ) __UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase = torch.tensor(mel[None, None, :] ) __UpperCamelCase = torch.nn.functional.interpolate( __A , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=__A ) __UpperCamelCase = mel_shrink[0][0].numpy() __UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowerCamelCase ( self : Union[str, Any] , __A : np.array , __A : List[str] , __A : Dict , __A : Union[str, Any] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase = len(__A ) - max_length __UpperCamelCase = np.random.randint(0 , overflow + 1 ) __UpperCamelCase = waveform[idx : idx + max_length] __UpperCamelCase = self._np_extract_fbank_features(__A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(__A , self.mel_filters ) __UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase = False else: __UpperCamelCase = self._random_mel_fusion(__A , __A , __A ) __UpperCamelCase = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: __UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase = int(max_length / len(__A ) ) __UpperCamelCase = np.stack(np.tile(__A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase = int(max_length / len(__A ) ) __UpperCamelCase = np.stack(np.tile(__A , __A ) ) __UpperCamelCase = np.pad(__A , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(__A , self.mel_filters ) __UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase = self._np_extract_fbank_features(__A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : str = None , __A : Optional[str] = None , __A : Optional[int] = None , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , **__A : Dict , ): __UpperCamelCase = truncation if truncation is not None else self.truncation __UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __UpperCamelCase = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __UpperCamelCase = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [np.asarray(__A )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase = [ self._get_input_mel(__A , max_length if max_length else self.nb_max_samples , __A , __A ) for waveform in raw_speech ] __UpperCamelCase = [] __UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(__A ) is_longer.append(__A ) if truncation == "fusion" and sum(__A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase = np.random.randint(0 , len(__A ) ) __UpperCamelCase = True if isinstance(input_mel[0] , __A ): __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase = [[longer] for longer in is_longer] __UpperCamelCase = {'input_features': input_mel, 'is_longer': is_longer} __UpperCamelCase = BatchFeature(__A ) if return_tensors is not None: __UpperCamelCase = input_features.convert_to_tensors(__A ) return input_features
434
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple =logging.get_logger(__name__) a__ : int ={ '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] ="falcon" SCREAMING_SNAKE_CASE_ : Any =["past_key_values"] def __init__( self : List[str] , __A : Dict=6_5_0_2_4 , __A : Dict=4_5_4_4 , __A : List[Any]=3_2 , __A : Dict=7_1 , __A : List[Any]=1e-5 , __A : Dict=0.02 , __A : Any=True , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : Dict=None , __A : List[Any]=False , __A : Optional[int]=False , __A : Union[str, Any]=True , __A : str=True , __A : List[Any]=False , __A : List[Any]=1_1 , __A : int=1_1 , **__A : List[str] , ): __UpperCamelCase = vocab_size # Backward compatibility with n_embed kwarg __UpperCamelCase = kwargs.pop('n_embed' , __A ) __UpperCamelCase = hidden_size if n_embed is None else n_embed __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id __UpperCamelCase = num_attention_heads if num_kv_heads is None else num_kv_heads __UpperCamelCase = alibi __UpperCamelCase = new_decoder_architecture __UpperCamelCase = multi_query # Ignored when new_decoder_architecture is True __UpperCamelCase = parallel_attn __UpperCamelCase = bias super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) @property def _lowerCamelCase ( self : List[str] ): return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Any ): return not self.alibi
434
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _lowercase ( __lowerCamelCase ): def UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" A_ = SMALL_MODEL_IDENTIFIER A_ = '''pt''' A_ = '''tf''' def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : int ) -> Any: """simple docstring""" A_ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" A_ = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCamelCase__ ) model_tf.save_pretrained(lowerCamelCase__ ) def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" A_ = '''mock_framework''' # Framework provided - return whatever the user provides A_ = FeaturesManager.determine_framework(self.test_model , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase__ ) A_ = FeaturesManager.determine_framework(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase__ ) A_ = FeaturesManager.determine_framework(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase__ ) A_ = FeaturesManager.determine_framework(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase__ ) A_ = FeaturesManager.determine_framework(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCamelCase__ ): A_ = FeaturesManager.determine_framework(lowerCamelCase__ ) def UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" A_ = MagicMock(return_value=lowerCamelCase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowerCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow A_ = MagicMock(return_value=lowerCamelCase__ ) with patch('''transformers.onnx.features.is_torch_available''' , lowerCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase__ , self.framework_tf ) # Both in environment -> use PyTorch A_ = MagicMock(return_value=lowerCamelCase__ ) A_ = MagicMock(return_value=lowerCamelCase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowerCamelCase__ ), patch( '''transformers.onnx.features.is_torch_available''' , lowerCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase__ , self.framework_pt ) # Both not in environment -> raise error A_ = MagicMock(return_value=lowerCamelCase__ ) A_ = MagicMock(return_value=lowerCamelCase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowerCamelCase__ ), patch( '''transformers.onnx.features.is_torch_available''' , lowerCamelCase__ ): with self.assertRaises(lowerCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model )
203
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowercase : def __init__( self : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any]=1_3 , lowerCamelCase__ : Dict=7 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=9_9 , lowerCamelCase__ : Union[str, Any]=3_2 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Tuple=4 , lowerCamelCase__ : int=3_7 , lowerCamelCase__ : List[str]="gelu" , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : int=5_1_2 , lowerCamelCase__ : Optional[Any]=1_6 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : List[str]=0.02 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]="None" , lowerCamelCase__ : int=3 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : List[str]=None , ) -> List[str]: """simple docstring""" A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = relative_attention A_ = position_biased_input A_ = pos_att_type A_ = scope def UpperCamelCase ( self : str ) -> str: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" A_ = TFDebertaVaModel(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = [input_ids, input_mask] A_ = model(lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] ) -> str: """simple docstring""" A_ = TFDebertaVaForMaskedLM(config=lowerCamelCase__ ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" A_ = self.num_labels A_ = TFDebertaVaForSequenceClassification(config=lowerCamelCase__ ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : str ) -> Optional[Any]: """simple docstring""" A_ = self.num_labels A_ = TFDebertaVaForTokenClassification(config=lowerCamelCase__ ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Any ) -> Any: """simple docstring""" A_ = TFDebertaVaForQuestionAnswering(config=lowerCamelCase__ ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowercase ( __lowerCamelCase,__lowerCamelCase,unittest.TestCase ): _lowercase : Union[str, Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Optional[Any] = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowercase : List[str] = False _lowercase : Any = False def UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" A_ = TFDebertaVaModelTester(self ) A_ = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) @slow def UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" A_ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class _lowercase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" pass @slow def UpperCamelCase ( self : Any ) -> Any: """simple docstring""" A_ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) A_ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) A_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] A_ = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 )
203
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def snake_case_ ( a__ : int ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a_ ,a_ ) def snake_case_ ( a__ : Optional[Any] ): """simple docstring""" __lowercase = emb.weight.shape __lowercase = nn.Linear(a_ ,a_ ,bias=a_ ) __lowercase = emb.weight.data return lin_layer def snake_case_ ( a__ : int ): """simple docstring""" __lowercase = torch.load(a_ ,map_location="""cpu""" ) __lowercase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __lowercase = mam_aaa['''model'''] remove_ignore_keys_(a_ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MaMaaaConfig( vocab_size=a_ ,max_position_embeddings=10_24 ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,encoder_layerdrop=args.encoder_layerdrop ,decoder_layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""relu""" ,) __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MaMaaaForConditionalGeneration(a_ ) model.model.load_state_dict(a_ ,strict=a_ ) __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") A : Optional[Any] = parser.parse_args() A : str = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
713
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=64 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = vocab_size - 1 def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self ) -> List[str]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.prepare_config_and_inputs() __lowercase = True return config, input_ids, input_mask, token_labels def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __lowercase = GPTNeoXModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __lowercase = True __lowercase = GPTNeoXModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = GPTNeoXForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = GPTNeoXForQuestionAnswering(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = GPTNeoXForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = GPTNeoXForTokenClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = True __lowercase = GPTNeoXForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) __lowercase = output_from_no_past["""hidden_states"""][0] __lowercase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase ,__lowercase = config_and_inputs __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( __A , __A , __A , unittest.TestCase ): snake_case_ : Optional[int] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ : str = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ : str = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ : List[Any] = False snake_case_ : Tuple = False snake_case_ : Any = False snake_case_ : int = False def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = GPTNeoXModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=64 , num_attention_heads=8 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def snake_case__ ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def snake_case__ ( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] , config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = GPTNeoXModel(lowerCamelCase__ ) original_model.to(lowerCamelCase__ ) original_model.eval() __lowercase = original_model(lowerCamelCase__ ).last_hidden_state __lowercase = original_model(lowerCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {"""type""": scaling_type, """factor""": 10.0} __lowercase = GPTNeoXModel(lowerCamelCase__ ) scaled_model.to(lowerCamelCase__ ) scaled_model.eval() __lowercase = scaled_model(lowerCamelCase__ ).last_hidden_state __lowercase = scaled_model(lowerCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: __lowercase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase__ ) __lowercase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(lowerCamelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" __lowercase = model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=20 ) __lowercase = tokenizer.batch_decode(lowerCamelCase__ )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
163
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowerCamelCase__ ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> str: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=__lowerCamelCase , ) assert hasattr(self , """env""" ) def _UpperCAmelCase ( self , snake_case ) -> int: """simple docstring""" # configuration for running training on smdistributed Model Parallel lowercase : Optional[int] = { """enabled""": True, """processes_per_host""": 8, } lowercase : Optional[int] = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowercase : Optional[Any] = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowercase : Tuple = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 5_0_0, } , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="""py36""" , ) def _UpperCAmelCase ( self , snake_case ) -> Tuple: """simple docstring""" TrainingJobAnalytics(__lowerCamelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def _UpperCAmelCase ( self , snake_case ) -> Any: """simple docstring""" # create estimator lowercase : Optional[Any] = self.create_estimator(__lowerCamelCase ) # run training estimator.fit() # result dataframe lowercase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowercase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCamelCase )
607
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
0
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A__ : Tuple = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A__ : Union[str, Any] = logging.WARNING def _snake_case ( ) -> Union[str, Any]: lowerCamelCase_ : List[str] =os.getenv("DATASETS_VERBOSITY" , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _snake_case ( ) -> str: return __name__.split("." )[0] def _snake_case ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def _snake_case ( ) -> None: # Apply our default configuration to the library root logger. lowerCamelCase_ : Tuple =_get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _snake_case ( ) -> None: lowerCamelCase_ : Tuple =_get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _snake_case ( lowerCamelCase__ : Optional[str] = None ) -> logging.Logger: if name is None: lowerCamelCase_ : int =_get_library_name() return logging.getLogger(lowerCamelCase__ ) def _snake_case ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def _snake_case ( lowerCamelCase__ : int ) -> None: _get_library_root_logger().setLevel(lowerCamelCase__ ) def _snake_case ( ) -> Optional[Any]: return set_verbosity(lowerCamelCase__ ) def _snake_case ( ) -> Optional[int]: return set_verbosity(lowerCamelCase__ ) def _snake_case ( ) -> List[str]: return set_verbosity(lowerCamelCase__ ) def _snake_case ( ) -> List[Any]: return set_verbosity(lowerCamelCase__ ) def _snake_case ( ) -> None: lowerCamelCase_ : Optional[int] =False def _snake_case ( ) -> None: lowerCamelCase_ : List[str] =True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowercase__ : def __init__( self : Optional[Any] , *snake_case__ : Any , **snake_case__ : Optional[Any] ): # pylint: disable=unused-argument lowerCamelCase_ : Dict =args[0] if args else None def __iter__( self : Dict ): return iter(self._iterator ) def __getattr__( self : Tuple , snake_case__ : Dict ): def empty_fn(*snake_case__ : Dict , **snake_case__ : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Union[str, Any] ): return self def __exit__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Any ): return A__ : Any = True class lowercase__ : def __call__( self : Union[str, Any] , *snake_case__ : Union[str, Any] , snake_case__ : List[Any]=False , **snake_case__ : List[Any] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : List[str] , *snake_case__ : List[str] , **snake_case__ : Optional[int] ): lowerCamelCase_ : Any =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__ : Union[str, Any] = _tqdm_cls() def _snake_case ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def _snake_case ( ) -> Any: global _tqdm_active lowerCamelCase_ : Any =True def _snake_case ( ) -> List[Any]: global _tqdm_active lowerCamelCase_ : List[str] =False
713
"""simple docstring""" from datetime import datetime as dt import os from github import Github A__ : int = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _snake_case ( ) -> List[Any]: lowerCamelCase_ : Optional[Any] =Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase_ : Any =g.get_repo("huggingface/transformers" ) lowerCamelCase_ : Tuple =repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase_ : Optional[Any] =sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase__ : i.created_at , reverse=lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
244
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCAmelCase ( UpperCAmelCase )-> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase__ ,collections.abc.Iterable ): return x return (x, x) @require_flax class snake_case : '''simple docstring''' def _lowercase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str ) -> Optional[int]: """simple docstring""" pass def _lowercase ( self : Any ) -> int: """simple docstring""" pass def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def _lowercase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = np.abs((a - b) ).max() self.assertLessEqual(_UpperCamelCase , _UpperCamelCase , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = {'''vision_model''': vision_model, '''text_model''': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = {'''vision_model''': vision_model, '''text_model''': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = after_output[0] SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCamelCase , 1e-3 ) def _lowercase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = {'''vision_model''': vision_model, '''text_model''': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model( input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , output_attentions=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = output.vision_model_output.attentions self.assertEqual(len(_UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ = output.text_model_output.attentions self.assertEqual(len(_UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" pt_model.to(_UpperCamelCase ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE_ = inputs_dict SCREAMING_SNAKE_CASE_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model(**_UpperCamelCase ).to_tuple() SCREAMING_SNAKE_CASE_ = fx_model(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_UpperCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCamelCase , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = fx_model_loaded(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_UpperCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel.from_pretrained(_UpperCamelCase , from_flax=_UpperCamelCase ) pt_model_loaded.to(_UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model_loaded(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_UpperCamelCase , pt_output_loaded.numpy() , 4e-2 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = fx_state self.check_pt_flax_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(_UpperCamelCase , fx_model.params ) self.check_pt_flax_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_UpperCamelCase ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_UpperCamelCase ) def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_save_load(**_UpperCamelCase ) def _lowercase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_UpperCamelCase ) @is_pt_flax_cross_test def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('''vision_config''' ) SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('''text_config''' ) SCREAMING_SNAKE_CASE_ = config_inputs_dict self.check_equivalence_pt_to_flax(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.check_equivalence_flax_to_pt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @slow def _lowercase ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ = model_a(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model_a(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = after_outputs[0] SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCamelCase , 1e-5 ) @require_flax class snake_case ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_UpperCamelCase , text_from_pt=_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowercase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxViTModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(_UpperCamelCase ) return vision_model, text_model def _lowercase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = vision_config_and_inputs SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class snake_case ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _lowercase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_UpperCamelCase , text_from_pt=_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowercase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(_UpperCamelCase ) return vision_model, text_model def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = vision_config_and_inputs SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE_ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_UpperCamelCase , padding=_UpperCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE_ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _UpperCamelCase , atol=1e-3 ) )
393
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[int] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
403
0
"""simple docstring""" lowerCAmelCase_ = 65_521 def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = 0 for plain_chr in plain_text: _UpperCAmelCase = (a + ord(SCREAMING_SNAKE_CASE )) % MOD_ADLER _UpperCAmelCase = (b + a) % MOD_ADLER return (b << 16) | a
494
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
494
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
320
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar _lowerCAmelCase = TypeVar('''KT''') _lowerCAmelCase = TypeVar('''VT''') class lowerCAmelCase_( Generic[KT, VT] ): '''simple docstring''' def __init__( self ,__UpperCAmelCase = "root" ,__UpperCAmelCase = None ) -> Tuple: lowerCAmelCase__ : str = key lowerCAmelCase__ : List[Any] = value lowerCAmelCase__ : list[Node[KT, VT]] = [] def __repr__( self ) -> str: return F"""Node({self.key}: {self.value})""" @property def UpperCAmelCase_ ( self ) -> int: return len(self.forward ) class lowerCAmelCase_( Generic[KT, VT] ): '''simple docstring''' def __init__( self ,__UpperCAmelCase = 0.5 ,__UpperCAmelCase = 16 ) -> List[Any]: lowerCAmelCase__ : Node[KT, VT] = Node[KT, VT]() lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : List[Any] = p lowerCAmelCase__ : List[str] = max_level def __str__( self ) -> str: lowerCAmelCase__ : List[Any] = list(self ) if len(__UpperCAmelCase ) == 0: return F"""SkipList(level={self.level})""" lowerCAmelCase__ : str = max((len(str(__UpperCAmelCase ) ) for item in items) ,default=4 ) lowerCAmelCase__ : Tuple = max(__UpperCAmelCase ,4 ) + 4 lowerCAmelCase__ : int = self.head lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Optional[Any] = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(__UpperCAmelCase ,"""-""" ) + """* """ * len(__UpperCAmelCase ) ) lines.append(""" """ * label_size + """| """ * len(__UpperCAmelCase ) ) while len(node.forward ) != 0: lowerCAmelCase__ : int = node.forward[0] lines.append( F"""[{node.key}]""".ljust(__UpperCAmelCase ,"""-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(__UpperCAmelCase ) ) lowerCAmelCase__ : int = node.forward lines.append("""None""".ljust(__UpperCAmelCase ) + """* """ * len(__UpperCAmelCase ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(__UpperCAmelCase ) def __iter__( self ) -> int: lowerCAmelCase__ : Optional[int] = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ : List[Any] = node.forward[0] def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Dict = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ : int = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._locate_node(__UpperCAmelCase ) if node is not None: for i, update_node in enumerate(__UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ : Tuple = node.forward[i] else: lowerCAmelCase__ : int = update_node.forward[:i] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._locate_node(__UpperCAmelCase ) if node is not None: lowerCAmelCase__ : Dict = value else: lowerCAmelCase__ : Optional[int] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 ,__UpperCAmelCase ): update_vector.append(self.head ) lowerCAmelCase__ : int = level lowerCAmelCase__ : Dict = Node(__UpperCAmelCase ,__UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__UpperCAmelCase ) else: lowerCAmelCase__ : str = new_node def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> VT | None: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._locate_node(__UpperCAmelCase ) if node is not None: return node.value return None def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) lowerCAmelCase__ : Tuple = skip_list.head lowerCAmelCase__ : Union[str, Any] = {} while node.level != 0: lowerCAmelCase__ : List[str] = node.forward[0] lowerCAmelCase__ : List[str] = node.value assert len(UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) lowerCAmelCase__ : List[Any] = skip_list.head lowerCAmelCase__ : List[Any] = {} while node.level != 0: lowerCAmelCase__ : Union[str, Any] = node.forward[0] lowerCAmelCase__ : List[Any] = node.value if len(UpperCamelCase ) != 4: print() assert len(UpperCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = SkipList() assert skip_list.find("""Some key""" ) is None def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(UpperCamelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" def is_sorted(UpperCamelCase ): return all(next_item >= item for item, next_item in zip(UpperCamelCase , lst[1:] ) ) lowerCAmelCase__ : str = SkipList() for i in range(10 ): skip_list.insert(UpperCamelCase , UpperCamelCase ) assert is_sorted(list(UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
565
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class A_ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = """resnet""" _UpperCamelCase : int = ["""basic""", """bottleneck"""] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) lowercase = num_channels lowercase = embedding_size lowercase = hidden_sizes lowercase = depths lowercase = layer_type lowercase = hidden_act lowercase = downsample_in_first_stage lowercase = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] lowercase , lowercase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Any = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-3
565
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } UpperCAmelCase = '''▁''' class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case="</s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case=100 , snake_case=None , snake_case = None , snake_case=True , **snake_case , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase = [F'''<extra_id_{i}>''' for i in range(snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase = len(set(filter(lambda snake_case : bool('extra_id' in str(snake_case ) ) , snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowercase = legacy lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , extra_ids=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case , **snake_case , ) lowercase = vocab_file lowercase = extra_ids lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case , snake_case ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ): lowercase = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case )) + [1] return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self ): return list( set(filter(lambda snake_case : bool(re.search(r'<extra_id_\d+>' , snake_case ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): return [self._convert_token_to_id(snake_case ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if len(snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = self._add_eos_if_not_present(snake_case ) if token_ids_a is None: return token_ids_a else: lowercase = self._add_eos_if_not_present(snake_case ) return token_ids_a + token_ids_a def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , snake_case ): lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , **snake_case ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowercase = SPIECE_UNDERLINE + text.replace(snake_case , ' ' ) return super().tokenize(snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , **snake_case ): if not self.legacy: lowercase = text.startswith(snake_case ) if is_first: lowercase = text[1:] lowercase = self.sp_model.encode(snake_case , out_type=snake_case ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case ): lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if token.startswith('<extra_id_' ): lowercase = re.match(r'<extra_id_(\d+)>' , snake_case ) lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if index < self.sp_model.get_piece_size(): lowercase = self.sp_model.IdToPiece(snake_case ) else: lowercase = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [] lowercase = '' lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(snake_case ) lowercase = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
565
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _UpperCamelCase ( __lowercase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""philschmid/bart-large-cnn-samsum""" __UpperCAmelCase : Optional[int] =( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) __UpperCAmelCase : Optional[Any] ="""summarizer""" __UpperCAmelCase : Dict =AutoTokenizer __UpperCAmelCase : Optional[int] =AutoModelForSeqaSeqLM __UpperCAmelCase : Tuple =["""text"""] __UpperCAmelCase : List[str] =["""text"""] def snake_case ( self , __a ): return self.pre_processor(__lowerCamelCase , return_tensors="pt" , truncation=__lowerCamelCase ) def snake_case ( self , __a ): return self.model.generate(**__lowerCamelCase )[0] def snake_case ( self , __a ): return self.pre_processor.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )
636
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ ={ 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): # Initialise PyTorch model _SCREAMING_SNAKE_CASE : Dict = XLNetConfig.from_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _SCREAMING_SNAKE_CASE : Tuple = finetuning_task _SCREAMING_SNAKE_CASE : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _SCREAMING_SNAKE_CASE : Optional[int] = XLNetForSequenceClassification(__lowerCamelCase ) elif "squad" in finetuning_task: _SCREAMING_SNAKE_CASE : Union[str, Any] = finetuning_task _SCREAMING_SNAKE_CASE : Tuple = XLNetForQuestionAnswering(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = XLNetLMHeadModel(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Save pytorch-model _SCREAMING_SNAKE_CASE : int = os.path.join(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(__lowerCamelCase, __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict(), __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
249
0
"""simple docstring""" SCREAMING_SNAKE_CASE__ : Any =9.8_0665 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = g ) ->float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
558
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] ={ 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """sew-d""" def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase=2 , _lowercase=512 , _lowercase=256 , _lowercase=True , _lowercase=True , _lowercase=("p2c", "c2p") , _lowercase="layer_norm" , _lowercase="gelu_python" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1E-7 , _lowercase=1E-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ) -> str: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : Optional[int] = list(_lowercase ) _lowerCamelCase : Any = list(_lowercase ) _lowerCamelCase : Dict = list(_lowercase ) _lowerCamelCase : List[Any] = conv_bias _lowerCamelCase : Dict = num_conv_pos_embeddings _lowerCamelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = squeeze_factor _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = position_buckets _lowerCamelCase : str = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Tuple = norm_rel_ebd _lowerCamelCase : Union[str, Any] = list(_lowercase ) _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : str = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : int = final_dropout _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Dict = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[str] = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : List[str] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # sequence classification _lowerCamelCase : Optional[int] = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def a__ ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
558
1
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowercase (snake_case__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = tokenizer(example["""content"""] , truncation=snake_case__ )["""input_ids"""] lowerCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output a = HfArgumentParser(PretokenizationArguments) a = parser.parse_args() if args.num_workers is None: a = multiprocessing.cpu_count() a = AutoTokenizer.from_pretrained(args.tokenizer_dir) a = time.time() a = load_dataset(args.dataset_name, split='train') print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") a = time.time() a = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") a = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
169
"""simple docstring""" def lowercase (snake_case__ : int = 200 ) -> int: '''simple docstring''' lowerCAmelCase = [1, 2, 5, 10, 20, 50, 100, 200] lowerCAmelCase = [0] * (pence + 1) lowerCAmelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
169
1
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
687
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Any = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , *__a , **__a ): """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
260
0
import math from collections.abc import Callable def lowerCamelCase_ ( UpperCamelCase__ : Callable[[float], float], UpperCamelCase__ : float, UpperCamelCase__ : float ): '''simple docstring''' UpperCamelCase__ = xa UpperCamelCase__ = xa while True: if x_n == x_na or function(UpperCamelCase__ ) == function(UpperCamelCase__ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) UpperCamelCase__ = x_na - ( function(UpperCamelCase__ ) / ((function(UpperCamelCase__ ) - function(UpperCamelCase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCamelCase__ = x_na UpperCamelCase__ = x_na def lowerCamelCase_ ( UpperCamelCase__ : float ): '''simple docstring''' return math.pow(UpperCamelCase__, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
591
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = torch.load(UpperCamelCase__, map_location='''cpu''' ) UpperCamelCase__ = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCamelCase__ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase__ = v else: UpperCamelCase__ = v UpperCamelCase__ = chkpt['''params'''] UpperCamelCase__ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase__, (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase__ = chkpt['''dico_word2id'''] UpperCamelCase__ = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''', '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(UpperCamelCase__, UpperCamelCase__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCamelCase__, indent=2 ) + '''\n''' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCamelCase__, indent=2 ) + '''\n''' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
591
1
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Any = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __lowerCAmelCase : Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __lowerCAmelCase : Optional[int] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __lowerCAmelCase : List[str] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ = DPRContextEncoderTokenizer class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ = DPRQuestionEncoderTokenizer __lowerCAmelCase : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __lowerCAmelCase : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __lowerCAmelCase : str = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_A ) class UpperCAmelCase_ : '''simple docstring''' def __call__( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[bool] = None , **UpperCamelCase__ : List[str] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: __magic_name__ = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) __magic_name__ = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [titles] __magic_name__ = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [texts] __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [questions] * n_passages assert len(UpperCamelCase__ ) == len( UpperCamelCase__ ), F'''There should be as many titles than texts but got {len(UpperCamelCase__ )} titles and {len(UpperCamelCase__ )} texts.''' __magic_name__ = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["""input_ids"""] __magic_name__ = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["""input_ids"""] __magic_name__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__ ) ] } if return_attention_mask is not False: __magic_name__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __magic_name__ = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) def _lowercase ( self : List[Any] , UpperCamelCase__ : BatchEncoding , UpperCamelCase__ : DPRReaderOutput , UpperCamelCase__ : int = 16 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" __magic_name__ = reader_input["""input_ids"""] __magic_name__ , __magic_name__ , __magic_name__ = reader_output[:3] __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = sorted(range(UpperCamelCase__ ) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__ ) __magic_name__ = [] for doc_id in sorted_docs: __magic_name__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __magic_name__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __magic_name__ = sequence_ids.index(self.pad_token_id ) else: __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , ) -> List[DPRSpanPrediction]: """simple docstring""" __magic_name__ = [] for start_index, start_score in enumerate(UpperCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __magic_name__ = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] , reverse=UpperCamelCase__ ) __magic_name__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' __magic_name__ = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_A ) class UpperCAmelCase_ ( _A , _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = READER_PRETRAINED_VOCAB_FILES_MAP a__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = READER_PRETRAINED_INIT_CONFIGURATION a__ = ["""input_ids""", """attention_mask"""] a__ = DPRReaderTokenizer
529
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCAmelCase :Optional[int] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __lowerCAmelCase ( a_ , a_ ) -> List[Any]: '''simple docstring''' inspect_dataset(a_ , a_ ) SCREAMING_SNAKE_CASE : str = path + '.py' assert script_name in os.listdir(a_ ) assert "__pycache__" not in os.listdir(a_ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __lowerCAmelCase ( a_ , a_ ) -> Tuple: '''simple docstring''' inspect_metric(a_ , a_ ) SCREAMING_SNAKE_CASE : List[str] = path + '.py' assert script_name in os.listdir(a_ ) assert "__pycache__" not in os.listdir(a_ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __lowerCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = get_dataset_config_info(a_ , config_name=a_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __lowerCAmelCase ( a_ , a_ , a_ ) -> str: '''simple docstring''' with pytest.raises(a_ ): get_dataset_config_info(a_ , config_name=a_ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __lowerCAmelCase ( a_ , a_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = get_dataset_config_names(a_ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __lowerCAmelCase ( a_ , a_ , a_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = get_dataset_infos(a_ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE : Tuple = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __lowerCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = get_dataset_infos(a_ ) assert expected_config in infos SCREAMING_SNAKE_CASE : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __lowerCAmelCase ( a_ , a_ , a_ ) -> List[str]: '''simple docstring''' with pytest.raises(a_ ): get_dataset_split_names(a_ , config_name=a_ )
179
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ ) -> None: SCREAMING_SNAKE_CASE : List[str] = data # Initialize hash values SCREAMING_SNAKE_CASE : str = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants SCREAMING_SNAKE_CASE : List[Any] = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] SCREAMING_SNAKE_CASE : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCamelCase ( lowercase__ ) -> bytes: SCREAMING_SNAKE_CASE : str = B'\x80' + (B'\x00' * (63 - (len(lowercase__ ) + 8) % 64)) SCREAMING_SNAKE_CASE : Union[str, Any] = struct.pack('>Q' , (len(lowercase__ ) * 8) ) return data + padding + big_endian_integer def _UpperCamelCase ( self ) -> None: # Convert into blocks of 64 bytes SCREAMING_SNAKE_CASE : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE : Union[str, Any] = list(struct.unpack('>16L' , lowercase__ ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE : Dict = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression SCREAMING_SNAKE_CASE : Any = self.ror(lowercase__ , 6 ) ^ self.ror(lowercase__ , 11 ) ^ self.ror(lowercase__ , 25 ) SCREAMING_SNAKE_CASE : Any = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) SCREAMING_SNAKE_CASE : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 SCREAMING_SNAKE_CASE : Any = self.ror(lowercase__ , 2 ) ^ self.ror(lowercase__ , 13 ) ^ self.ror(lowercase__ , 22 ) SCREAMING_SNAKE_CASE : str = (a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE : Tuple = (sa + maj) % 0X1_00_00_00_00 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) SCREAMING_SNAKE_CASE : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE : Tuple = ''.join([hex(lowercase__ )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> int: return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> None: import hashlib SCREAMING_SNAKE_CASE : Optional[Any] = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(lowercase__ ).hash , hashlib.shaaaa(lowercase__ ).hexdigest() ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() SCREAMING_SNAKE_CASE : List[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.read() else: SCREAMING_SNAKE_CASE : Any = bytes(a_ , 'utf-8' ) print(SHAaaa(a_ ).hash ) if __name__ == "__main__": main()
179
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __a (enum.Enum): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = 0 _SCREAMING_SNAKE_CASE :List[Any] = 1 _SCREAMING_SNAKE_CASE :Dict = 2 @add_end_docstrings(UpperCamelCase_) class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *_a , **_a ) -> Tuple: """simple docstring""" super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. SCREAMING_SNAKE_CASE__ : Any = None if self.model.config.prefix is not None: SCREAMING_SNAKE_CASE__ : List[str] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. SCREAMING_SNAKE_CASE__ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self._sanitize_parameters(prefix=_a , **self._forward_params ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {**self._preprocess_params, **preprocess_params} SCREAMING_SNAKE_CASE__ : Optional[Any] = {**self._forward_params, **forward_params} def _a ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = {} if prefix is not None: SCREAMING_SNAKE_CASE__ : Dict = prefix if prefix: SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ : Tuple = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""" ) SCREAMING_SNAKE_CASE__ : int = handle_long_generation preprocess_params.update(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = generate_kwargs SCREAMING_SNAKE_CASE__ : int = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) SCREAMING_SNAKE_CASE__ : List[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) SCREAMING_SNAKE_CASE__ : Tuple = ReturnType.TENSORS if return_type is not None: SCREAMING_SNAKE_CASE__ : int = return_type if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE__ : List[str] = clean_up_tokenization_spaces if stop_sequence is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) SCREAMING_SNAKE_CASE__ : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , *_a , **_a ) -> Any: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> Optional[int]: """simple docstring""" return super().__call__(_a , **_a ) def _a ( self , _a , _a="" , _a=None , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ : Tuple = prompt_text if handle_long_generation == "hole": SCREAMING_SNAKE_CASE__ : List[Any] = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: SCREAMING_SNAKE_CASE__ : Union[str, Any] = generate_kwargs["""max_new_tokens"""] else: SCREAMING_SNAKE_CASE__ : Tuple = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ : str = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: SCREAMING_SNAKE_CASE__ : Optional[int] = inputs["""attention_mask"""][:, -keep_length:] return inputs def _a ( self , _a , **_a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_inputs["""input_ids"""] SCREAMING_SNAKE_CASE__ : Optional[int] = model_inputs.get("""attention_mask""" , _a ) # Allow empty prompts if input_ids.shape[1] == 0: SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[str] = 1 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids.shape[0] SCREAMING_SNAKE_CASE__ : Tuple = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. SCREAMING_SNAKE_CASE__ : Optional[int] = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: SCREAMING_SNAKE_CASE__ : List[str] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: SCREAMING_SNAKE_CASE__ : int = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length SCREAMING_SNAKE_CASE__ : Dict = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL SCREAMING_SNAKE_CASE__ : Tuple = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": SCREAMING_SNAKE_CASE__ : str = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _a ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs["""generated_sequence"""][0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_outputs["""input_ids"""] SCREAMING_SNAKE_CASE__ : str = model_outputs["""prompt_text"""] SCREAMING_SNAKE_CASE__ : Any = generated_sequence.numpy().tolist() SCREAMING_SNAKE_CASE__ : List[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: SCREAMING_SNAKE_CASE__ : Tuple = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: SCREAMING_SNAKE_CASE__ : Dict = 0 else: SCREAMING_SNAKE_CASE__ : Optional[int] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: SCREAMING_SNAKE_CASE__ : Tuple = prompt_text + text[prompt_length:] else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = text[prompt_length:] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""generated_text""": all_text} records.append(_a ) return records
680
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a :str = 637_8137.0 a :Optional[Any] = 635_6752.31_4245 a :List[Any] = 6_378_137 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: SCREAMING_SNAKE_CASE__ : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius SCREAMING_SNAKE_CASE__ : Tuple = haversine_distance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values SCREAMING_SNAKE_CASE__ : List[str] = (b_lata + b_lata) / 2 SCREAMING_SNAKE_CASE__ : Dict = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) SCREAMING_SNAKE_CASE__ : Tuple = (sin(__lowerCAmelCase ) ** 2) * (cos(__lowerCAmelCase ) ** 2) SCREAMING_SNAKE_CASE__ : str = cos(sigma / 2 ) ** 2 SCREAMING_SNAKE_CASE__ : List[str] = (sigma - sin(__lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) SCREAMING_SNAKE_CASE__ : int = (cos(__lowerCAmelCase ) ** 2) * (sin(__lowerCAmelCase ) ** 2) SCREAMING_SNAKE_CASE__ : int = sin(sigma / 2 ) ** 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = (sigma + sin(__lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : Optional[int] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['''DeiTFeatureExtractor'''] A__ : List[Any] = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
124
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any]=10_00 ) -> List[str]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __snake_case : Optional[int] = n - 1 __snake_case : Any = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __snake_case : Tuple = 0 while count < prec: __snake_case : Union[str, Any] = random.randint(2 ,n - 1 ) __snake_case : Optional[int] = bin_exp_mod(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if b != 1: __snake_case : Dict = True for _ in range(_UpperCAmelCase ): if b == n - 1: __snake_case : Any = False break __snake_case : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A__ : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
124
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __lowerCAmelCase ( __a ): snake_case : Optional[int] = """visual_bert""" def __init__(self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Tuple = visual_embedding_dim _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Dict = bypass_transformer _UpperCAmelCase : Union[str, Any] = special_visual_initialize
414
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __lowerCAmelCase ( __a ): snake_case : Union[List[PIL.Image.Image], np.ndarray] snake_case : Optional[List[bool]] snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
414
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = BioGptModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) lowerCamelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = BioGptForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = BioGptModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # create attention mask lowerCamelCase__ = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCamelCase_ ) lowerCamelCase__ = self.seq_length // 2 lowerCamelCase__ = 0 # first forward pass lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowerCamelCase__ = ids_tensor((1,) , lowerCamelCase_ ).item() + 1 lowerCamelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowerCamelCase__ = random_other_next_tokens # append to next input_ids and attn_mask lowerCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCamelCase_ )] , dim=1 , ) # get two different outputs lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )["""last_hidden_state"""] lowerCamelCase__ = model(lowerCamelCase_ , past_key_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ )["""last_hidden_state"""] # select random slice lowerCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = BioGptModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() lowerCamelCase__ = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCamelCase_ ) # first forward pass lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ ) lowerCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )["""last_hidden_state"""] lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ )[ """last_hidden_state""" ] # select random slice lowerCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = BioGptForCausalLM(lowerCamelCase_ ) model.to(lowerCamelCase_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCamelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __lowerCamelCase ( self , __lowerCAmelCase , *__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = BioGptModel(lowerCamelCase_ ) lowerCamelCase__ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = BioGptForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( lowerCamelCase__ ) = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase_ = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BioGptModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCamelCase_ , gradient_checkpointing=lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCamelCase_ ) lowerCamelCase__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCamelCase__ = """left""" # Define PAD Token = EOS Token = 50256 lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = model.config.eos_token_id # use different length sentences to test batching lowerCamelCase__ = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ ) lowerCamelCase__ = inputs["""input_ids"""].to(lowerCamelCase_ ) lowerCamelCase__ = model.generate( input_ids=lowerCamelCase_ , attention_mask=inputs['''attention_mask'''].to(lowerCamelCase_ ) , ) lowerCamelCase__ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(lowerCamelCase_ ) lowerCamelCase__ = model.generate(input_ids=lowerCamelCase_ ) lowerCamelCase__ = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() lowerCamelCase__ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(lowerCamelCase_ ) lowerCamelCase__ = model.generate(input_ids=lowerCamelCase_ , max_length=model.config.max_length - num_paddings ) lowerCamelCase__ = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence] ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = BioGptModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = input_dict["""input_ids"""] lowerCamelCase__ = input_ids.ne(1 ).to(lowerCamelCase_ ) lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ = BioGptForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = """multi_label_classification""" lowerCamelCase__ = input_dict["""input_ids"""] lowerCamelCase__ = input_ids.ne(1 ).to(lowerCamelCase_ ) lowerCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ = BioGptForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) lowerCamelCase__ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) lowerCamelCase__ = model(lowerCamelCase_ )[0] lowerCamelCase__ = 4_2_3_8_4 lowerCamelCase__ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCamelCase_ ) lowerCamelCase__ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCamelCase__ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCamelCase_ ) torch.manual_seed(0 ) lowerCamelCase__ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(lowerCamelCase_ ) lowerCamelCase__ = model.generate( **lowerCamelCase_ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowerCamelCase_ , ) lowerCamelCase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
712
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _a = datasets.logging.get_logger(__name__) _a = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" _a = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" _a = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ,__snake_case=False ,__snake_case=True ,__snake_case=False ,__snake_case="dummy_doc" ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = {doc: key_lines} lowerCamelCase__ = {doc: sys_lines} lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ , lowerCamelCase__ = reader.get_doc_mentions(__snake_case ,key_doc_lines[doc] ,__snake_case ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase__ = reader.set_annotated_parse_trees(__snake_case ,key_doc_lines[doc] ,__snake_case ,__snake_case ) lowerCamelCase__ , lowerCamelCase__ = reader.get_doc_mentions(__snake_case ,sys_doc_lines[doc] ,__snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase__ = reader.set_annotated_parse_trees(__snake_case ,key_doc_lines[doc] ,__snake_case ,__snake_case ) if remove_nested: lowerCamelCase__ , lowerCamelCase__ = reader.remove_nested_coref_mentions(__snake_case ,__snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase__ , lowerCamelCase__ = reader.remove_nested_coref_mentions(__snake_case ,__snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase__ = reader.get_mention_assignments(__snake_case ,__snake_case ) lowerCamelCase__ = reader.get_mention_assignments(__snake_case ,__snake_case ) lowerCamelCase__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = get_coref_infos(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 for name, metric in metrics: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = evaluator.evaluate_documents(__snake_case ,__snake_case ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) ,F'Recall: {recall * 100:.2f}' ,F' Precision: {precision * 100:.2f}' ,F' F1: {fa * 100:.2f}' ,) if conll_subparts_num == 3: lowerCamelCase__ = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase__ = line.split()[5] if not parse_col == "-": lowerCamelCase__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase__ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase__ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
29
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase ( _snake_case ): def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : Union[str, Any] ): if tokenize_kwargs is None: UpperCAmelCase__ :Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) UpperCAmelCase__ :List[str] = truncation UpperCAmelCase__ :Optional[int] = tokenize_kwargs UpperCAmelCase__ :List[Any] = {} if return_tensors is not None: UpperCAmelCase__ :Tuple = return_tensors return preprocess_params, {}, postprocess_params def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : int , **__lowerCamelCase : Union[str, Any] ): UpperCAmelCase__ :str = self.framework UpperCAmelCase__ :Any = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) return model_inputs def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : List[str] ): UpperCAmelCase__ :Any = self.model(**UpperCamelCase__ ) return model_outputs def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Any , *__lowerCamelCase : Dict , **__lowerCamelCase : Dict ): return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
467
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = sorted(zip(UpperCAmelCase__, UpperCAmelCase__ ), key=lambda UpperCAmelCase__ : x[0] / x[1], reverse=UpperCAmelCase__ ) A_ , A_ = [i[0] for i in r], [i[1] for i in r] A_ = list(accumulate(UpperCAmelCase__ ) ) A_ = bisect(UpperCAmelCase__, UpperCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
288
0
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = len(_A ) UpperCAmelCase : Optional[Any] = [[0] * n for i in range(_A )] for i in range(_A ): UpperCAmelCase : List[str] = y_points[i] for i in range(2 , _A ): for j in range(_A , _A ): UpperCAmelCase : List[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def __init__( self , snake_case , snake_case=7_6_8 ): '''simple docstring''' super().__init__(snake_case ) UpperCAmelCase : List[str] = proj_size UpperCAmelCase : Union[str, Any] = CLIPVisionModel(snake_case ) UpperCAmelCase : Union[str, Any] = PaintByExampleMapper(snake_case ) UpperCAmelCase : List[Any] = nn.LayerNorm(config.hidden_size ) UpperCAmelCase : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , snake_case , snake_case=False ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model(pixel_values=snake_case ) UpperCAmelCase : Optional[Any] = clip_output.pooler_output UpperCAmelCase : Optional[int] = self.mapper(latent_states[:, None] ) UpperCAmelCase : Tuple = self.final_layer_norm(snake_case ) UpperCAmelCase : int = self.proj_out(snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase : Optional[int] = config.hidden_size UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(snake_case , snake_case , snake_case , activation_fn="gelu" , attention_bias=snake_case ) for _ in range(snake_case ) ] ) def A_ ( self , snake_case ): '''simple docstring''' for block in self.blocks: UpperCAmelCase : str = block(snake_case ) return hidden_states
609
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class A__ : """simple docstring""" __A : List[str] __A : Optional[str] = None # Automatically constructed __A : ClassVar[str] = "dict" __A : ClassVar[Any] = None __A : str = field(default='''Translation''' , init=__UpperCAmelCase , repr=__UpperCAmelCase ) def __call__( self) -> Tuple: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def __lowercase ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value('string') for k in sorted(self.languages)} @dataclass class A__ : """simple docstring""" __A : Optional[List] = None __A : Optional[int] = None __A : Optional[str] = None # Automatically constructed __A : ClassVar[str] = "dict" __A : ClassVar[Any] = None __A : str = field(default='''TranslationVariableLanguages''' , init=__UpperCAmelCase , repr=__UpperCAmelCase ) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[Any] = sorted(set(self.languages)) if self.languages else None a__ : Any = len(self.languages) if self.languages else None def __call__( self) -> Union[str, Any]: '''simple docstring''' return pa.struct({'language': pa.list_(pa.string()), 'translation': pa.list_(pa.string())}) def __lowercase ( self , lowercase) -> List[Any]: '''simple docstring''' a__ : str = set(self.languages) if self.languages and set(lowercase) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(lowercase) - lang_set))}) are not in valid set ({", ".join(lowercase)}).') # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a__ : Optional[Any] = [] for lang, text in translation_dict.items(): if isinstance(lowercase , lowercase): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. a__ , a__ : List[str] = zip(*sorted(lowercase)) return {"language": languages, "translation": translations} def __lowercase ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('string')), "translation": Sequence(Value('string')), }
302
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A__ ( __UpperCAmelCase ): """simple docstring""" @slow @require_torch def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny') a__ : Union[str, Any] = BertTokenizer.from_pretrained('bert-base-uncased') a__ : Union[str, Any] = bertabert.config.encoder.vocab_size a__ : Optional[Any] = tokenizer.sep_token_id a__ : str = tokenizer.cls_token_id a__ : Optional[Any] = 128 a__ : Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]') a__ : Union[str, Any] = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]') a__ : List[str] = train_dataset.select(range(32)) a__ : Dict = val_dataset.select(range(16)) a__ : Tuple = 4 def _map_to_encoder_decoder_inputs(lowercase): # Tokenizer will automatically set [BOS] <text> [EOS] a__ : List[Any] = tokenizer(batch['article'] , padding='max_length' , truncation=lowercase , max_length=512) a__ : int = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowercase , max_length=128) a__ : Tuple = inputs.input_ids a__ : int = inputs.attention_mask a__ : str = outputs.input_ids a__ : List[str] = outputs.input_ids.copy() a__ : int = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] a__ : Optional[int] = outputs.attention_mask assert all(len(lowercase) == 512 for x in inputs.input_ids) assert all(len(lowercase) == 128 for x in outputs.input_ids) return batch def _compute_metrics(lowercase): a__ : Optional[int] = pred.label_ids a__ : str = pred.predictions # all unnecessary tokens are removed a__ : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase) a__ : List[str] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase) a__ : Optional[Any] = sum([int(pred_str[i] == label_str[i]) for i in range(len(lowercase))]) / len(lowercase) return {"accuracy": accuracy} # map train dataset a__ : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase , batch_size=lowercase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset a__ : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase , batch_size=lowercase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) a__ : Tuple = self.get_auto_remove_tmp_dir() a__ : List[Any] = SeqaSeqTrainingArguments( output_dir=lowercase , per_device_train_batch_size=lowercase , per_device_eval_batch_size=lowercase , predict_with_generate=lowercase , evaluation_strategy='steps' , do_train=lowercase , do_eval=lowercase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer a__ : List[str] = SeqaSeqTrainer( model=lowercase , args=lowercase , compute_metrics=_compute_metrics , train_dataset=lowercase , eval_dataset=lowercase , tokenizer=lowercase , ) # start training trainer.train()
302
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __lowercase = BlipaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self , **lowerCAmelCase_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def snake_case__ ( self , **lowerCAmelCase_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def snake_case__ ( self ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ): __lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ): __lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowercase = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) __lowercase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCAmelCase_ , return_tensors="np" ) __lowercase = processor(images=lowerCAmelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case__ ( self ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) __lowercase = "lower newer" __lowercase = processor(text=lowerCAmelCase_ ) __lowercase = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def snake_case__ ( self ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowerCAmelCase_ ) __lowercase = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
576
from functools import reduce lowerCAmelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __lowercase ( _UpperCAmelCase = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
576
1
'''simple docstring''' from statistics import mean, stdev def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : int = 3 ) -> list: UpperCAmelCase : Optional[Any] = min(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = max(_lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCAmelCase ) for x in data] def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : int = 3 ) -> list: UpperCAmelCase : Union[str, Any] = mean(_lowerCAmelCase ) UpperCAmelCase : List[Any] = stdev(_lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCAmelCase ) for x in data]
127
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: List[Any] = logging.get_logger(__name__) UpperCamelCase__: str = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """lxmert""" lowerCamelCase__ = {} def __init__( self : Optional[Any] , __snake_case : Dict=30522 , __snake_case : Dict=768 , __snake_case : Any=12 , __snake_case : List[str]=9500 , __snake_case : List[str]=1600 , __snake_case : List[Any]=400 , __snake_case : Optional[Any]=3072 , __snake_case : int="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : int=0.1 , __snake_case : int=512 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=1E-12 , __snake_case : Dict=9 , __snake_case : str=5 , __snake_case : Optional[int]=5 , __snake_case : int=2048 , __snake_case : Any=4 , __snake_case : Dict=6.67 , __snake_case : Tuple=True , __snake_case : Tuple=True , __snake_case : Dict=True , __snake_case : Optional[int]=True , __snake_case : str=True , __snake_case : Any=True , __snake_case : str=True , **__snake_case : Any , ) -> Any: UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Any = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Dict = num_qa_labels UpperCAmelCase : Optional[Any] = num_object_labels UpperCAmelCase : int = num_attr_labels UpperCAmelCase : str = l_layers UpperCAmelCase : Optional[Any] = x_layers UpperCAmelCase : str = r_layers UpperCAmelCase : Any = visual_feat_dim UpperCAmelCase : int = visual_pos_dim UpperCAmelCase : Tuple = visual_loss_normalizer UpperCAmelCase : Tuple = task_matched UpperCAmelCase : Union[str, Any] = task_mask_lm UpperCAmelCase : Optional[Any] = task_obj_predict UpperCAmelCase : Tuple = task_qa UpperCAmelCase : Dict = visual_obj_loss UpperCAmelCase : List[Any] = visual_attr_loss UpperCAmelCase : Dict = visual_feat_loss UpperCAmelCase : str = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__snake_case )
127
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__( ): __snake_case : Union[str, Any] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' __snake_case : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('RGB' ) return image def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): __snake_case : Union[str, Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ): __snake_case : Optional[Any] = dct.pop(SCREAMING_SNAKE_CASE_ ) __snake_case : List[str] = val def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __snake_case : List[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) __snake_case : Optional[int] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __snake_case : Tuple = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE_ , requires_grad=SCREAMING_SNAKE_CASE_ ), v_bias) ) __snake_case : Optional[Any] = qkv_bias def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): __snake_case : Optional[int] = 3_64 if 'coco' in model_name else 2_24 __snake_case : Tuple = InstructBlipVisionConfig(image_size=SCREAMING_SNAKE_CASE_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __snake_case : Any = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __snake_case : Dict = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __snake_case : Optional[int] = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: __snake_case : Tuple = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_20_01 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __snake_case : Dict = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() __snake_case : Any = InstructBlipConfig(vision_config=SCREAMING_SNAKE_CASE_ , text_config=SCREAMING_SNAKE_CASE_ , qformer_config=SCREAMING_SNAKE_CASE_ ) return config, image_size @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=False ): __snake_case : List[str] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: __snake_case : Union[str, Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __snake_case : List[str] = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) __snake_case , __snake_case : Tuple = get_blipa_config(SCREAMING_SNAKE_CASE_ ) __snake_case : Tuple = InstructBlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() __snake_case : str = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } __snake_case , __snake_case : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) __snake_case : Any = 'cuda:1' if torch.cuda.is_available() else 'cpu' __snake_case : Optional[int] = 'cuda:2' if torch.cuda.is_available() else 'cpu' __snake_case , __snake_case , __snake_case : str = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE_ , model_type=SCREAMING_SNAKE_CASE_ , is_eval=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) original_model.eval() print('Done!' ) # update state dict keys __snake_case : List[str] = original_model.state_dict() __snake_case : Dict = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __snake_case : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if key.startswith('Qformer.bert' ): __snake_case : Union[str, Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __snake_case : str = key.replace('self' , 'attention' ) if "llm_proj" in key: __snake_case : Tuple = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: __snake_case : Tuple = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): __snake_case : str = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): __snake_case : Optional[int] = key.replace('t5' , 'language' ) __snake_case : Any = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) __snake_case : List[Any] = load_demo_image() __snake_case : List[Any] = 'What is unusual about this image?' # create processor __snake_case : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ ) __snake_case : List[Any] = InstructBlipProcessor( image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ , ) __snake_case : str = processor(images=SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # make sure processor creates exact same pixel values __snake_case : Optional[int] = vis_processors['eval'](SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) __snake_case : List[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) hf_model.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): if "vicuna" in model_name: __snake_case : Union[str, Any] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits __snake_case : Optional[Any] = hf_model(**SCREAMING_SNAKE_CASE_ ).logits else: __snake_case : Union[str, Any] = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits __snake_case : Dict = tokenizer('\n' , return_tensors='pt' ).input_ids.to(SCREAMING_SNAKE_CASE_ ) __snake_case : Tuple = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) __snake_case : int = hf_model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __snake_case : List[str] = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) print('Looks ok!' ) print('Generating with original model...' ) __snake_case : List[str] = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) __snake_case : Union[str, Any] = hf_model.generate( **SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __snake_case : Dict = 2 print('Original generation:' , SCREAMING_SNAKE_CASE_ ) __snake_case : int = processor.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case : Tuple = [text.strip() for text in output_text] print('HF generation:' , SCREAMING_SNAKE_CASE_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() __magic_name__ = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __magic_name__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Optional[int] = field __magic_name__ :List[Any] = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} __magic_name__ :Optional[int] = Json( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , field=__lowerCAmelCase , **__lowerCAmelCase , ) def A ( self ): """simple docstring""" # Build iterable dataset if self.streaming: __magic_name__ :Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__ :int = None __magic_name__ :Optional[Any] = None __magic_name__ :int = None __magic_name__ :str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) __magic_name__ :Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) __magic_name__ :Tuple = dataset __magic_name__ :Tuple = path_or_buf __magic_name__ :Tuple = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __magic_name__ :Dict = num_proc __magic_name__ :Dict = '''utf-8''' __magic_name__ :List[Any] = to_json_kwargs def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.to_json_kwargs.pop('''path_or_buf''' , __lowerCAmelCase ) __magic_name__ :Any = self.to_json_kwargs.pop('''orient''' , '''records''' ) __magic_name__ :Dict = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __magic_name__ :Union[str, Any] = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __magic_name__ :Union[str, Any] = self.to_json_kwargs.pop('''compression''' , __lowerCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__lowerCAmelCase ) as buffer: __magic_name__ :Optional[Any] = self._write(file_obj=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) __magic_name__ :int = self._write( file_obj=self.path_or_buf , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs ) return written def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :Tuple = args __magic_name__ :int = query_table( table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __magic_name__ :List[Any] = batch.to_pandas().to_json( path_or_buf=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **__lowerCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __magic_name__ :Union[str, Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__lowerCAmelCase ) else: __magic_name__ , __magic_name__ :List[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__lowerCAmelCase ) return written
0
from math import sqrt def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(A__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(A__ , A__ ), "'status' must been from type bool" return status def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(A__ ): ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(A__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(A__ ): while quotient != 1: if is_prime(A__ ) and (quotient % factor == 0): ans.append(A__ ) quotient /= factor else: factor += 1 else: ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(A__ ) lowercase__ = max(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(A__ ) lowercase__ = min(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , A__ ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , A__ ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( A__ ): assert ( isinstance(A__ , A__ ) and (number > 2) and is_even(A__ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(A__ ) lowercase__ = len(A__ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(A__ , A__ ) and (len(A__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( A__ , A__ ): assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(A__ , A__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( A__ , A__ ): assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(A__ ) lowercase__ = prime_factorization(A__ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(A__ , A__ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(A__ ) lowercase__ = prime_fac_a.count(A__ ) for _ in range(max(A__ , A__ ) ): ans *= n else: lowercase__ = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # precondition assert isinstance(A__ , A__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(A__ ): ans += 1 # precondition assert isinstance(A__ , A__ ) and is_prime( A__ ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( A__ , A__ ): assert ( is_prime(A__ ) and is_prime(A__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(A__ ): number += 1 while number < p_number_a: ans.append(A__ ) number += 1 # fetch the next prime number. while not is_prime(A__ ): number += 1 # precondition assert ( isinstance(A__ , A__ ) and ans[0] != p_number_a and ans[len(A__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(A__ ) # precondition assert ans[0] == 1 and ans[len(A__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(A__ ) # precondition assert ( isinstance(A__ , A__ ) and (divisors[0] == 1) and (divisors[len(A__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( A__ , A__ ): assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(A__ ) , abs(A__ ) ) # precondition assert ( isinstance(A__ , A__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( A__ ): assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
622
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str ): def get_masked_lm_array(UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' SCREAMING_SNAKE_CASE__ = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: SCREAMING_SNAKE_CASE__ = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_array(UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' SCREAMING_SNAKE_CASE__ = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: SCREAMING_SNAKE_CASE__ = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_layer_array(UpperCamelCase__: int , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' SCREAMING_SNAKE_CASE__ = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: SCREAMING_SNAKE_CASE__ = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_attention_layer_array(UpperCamelCase__: int , UpperCamelCase__: str , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' SCREAMING_SNAKE_CASE__ = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = array.reshape(UpperCamelCase__ ) if "kernel" in name: SCREAMING_SNAKE_CASE__ = array.transpose() return torch.from_numpy(UpperCamelCase__ ) print(f'''Loading model based on config from {config_path}...''' ) SCREAMING_SNAKE_CASE__ = BertConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = BertForMaskedLM(UpperCamelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ = model.bert.encoder.layer[layer_index] # Self-attention SCREAMING_SNAKE_CASE__ = layer.attention.self SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_query_dense/bias""" , self_attn.query.bias.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_key_dense/bias""" , self_attn.key.bias.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output SCREAMING_SNAKE_CASE__ = layer.attention.output SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_attention_layer_array( UpperCamelCase__ , """_output_dense/bias""" , self_output.dense.bias.data.shape ) SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_attention_layer_norm/gamma""" ) SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_attention_layer_norm/beta""" ) # Intermediate SCREAMING_SNAKE_CASE__ = layer.intermediate SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_intermediate_dense/kernel""" ) SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_intermediate_dense/bias""" ) # Output SCREAMING_SNAKE_CASE__ = layer.output SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_output_dense/kernel""" ) SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_output_dense/bias""" ) SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_output_layer_norm/gamma""" ) SCREAMING_SNAKE_CASE__ = get_encoder_layer_array(UpperCamelCase__ , """_output_layer_norm/beta""" ) # Embeddings SCREAMING_SNAKE_CASE__ = get_encoder_array("""_position_embedding_layer/embeddings""" ) SCREAMING_SNAKE_CASE__ = get_encoder_array("""_type_embedding_layer/embeddings""" ) SCREAMING_SNAKE_CASE__ = get_encoder_array("""_embedding_norm_layer/gamma""" ) SCREAMING_SNAKE_CASE__ = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head SCREAMING_SNAKE_CASE__ = model.cls.predictions.transform SCREAMING_SNAKE_CASE__ = get_masked_lm_array("""dense/kernel""" ) SCREAMING_SNAKE_CASE__ = get_masked_lm_array("""dense/bias""" ) SCREAMING_SNAKE_CASE__ = get_masked_lm_array("""layer_norm/gamma""" ) SCREAMING_SNAKE_CASE__ = get_masked_lm_array("""layer_norm/beta""" ) SCREAMING_SNAKE_CASE__ = get_masked_lm_array("""embedding_table""" ) # Pooling SCREAMING_SNAKE_CASE__ = BertPooler(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = get_encoder_array("""_pooler_layer/kernel""" ) SCREAMING_SNAKE_CASE__ = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(UpperCamelCase__ ) # Integration test - should load without any errors ;) SCREAMING_SNAKE_CASE__ = BertForMaskedLM.from_pretrained(UpperCamelCase__ ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) _lowerCamelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
59
from math import pow, sqrt def SCREAMING_SNAKE_CASE__ ( *UpperCamelCase__: float ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) > 0 and all(value > 0.0 for value in values ) return result def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
59
1
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a__ ( a_ ): def __init__( self , _a , _a ): super().__init__() self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = 1 , _a = None , _a = 50 , _a = "pil" , _a = True , **_a , ): lowercase : Any = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_a , ) lowercase : List[str] = image.to(self.device ) # set step values self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase : Optional[int] = self.unet(_a , _a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase : Tuple = self.scheduler.step(_a , _a , _a ).prev_sample lowercase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Any = self.numpy_to_pil(_a ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_a ), "This is a local test"
361
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_a ).to(_a ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase : Optional[Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids lowercase : Union[str, Any] = tokenizer("Hi I am" , return_tensors="pt" ).input_ids lowercase : int = model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss lowercase : str = -(labels.shape[-1] * loss.item()) lowercase : List[str] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
361
1
from __future__ import annotations def __UpperCamelCase ( a) ->List[str]: lowerCamelCase__ = 2 lowerCamelCase__ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase) if n > 1: factors.append(_lowerCAmelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
711
A_ = {str(digit): digit**5 for digit in range(1_0)} def __UpperCamelCase ( a) ->int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a)) def __UpperCamelCase ( ) ->int: return sum( number for number in range(1000, 1000000) if number == digits_fifth_powers_sum(a)) if __name__ == "__main__": print(solution())
360
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple =get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Dict = AlbertTokenizer __lowerCAmelCase :str = AlbertTokenizerFast __lowerCAmelCase :str = True __lowerCAmelCase :List[str] = True __lowerCAmelCase :List[Any] = True def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a__ : List[Any] = AlbertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : List[Any] = """this is a test""" a__ : str = """this is a test""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Dict = """<pad>""" a__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__lowercase ) , 3_0_0_0_0 ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return a__ : List[Any] = self.get_tokenizer() a__ : Optional[int] = self.get_rust_tokenizer() a__ : int = """I was born in 92000, and this is falsé.""" a__ : Union[str, Any] = tokenizer.tokenize(__lowercase ) a__ : Dict = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) a__ : Optional[Any] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) a__ : Optional[int] = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) a__ : Tuple = self.get_rust_tokenizer() a__ : Dict = tokenizer.encode(__lowercase ) a__ : Dict = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : List[str] = AlbertTokenizer(__lowercase , keep_accents=__lowercase ) a__ : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowercase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [4_8, 2_5, 2_1, 1_2_8_9] ) a__ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowercase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) a__ : Optional[int] = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) a__ : int = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : int = AlbertTokenizer(__lowercase ) a__ : Tuple = tokenizer.encode("""sequence builders""" ) a__ : Optional[int] = tokenizer.encode("""multi-sequence build""" ) a__ : Any = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : str = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Union[str, Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
136
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" a__ : Optional[int] = prime_factors(_lowercase) if is_square_free(_lowercase): return -1 if len(_lowercase) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A_ ( lowerCAmelCase_ ): def __get__( self : str , snake_case_ : Tuple , snake_case_ : List[str]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) _UpperCAmelCase = "__cached_" + self.fget.__name__ _UpperCAmelCase = getattr(snake_case_ , snake_case_ , snake_case_ ) if cached is None: _UpperCAmelCase = self.fget(snake_case_ ) setattr(snake_case_ , snake_case_ , snake_case_ ) return cached def UpperCAmelCase_ ( __lowercase : int ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def UpperCAmelCase_ ( __lowercase : int ) -> Tuple: '''simple docstring''' if is_torch_fx_proxy(__lowercase ): return True if is_torch_available(): import torch if isinstance(__lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowercase , np.ndarray ) def UpperCAmelCase_ ( __lowercase : Any ) -> Tuple: '''simple docstring''' return isinstance(__lowercase , np.ndarray ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> str: '''simple docstring''' return _is_numpy(__lowercase ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Dict: '''simple docstring''' import torch return isinstance(__lowercase , torch.Tensor ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> Tuple: '''simple docstring''' return False if not is_torch_available() else _is_torch(__lowercase ) def UpperCAmelCase_ ( __lowercase : int ) -> int: '''simple docstring''' import torch return isinstance(__lowercase , torch.device ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(__lowercase ) def UpperCAmelCase_ ( __lowercase : int ) -> Tuple: '''simple docstring''' import torch if isinstance(__lowercase , __lowercase ): if hasattr(__lowercase , __lowercase ): _UpperCAmelCase = getattr(__lowercase , __lowercase ) else: return False return isinstance(__lowercase , torch.dtype ) def UpperCAmelCase_ ( __lowercase : str ) -> List[Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(__lowercase ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> int: '''simple docstring''' import tensorflow as tf return isinstance(__lowercase , tf.Tensor ) def UpperCAmelCase_ ( __lowercase : Dict ) -> int: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(__lowercase ) def UpperCAmelCase_ ( __lowercase : int ) -> Dict: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(__lowercase ) return type(__lowercase ) == tf.Tensor def UpperCAmelCase_ ( __lowercase : List[str] ) -> Optional[int]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowercase ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Dict: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(__lowercase , jnp.ndarray ) def UpperCAmelCase_ ( __lowercase : Any ) -> str: '''simple docstring''' return False if not is_flax_available() else _is_jax(__lowercase ) def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> int: '''simple docstring''' if isinstance(__lowercase , (dict, UserDict) ): return {k: to_py_obj(__lowercase ) for k, v in obj.items()} elif isinstance(__lowercase , (list, tuple) ): return [to_py_obj(__lowercase ) for o in obj] elif is_tf_tensor(__lowercase ): return obj.numpy().tolist() elif is_torch_tensor(__lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowercase ): return np.asarray(__lowercase ).tolist() elif isinstance(__lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCAmelCase_ ( __lowercase : List[str] ) -> Tuple: '''simple docstring''' if isinstance(__lowercase , (dict, UserDict) ): return {k: to_numpy(__lowercase ) for k, v in obj.items()} elif isinstance(__lowercase , (list, tuple) ): return np.array(__lowercase ) elif is_tf_tensor(__lowercase ): return obj.numpy() elif is_torch_tensor(__lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowercase ): return np.asarray(__lowercase ) else: return obj class A_ ( lowerCAmelCase_ ): def lowercase ( self : List[str] ): _UpperCAmelCase = fields(self ) # Safety and consistency checks if not len(snake_case_ ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) _UpperCAmelCase = getattr(self , class_fields[0].name ) _UpperCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(snake_case_ ): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = first_field.items() _UpperCAmelCase = True else: try: _UpperCAmelCase = iter(snake_case_ ) _UpperCAmelCase = True except TypeError: _UpperCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(snake_case_ ): if ( not isinstance(snake_case_ , (list, tuple) ) or not len(snake_case_ ) == 2 or not isinstance(element[0] , snake_case_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCAmelCase = element[1] elif first_field is not None: _UpperCAmelCase = first_field else: for field in class_fields: _UpperCAmelCase = getattr(self , field.name ) if v is not None: _UpperCAmelCase = v def __delitem__( self : Tuple , *snake_case_ : List[str] , **snake_case_ : int ): raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def lowercase ( self : str , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def lowercase ( self : Dict , *snake_case_ : int , **snake_case_ : Optional[Any] ): raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def lowercase ( self : str , *snake_case_ : Dict , **snake_case_ : Optional[int] ): raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : List[Any] , snake_case_ : Optional[int] ): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(snake_case_ , snake_case_ ) super().__setattr__(snake_case_ , snake_case_ ) def __setitem__( self : List[str] , snake_case_ : Tuple , snake_case_ : List[str] ): # Will raise a KeyException if needed super().__setitem__(snake_case_ , snake_case_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(snake_case_ , snake_case_ ) def lowercase ( self : int ): return tuple(self[k] for k in self.keys() ) class A_ ( lowerCAmelCase_ , lowerCAmelCase_ ): @classmethod def lowercase ( cls : Dict , snake_case_ : List[Any] ): raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Dict = """longest""" _lowerCamelCase : Union[str, Any] = """max_length""" _lowerCamelCase : int = """do_not_pad""" class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[str] = """pt""" _lowerCamelCase : Any = """tf""" _lowerCamelCase : str = """np""" _lowerCamelCase : str = """jax""" class A_ : def __init__( self : int , snake_case_ : List[ContextManager] ): _UpperCAmelCase = context_managers _UpperCAmelCase = ExitStack() def __enter__( self : Union[str, Any] ): for context_manager in self.context_managers: self.stack.enter_context(snake_case_ ) def __exit__( self : List[str] , *snake_case_ : Optional[int] , **snake_case_ : str ): self.stack.__exit__(*snake_case_ , **snake_case_ ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = infer_framework(__lowercase ) if framework == "tf": _UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = model_class.__name__ _UpperCAmelCase = infer_framework(__lowercase ) if framework == "tf": _UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCAmelCase_ ( __lowercase : MutableMapping , __lowercase : str = "" , __lowercase : str = "." ) -> int: '''simple docstring''' def _flatten_dict(__lowercase : int , __lowercase : Any="" , __lowercase : Union[str, Any]="." ): for k, v in d.items(): _UpperCAmelCase = str(__lowercase ) + delimiter + str(__lowercase ) if parent_key else k if v and isinstance(__lowercase , __lowercase ): yield from flatten_dict(__lowercase , __lowercase , delimiter=__lowercase ).items() else: yield key, v return dict(_flatten_dict(__lowercase , __lowercase , __lowercase ) ) @contextmanager def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : bool = False ) -> Optional[Any]: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : int=None ) -> Optional[int]: '''simple docstring''' if is_numpy_array(__lowercase ): return np.transpose(__lowercase , axes=__lowercase ) elif is_torch_tensor(__lowercase ): return array.T if axes is None else array.permute(*__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.transpose(__lowercase , perm=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.transpose(__lowercase , axes=__lowercase ) else: raise ValueError(f'Type not supported for transpose: {type(__lowercase )}.' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] ) -> int: '''simple docstring''' if is_numpy_array(__lowercase ): return np.reshape(__lowercase , __lowercase ) elif is_torch_tensor(__lowercase ): return array.reshape(*__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.reshape(__lowercase , __lowercase ) elif is_jax_tensor(__lowercase ): return jnp.reshape(__lowercase , __lowercase ) else: raise ValueError(f'Type not supported for reshape: {type(__lowercase )}.' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : List[Any]=None ) -> int: '''simple docstring''' if is_numpy_array(__lowercase ): return np.squeeze(__lowercase , axis=__lowercase ) elif is_torch_tensor(__lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.squeeze(__lowercase , axis=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.squeeze(__lowercase , axis=__lowercase ) else: raise ValueError(f'Type not supported for squeeze: {type(__lowercase )}.' ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' if is_numpy_array(__lowercase ): return np.expand_dims(__lowercase , __lowercase ) elif is_torch_tensor(__lowercase ): return array.unsqueeze(dim=__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.expand_dims(__lowercase , axis=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.expand_dims(__lowercase , axis=__lowercase ) else: raise ValueError(f'Type not supported for expand_dims: {type(__lowercase )}.' ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> str: '''simple docstring''' if is_numpy_array(__lowercase ): return np.size(__lowercase ) elif is_torch_tensor(__lowercase ): return array.numel() elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.size(__lowercase ) elif is_jax_tensor(__lowercase ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__lowercase )}.' ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : List[str] ) -> Tuple: '''simple docstring''' for key, value in auto_map.items(): if isinstance(__lowercase , (tuple, list) ): _UpperCAmelCase = [f'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase = f'{repo_id}--{value}' return auto_map def UpperCAmelCase_ ( __lowercase : Dict ) -> Optional[Any]: '''simple docstring''' for base_class in inspect.getmro(__lowercase ): _UpperCAmelCase = base_class.__module__ _UpperCAmelCase = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
119
'''simple docstring''' from __future__ import annotations __SCREAMING_SNAKE_CASE :Tuple = list[tuple[int, int]] __SCREAMING_SNAKE_CASE :Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE :Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A_ : def __init__( self : List[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : Node | None , ): _UpperCAmelCase = pos_x _UpperCAmelCase = pos_y _UpperCAmelCase = (pos_y, pos_x) _UpperCAmelCase = goal_x _UpperCAmelCase = goal_y _UpperCAmelCase = g_cost _UpperCAmelCase = parent _UpperCAmelCase = self.calculate_heuristic() def lowercase ( self : List[Any] ): _UpperCAmelCase = abs(self.pos_x - self.goal_x ) _UpperCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[str] , snake_case_ : List[Any] ): return self.f_cost < other.f_cost class A_ : def __init__( self : Tuple , snake_case_ : tuple[int, int] , snake_case_ : tuple[int, int] ): _UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _UpperCAmelCase = [self.start] _UpperCAmelCase = [] _UpperCAmelCase = False def lowercase ( self : int ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _UpperCAmelCase = True return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _UpperCAmelCase = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) if not self.reached: return [self.start.pos] return None def lowercase ( self : List[str] , snake_case_ : Node ): _UpperCAmelCase = [] for action in delta: _UpperCAmelCase = parent.pos_x + action[1] _UpperCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def lowercase ( self : Any , snake_case_ : Node | None ): _UpperCAmelCase = node _UpperCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": __SCREAMING_SNAKE_CASE :int = (0, 0) __SCREAMING_SNAKE_CASE :Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __SCREAMING_SNAKE_CASE :Union[str, Any] = GreedyBestFirst(init, goal) __SCREAMING_SNAKE_CASE :Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: __SCREAMING_SNAKE_CASE :Dict = 2 for elem in grid: print(elem)
119
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=False ) -> List[str]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCAmelCase_ : Dict = os.path.abspath(_SCREAMING_SNAKE_CASE ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) UpperCAmelCase_ : List[str] = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) UpperCAmelCase_ : str = convert_pytorch_state_dict_to_flax(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase_ : List[str] = convert_pytorch_sharded_state_dict_to_flax(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return flax_state_dict def a__ ( _SCREAMING_SNAKE_CASE : Tuple[str] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, jnp.ndarray] , _SCREAMING_SNAKE_CASE : str , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE : Tuple[str] ) -> bool: return len(set(_SCREAMING_SNAKE_CASE ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase_ : str = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Optional[int] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase_ : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase_ : Union[str, Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase_ : str = pt_tuple_key[-2] + "_v" if name is not None: UpperCAmelCase_ : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase_ : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase_ : List[Any] = flax_model.params["params"] else: UpperCAmelCase_ : Optional[Any] = flax_model.params UpperCAmelCase_ : str = flatten_dict(_SCREAMING_SNAKE_CASE ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase_ : Tuple = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = {} UpperCAmelCase_ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase_ : str = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Dict = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCAmelCase_ : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ : int = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ : Tuple = rename_key_and_reshape_tensor( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # add model prefix if necessary UpperCAmelCase_ : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase_ : str = jnp.asarray(_SCREAMING_SNAKE_CASE ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase_ : List[Any] = jnp.asarray(_SCREAMING_SNAKE_CASE ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Optional[int] = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" import torch # Load the index UpperCAmelCase_ : Optional[Any] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase_ : str = torch.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase_ : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase_ : List[str] = flax_model.params["params"] UpperCAmelCase_ : List[Any] = flatten_dict(_SCREAMING_SNAKE_CASE ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCAmelCase_ : Tuple = flax_model.params UpperCAmelCase_ : Any = flatten_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase_ : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Optional[int] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCAmelCase_ : Optional[int] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ : List[Any] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = rename_key_and_reshape_tensor( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # add model prefix if necessary UpperCAmelCase_ : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase_ : Dict = jnp.asarray(_SCREAMING_SNAKE_CASE ) continue if "var" in flax_key[-1]: UpperCAmelCase_ : Dict = jnp.asarray(_SCREAMING_SNAKE_CASE ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase_ : str = jnp.asarray(_SCREAMING_SNAKE_CASE ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Optional[int] = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = os.path.abspath(_SCREAMING_SNAKE_CASE ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class UpperCAmelCase_ : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_SCREAMING_SNAKE_CASE , "rb" ) as state_f: try: UpperCAmelCase_ : Union[str, Any] = from_bytes(_SCREAMING_SNAKE_CASE , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCAmelCase_ : List[str] = flatten_dict(jax.tree_util.tree_map(lambda _SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , _SCREAMING_SNAKE_CASE ) ).values() if any(_SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCAmelCase_ : List[Any] = jax.tree_util.tree_map( lambda _SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = flatten_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = pt_model.state_dict() UpperCAmelCase_ : Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase_ : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase_ : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase_ : Dict = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ : Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ : Any = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_SCREAMING_SNAKE_CASE ) not in pt_model_dict: # conv layer UpperCAmelCase_ : Dict = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ : Optional[Any] = jnp.transpose(_SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_SCREAMING_SNAKE_CASE ) not in pt_model_dict: # linear layer UpperCAmelCase_ : List[str] = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase_ : Optional[int] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase_ : Dict = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase_ : Tuple = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCAmelCase_ : Dict = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase_ : Union[str, Any] = ".".join(_SCREAMING_SNAKE_CASE ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase_ : Dict = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase_ : List[Any] = key.split("." ) UpperCAmelCase_ : int = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase_ : str = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase_ : Dict = key_components[-2] + "_v" if name is not None: UpperCAmelCase_ : Dict = key_components[:-3] + [name] UpperCAmelCase_ : Union[str, Any] = ".".join(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = key if flax_key in special_pt_names: UpperCAmelCase_ : List[str] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCAmelCase_ : List[str] = np.asarray(_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor UpperCAmelCase_ : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(_SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(_SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(_SCREAMING_SNAKE_CASE ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' " use it for predictions and inference." ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' "If your task is similar to the task the model of the checkpoint was trained on, " F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
71
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Any =["speech"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["speech"] ) class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Dict =["speech"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["speech"] )
71
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : Any = MobileBertTokenizer snake_case : Optional[int] = MobileBertTokenizerFast snake_case : Optional[Any] = True snake_case : Tuple = True snake_case : Union[str, Any] = filter_non_english snake_case : Tuple = """google/mobilebert-uncased""" def snake_case_ (self ): super().setUp() _UpperCAmelCase : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _UpperCAmelCase : List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : str = """UNwant\u00E9d,running""" _UpperCAmelCase : List[Any] = """unwanted, running""" return input_text, output_text def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : List[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def snake_case_ (self ): if not self.test_rust_tokenizer: return _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : Union[str, Any] = """UNwant\u00E9d,running""" _UpperCAmelCase : List[str] = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # With lower casing _UpperCAmelCase : Tuple = self.get_tokenizer(do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = """UNwant\u00E9d,running""" _UpperCAmelCase : Any = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : str = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def snake_case_ (self ): _UpperCAmelCase : Any = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ (self ): _UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def snake_case_ (self ): _UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ (self ): _UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ (self ): _UpperCAmelCase : int = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ (self ): _UpperCAmelCase : Any = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ (self ): _UpperCAmelCase : str = BasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _UpperCAmelCase : Tuple = {} for i, token in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : int = i _UpperCAmelCase : int = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def snake_case_ (self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def snake_case_ (self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def snake_case_ (self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def snake_case_ (self ): _UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def snake_case_ (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _UpperCAmelCase : Any = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , """do_lower_case""" ) else False _UpperCAmelCase : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def snake_case_ (self ): _UpperCAmelCase : str = ["""的""", """人""", """有"""] _UpperCAmelCase : Any = """""".join(lowerCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _UpperCAmelCase : List[str] = True _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : str = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = False _UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : int = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCAmelCase : List[Any] = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__ ) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
156
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): _UpperCAmelCase : int = torch.nn.Linear(1_0 , 1_0 ) _UpperCAmelCase : Tuple = torch.optim.SGD(model.parameters() , 0.1 ) _UpperCAmelCase : List[str] = Accelerator() _UpperCAmelCase : List[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
156
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowercase : Union[str, Any] = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = ['''DPTFeatureExtractor'''] __lowercase : Dict = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : str = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "pix2struct_text_model" A_ = ["past_key_values"] A_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __a=5_0244 , __a=768 , __a=64 , __a=2048 , __a=12 , __a=12 , __a=32 , __a=128 , __a=0.1 , __a=1E-6 , __a=1.0 , __a="gelu_new" , __a=0 , __a=False , __a=0 , __a=1 , __a=False , __a=True , **__a , ): '''simple docstring''' __a : Dict = vocab_size __a : str = hidden_size __a : Any = d_kv __a : Any = d_ff __a : Any = num_layers __a : Any = num_heads __a : Optional[Any] = relative_attention_num_buckets __a : int = relative_attention_max_distance __a : List[str] = dropout_rate __a : Dict = layer_norm_epsilon __a : int = initializer_factor __a : Any = use_cache __a : int = eos_token_id __a : int = decoder_start_token_id # for backwards compatibility __a : Tuple = dense_act_fn super().__init__( pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , tie_word_embeddings=__a , is_decoder=__a , **__a , ) @classmethod def __UpperCAmelCase ( cls , __a , **__a ): '''simple docstring''' cls._set_token_in_kwargs(__a ) __a , __a : Union[str, Any] = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": __a : Optional[int] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "pix2struct_vision_model" def __init__( self , __a=768 , __a=768 , __a=2048 , __a=64 , __a=12 , __a=12 , __a="gelu_new" , __a=1E-6 , __a=0.0 , __a=0.0 , __a=1E-1_0 , __a=1.0 , __a=4096 , __a=32 , __a=128 , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Dict = hidden_size __a : Tuple = patch_embed_hidden_size __a : Tuple = d_ff __a : int = dropout_rate __a : Any = num_hidden_layers __a : List[str] = num_attention_heads __a : Optional[Any] = initializer_range __a : Any = initializer_factor __a : Optional[Any] = attention_dropout __a : List[Any] = layer_norm_eps __a : Dict = dense_act_fn __a : Union[str, Any] = seq_len __a : str = relative_attention_num_buckets __a : Dict = relative_attention_max_distance __a : Any = d_kv @classmethod def __UpperCAmelCase ( cls , __a , **__a ): '''simple docstring''' cls._set_token_in_kwargs(__a ) __a , __a : Any = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": __a : str = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "pix2struct" A_ = True def __init__( self , __a=None , __a=None , __a=1.0 , __a=0.02 , __a=False , __a=False , __a=True , **__a , ): '''simple docstring''' super().__init__(tie_word_embeddings=__a , is_encoder_decoder=__a , **__a ) if text_config is None: __a : str = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: __a : Optional[Any] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) __a : Optional[Any] = PixaStructTextConfig(**__a ) __a : Union[str, Any] = PixaStructVisionConfig(**__a ) __a : List[str] = self.text_config.decoder_start_token_id __a : Optional[Any] = self.text_config.pad_token_id __a : Dict = self.text_config.eos_token_id __a : Any = initializer_factor __a : List[str] = initializer_range __a : int = self.initializer_range __a : Union[str, Any] = self.initializer_range __a : Dict = is_vqa @classmethod def __UpperCAmelCase ( cls , __a , __a , **__a ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = copy.deepcopy(self.__dict__ ) __a : Optional[int] = self.text_config.to_dict() __a : Optional[int] = self.vision_config.to_dict() __a : Optional[Any] = self.__class__.model_type return output
476
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase__ ( _a , _a ): a : int = 1 @register_to_config def __init__( self : List[Any] , A_ : int = 1_0_0_0 , A_ : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(A_ ) # standard deviation of the initial noise distribution __lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __lowercase = 4 # running values __lowercase = [] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , A_ : int , A_ : Union[str, torch.device] = None ): '''simple docstring''' __lowercase = num_inference_steps __lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __lowercase = torch.sin(steps * math.pi / 2 ) ** 2 __lowercase = (1.0 - self.betas**2) ** 0.5 __lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __lowercase = timesteps.to(A_ ) __lowercase = [] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : torch.FloatTensor , A_ : int , A_ : torch.FloatTensor , A_ : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __lowercase = (self.timesteps == timestep).nonzero().item() __lowercase = timestep_index + 1 __lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A_ ) if len(self.ets ) == 1: __lowercase = self.ets[-1] elif len(self.ets ) == 2: __lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __lowercase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: __lowercase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) __lowercase = self._get_prev_sample(A_ , A_ , A_ , A_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def SCREAMING_SNAKE_CASE_ ( self : str , A_ : torch.FloatTensor , *A_ : List[str] , **A_ : Optional[int] ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : Optional[Any] , A_ : Any , A_ : List[Any] , A_ : Optional[Any] ): '''simple docstring''' __lowercase = self.alphas[timestep_index] __lowercase = self.betas[timestep_index] __lowercase = self.alphas[prev_timestep_index] __lowercase = self.betas[prev_timestep_index] __lowercase = (sample - sigma * ets) / max(A_ , 1e-8 ) __lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
442
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( UpperCamelCase__ : str ): """simple docstring""" def decorator(UpperCamelCase__ : Tuple ): __lowercase = getattr(UpperCamelCase__ , """handle_key""" , [] ) handle += [key] setattr(UpperCamelCase__ , """handle_key""" , UpperCamelCase__ ) return func return decorator def lowerCAmelCase_ ( *UpperCamelCase__ : List[str] ): """simple docstring""" def decorator(UpperCamelCase__ : Tuple ): __lowercase = getattr(UpperCamelCase__ , """handle_key""" , [] ) handle += keys setattr(UpperCamelCase__ , """handle_key""" , UpperCamelCase__ ) return func return decorator class lowerCamelCase__ ( _a ): def __new__( cls : str , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : int ): '''simple docstring''' __lowercase = super().__new__(cls , A_ , A_ , A_ ) if not hasattr(A_ , """key_handler""" ): setattr(A_ , """key_handler""" , {} ) setattr(A_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __lowercase = getattr(A_ , """handle_key""" , [] ) for key in handled_keys: __lowercase = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict ): '''simple docstring''' __lowercase = get_character() if char != KEYMAP["undefined"]: __lowercase = ord(A_ ) __lowercase = cls.key_handler.get(A_ ) if handler: __lowercase = char return handler(cls ) else: return None def lowerCAmelCase_ ( cls : int ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
442
1