code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase (__lowercase ): def __init__( self : int , *__UpperCAmelCase : List[Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Any ) -> List[str]: super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = eval_examples SCREAMING_SNAKE_CASE__ = post_process_function def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Optional[Dataset] = None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "eval" , **__UpperCAmelCase : Any , ) -> Dict[str, float]: SCREAMING_SNAKE_CASE__ = gen_kwargs.copy() SCREAMING_SNAKE_CASE__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE__ = gen_kwargs SCREAMING_SNAKE_CASE__ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE__ = self.get_eval_dataloader(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE__ = eval_loop( _lowerCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE__ = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE__ = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str = "test" , **__UpperCAmelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = gen_kwargs.copy() SCREAMING_SNAKE_CASE__ = self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE__ = eval_loop( _lowerCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE__ = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , """predict""" ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE__ = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase )
196
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __lowercase : Dict = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase : Any ): lowerCamelCase_ = r'''\w+[.]\d+''' lowerCamelCase_ = re.findall(_lowerCamelCase , _lowerCamelCase ) for pat in pats: lowerCamelCase_ = key.replace(_lowerCamelCase , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): lowerCamelCase_ = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase_ = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowerCamelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]=4_2 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase_ = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) lowerCamelCase_ = flatten_dict(_lowerCamelCase ) lowerCamelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ = rename_key(_lowerCamelCase ) lowerCamelCase_ = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters lowerCamelCase_ , lowerCamelCase_ = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCamelCase_ = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
66
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowerCamelCase_ = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(UpperCamelCase__ ) from datasets import load_dataset lowerCamelCase_ = load_dataset('''nielsr/rvlcdip-demo''' ) lowerCamelCase_ = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowerCamelCase_ = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase__ ) lowerCamelCase_ = outputs.logits lowerCamelCase_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=UpperCamelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
66
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self : Optional[Any] , A_ : NestedDataStructureLike[PathLike] , A_ : Optional[NamedSplit] = None , A_ : Optional[Features] = None , A_ : str = None , A_ : bool = False , A_ : bool = False , A_ : Optional[str] = None , A_ : Optional[int] = None , **A_ : Optional[Any] , )-> str: super().__init__( A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , ) __UpperCamelCase = field __UpperCamelCase = path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths} __UpperCamelCase = Json( cache_dir=A_ , data_files=A_ , features=A_ , field=A_ , **A_ , ) def A ( self : List[str] )-> str: # Build iterable dataset if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , A_ : Dataset , A_ : Union[PathLike, BinaryIO] , A_ : Optional[int] = None , A_ : Optional[int] = None , **A_ : Optional[Any] , )-> Any: if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = "utf-8" __UpperCamelCase = to_json_kwargs def A ( self : Tuple )-> int: __UpperCamelCase = self.to_json_kwargs.pop("path_or_buf" , A_ ) __UpperCamelCase = self.to_json_kwargs.pop("orient" , "records" ) __UpperCamelCase = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) __UpperCamelCase = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) __UpperCamelCase = self.to_json_kwargs.pop("compression" , A_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=A_ ) as buffer: __UpperCamelCase = self._write(file_obj=A_ , orient=A_ , lines=A_ , index=A_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) __UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=A_ , lines=A_ , index=A_ , **self.to_json_kwargs ) return written def A ( self : Union[str, Any] , A_ : str )-> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = query_table( table=self.dataset.data , key=slice(A_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas().to_json( path_or_buf=A_ , orient=A_ , lines=A_ , index=A_ , **A_ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def A ( self : Dict , A_ : BinaryIO , A_ : Tuple , A_ : str , A_ : List[Any] , **A_ : Union[str, Any] , )-> int: __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): __UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(A_ ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , A_ , A_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(A_ ) return written
505
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={'help': 'The name of the task to train on.'} , ) _snake_case : Optional[List[str]] = dataclasses.field( default=snake_case__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _snake_case : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _snake_case : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _snake_case : Optional[int] = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _snake_case : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[int] = dataclasses.field( default=snake_case__ , metadata={'help': 'Random seed for initialization.'} , ) def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) -> str: '''simple docstring''' __UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output] ,axis=1 ) if args.do_filter_by_confidence: __UpperCamelCase = dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __UpperCamelCase = int(eval_result * len(_snake_case ) ) print(_snake_case ) __UpperCamelCase = dataset.sort("probability" ,reverse=_snake_case ) __UpperCamelCase = dataset.select(range(_snake_case ) ) __UpperCamelCase = dataset.remove_columns(["label", "probability"] ) __UpperCamelCase = dataset.rename_column("prediction" ,"label" ) __UpperCamelCase = dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __UpperCamelCase = dataset.shuffle(seed=args.seed ) __UpperCamelCase = os.path.join(_snake_case ,f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case ,index=_snake_case ) else: dataset.to_json(_snake_case ) def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ) -> List[str]: '''simple docstring''' __UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __UpperCamelCase = STModelArguments(model_name_or_path=_snake_case ) __UpperCamelCase = STDataArguments(train_file=_snake_case ,infer_file=_snake_case ) __UpperCamelCase = STTrainingArguments(output_dir=_snake_case ) __UpperCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case ,_snake_case ,_snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case ,_snake_case ): setattr(_snake_case ,_snake_case ,_snake_case ) # Sanity checks __UpperCamelCase = {} __UpperCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __UpperCamelCase = args.train_file __UpperCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __UpperCamelCase = args.eval_file for key in data_files: __UpperCamelCase = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: __UpperCamelCase = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __UpperCamelCase = f"""{args.output_dir}/self-train_iter-{{}}""".format __UpperCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir ,exist_ok=_snake_case ) os.makedirs(_snake_case ,exist_ok=_snake_case ) accelerator.wait_for_everyone() __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = False # Show the progress bar __UpperCamelCase = tqdm(range(args.max_selftrain_iterations ) ,disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 ,int(args.max_selftrain_iterations ) ): __UpperCamelCase = data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __UpperCamelCase = os.path.join(_snake_case ,"stage-1" ) __UpperCamelCase = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case ,_snake_case ): arguments_dict.update({key: value} ) __UpperCamelCase = os.path.join(_snake_case ,"best-checkpoint" ,_snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." ,_snake_case ,_snake_case ,) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" ,_snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 1." ,_snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __UpperCamelCase = os.path.join(_snake_case ,"best-checkpoint" ) __UpperCamelCase = os.path.join(_snake_case ,"stage-2" ) # Update arguments_dict __UpperCamelCase = model_path __UpperCamelCase = data_files["train"] __UpperCamelCase = current_output_dir __UpperCamelCase = os.path.join(_snake_case ,"best-checkpoint" ,_snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." ,_snake_case ,_snake_case ,) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" ,_snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 2." ,_snake_case ) __UpperCamelCase = iteration __UpperCamelCase = data_dir_format(iteration + 1 ) __UpperCamelCase = AutoConfig.from_pretrained(os.path.join(_snake_case ,"best-checkpoint" ) ) __UpperCamelCase = config.idalabel __UpperCamelCase = os.path.join(_snake_case ,"eval_results_best-checkpoint.json" ) __UpperCamelCase = os.path.join(_snake_case ,"test_results_best-checkpoint.json" ) assert os.path.exists(_snake_case ) with open(_snake_case ,"r" ) as f: __UpperCamelCase = float(json.load(_snake_case )[args.eval_metric] ) __UpperCamelCase = os.path.join(_snake_case ,"infer_output_best-checkpoint.csv" ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __UpperCamelCase = load_dataset(args.data_file_extension ,data_files={"data": data_files["infer"]} )["data"] __UpperCamelCase = load_dataset("csv" ,data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_snake_case ,exist_ok=_snake_case ) shutil.copy(_snake_case ,os.path.join(_snake_case ,f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case ,os.path.join(_snake_case ,f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) accelerator.wait_for_everyone() __UpperCamelCase = os.path.join(_snake_case ,f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: __UpperCamelCase = eval_result if best_iteration is None: __UpperCamelCase = new_iteration __UpperCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __UpperCamelCase = new_iteration __UpperCamelCase = new_eval_result __UpperCamelCase = 0 else: if new_eval_result == best_eval_result: __UpperCamelCase = new_iteration __UpperCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __UpperCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" ,_snake_case ) logger.info("Best evaluation result: %s = %f" ,args.eval_metric ,_snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case ,f"""eval_results_iter-{iteration}.json""" ) ,os.path.join(_snake_case ,"eval_results_best-iteration.json" ) ,) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" ,args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" ,args.eval_metric ,_snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case ,f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) ,os.path.join(_snake_case ,"eval_results_best-iteration.json" ) ,)
505
1
'''simple docstring''' import re import subprocess import sys lowerCAmelCase__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") lowerCAmelCase__ = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode("utf-8").split() ) lowerCAmelCase__ = "|".join(sys.argv[1:]) lowerCAmelCase__ = re.compile(rF'^({joined_dirs}).*?\.py$') lowerCAmelCase__ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
713
'''simple docstring''' from __future__ import annotations from typing import Any class lowercase ( a_ ): pass class lowercase : def __init__( self , _snake_case) -> None: UpperCAmelCase_ : Any = data UpperCAmelCase_ : Node | None = None def __iter__( self) -> Optional[int]: UpperCAmelCase_ : int = self UpperCAmelCase_ : List[str] = [] while node: if node in visited: raise ContainsLoopError visited.append(_snake_case) yield node.data UpperCAmelCase_ : Tuple = node.next_node @property def _snake_case ( self) -> bool: try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCAmelCase__ = Node(1) lowerCAmelCase__ = Node(2) lowerCAmelCase__ = Node(3) lowerCAmelCase__ = Node(4) print(root_node.has_loop) # False lowerCAmelCase__ = root_node.next_node print(root_node.has_loop) # True lowerCAmelCase__ = Node(5) lowerCAmelCase__ = Node(6) lowerCAmelCase__ = Node(5) lowerCAmelCase__ = Node(6) print(root_node.has_loop) # False lowerCAmelCase__ = Node(1) print(root_node.has_loop) # False
471
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase_ ( __a : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True a_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase_ ( __a : int ): '''simple docstring''' if not isinstance(__a , __a ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) _lowerCamelCase : Union[str, Any] = [] for num in range(len(__a ) ): _lowerCamelCase : Tuple = 0 while 2 * i * i <= odd_composites[num]: _lowerCamelCase : Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(__a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__a ) == n: return list_nums return [] def UpperCAmelCase_ ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
437
"""simple docstring""" # Lint as: python3 import itertools import os import re a_ = re.compile(r"""([A-Z]+)([A-Z][a-z])""") a_ = re.compile(r"""([a-z\d])([A-Z])""") a_ = re.compile(r"""(?<!_)_(?!_)""") a_ = re.compile(r"""(_{2,})""") a_ = r"""^\w+(\.\w+)*$""" a_ = r"""<>:/\|?*""" def UpperCAmelCase_ ( __a : Optional[int] ): '''simple docstring''' _lowerCamelCase : str = _uppercase_uppercase_re.sub(r'\1_\2' , __a ) _lowerCamelCase : Tuple = _lowercase_uppercase_re.sub(r'\1_\2' , __a ) return name.lower() def UpperCAmelCase_ ( __a : Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = _single_underscore_re.split(__a ) _lowerCamelCase : Tuple = [_multiple_underscores_re.split(__a ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__a ) if n != '' ) def UpperCAmelCase_ ( __a : List[Any] ): '''simple docstring''' if os.path.basename(__a ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__a ) def UpperCAmelCase_ ( __a : Union[str, Any] , __a : Optional[int] ): '''simple docstring''' if os.path.basename(__a ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __a ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(__a )}-{split}" def UpperCAmelCase_ ( __a : Any , __a : Union[str, Any] , __a : List[Any] , __a : List[str]=None ): '''simple docstring''' _lowerCamelCase : List[Any] = filename_prefix_for_split(__a , __a ) if filetype_suffix: prefix += f".{filetype_suffix}" _lowerCamelCase : List[str] = os.path.join(__a , __a ) return f"{filepath}*" def UpperCAmelCase_ ( __a : str , __a : List[Any] , __a : List[str] , __a : Tuple=None , __a : Tuple=None ): '''simple docstring''' _lowerCamelCase : Tuple = filename_prefix_for_split(__a , __a ) _lowerCamelCase : List[str] = os.path.join(__a , __a ) if shard_lengths: _lowerCamelCase : Union[str, Any] = len(__a ) _lowerCamelCase : str = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__a )] if filetype_suffix: _lowerCamelCase : int = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: _lowerCamelCase : int = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
437
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a_ ( lowercase__ ): UpperCamelCase__ : torch.FloatTensor UpperCamelCase__ : torch.FloatTensor class a_ ( lowercase__ , lowercase__ ): UpperCamelCase__ : Optional[int] =1 @register_to_config def __init__( self :Tuple , _lowercase :Tuple = 2000 , _lowercase :Any = 0.15 , _lowercase :List[str] = 0.01 , _lowercase :List[str] = 1_348.0 , _lowercase :Dict = 1E-5 , _lowercase :str = 1 , ) -> Union[str, Any]: # standard deviation of the initial noise distribution UpperCAmelCase_ = sigma_max # setable values UpperCAmelCase_ = None self.set_sigmas(_lowercase , _lowercase , _lowercase , _lowercase) def __a ( self :Any , _lowercase :int , _lowercase :Tuple = None) -> List[str]: return sample def __a ( self :Optional[Any] , _lowercase :Optional[Any] , _lowercase :str = None , _lowercase :List[Any] = None) -> Tuple: UpperCAmelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCAmelCase_ = torch.linspace(1 , _lowercase , _lowercase , device=_lowercase) def __a ( self :Optional[int] , _lowercase :Tuple , _lowercase :List[Any] = None , _lowercase :Optional[Any] = None , _lowercase :Tuple = None) -> Dict: UpperCAmelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCAmelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCAmelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_lowercase , _lowercase) UpperCAmelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCAmelCase_ = torch.exp(torch.linspace(math.log(_lowercase) , math.log(_lowercase) , _lowercase)) UpperCAmelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def __a ( self :List[str] , _lowercase :Dict , _lowercase :int) -> Optional[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def __a ( self :Dict , _lowercase :str , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Dict = None , _lowercase :Optional[int] = True , ) -> Any: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''') UpperCAmelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCAmelCase_ = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCAmelCase_ = timesteps.to(self.discrete_sigmas.device) UpperCAmelCase_ = self.discrete_sigmas[timesteps].to(sample.device) UpperCAmelCase_ = self.get_adjacent_sigma(_lowercase , _lowercase).to(sample.device) UpperCAmelCase_ = torch.zeros_like(_lowercase) UpperCAmelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCAmelCase_ = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): UpperCAmelCase_ = diffusion.unsqueeze(-1) UpperCAmelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCAmelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_lowercase , device=sample.device , dtype=sample.dtype) UpperCAmelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCAmelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_lowercase , prev_sample_mean=_lowercase) def __a ( self :List[Any] , _lowercase :Dict , _lowercase :Optional[int] , _lowercase :Optional[Any] = None , _lowercase :Union[str, Any] = True , ) -> Dict: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCAmelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_lowercase).to(sample.device) # compute step size from the model_output, the noise, and the snr UpperCAmelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() UpperCAmelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() UpperCAmelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCAmelCase_ = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCAmelCase_ = step_size.flatten() while len(step_size.shape) < len(sample.shape): UpperCAmelCase_ = step_size.unsqueeze(-1) UpperCAmelCase_ = sample + step_size * model_output UpperCAmelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowercase) def __a ( self :List[Any] , _lowercase :Optional[int] , _lowercase :List[str] , _lowercase :Union[str, Any] , ) -> List[Any]: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase_ = timesteps.to(original_samples.device) UpperCAmelCase_ = self.discrete_sigmas.to(original_samples.device)[timesteps] UpperCAmelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_lowercase) * sigmas[:, None, None, None] ) UpperCAmelCase_ = noise + original_samples return noisy_samples def __len__( self :int) -> Any: return self.config.num_train_timesteps
701
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="bert" def __init__( self :Any , _lowercase :Optional[int]=30522 , _lowercase :str=768 , _lowercase :Union[str, Any]=12 , _lowercase :Dict=12 , _lowercase :Optional[Any]=3072 , _lowercase :List[Any]="gelu" , _lowercase :Dict=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[int]=512 , _lowercase :List[str]=2 , _lowercase :List[str]=0.02 , _lowercase :Union[str, Any]=1E-1_2 , _lowercase :Dict=0 , _lowercase :List[str]="absolute" , _lowercase :Union[str, Any]=True , _lowercase :str=None , **_lowercase :Union[str, Any] , ) -> Dict: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a_ ( _snake_case ): @property def __a ( self :str) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
561
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' import random def UpperCamelCase_ ( snake_case_ : int ) -> bool: '''simple docstring''' __lowerCAmelCase = num - 1 __lowerCAmelCase = 0 while s % 2 == 0: __lowerCAmelCase = s // 2 t += 1 for _ in range(5 ): __lowerCAmelCase = random.randrange(2 , num - 1 ) __lowerCAmelCase = pow(snake_case_ , snake_case_ , snake_case_ ) if v != 1: __lowerCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: __lowerCAmelCase = i + 1 __lowerCAmelCase = (v**2) % num return True def UpperCamelCase_ ( snake_case_ : int ) -> bool: '''simple docstring''' if num < 2: return False __lowerCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case_ ) def UpperCamelCase_ ( snake_case_ : int = 10_24 ) -> int: '''simple docstring''' while True: __lowerCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case_ ): return num if __name__ == "__main__": _A : List[Any] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
427
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class a__ ( unittest.TestCase ): def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Any = tempfile.mkdtemp() __UpperCAmelCase : Optional[Any] = BlipImageProcessor() __UpperCAmelCase : int = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") __UpperCAmelCase : int = BlipProcessor(UpperCamelCase_ , UpperCamelCase_) processor.save_pretrained(self.tmpdirname) def a_ ( self : List[str] , **UpperCamelCase_ : int): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_).tokenizer def a_ ( self : Optional[int] , **UpperCamelCase_ : List[Any]): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_).image_processor def a_ ( self : Optional[Any]): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self : int): """simple docstring""" __UpperCAmelCase : str = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : str = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") __UpperCAmelCase : Any = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0) __UpperCAmelCase : List[Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCamelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCamelCase_) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = BlipProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = image_processor(UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Union[str, Any] = processor(images=UpperCamelCase_ , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Dict = BlipProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Tuple = "lower newer" __UpperCAmelCase : str = processor(text=UpperCamelCase_) __UpperCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : List[str] = "lower newer" __UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() __UpperCAmelCase : int = processor(text=UpperCamelCase_ , images=UpperCamelCase_) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Dict = BlipProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Union[str, Any] = processor.batch_decode(UpperCamelCase_) __UpperCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase_) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : List[str] = "lower newer" __UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() __UpperCAmelCase : Dict = processor(text=UpperCamelCase_ , images=UpperCamelCase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"])
487
"""simple docstring""" from manim import * class a__ ( __magic_name__ ): def a_ ( self : str): """simple docstring""" __UpperCAmelCase : List[str] = Rectangle(height=0.5 , width=0.5) __UpperCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25) __UpperCAmelCase : Dict = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) __UpperCAmelCase : List[str] = [mem.copy() for i in range(6)] __UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6)] __UpperCAmelCase : List[str] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : List[Any] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Optional[int] = VGroup(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Dict = Text("CPU" , font_size=24) __UpperCAmelCase : int = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) cpu.move_to([-2.5, -0.5, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : List[str] = [mem.copy() for i in range(4)] __UpperCAmelCase : List[Any] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Tuple = Text("GPU" , font_size=24) __UpperCAmelCase : Tuple = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) gpu.move_to([-1, -1, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : Any = [mem.copy() for i in range(6)] __UpperCAmelCase : int = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Union[str, Any] = Text("Model" , font_size=24) __UpperCAmelCase : Optional[Any] = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) model.move_to([3, -1.0, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : str = [] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Any = [] for i, rect in enumerate(UpperCamelCase_): rect.set_stroke(UpperCamelCase_) __UpperCAmelCase : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(UpperCamelCase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=UpperCamelCase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCamelCase_ , buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCamelCase_ , buff=0.0) self.add(UpperCamelCase_) model_cpu_arr.append(UpperCamelCase_) self.add(*UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_) __UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6)] __UpperCAmelCase : Dict = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Tuple = Text("Loaded Checkpoint" , font_size=24) __UpperCAmelCase : Any = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) checkpoint.move_to([3, 0.5, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : int = [] for i, rect in enumerate(UpperCamelCase_): __UpperCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCamelCase_ , opacity=0.7) target.move_to(UpperCamelCase_) ckpt_arr.append(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(UpperCamelCase_) self.add(*UpperCamelCase_ , *UpperCamelCase_) __UpperCAmelCase : str = Square(side_length=2.2) key.move_to([-5, 2, 0]) __UpperCAmelCase : int = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(UpperCamelCase_) __UpperCAmelCase : Dict = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0]) __UpperCAmelCase : List[Any] = [meta_mem.copy() for i in range(6)] __UpperCAmelCase : Optional[int] = [meta_mem.copy() for i in range(6)] __UpperCAmelCase : int = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Union[str, Any] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Tuple = VGroup(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Optional[int] = Text("Disk" , font_size=24) __UpperCAmelCase : str = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) disk.move_to([-4.0, -1.25, 0]) self.play(Write(UpperCamelCase_ , run_time=3) , Write(UpperCamelCase_ , run_time=1) , Create(UpperCamelCase_ , run_time=1)) __UpperCAmelCase : str = [] for i, rect in enumerate(UpperCamelCase_): __UpperCAmelCase : Union[str, Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5)) self.play(*UpperCamelCase_) self.play(FadeOut(UpperCamelCase_)) __UpperCAmelCase : Union[str, Any] = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(UpperCamelCase_ , run_time=3)) self.play( FadeOut(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_) , ) self.wait()
487
1
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
30
"""simple docstring""" from math import ceil, sqrt def lowercase__ ( lowerCAmelCase : int = 1_000_000 ) -> int: """simple docstring""" UpperCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
373
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
from __future__ import annotations def _lowercase ( a_ : list[int] ) -> int: '''simple docstring''' if not nums: return 0 __magic_name__ = nums[0] __magic_name__ = 0 for num in nums[1:]: __magic_name__, __magic_name__ = ( max_excluding + num, max(a_ ,a_ ), ) return max(a_ ,a_ ) if __name__ == "__main__": import doctest doctest.testmod()
184
0
from collections.abc import Sequence def lowerCamelCase_ ( lowerCAmelCase__ : Sequence[int] | None = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) A = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): A = nums[i] A = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __snake_case :str =int(input('Enter number of elements : ').strip()) __snake_case :Optional[int] =list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
106
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class lowerCamelCase_ ( Generic[T] ): __lowercase : deque[T] # Cache store of keys __lowercase : set[T] # References of the keys in cache __lowercase : int = 10 # Maximum capacity of cache def __init__( self , lowerCamelCase_ ) -> None: """simple docstring""" _UpperCamelCase = deque() _UpperCamelCase = set() if not n: _UpperCamelCase = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _UpperCamelCase = n def lowercase ( self , lowerCamelCase_ ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCamelCase = self.dq_store.pop() self.key_reference.remove(lowerCamelCase_ ) else: self.dq_store.remove(lowerCamelCase_ ) self.dq_store.appendleft(lowerCamelCase_ ) self.key_reference.add(lowerCamelCase_ ) def lowercase ( self ) -> None: """simple docstring""" for k in self.dq_store: print(lowerCamelCase_ ) def __repr__( self ) -> str: """simple docstring""" return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
147
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar _lowercase = TypeVar("""T""") class UpperCAmelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data _lowerCAmelCase = self _lowerCAmelCase = 0 class UpperCAmelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = {} def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = DisjointSetTreeNode(lowerCAmelCase_ ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.map[data] if elem_ref != elem_ref.parent: _lowerCAmelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if nodea.rank > nodea.rank: _lowerCAmelCase = nodea else: _lowerCAmelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" self.link(self.find_set(lowerCAmelCase_ ) , self.find_set(lowerCAmelCase_ ) ) class UpperCAmelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = {} def _lowercase ( self , _lowercase ): """simple docstring""" if node not in self.connections: _lowerCAmelCase = {} def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" self.add_node(lowerCAmelCase_ ) self.add_node(lowerCAmelCase_ ) _lowerCAmelCase = weight _lowerCAmelCase = weight def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowercase : x[2] ) # creating the disjoint set _lowerCAmelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowerCAmelCase_ ) # MST generation _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edges[index] index += 1 _lowerCAmelCase = disjoint_set.find_set(lowerCAmelCase_ ) _lowerCAmelCase = disjoint_set.find_set(lowerCAmelCase_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) disjoint_set.union(lowerCAmelCase_ , lowerCAmelCase_ ) return graph
717
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :str ): _lowerCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCAmelCase = 128 elif "12-12" in model_name: _lowerCAmelCase = 12 _lowerCAmelCase = 12 elif "14-14" in model_name: _lowerCAmelCase = 14 _lowerCAmelCase = 14 elif "16-16" in model_name: _lowerCAmelCase = 16 _lowerCAmelCase = 16 else: raise ValueError("""Model not supported""" ) _lowerCAmelCase = """huggingface/label-files""" if "speech-commands" in model_name: _lowerCAmelCase = 35 _lowerCAmelCase = """speech-commands-v2-id2label.json""" else: _lowerCAmelCase = 527 _lowerCAmelCase = """audioset-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def A (__lowerCamelCase :Dict ): if "module.v" in name: _lowerCAmelCase = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: _lowerCAmelCase = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCAmelCase = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: _lowerCAmelCase = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: _lowerCAmelCase = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = config.hidden_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def A (__lowerCamelCase :str ): _lowerCAmelCase = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :List[Any]=False ): _lowerCAmelCase = get_audio_spectrogram_transformer_config(__lowerCamelCase ) _lowerCAmelCase = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" ) # remove some keys remove_keys(__lowerCamelCase ) # rename some keys _lowerCAmelCase = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) # load 🤗 model _lowerCAmelCase = ASTForAudioClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCAmelCase = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 _lowerCAmelCase = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 _lowerCAmelCase = 1024 if """speech-commands""" not in model_name else 128 _lowerCAmelCase = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase ) if "speech-commands" in model_name: _lowerCAmelCase = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) _lowerCAmelCase = dataset[0]["""audio"""]["""array"""] else: _lowerCAmelCase = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) _lowerCAmelCase , _lowerCAmelCase = torchaudio.load(__lowerCamelCase ) _lowerCAmelCase = waveform.squeeze().numpy() _lowerCAmelCase = feature_extractor(__lowerCamelCase , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCAmelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCAmelCase = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCAmelCase = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCAmelCase = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCAmelCase = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCAmelCase = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCAmelCase = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCAmelCase = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
162
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_2_8, """min_length""": 1_2, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_4_2, """min_length""": 5_6, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 6_2, """min_length""": 1_1, """num_beams""": 6}, } } snake_case_ : int = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_2_8, """task_specific_params.summarization.min_length""": 1_2, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_4_2, """task_specific_params.summarization_cnn.min_length""": 5_6, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 6_2, """task_specific_params.summarization_xsum.min_length""": 1_1, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowercase ) , x.transpose() ) ) snake_case_ : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = np.random.randn(3 , 4 ) snake_case_ : Union[str, Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) snake_case_ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) snake_case_ : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = np.random.randn(3 , 4 ) snake_case_ : Union[str, Any] = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) snake_case_ : List[Any] = np.random.randn(3 , 4 , 5 ) snake_case_ : int = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : str = np.random.randn(3 , 4 ) snake_case_ : Tuple = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , np.asarray(transpose(_lowercase ) ) ) ) snake_case_ : Any = np.random.randn(3 , 4 , 5 ) snake_case_ : List[str] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowercase , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.reshape(_lowercase , (4, 3) ) ) ) snake_case_ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowercase , (1_2, 5) ) , np.reshape(_lowercase , (1_2, 5) ) ) ) @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = np.random.randn(3 , 4 ) snake_case_ : Optional[int] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) snake_case_ : Dict = np.random.randn(3 , 4 , 5 ) snake_case_ : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (1_2, 5) ) , reshape(_lowercase , (1_2, 5) ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = np.random.randn(3 , 4 ) snake_case_ : Dict = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) snake_case_ : Optional[int] = np.random.randn(3 , 4 , 5 ) snake_case_ : Tuple = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (1_2, 5) ) , reshape(_lowercase , (1_2, 5) ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = np.random.randn(3 , 4 ) snake_case_ : List[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.asarray(reshape(_lowercase , (4, 3) ) ) ) ) snake_case_ : Optional[int] = np.random.randn(3 , 4 , 5 ) snake_case_ : List[str] = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (1_2, 5) ) , np.asarray(reshape(_lowercase , (1_2, 5) ) ) ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.squeeze(_lowercase ) ) ) snake_case_ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.squeeze(_lowercase , axis=2 ) ) ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = np.random.randn(1 , 3 , 4 ) snake_case_ : Dict = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) snake_case_ : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case_ : Optional[int] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = np.random.randn(1 , 3 , 4 ) snake_case_ : Optional[Any] = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) snake_case_ : Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case_ : int = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = np.random.randn(1 , 3 , 4 ) snake_case_ : Any = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.asarray(squeeze(_lowercase ) ) ) ) snake_case_ : Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case_ : Any = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.asarray(squeeze(_lowercase , axis=2 ) ) ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.expand_dims(_lowercase , axis=1 ) ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = np.random.randn(3 , 4 ) snake_case_ : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = np.random.randn(3 , 4 ) snake_case_ : List[Any] = tf.constant(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = np.random.randn(3 , 4 ) snake_case_ : List[str] = jnp.array(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.asarray(expand_dims(_lowercase , axis=1 ) ) ) )
58
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
159
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __a = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def a ( snake_case__: str , snake_case__: Optional[Any] ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) requires_backends(SCREAMING_SNAKE_CASE_ , '''sklearn''' ) return (preds == labels).mean() def a ( snake_case__: Optional[int] , snake_case__: Optional[Any] ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) requires_backends(SCREAMING_SNAKE_CASE_ , '''sklearn''' ) lowercase_ = simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = fa_score(y_true=SCREAMING_SNAKE_CASE_ , y_pred=SCREAMING_SNAKE_CASE_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def a ( snake_case__: Optional[Any] , snake_case__: List[Any] ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) requires_backends(SCREAMING_SNAKE_CASE_ , '''sklearn''' ) lowercase_ = pearsonr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] lowercase_ = spearmanr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def a ( snake_case__: Dict , snake_case__: int , snake_case__: int ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) requires_backends(SCREAMING_SNAKE_CASE_ , '''sklearn''' ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), F'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE_ )} and {len(SCREAMING_SNAKE_CASE_ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "mrpc": return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif task_name == "sts-b": return pearson_and_spearman(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif task_name == "qqp": return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "qnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "rte": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "wnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif task_name == "hans": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} else: raise KeyError(SCREAMING_SNAKE_CASE_ ) def a ( snake_case__: Tuple , snake_case__: str , snake_case__: Optional[Any] ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) requires_backends(SCREAMING_SNAKE_CASE_ , '''sklearn''' ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE_ )} and {len(SCREAMING_SNAKE_CASE_ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} else: raise KeyError(SCREAMING_SNAKE_CASE_ )
715
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowercase__( UpperCAmelCase ): """simple docstring""" a :str = 'efficientformer' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] = [3, 2, 6, 4] , SCREAMING_SNAKE_CASE_ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , SCREAMING_SNAKE_CASE_ : List[bool] = [True, True, True, True] , SCREAMING_SNAKE_CASE_ : int = 4_4_8 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 4 , SCREAMING_SNAKE_CASE_ : int = 7 , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 4 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : int = 1_6 , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : float = 1e-5 , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1e-12 , SCREAMING_SNAKE_CASE_ : int = 2_2_4 , SCREAMING_SNAKE_CASE_ : float = 1e-05 , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = hidden_sizes lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = patch_size lowercase_ = num_channels lowercase_ = depths lowercase_ = mlp_expansion_ratio lowercase_ = downsamples lowercase_ = dim lowercase_ = key_dim lowercase_ = attention_ratio lowercase_ = resolution lowercase_ = pool_size lowercase_ = downsample_patch_size lowercase_ = downsample_stride lowercase_ = downsample_pad lowercase_ = drop_path_rate lowercase_ = num_metaad_blocks lowercase_ = distillation lowercase_ = use_layer_scale lowercase_ = layer_scale_init_value lowercase_ = image_size lowercase_ = batch_norm_eps
409
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def __lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" __A = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) snake_case_ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = object_detector(examples[0] , threshold=0.0 ) snake_case_ = len(__UpperCamelCase ) self.assertGreater(__UpperCamelCase , 0 ) self.assertEqual( __UpperCamelCase , [ { 'score': ANY(__UpperCamelCase ), 'label': ANY(__UpperCamelCase ), 'box': {'xmin': ANY(__UpperCamelCase ), 'ymin': ANY(__UpperCamelCase ), 'xmax': ANY(__UpperCamelCase ), 'ymax': ANY(__UpperCamelCase )}, } for i in range(__UpperCamelCase ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @require_torch def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) snake_case_ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) snake_case_ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = pipeline('zero-shot-object-detection' ) snake_case_ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) snake_case_ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @require_torch @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 0.2 snake_case_ = pipeline('zero-shot-object-detection' ) snake_case_ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 2 snake_case_ = pipeline('zero-shot-object-detection' ) snake_case_ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
187
from itertools import count def a(lowercase__ = 50 ): '''simple docstring''' snake_case_ = [1] * min_block_length for n in count(lowercase__ ): fill_count_functions.append(1 ) for block_length in range(lowercase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
187
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __UpperCAmelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __UpperCAmelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def snake_case_ (__A : Vector , __A : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(__A ) - np.asarray(__A )) ** 2 ) ) def snake_case_ (__A : Vector , __A : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(__A , __A ) ) ** (1 / 2) if __name__ == "__main__": def snake_case_ () -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_0_0_0_0 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
218
def snake_case_ (__A : int = 1_0**9 ) -> int: __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCAmelCase : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
218
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCamelCase ( lowercase_ : str ) -> Dict: '''simple docstring''' def decorator(lowercase_ : Optional[Any] ): lowercase =getattr(lowercase_ , '''handle_key''' , [] ) handle += [key] setattr(lowercase_ , '''handle_key''' , lowercase_ ) return func return decorator def UpperCamelCase ( *lowercase_ : List[str] ) -> List[Any]: '''simple docstring''' def decorator(lowercase_ : Optional[int] ): lowercase =getattr(lowercase_ , '''handle_key''' , [] ) handle += keys setattr(lowercase_ , '''handle_key''' , lowercase_ ) return func return decorator class __magic_name__ ( __SCREAMING_SNAKE_CASE ): def __new__( cls , snake_case_ , snake_case_ , snake_case_ ): lowercase =super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , '''key_handler''' ): setattr(snake_case_ , '''key_handler''' , {} ) setattr(snake_case_ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): lowercase =getattr(snake_case_ , '''handle_key''' , [] ) for key in handled_keys: lowercase =value return new_cls @staticmethod def _A( cls ): lowercase =get_character() if char != KEYMAP["undefined"]: lowercase =ord(snake_case_ ) lowercase =cls.key_handler.get(snake_case_ ) if handler: lowercase =char return handler(cls ) else: return None def UpperCamelCase ( cls : Optional[Any] ) -> Any: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
72
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Any = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'marian' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , snake_case_=5_81_01 , snake_case_=None , snake_case_=10_24 , snake_case_=12 , snake_case_=40_96 , snake_case_=16 , snake_case_=12 , snake_case_=40_96 , snake_case_=16 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=10_24 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=5_81_00 , snake_case_=False , snake_case_=5_81_00 , snake_case_=0 , snake_case_=0 , snake_case_=True , **snake_case_ , ): lowercase =vocab_size lowercase =decoder_vocab_size or vocab_size lowercase =max_position_embeddings lowercase =d_model lowercase =encoder_ffn_dim lowercase =encoder_layers lowercase =encoder_attention_heads lowercase =decoder_ffn_dim lowercase =decoder_layers lowercase =decoder_attention_heads lowercase =dropout lowercase =attention_dropout lowercase =activation_dropout lowercase =activation_function lowercase =init_std lowercase =encoder_layerdrop lowercase =decoder_layerdrop lowercase =use_cache lowercase =encoder_layers lowercase =scale_embedding # scale factor will be sqrt(d_model) if True lowercase =share_encoder_decoder_embeddings super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _A( self ): if self.task in ["default", "seq2seq-lm"]: lowercase =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase ={0: '''batch'''} lowercase ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase ={0: '''batch''', 1: '''decoder_sequence'''} lowercase ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase , lowercase =self.num_layers for i in range(snake_case_ ): lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _A( self ): if self.task in ["default", "seq2seq-lm"]: lowercase =super().outputs else: lowercase =super(snake_case_ , self ).outputs if self.use_past: lowercase , lowercase =self.num_layers for i in range(snake_case_ ): lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} lowercase ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): lowercase =self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs lowercase =seq_length if not self.use_past else 1 lowercase =self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) lowercase ={f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowercase =dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase =common_inputs['''input_ids'''].shape lowercase =common_inputs['''decoder_input_ids'''].shape[1] lowercase , lowercase =self.num_attention_heads lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase =decoder_seq_length + 3 lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase =self.num_layers lowercase =min(snake_case_ , snake_case_ ) lowercase =max(snake_case_ , snake_case_ ) - min_num_layers lowercase ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. lowercase =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): lowercase =self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase =seqlen + 2 lowercase , lowercase =self.num_layers lowercase , lowercase =self.num_attention_heads lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase =common_inputs['''attention_mask'''].dtype lowercase =torch.cat( [common_inputs['''attention_mask'''], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) lowercase =[ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase =compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase =tokenizer.num_special_tokens_to_add(snake_case_ ) lowercase =compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence lowercase =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase =dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def _A( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): if self.task in ["default", "seq2seq-lm"]: lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: lowercase =self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if self.task in ["default", "seq2seq-lm"]: lowercase =super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: lowercase =super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @property def _A( self ): return 1E-4
72
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowercase : Tuple = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Any: lowercase_ : Optional[Any] = {} state_dict.pop("""pixel_mean""" , __snake_case ) state_dict.pop("""pixel_std""" , __snake_case ) lowercase_ : int = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase_ : int = key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): lowercase_ : Optional[Any] = int(re.match(__snake_case , __snake_case ).group(2 ) ) if layer_nb == 0: lowercase_ : Tuple = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: lowercase_ : List[Any] = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: lowercase_ : int = key.replace("""layers.2""" , """proj_out""" ) lowercase_ : Any = value lowercase_ : List[Any] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]="ybelkada/segment-anything" ) -> str: lowercase_ : int = hf_hub_download(__snake_case , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowercase_ : List[Any] = SamConfig() elif "sam_vit_l" in model_name: lowercase_ : Any = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowercase_ : Dict = SamConfig( vision_config=__snake_case , ) elif "sam_vit_h" in model_name: lowercase_ : Optional[Any] = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowercase_ : Optional[Any] = SamConfig( vision_config=__snake_case , ) lowercase_ : Optional[Any] = torch.load(__snake_case , map_location="""cpu""" ) lowercase_ : List[str] = replace_keys(__snake_case ) lowercase_ : List[str] = SamImageProcessor() lowercase_ : Any = SamProcessor(image_processor=__snake_case ) lowercase_ : Dict = SamModel(__snake_case ) hf_model.load_state_dict(__snake_case ) lowercase_ : Optional[Any] = hf_model.to("""cuda""" ) lowercase_ : Dict = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowercase_ : List[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" ) lowercase_ : Tuple = [[[400, 650]]] lowercase_ : Tuple = [[1]] lowercase_ : str = processor(images=np.array(__snake_case ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase_ : Tuple = hf_model(**__snake_case ) lowercase_ : Optional[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 lowercase_ : Any = processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase_ : List[Any] = hf_model(**__snake_case ) lowercase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 lowercase_ : Tuple = ((75, 275, 1725, 850),) lowercase_ : str = processor(images=np.array(__snake_case ) , input_boxes=__snake_case , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase_ : Optional[int] = hf_model(**__snake_case ) lowercase_ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. lowercase_ : Dict = [[[400, 650], [800, 650]]] lowercase_ : Optional[Any] = [[1, 1]] lowercase_ : str = processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase_ : Any = hf_model(**__snake_case ) lowercase_ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() _lowercase : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) _lowercase : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
712
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _lowercase : str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __magic_name__ ( datasets.BuilderConfig): UpperCamelCase__ = None def lowerCamelCase ( UpperCAmelCase__ : "pyspark.sql.DataFrame" , UpperCAmelCase__ : List[int] , ) -> str: import pyspark def generate_fn(): lowercase_ : List[str] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: lowercase_ : int = df_with_partition_id.select("""*""" ).where(F'''part_id = {partition_id}''' ).drop("""part_id""" ) lowercase_ : Any = partition_df.collect() lowercase_ : Dict = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class __magic_name__ ( _BaseExamplesIterable): def __init__( self : int , lowercase_ : "pyspark.sql.DataFrame" , lowercase_ : Optional[int]=None , ): lowercase_ : Dict = df lowercase_ : Optional[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) lowercase_ : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : np.random.Generator ): lowercase_ : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowercase_ ) return SparkExamplesIterable(self.df , partition_order=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : str = self.split_shard_indices_by_worker(lowercase_ , lowercase_ ) return SparkExamplesIterable(self.df , partition_order=lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): return len(self.partition_order ) class __magic_name__ ( datasets.DatasetBuilder): UpperCamelCase__ = SparkConfig def __init__( self : Tuple , lowercase_ : "pyspark.sql.DataFrame" , lowercase_ : str = None , lowercase_ : str = None , **lowercase_ : str , ): import pyspark lowercase_ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowercase_ : Optional[int] = df lowercase_ : List[str] = working_dir super().__init__( cache_dir=lowercase_ , config_name=str(self.df.semanticHash() ) , **lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : str ): # Returns the path of the created file. def create_cache_and_write_probe(lowercase_ : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowercase_ ) lowercase_ : List[str] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowercase_ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowercase_ : str = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowercase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union[str, Any] ): import pyspark def get_arrow_batch_size(lowercase_ : Any ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) lowercase_ : Union[str, Any] = self.df.count() lowercase_ : Union[str, Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowercase_ : Any = ( self.df.limit(lowercase_ ) .repartition(1 ) .mapInArrow(lowercase_ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowercase_ : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowercase_ : Any = min(lowercase_ , int(approx_total_size / max_shard_size ) ) lowercase_ : Any = self.df.repartition(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : str , lowercase_ : str , lowercase_ : int , ): import pyspark lowercase_ : Any = ParquetWriter if file_format == """parquet""" else ArrowWriter lowercase_ : Dict = os.path.join(self._working_dir , os.path.basename(lowercase_ ) ) if self._working_dir else fpath lowercase_ : Optional[Any] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowercase_ : Tuple = self.config.features lowercase_ : Any = self._writer_batch_size lowercase_ : List[str] = self._fs.storage_options def write_arrow(lowercase_ : str ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowercase_ : List[str] = pyspark.TaskContext().taskAttemptId() lowercase_ : Dict = next(lowercase_ , lowercase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) lowercase_ : int = 0 lowercase_ : List[Any] = writer_class( features=lowercase_ , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=lowercase_ , storage_options=lowercase_ , embed_local_files=lowercase_ , ) lowercase_ : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(lowercase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowercase_ , lowercase_ : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 lowercase_ : Any = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=lowercase_ , storage_options=lowercase_ , embed_local_files=lowercase_ , ) lowercase_ : List[str] = pa.Table.from_batches([batch] ) writer.write_table(lowercase_ ) if writer._num_bytes > 0: lowercase_ , lowercase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowercase_ ) ): lowercase_ : Optional[Any] = os.path.join(os.path.dirname(lowercase_ ) , os.path.basename(lowercase_ ) ) shutil.move(lowercase_ , lowercase_ ) lowercase_ : Union[str, Any] = ( self.df.mapInArrow(lowercase_ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : "datasets.SplitGenerator" , lowercase_ : str = "arrow" , lowercase_ : Optional[Union[str, int]] = None , lowercase_ : Optional[int] = None , **lowercase_ : List[str] , ): self._validate_cache_dir() lowercase_ : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowercase_ ) lowercase_ : Tuple = not is_remote_filesystem(self._fs ) lowercase_ : int = os.path.join if is_local else posixpath.join lowercase_ : Dict = """-TTTTT-SSSSS-of-NNNNN""" lowercase_ : Dict = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowercase_ : Optional[int] = path_join(self._output_dir , lowercase_ ) lowercase_ : Any = 0 lowercase_ : Tuple = 0 lowercase_ : int = 0 lowercase_ : Dict = [] lowercase_ : Union[str, Any] = [] for task_id, content in self._prepare_split_single(lowercase_ , lowercase_ , lowercase_ ): ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowercase_ ) lowercase_ : List[str] = total_num_examples lowercase_ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowercase_ : Tuple = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowercase_ : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowercase_ : int , lowercase_ : int , lowercase_ : int , ): rename( lowercase_ , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , ) lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 0 for i in range(len(lowercase_ ) ): lowercase_ , lowercase_ : List[Any] = task_id_and_num_shards[i] for shard_id in range(lowercase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowercase_ , len(lowercase_ ) ).map(lambda lowercase_ : _rename_shard(*lowercase_ ) ).collect() else: # don't use any pattern lowercase_ : List[str] = 0 lowercase_ : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(lowercase_ , """""" ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
30
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCamelCase( ) -> Any: __snake_case = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=__snake_case , default=__snake_case , required=__snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=__snake_case , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=__snake_case , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=__snake_case , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=__snake_case , default=0 , help="cuda_id." , ) __snake_case = parser.parse_args() return args def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> List[str]: if not len(__snake_case ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) __snake_case , __snake_case = imgs[0].size __snake_case = Image.new("RGB" , size=(cols * w, rows * h) ) __snake_case , __snake_case = grid.size for i, img in enumerate(__snake_case ): grid.paste(__snake_case , box=(i % cols * w, i // cols * h) ) return grid def _lowerCamelCase( __snake_case , __snake_case="robotic cat with wings" , __snake_case=7.5 , __snake_case=50 , __snake_case=1 , __snake_case=42 , ) -> Any: __snake_case = torch.Generator(pipeline.device ).manual_seed(__snake_case ) __snake_case = pipeline( __snake_case , guidance_scale=__snake_case , num_inference_steps=__snake_case , generator=__snake_case , num_images_per_prompt=__snake_case , ).images __snake_case = int(math.sqrt(__snake_case ) ) __snake_case = image_grid(__snake_case , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCamelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCamelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowerCamelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowerCamelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowerCamelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowerCamelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCamelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowerCamelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowerCamelCase__ = unet.to(torch.device('cuda', args.cuda_id)) lowerCamelCase__ = pipeline.to(unet.device) lowerCamelCase__ , lowerCamelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowerCamelCase__ = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
524
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
524
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE_ = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' SCREAMING_SNAKE_CASE_ = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' SCREAMING_SNAKE_CASE_ = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def A__ ( A__ , A__ ) -> List[Any]: '''simple docstring''' return float((preds == labels).mean() ) def A__ ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCAmelCase = float(fa_score(y_true=UpperCAmelCase__ , y_pred=UpperCAmelCase__ ) ) return { "accuracy": acc, "f1": fa, } def A__ ( A__ , A__ ) -> Dict: '''simple docstring''' _UpperCAmelCase = np.array(UpperCAmelCase__ ) _UpperCAmelCase = np.array(UpperCAmelCase__ ) _UpperCAmelCase = en_sentvecs.shape[0] # mean centering _UpperCAmelCase = en_sentvecs - np.mean(UpperCAmelCase__ , axis=0 ) _UpperCAmelCase = in_sentvecs - np.mean(UpperCAmelCase__ , axis=0 ) _UpperCAmelCase = cdist(UpperCAmelCase__ , UpperCAmelCase__ , "cosine" ) _UpperCAmelCase = np.array(range(UpperCAmelCase__ ) ) _UpperCAmelCase = sim.argsort(axis=1 )[:, :10] _UpperCAmelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def __A ( self ) -> Dict: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def __A ( self , snake_case_ , snake_case_ ) -> int: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__UpperCamelCase , __UpperCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
426
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = '''gpt_neox_japanese''' def __init__( self : Union[str, Any] , __UpperCamelCase : str=3_2_0_0_0 , __UpperCamelCase : List[Any]=2_5_6_0 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : List[Any]=1.00 , __UpperCamelCase : Any=1_0_0_0_0 , __UpperCamelCase : Optional[Any]=2_0_4_8 , __UpperCamelCase : Tuple=0.02 , __UpperCamelCase : List[str]=1E-5 , __UpperCamelCase : str=True , __UpperCamelCase : str=3_1_9_9_6 , __UpperCamelCase : int=3_1_9_9_9 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Tuple=0.0 , **__UpperCamelCase : List[str] , ): super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
272
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): __lowercase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''width_multiplier''' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : int , _snake_case : Optional[int]=13 , _snake_case : Any=64 , _snake_case : Union[str, Any]=2 , _snake_case : Any=3 , _snake_case : Dict="swish" , _snake_case : List[Any]=3 , _snake_case : int=32 , _snake_case : str=0.1 , _snake_case : Tuple=0.02 , _snake_case : List[Any]=True , _snake_case : Any=True , _snake_case : int=10 , _snake_case : Optional[int]=None , _snake_case : Any=0.25 , _snake_case : Any=0.0 , _snake_case : Optional[int]=0.0 , ): __lowercase : int = parent __lowercase : int = batch_size __lowercase : Tuple = image_size __lowercase : Optional[Any] = patch_size __lowercase : Optional[Any] = num_channels __lowercase : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) __lowercase : Tuple = hidden_act __lowercase : int = conv_kernel_size __lowercase : List[str] = output_stride __lowercase : Union[str, Any] = classifier_dropout_prob __lowercase : Union[str, Any] = use_labels __lowercase : Any = is_training __lowercase : List[Any] = num_labels __lowercase : str = initializer_range __lowercase : str = scope __lowercase : List[Any] = width_multiplier __lowercase : List[Any] = ffn_dropout __lowercase : Optional[Any] = attn_dropout def snake_case_ ( self : Optional[int] ): __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : int = None __lowercase : int = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self : Tuple ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case_ ( self : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : int ): __lowercase : Tuple = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self : Optional[int] , _snake_case : int , _snake_case : Any , _snake_case : str , _snake_case : Tuple ): __lowercase : List[Any] = self.num_labels __lowercase : Union[str, Any] = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : Any , _snake_case : int , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple ): __lowercase : Union[str, Any] = self.num_labels __lowercase : Optional[int] = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : Any = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self : List[str] ): __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : str = config_and_inputs __lowercase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) A__ : Optional[int] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Tuple = False A__ : Dict = False A__ : List[Any] = False A__ : int = False def snake_case_ ( self : str ): __lowercase : Any = MobileViTVaModelTester(self ) __lowercase : Optional[int] = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def snake_case_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def snake_case_ ( self : List[Any] ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def snake_case_ ( self : Tuple ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def snake_case_ ( self : Optional[int] ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def snake_case_ ( self : int ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self : Tuple ): pass def snake_case_ ( self : int ): __lowercase , __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(_UpperCAmelCase ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Tuple = [*signature.parameters.keys()] __lowercase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def snake_case_ ( self : Union[str, Any] ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case_ ( self : List[Any] ): def check_hidden_states_output(_snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : int ): __lowercase : int = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : Optional[int] = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase : Optional[int] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def snake_case_ ( self : int ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def snake_case_ ( self : int ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def snake_case_ ( self : Optional[int] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Tuple = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase_ ( ) -> List[Any]: __lowercase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self : int ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def snake_case_ ( self : Union[str, Any] ): __lowercase : Union[str, Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _UpperCAmelCase ) __lowercase : Any = self.default_image_processor __lowercase : Optional[int] = prepare_img() __lowercase : int = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase : Tuple = model(**_UpperCAmelCase ) # verify the logits __lowercase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __lowercase : str = torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def snake_case_ ( self : List[str] ): __lowercase : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase : Union[str, Any] = model.to(_UpperCAmelCase ) __lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase : List[str] = prepare_img() __lowercase : List[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase : Optional[Any] = model(**_UpperCAmelCase ) __lowercase : int = outputs.logits # verify the logits __lowercase : Any = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __lowercase : Dict = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def snake_case_ ( self : Optional[int] ): __lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase : List[str] = model.to(_UpperCAmelCase ) __lowercase : List[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase : str = model(**_UpperCAmelCase ) __lowercase : Optional[Any] = outputs.logits.detach().cpu() __lowercase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __lowercase : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __lowercase : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __lowercase : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
714
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : int , _snake_case : Optional[Any] , _snake_case : Union[str, Any]=13 , _snake_case : Optional[Any]=32 , _snake_case : str=2 , _snake_case : Optional[Any]=3 , _snake_case : Tuple=16 , _snake_case : Optional[int]=[1, 2, 1] , _snake_case : Dict=[2, 2, 4] , _snake_case : int=2 , _snake_case : Any=2.0 , _snake_case : Dict=True , _snake_case : Optional[Any]=0.0 , _snake_case : Any=0.0 , _snake_case : str=0.1 , _snake_case : List[Any]="gelu" , _snake_case : str=False , _snake_case : Optional[int]=True , _snake_case : Dict=0.02 , _snake_case : List[Any]=1E-5 , _snake_case : Union[str, Any]=True , _snake_case : int=None , _snake_case : Optional[Any]=True , _snake_case : Optional[Any]=10 , _snake_case : List[Any]=8 , ): __lowercase : str = parent __lowercase : Union[str, Any] = batch_size __lowercase : int = image_size __lowercase : int = patch_size __lowercase : Any = num_channels __lowercase : Optional[int] = embed_dim __lowercase : List[str] = depths __lowercase : List[str] = num_heads __lowercase : Optional[Any] = window_size __lowercase : Union[str, Any] = mlp_ratio __lowercase : int = qkv_bias __lowercase : Tuple = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Union[str, Any] = drop_path_rate __lowercase : str = hidden_act __lowercase : Optional[Any] = use_absolute_embeddings __lowercase : Union[str, Any] = patch_norm __lowercase : Any = layer_norm_eps __lowercase : int = initializer_range __lowercase : Optional[Any] = is_training __lowercase : str = scope __lowercase : Any = use_labels __lowercase : Union[str, Any] = type_sequence_label_size __lowercase : Union[str, Any] = encoder_stride def snake_case_ ( self : Union[str, Any] ): __lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case_ ( self : Tuple ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case_ ( self : int , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : int ): __lowercase : int = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Dict = model(_snake_case ) __lowercase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case_ ( self : str , _snake_case : List[Any] , _snake_case : str , _snake_case : str ): __lowercase : List[Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : str = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowercase : Optional[Any] = 1 __lowercase : int = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() __lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self : Dict , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[Any] ): __lowercase : Any = self.type_sequence_label_size __lowercase : Optional[Any] = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() __lowercase : List[str] = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self : Optional[int] ): __lowercase : int = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : Optional[int] = config_and_inputs __lowercase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Dict = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) A__ : Any = False A__ : List[str] = False A__ : int = False A__ : Tuple = False def snake_case_ ( self : List[Any] ): __lowercase : Optional[int] = SwinvaModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=_snake_case , embed_dim=37 ) def snake_case_ ( self : Optional[Any] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self : List[str] ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def snake_case_ ( self : Optional[int] ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def snake_case_ ( self : Optional[int] ): pass def snake_case_ ( self : Union[str, Any] ): __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def snake_case_ ( self : List[Any] ): __lowercase , __lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = model_class(_snake_case ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case_ ( self : List[Any] ): __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Dict = True for model_class in self.all_model_classes: __lowercase : List[Any] = True __lowercase : Dict = False __lowercase : Any = True __lowercase : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowercase : Any = outputs.attentions __lowercase : List[str] = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : List[str] = True __lowercase : List[Any] = config.window_size**2 __lowercase : int = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __lowercase : str = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowercase : Any = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __lowercase : List[Any] = len(_snake_case ) # Check attention is always last and order is fine __lowercase : Dict = True __lowercase : Dict = True __lowercase : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __lowercase : Dict = model(**self._prepare_for_class(_snake_case , _snake_case ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): __lowercase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowercase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(_snake_case ) ) __lowercase : Any = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def snake_case_ ( self : str , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : int , _snake_case : str ): __lowercase : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __lowercase : Optional[int] = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowercase : Union[str, Any] = outputs.hidden_states __lowercase : Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) , _snake_case ) # Swinv2 has a different seq_length __lowercase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowercase : Any = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) , _snake_case ) __lowercase , __lowercase , __lowercase , __lowercase : str = reshaped_hidden_states[0].shape __lowercase : str = ( reshaped_hidden_states[0].view(_snake_case , _snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case_ ( self : int ): __lowercase , __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase : List[str] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : str = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case ) def snake_case_ ( self : List[Any] ): __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Any = 3 __lowercase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase : List[Any] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) ) def snake_case_ ( self : Optional[int] ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def snake_case_ ( self : Dict ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def snake_case_ ( self : str ): __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[int] = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: __lowercase : Tuple = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self : str ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def snake_case_ ( self : Optional[Any] ): __lowercase : Optional[Any] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) __lowercase : int = self.default_image_processor __lowercase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowercase : Optional[int] = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): __lowercase : Optional[int] = model(**_snake_case ) # verify the logits __lowercase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowercase : Optional[Any] = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) )
284
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
394
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase_ ( a : Tuple ): a__ = int(a ) a__ , a__ , a__ = t // 3600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def lowerCAmelCase_ ( a : Union[str, Any] , a : int , a : Optional[int] , a : List[Any] , a : Union[str, Any]=300 ): # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def lowerCAmelCase_ ( a : Tuple ): a__ = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: a__ = f'''{elt:.6f}''' if isinstance(a , a ) else str(a ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _UpperCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE:Tuple = 5 SCREAMING_SNAKE_CASE:Dict = 0.2 def __init__( self , _a , _a = None , _a = True , _a = None , _a = 300 , ): """simple docstring""" a__ = total a__ = '' if prefix is None else prefix a__ = leave a__ = parent a__ = width a__ = None a__ = None a__ = None def lowercase__ ( self , _a , _a = False , _a = None ): """simple docstring""" a__ = value if comment is not None: a__ = comment if self.last_value is None: a__ = a__ = time.time() a__ = a__ = value a__ = a__ = None a__ = self.warmup a__ = 1 self.update_bar(_a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 a__ = time.time() a__ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: a__ = self.elapsed_time / (value - self.start_value) else: a__ = None if value >= self.total: a__ = self.total a__ = None if not self.leave: self.close() elif self.average_time_per_item is not None: a__ = self.average_time_per_item * (self.total - value) self.update_bar(_a ) a__ = value a__ = current_time if self.average_time_per_item is None: a__ = 1 else: a__ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def lowercase__ ( self , _a , _a=None ): """simple docstring""" a__ = ' ' * (len(str(self.total ) ) - len(str(_a ) )) + str(_a ) if self.elapsed_time is None: a__ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: a__ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: a__ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def lowercase__ ( self ): """simple docstring""" a__ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: a__ = disp.display(disp.HTML(self.html_code ) , display_id=_a ) else: self.output.update(disp.HTML(self.html_code ) ) def lowercase__ ( self ): """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self , _a , _a=None ): """simple docstring""" super().__init__(_a ) a__ = None if column_names is None else [column_names] a__ = None def lowercase__ ( self ): """simple docstring""" a__ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: a__ = disp.display(disp.HTML(self.html_code ) , display_id=_a ) else: self.output.update(disp.HTML(self.html_code ) ) def lowercase__ ( self , _a ): """simple docstring""" if self.inner_table is None: a__ = [list(values.keys() ), list(values.values() )] else: a__ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_a ) a__ = columns self.inner_table.append([values[c] for c in columns] ) def lowercase__ ( self , _a , _a=None , _a=300 ): """simple docstring""" a__ = NotebookProgressBar(_a , prefix=_a , parent=self , width=_a ) return self.child_bar def lowercase__ ( self ): """simple docstring""" a__ = None self.display() class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self ): """simple docstring""" a__ = None a__ = None a__ = False def lowercase__ ( self , _a , _a , _a , **_a ): """simple docstring""" a__ = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' a__ = 0 a__ = 0 a__ = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) a__ = NotebookTrainingTracker(state.max_steps , _a ) def lowercase__ ( self , _a , _a , _a , **_a ): """simple docstring""" a__ = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) a__ = False def lowercase__ ( self , _a , _a , _a , _a=None , **_a ): """simple docstring""" if not has_length(_a ): return if self.prediction_bar is None: if self.training_tracker is not None: a__ = self.training_tracker.add_child(len(_a ) ) else: a__ = NotebookProgressBar(len(_a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def lowercase__ ( self , _a , _a , _a , **_a ): """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() a__ = None def lowercase__ ( self , _a , _a , _a , _a=None , **_a ): """simple docstring""" # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: a__ = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy a__ = state.global_step self.training_tracker.write_line(_a ) def lowercase__ ( self , _a , _a , _a , _a=None , **_a ): """simple docstring""" if self.training_tracker is not None: a__ = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: a__ = log['loss'] break if self.first_column == "Epoch": a__ = int(state.epoch ) else: a__ = state.global_step a__ = 'eval' for k in metrics: if k.endswith('_loss' ): a__ = re.sub(r'\_loss$' , '' , _a ) a__ = metrics.pop('total_flos' , _a ) a__ = metrics.pop('epoch' , _a ) a__ = metrics.pop(F'''{metric_key_prefix}_runtime''' , _a ) a__ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _a ) a__ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _a ) a__ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _a ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': a__ = v else: a__ = k.split('_' ) a__ = ' '.join([part.capitalize() for part in splits[1:]] ) a__ = v self.training_tracker.write_line(_a ) self.training_tracker.remove_child() a__ = None # Evaluation takes a long time so we should force the next update. a__ = True def lowercase__ ( self , _a , _a , _a , **_a ): """simple docstring""" self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_a ) a__ = None
394
1
"""simple docstring""" def A ( snake_case__ = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
616
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
616
1
'''simple docstring''' def lowercase__( _UpperCamelCase : Union[str, Any] )-> Tuple: """simple docstring""" _UpperCamelCase = [0] * len(_UpperCamelCase ) _UpperCamelCase = [] _UpperCamelCase = [1] * len(_UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCamelCase ) ): if indegree[i] == 0: queue.append(_UpperCamelCase ) while queue: _UpperCamelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _UpperCamelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_UpperCamelCase ) print(max(_UpperCamelCase ) ) # Adjacency list of Graph snake_case_ : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
138
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case_ : Optional[int] = '''scheduler_config.json''' class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 5 @dataclass class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = 42 class A_ : '''simple docstring''' _lowerCAmelCase = SCHEDULER_CONFIG_NAME _lowerCAmelCase = ["""dtype"""] _lowerCAmelCase = [] _lowerCAmelCase = True @classmethod def a ( cls , A_ = None , A_ = None , A_=False , **A_ , ): _UpperCamelCase , _UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _UpperCamelCase , _UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , "create_state" ) and getattr(A_ , "has_state" , A_ ): _UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def a ( self , A_ , A_ = False , **A_ ): self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def a ( self ): return self._get_compatibles() @classmethod def a ( cls ): _UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) _UpperCamelCase = importlib.import_module(__name__.split("." )[0] ) _UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def lowercase__( _UpperCamelCase : jnp.ndarray , _UpperCamelCase : Tuple[int] )-> jnp.ndarray: """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def lowercase__( _UpperCamelCase : int , _UpperCamelCase : Tuple=0.999 , _UpperCamelCase : Any=jnp.floataa )-> jnp.ndarray: """simple docstring""" def alpha_bar(_UpperCamelCase : Any ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _UpperCamelCase = [] for i in range(_UpperCamelCase ): _UpperCamelCase = i / num_diffusion_timesteps _UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class A_ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @classmethod def a ( cls , A_ ): _UpperCamelCase = scheduler.config if config.trained_betas is not None: _UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) _UpperCamelCase = 1.0 - betas _UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> List[Any]: """simple docstring""" _UpperCamelCase = state.alphas_cumprod _UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 _UpperCamelCase = sqrt_alpha_prod.flatten() _UpperCamelCase = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) _UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() _UpperCamelCase = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
138
1
def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' if len(__snake_case ) != len(__snake_case ): raise ValueError('''String lengths must match!''' ) lowerCamelCase__ = 0 for chara, chara in zip(__snake_case ,__snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
29
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """ClapFeatureExtractor""" lowerCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if audios is not None: lowerCamelCase__ = self.feature_extractor( __lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and audios is not None: lowerCamelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
29
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A ( __UpperCamelCase ) -> List[str]: # picklable for multiprocessing return x.sum() def A ( __UpperCamelCase ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @dataclass class __lowerCAmelCase : """simple docstring""" A__ : int A__ : str class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = {} A__ = [] A__ = 1 A__ = [1, 2] A__ = {'a': 1, 'b': 2} A__ = {'a': [1, 2], 'b': [3, 4]} A__ = {'a': {'1': 1}, 'b': 2} A__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} A__ = {} A__ = [] A__ = 2 A__ = [2, 3] A__ = {'a': 2, 'b': 3} A__ = {'a': [2, 3], 'b': [4, 5]} A__ = {'a': {'1': 2}, 'b': 3} A__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) A__ = 2 self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) A__ = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} A__ = {'a': 2, 'b': 0, 'c': 2} A__ = { 'a': np.eye(2 ).astype(_snake_case ), 'b': np.zeros(3 ).astype(_snake_case ), 'c': np.ones(2 ).astype(_snake_case ), } self.assertEqual(map_nested(_snake_case , _snake_case , map_numpy=_snake_case ) , _snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_snake_case , _snake_case , map_numpy=_snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_snake_case , _snake_case , map_numpy=_snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_snake_case , _snake_case , map_numpy=_snake_case , num_proc=_snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_snake_case ): # can't pickle a local lambda map_nested(lambda _snake_case : x + 1 , _snake_case , num_proc=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = {'a': 1, 'b': 2} A__ = {'a': 3, 'b': 4} A__ = {'a': 5, 'b': 6} A__ = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_snake_case , _snake_case , _snake_case ) ) , _snake_case ) def _a ( self : Tuple ): """simple docstring""" class __lowerCAmelCase : """simple docstring""" A__ : int = "bar" A__ = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_snake_case , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: A__ = {f'''{i}''': i for i in range(__UpperCamelCase )} A__ = map_nested(lambda __UpperCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @require_tf def _a ( self : Optional[int] ): """simple docstring""" import tensorflow as tf from tensorflow.keras import layers A__ = layers.Dense(2 ) def gen_random_output(): A__ = tf.random.uniform((1, 3) ) return model(_snake_case ).numpy() with temp_seed(42 , set_tensorflow=_snake_case ): A__ = gen_random_output() with temp_seed(42 , set_tensorflow=_snake_case ): A__ = gen_random_output() A__ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _a ( self : Optional[Any] ): """simple docstring""" import torch def gen_random_output(): A__ = torch.nn.Linear(3 , 2 ) A__ = torch.rand(1 , 3 ) return model(_snake_case ).detach().numpy() with temp_seed(42 , set_pytorch=_snake_case ): A__ = gen_random_output() with temp_seed(42 , set_pytorch=_snake_case ): A__ = gen_random_output() A__ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _a ( self : List[Any] ): """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A__ = gen_random_output() with temp_seed(42 ): A__ = gen_random_output() A__ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def A ( __UpperCamelCase ) -> List[str]: A__ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def A ( __UpperCamelCase , __UpperCamelCase ) -> str: A__ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def A ( ) -> Tuple: A__ = A(x=1 , y='foobar' ) A__ = {'x': 1, 'y': 'foobar'} assert asdict(__UpperCamelCase ) == expected_output A__ = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} A__ = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y='foo' )] ) def A ( __UpperCamelCase ) -> str: return text.split() def A ( __UpperCamelCase ) -> Tuple: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A ( ) -> Any: with Pool(2 ) as pool: A__ = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A__ = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A__ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(__UpperCamelCase ) == 4
9
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = dataset _A = process _A = params def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : str , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.dataset[i] _A = self.process(__UpperCAmelCase , **self.params ) return processed class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Tuple=None ): '''simple docstring''' _A = loader _A = infer _A = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _A = None _A = loader_batch_size # Internal bookkeeping _A = None _A = None def __len__( self : Dict ): '''simple docstring''' return len(self.loader ) def __iter__( self : List[Any] ): '''simple docstring''' _A = iter(self.loader ) return self def lowerCAmelCase ( self : str ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _A = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _A = {} for k, element in self._loader_batch_data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Convert ModelOutput to tuple first _A = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _A = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _A = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _A = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _A = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _A = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _A = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _A = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _A = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _A = self._loader_batch_data.__class__(__UpperCAmelCase ) self._loader_batch_index += 1 return result def lowerCAmelCase ( self : Dict ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _A = next(self.iterator ) _A = self.infer(__UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__UpperCAmelCase , torch.Tensor ): _A = processed else: _A = list(processed.keys() )[0] _A = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: _A = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _A = observed_batch_size # Setting internal index to unwrap the batch _A = processed _A = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any]=None ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __iter__( self : List[str] ): '''simple docstring''' _A = iter(self.loader ) _A = None return self def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.subiterator is None: _A = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _A = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _A = self.infer(next(self.iterator ) , **self.params ) _A = next(self.subiterator ) return processed class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __iter__( self : Union[str, Any] ): '''simple docstring''' _A = iter(self.loader ) return self def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = False _A = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _A = self.loader_batch_item() _A = item.pop("is_last" ) accumulator.append(__UpperCAmelCase ) if is_last: return accumulator while not is_last: _A = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__UpperCAmelCase , torch.Tensor ): _A = processed else: _A = list(processed.keys() )[0] _A = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: _A = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _A = observed_batch_size _A = processed _A = 0 while self._loader_batch_index < self.loader_batch_size: _A = self.loader_batch_item() _A = item.pop("is_last" ) accumulator.append(__UpperCAmelCase ) if is_last: return accumulator else: _A = processed _A = item.pop("is_last" ) accumulator.append(__UpperCAmelCase ) return accumulator class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : str , __UpperCAmelCase : Dataset , __UpperCAmelCase : str ): '''simple docstring''' _A = dataset _A = key def __len__( self : str ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple , __UpperCAmelCase : str ): '''simple docstring''' return self.dataset[i][self.key] class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Dataset , __UpperCAmelCase : str , __UpperCAmelCase : str ): '''simple docstring''' _A = dataset _A = keya _A = keya def __len__( self : List[str] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : int , __UpperCAmelCase : Tuple ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
330
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ : Union[str, Any] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase( __lowerCamelCase ): if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): __a = [image] __a = [trans(img.convert('RGB' ) ) for img in image] __a = torch.stack(__lowerCamelCase ) return image class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM __a = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: # get the original timestep using init_timestep __a = min(int(num_inference_steps * strength ) , UpperCAmelCase ) __a = max(num_inference_steps - init_timestep , 0 ) __a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> List[str]: if not isinstance(UpperCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase )}''' ) __a = image.to(device=UpperCAmelCase , dtype=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __a = init_latents.shape __a = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) # get latents print('add noise to latents at timestep' , UpperCAmelCase ) __a = self.scheduler.add_noise(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __a = init_latents return latents @torch.no_grad() def __call__( self , UpperCAmelCase = None , UpperCAmelCase = 0.8 , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = 0.0 , UpperCAmelCase = 5_0 , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(UpperCAmelCase ) # 2. Preprocess image __a = preprocess(UpperCAmelCase ) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase , device=self.device ) __a , __a = self.get_timesteps(UpperCAmelCase , UpperCAmelCase , self.device ) __a = timesteps[:1].repeat(UpperCAmelCase ) # 4. Prepare latent variables __a = self.prepare_latents(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.unet.dtype , self.device , UpperCAmelCase ) __a = latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase ): # 1. predict noise model_output __a = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __a = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , eta=UpperCAmelCase , use_clipped_model_output=UpperCAmelCase , generator=UpperCAmelCase , ).prev_sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase )
709
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ : Dict = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""GLPNFeatureExtractor"""] lowerCamelCase_ : Any = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
246
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case : Optional[int] = get_logger(__name__) snake_case : Union[str, Any] = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _snake_case : @add_start_docstrings(_a ) def __call__( self , _a , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case : @add_start_docstrings(_a ) def __call__( self , _a , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case ( snake_case ): @add_start_docstrings(_a ) def __call__( self , _a , _a , _a , **_a ): for processor in self: __magic_name__ : str = inspect.signature(processor.__call__ ).parameters if len(_a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) __magic_name__ : Tuple = processor(_a , _a , _a , **_a ) else: __magic_name__ : int = processor(_a , _a , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a ): if not isinstance(_a , _a ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __magic_name__ : str = temperature def __call__( self , _a , _a , _a ): __magic_name__ : List[Any] = scores / self.temperature return scores class _snake_case ( snake_case ): def __init__( self , _a , _a = -float("Inf" ) , _a = 1 ): if not isinstance(_a , _a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_a , _a ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __magic_name__ : List[str] = top_p __magic_name__ : Optional[Any] = filter_value __magic_name__ : Tuple = min_tokens_to_keep def __call__( self , _a , _a , _a ): __magic_name__ , __magic_name__ : str = lax.top_k(_a , scores.shape[-1] ) __magic_name__ : Dict = jnp.full_like(_a , self.filter_value ) __magic_name__ : Union[str, Any] = jax.nn.softmax(_a , axis=-1 ).cumsum(axis=-1 ) __magic_name__ : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well __magic_name__ : Tuple = jnp.roll(_a , 1 ) score_mask |= score_mask.at[:, 0].set(_a ) # min tokens to keep __magic_name__ : int = score_mask.at[:, : self.min_tokens_to_keep].set(_a ) __magic_name__ : Any = jnp.where(_a , _a , _a ) __magic_name__ : Union[str, Any] = jax.lax.sort_key_val(_a , _a )[-1] return next_scores class _snake_case ( snake_case ): def __init__( self , _a , _a = -float("Inf" ) , _a = 1 ): if not isinstance(_a , _a ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __magic_name__ : str = max(_a , _a ) __magic_name__ : Any = filter_value def __call__( self , _a , _a , _a ): __magic_name__ , __magic_name__ : Optional[Any] = scores.shape __magic_name__ : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value ) __magic_name__ : Tuple = min(self.top_k , scores.shape[-1] ) # Safety check __magic_name__ , __magic_name__ : str = lax.top_k(_a , _a ) __magic_name__ : Optional[int] = jnp.broadcast_to((jnp.arange(_a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __magic_name__ : int = topk_scores.flatten() __magic_name__ : List[Any] = topk_indices.flatten() + shift __magic_name__ : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(_a ) __magic_name__ : List[Any] = next_scores_flat.reshape(_a , _a ) return next_scores class _snake_case ( snake_case ): def __init__( self , _a ): __magic_name__ : Dict = bos_token_id def __call__( self , _a , _a , _a ): __magic_name__ : Optional[int] = jnp.full(scores.shape , -float("inf" ) ) __magic_name__ : Union[str, Any] = 1 - jnp.bool_(cur_len - 1 ) __magic_name__ : Dict = jnp.where(_a , new_scores.at[:, self.bos_token_id].set(0 ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a ): __magic_name__ : Tuple = max_length __magic_name__ : int = eos_token_id def __call__( self , _a , _a , _a ): __magic_name__ : Dict = jnp.full(scores.shape , -float("inf" ) ) __magic_name__ : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __magic_name__ : Dict = jnp.where(_a , new_scores.at[:, self.eos_token_id].set(0 ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a ): if not isinstance(_a , _a ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_a , _a ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __magic_name__ : int = min_length __magic_name__ : Any = eos_token_id def __call__( self , _a , _a , _a ): # create boolean flag to decide if min length penalty should be applied __magic_name__ : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __magic_name__ : List[Any] = jnp.where(_a , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a ): __magic_name__ : Dict = list(_a ) __magic_name__ : Union[str, Any] = begin_index def __call__( self , _a , _a , _a ): __magic_name__ : Any = 1 - jnp.bool_(cur_len - self.begin_index ) __magic_name__ : Dict = jnp.where(_a , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a ): __magic_name__ : List[Any] = list(_a ) def __call__( self , _a , _a , _a ): __magic_name__ : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _snake_case ( snake_case ): def __init__( self , _a ): __magic_name__ : Tuple = dict(_a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __magic_name__ : Optional[int] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __magic_name__ : Any = force_token_array.at[index].set(_a ) __magic_name__ : List[Any] = jnp.intaa(_a ) def __call__( self , _a , _a , _a ): def _force_token(_a ): __magic_name__ : Any = scores.shape[0] __magic_name__ : int = self.force_token_array[generation_idx] __magic_name__ : Union[str, Any] = jnp.ones_like(_a , dtype=scores.dtype ) * -float("inf" ) __magic_name__ : str = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __magic_name__ : Any = lax.dynamic_update_slice(_a , _a , (0, current_token) ) return new_scores __magic_name__ : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_a ) , lambda: scores , ) , ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a , _a ): __magic_name__ : Optional[int] = generate_config.eos_token_id __magic_name__ : List[Any] = generate_config.no_timestamps_token_id __magic_name__ : Optional[Any] = generate_config.no_timestamps_token_id + 1 __magic_name__ : int = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_a , "max_initial_timestamp_index" ): __magic_name__ : List[Any] = generate_config.max_initial_timestamp_index else: __magic_name__ : str = model_config.vocab_size if self.max_initial_timestamp_index is None: __magic_name__ : str = model_config.vocab_size def __call__( self , _a , _a , _a ): # suppress <|notimestamps|> which is handled by without_timestamps __magic_name__ : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_a , _a ): __magic_name__ : int = jnp.where((cur_len - self.begin_index) >= 1 , _a , _a ) __magic_name__ : str = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _a , ) __magic_name__ : Dict = jnp.where((cur_len - self.begin_index) < 2 , _a , _a ) __magic_name__ : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _a , _a , ) return jnp.where( _a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _a , ) __magic_name__ : Any = jax.vmap(_a )(_a , _a ) __magic_name__ : Dict = jnp.where(cur_len == self.begin_index , _a , _a ) __magic_name__ : List[str] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _a , ) __magic_name__ : Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index __magic_name__ : Tuple = jnp.where( _a , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _a , ) # if sum of probability over timestamps is above any other token, sample timestamp __magic_name__ : Union[str, Any] = jax.nn.log_softmax(_a , axis=-1 ) def handle_cumulative_probs(_a , _a ): __magic_name__ : int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __magic_name__ : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _a , ) __magic_name__ : int = jax.vmap(_a )(_a , _a ) return scores
124
from typing import Dict from .base import GenericTensor, Pipeline class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self , _a=None , _a=None , _a=None , **_a ): if tokenize_kwargs is None: __magic_name__ : Tuple = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) __magic_name__ : Dict = truncation __magic_name__ : str = tokenize_kwargs __magic_name__ : Any = {} if return_tensors is not None: __magic_name__ : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self , _a , **_a ): __magic_name__ : List[Any] = self.framework __magic_name__ : Union[str, Any] = self.tokenizer(_a , return_tensors=_a , **_a ) return model_inputs def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[Any] = self.model(**_a ) return model_outputs def SCREAMING_SNAKE_CASE ( self , _a , _a=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_a , **_a ): return super().__call__(*_a , **_a )
124
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline A_ = logging.get_logger(__name__) class UpperCamelCase__ ( a ): '''simple docstring''' def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(SCREAMING_SNAKE_CASE ) ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = [sequences] __lowerCAmelCase : str = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(SCREAMING_SNAKE_CASE )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(a ) class UpperCamelCase__ ( a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE=ZeroShotClassificationArgumentHandler() , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase : List[Any] = args_parser super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def snake_case ( self ) -> Union[str, Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=TruncationStrategy.ONLY_FIRST , **SCREAMING_SNAKE_CASE ) -> Dict: __lowerCAmelCase : Optional[int] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) __lowerCAmelCase : Optional[Any] = self.tokenizer.eos_token try: __lowerCAmelCase : Dict = self.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , ) except Exception as e: if "too short" in str(SCREAMING_SNAKE_CASE ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __lowerCAmelCase : Optional[int] = self.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def snake_case ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: if kwargs.get('multi_class' , SCREAMING_SNAKE_CASE ) is not None: __lowerCAmelCase : str = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) __lowerCAmelCase : Tuple = {} if "candidate_labels" in kwargs: __lowerCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: __lowerCAmelCase : int = kwargs['hypothesis_template'] __lowerCAmelCase : int = {} if "multi_label" in kwargs: __lowerCAmelCase : Any = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[Any]: if len(SCREAMING_SNAKE_CASE ) == 0: pass elif len(SCREAMING_SNAKE_CASE ) == 1 and "candidate_labels" not in kwargs: __lowerCAmelCase : Optional[Any] = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="This example is {}." ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase : Tuple = self._args_parser(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i, (candidate_label, sequence_pair) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : Dict = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(SCREAMING_SNAKE_CASE ) - 1, **model_input, } def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase : List[str] = inputs['candidate_label'] __lowerCAmelCase : Optional[int] = inputs['sequence'] __lowerCAmelCase : Tuple = {k: inputs[k] for k in self.tokenizer.model_input_names} __lowerCAmelCase : int = self.model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: __lowerCAmelCase : Optional[Any] = [outputs['candidate_label'] for outputs in model_outputs] __lowerCAmelCase : Any = [outputs['sequence'] for outputs in model_outputs] __lowerCAmelCase : Any = np.concatenate([output['logits'].numpy() for output in model_outputs] ) __lowerCAmelCase : Optional[Any] = logits.shape[0] __lowerCAmelCase : int = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = N // n __lowerCAmelCase : Optional[Any] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(SCREAMING_SNAKE_CASE ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __lowerCAmelCase : List[str] = self.entailment_id __lowerCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 __lowerCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] __lowerCAmelCase : int = np.exp(SCREAMING_SNAKE_CASE ) / np.exp(SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __lowerCAmelCase : Optional[int] = reshaped_outputs[..., self.entailment_id] __lowerCAmelCase : str = np.exp(SCREAMING_SNAKE_CASE ) / np.exp(SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
123
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def snake_case ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Any: return "lower newer", "lower newer" def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase : List[str] = 'lower' __lowerCAmelCase : Union[str, Any] = ['low', 'er</w>'] __lowerCAmelCase : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = tokens + ['<unk>'] __lowerCAmelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input __lowerCAmelCase : Optional[Any] = 'This is a simple input' __lowerCAmelCase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : int = ('This is a simple input', 'This is a pair') __lowerCAmelCase : Optional[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) def snake_case ( self ) -> int: pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase__ ( a ): '''simple docstring''' pass
123
1
# Function to print upper half of diamond (pyramid) def __lowerCAmelCase ( a__ ) -> List[str]: for i in range(0 , a__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __lowerCAmelCase ( a__ ) -> Any: for i in range(a__ , 0 , -1 ): for _ in range(a__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __lowerCAmelCase ( a__ ) -> Tuple: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(a__ ) # upper half reverse_floyd(a__ ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') A : Dict = 1 while K: A : Any = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) A : Optional[int] = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
219
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A : Any = logging.get_logger(__name__) class __A: def __init__( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = question_encoder __a = generator __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' if os.path.isfile(_snake_case ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) __a = os.path.join(_snake_case , '''question_encoder_tokenizer''' ) __a = os.path.join(_snake_case , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_snake_case ) self.generator.save_pretrained(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a = kwargs.pop('''config''' , _snake_case ) if config is None: __a = RagConfig.from_pretrained(_snake_case ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_snake_case , generator=_snake_case ) def __call__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.current_tokenizer(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.generator.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return self.generator.decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.generator def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = "longest" , _snake_case = None , _snake_case = True , **_snake_case , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: __a = self.current_tokenizer.model_max_length __a = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a = self.current_tokenizer.model_max_length __a = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) __a = labels['''input_ids'''] return model_inputs
219
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) class snake_case__ ( UpperCamelCase): a_ = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 2_55 , _A : bool = True , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_A : List[str] , ) -> None: super().__init__(**_A ) UpperCAmelCase_ : Dict = size if size is not None else {'''shortest_edge''': 2_24} UpperCAmelCase_ : str = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} UpperCAmelCase_ : int = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : int = resample UpperCAmelCase_ : Dict = do_center_crop UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Union[str, Any] = do_rescale UpperCAmelCase_ : List[str] = rescale_factor UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A ( self : Tuple , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: UpperCAmelCase_ : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCAmelCase_ : int = int((2_56 / 2_24) * size['''shortest_edge'''] ) UpperCAmelCase_ : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) UpperCAmelCase_ : Any = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( _A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A ) def A ( self : List[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: UpperCAmelCase_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def A ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[Any] , ) -> np.ndarray: return rescale(_A , scale=_A , data_format=_A , **_A ) def A ( self : Optional[int] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def A ( self : Optional[int] , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[TensorType] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Optional[int] , ) -> BatchFeature: UpperCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[int] = size if size is not None else self.size UpperCAmelCase_ : Dict = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase_ : Union[str, Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(_A ) for image in images] if do_resize: UpperCAmelCase_ : Dict = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: UpperCAmelCase_ : List[Any] = [self.center_crop(_A , _A ) for image in images] if do_rescale: UpperCAmelCase_ : Tuple = [self.rescale(_A , _A ) for image in images] if do_normalize: UpperCAmelCase_ : str = [self.normalize(_A , _A , _A ) for image in images] UpperCAmelCase_ : Optional[int] = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
216
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = KandinskyImgaImgPipeline a_ = ["prompt", "image_embeds", "negative_image_embeds", "image"] a_ = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a_ = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a_ = False @property def A ( self : Optional[Any] ) -> Tuple: return 32 @property def A ( self : Tuple ) -> Tuple: return 32 @property def A ( self : str ) -> List[str]: return self.time_input_dim @property def A ( self : List[str] ) -> int: return self.time_input_dim * 4 @property def A ( self : int ) -> str: return 1_00 @property def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def A ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) UpperCAmelCase_ : str = MultilingualCLIP(_A ) UpperCAmelCase_ : Tuple = text_encoder.eval() return text_encoder @property def A ( self : int ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ : Tuple = UNetaDConditionModel(**_A ) return model @property def A ( self : List[str] ) -> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : str ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Any ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : Optional[int] = self.dummy_tokenizer UpperCAmelCase_ : Optional[int] = self.dummy_unet UpperCAmelCase_ : Optional[Any] = self.dummy_movq UpperCAmelCase_ : Optional[int] = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase_ : Tuple = DDIMScheduler(**_A ) UpperCAmelCase_ : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : str , _A : Optional[int] , _A : Union[str, Any]=0 ) -> str: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image UpperCAmelCase_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Tuple = torch.manual_seed(_A ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Union[str, Any] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : Dict ) -> int: UpperCAmelCase_ : str = '''cpu''' UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) UpperCAmelCase_ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[str] = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : List[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : Tuple ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) UpperCAmelCase_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase_ : Tuple = '''A red cartoon frog, 4k''' UpperCAmelCase_ : Dict = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase_ : Any = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) UpperCAmelCase_ : Optional[int] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ : str = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ : Any = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase_ : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_A , _A )
216
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : str = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class a (lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase : Tuple = """ibert""" def __init__( self : str , lowerCamelCase : Optional[Any]=30522 , lowerCamelCase : List[Any]=768 , lowerCamelCase : str=12 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Tuple=3072 , lowerCamelCase : Dict="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : str=512 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : List[Any]=1E-12 , lowerCamelCase : Any=1 , lowerCamelCase : Optional[int]=0 , lowerCamelCase : int=2 , lowerCamelCase : Any="absolute" , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : Optional[int]="none" , **lowerCamelCase : Dict , ) -> List[str]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) __snake_case : Dict = vocab_size __snake_case : int = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Tuple = hidden_act __snake_case : str = intermediate_size __snake_case : List[str] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Optional[Any] = max_position_embeddings __snake_case : Tuple = type_vocab_size __snake_case : List[str] = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Any = quant_mode __snake_case : Dict = force_dequant class a (lowerCamelCase_ ): """simple docstring""" @property def __snake_case ( self : List[str] ) -> Union[str, Any]: if self.task == "multiple-choice": __snake_case : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
81
from queue import PriorityQueue from typing import Any import numpy as np def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): for nxt, d in graph[v]: if nxt in visited_forward: continue _lowercase: Dict = cst_fwd.get(__magic_name__ , np.inf ) _lowercase: Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _lowercase: Optional[Any] = new_cost_f _lowercase: Union[str, Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _lowercase: List[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): _lowercase: List[Any] = -1 _lowercase: Union[str, Any] = set() _lowercase: Any = set() _lowercase: Tuple = {source: 0} _lowercase: Tuple = {destination: 0} _lowercase: Optional[Any] = {source: None} _lowercase: Any = {destination: None} _lowercase: PriorityQueue[Any] = PriorityQueue() _lowercase: PriorityQueue[Any] = PriorityQueue() _lowercase: Optional[int] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _lowercase , _lowercase: Optional[Any] = queue_forward.get() visited_forward.add(__magic_name__ ) _lowercase , _lowercase: List[str] = queue_backward.get() visited_backward.add(__magic_name__ ) _lowercase: Optional[int] = pass_and_relaxation( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) _lowercase: List[str] = pass_and_relaxation( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _lowercase: Optional[Any] = shortest_distance return shortest_path_distance _SCREAMING_SNAKE_CASE : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } _SCREAMING_SNAKE_CASE : Tuple = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
226
0
import copy import random from transformers import CLIPTokenizer class A__ ( _UpperCAmelCase ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" super().__init__(*lowercase__ , **lowercase__ ) __magic_name__ : Union[str, Any] = {} def lowercase ( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Optional[int] = super().add_tokens(lowercase__ , *lowercase__ , **lowercase__ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ''' `placeholder_token` that is not already in the tokenizer.''' ) def lowercase ( self , lowerCamelCase , *lowerCamelCase , lowerCamelCase=1 , **lowerCamelCase ) -> Tuple: """simple docstring""" __magic_name__ : Optional[int] = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase__ , *lowercase__ , **lowercase__ ) output.append(lowercase__ ) else: __magic_name__ : Dict = [] for i in range(lowercase__ ): __magic_name__ : Union[str, Any] = placeholder_token + F'''_{i}''' self.try_adding_tokens(lowercase__ , *lowercase__ , **lowercase__ ) output.append(lowercase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) __magic_name__ : str = output def lowercase ( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1.0 ) -> List[Any]: """simple docstring""" if isinstance(lowercase__ , lowercase__ ): __magic_name__ : Dict = [] for i in range(len(lowercase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __magic_name__ : str = self.token_map[placeholder_token] __magic_name__ : str = tokens[: 1 + int(len(lowercase__ ) * prop_tokens_to_load )] if vector_shuffle: __magic_name__ : Optional[Any] = copy.copy(lowercase__ ) random.shuffle(lowercase__ ) __magic_name__ : Optional[int] = text.replace(lowercase__ , ''' '''.join(lowercase__ ) ) return text def __call__( self , lowerCamelCase , *lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1.0 , **lowerCamelCase ) -> Tuple: """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( lowercase__ , vector_shuffle=lowercase__ , prop_tokens_to_load=lowercase__ ) , *lowercase__ , **lowercase__ , ) def lowercase ( self , lowerCamelCase , *lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1.0 , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( lowercase__ , vector_shuffle=lowercase__ , prop_tokens_to_load=lowercase__ ) , *lowercase__ , **lowercase__ , )
704
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : torch.FloatTensor lowerCamelCase__ : Optional[torch.FloatTensor] =None def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase=0.9_99, UpperCAmelCase="cosine", ) ->Optional[Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __magic_name__ : List[Any] = [] for i in range(UpperCAmelCase ): __magic_name__ : Tuple = i / num_diffusion_timesteps __magic_name__ : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase ) / alpha_bar_fn(UpperCAmelCase ), UpperCAmelCase ) ) return torch.tensor(UpperCAmelCase, dtype=torch.floataa ) class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Union[str, Any] =1 @register_to_config def __init__( self , lowerCamelCase = 1000 , lowerCamelCase = 0.0_0_0_1 , lowerCamelCase = 0.0_2 , lowerCamelCase = "linear" , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 0 , lowerCamelCase = "epsilon" , lowerCamelCase = 1.0 , **lowerCamelCase , ) -> Optional[Any]: """simple docstring""" if kwargs.get('''set_alpha_to_one''' , lowerCamelCase ) is not None: __magic_name__ : Any = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCamelCase , standard_warn=lowerCamelCase ) __magic_name__ : Tuple = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __magic_name__ : Any = torch.tensor(lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __magic_name__ : Union[str, Any] = torch.linspace(lowerCamelCase , lowerCamelCase , lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __magic_name__ : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __magic_name__ : List[str] = betas_for_alpha_bar(lowerCamelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) __magic_name__ : Dict = 1.0 - self.betas __magic_name__ : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __magic_name__ : str = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __magic_name__ : int = 1.0 # setable values __magic_name__ : List[str] = None __magic_name__ : Dict = torch.from_numpy(np.arange(0 , lowerCamelCase ).copy().astype(np.intaa ) ) def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) __magic_name__ : int = num_inference_steps __magic_name__ : Tuple = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __magic_name__ : Any = (np.arange(0 , lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) __magic_name__ : Optional[int] = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) self.timesteps += self.config.steps_offset def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" __magic_name__ : Dict = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __magic_name__ : List[Any] = self.alphas_cumprod[timestep] __magic_name__ : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __magic_name__ : Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __magic_name__ : Union[str, Any] = model_output elif self.config.prediction_type == "sample": __magic_name__ : Dict = model_output __magic_name__ : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __magic_name__ : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __magic_name__ : Optional[int] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __magic_name__ : Any = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : Optional[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def __len__( self ) -> int: """simple docstring""" return self.config.num_train_timesteps
336
0
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_ = tuple[int, int, int] SCREAMING_SNAKE_CASE_ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase SCREAMING_SNAKE_CASE_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- SCREAMING_SNAKE_CASE_ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' SCREAMING_SNAKE_CASE_ = 'FOBHMDKEXQNRAULPGSJVTYICZW' SCREAMING_SNAKE_CASE_ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- SCREAMING_SNAKE_CASE_ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- SCREAMING_SNAKE_CASE_ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' SCREAMING_SNAKE_CASE_ = 'SGLCPQWZHKXAREONTFBVIYJUDM' SCREAMING_SNAKE_CASE_ = 'HVSICLTYKQUBXDWAJZOMFGPREN' SCREAMING_SNAKE_CASE_ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' SCREAMING_SNAKE_CASE_ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' SCREAMING_SNAKE_CASE_ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def UpperCamelCase__ ( _lowercase : RotorPositionT , _lowercase : RotorSelectionT , _lowercase : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_lowercase ) )) < 3: __UpperCAmelCase: int = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowercase ) # Checks if rotor positions are valid __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: List[Any] = rotpos if not 0 < rotorposa <= len(_lowercase ): __UpperCAmelCase: int = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): __UpperCAmelCase: Tuple = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): __UpperCAmelCase: str = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) # Validates string and returns dict __UpperCAmelCase: Any = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def UpperCamelCase__ ( _lowercase : str ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_lowercase , _lowercase ): __UpperCAmelCase: Any = F'''Plugboard setting isn\'t type string ({type(_lowercase )})''' raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: __UpperCAmelCase: Union[str, Any] = F'''Odd number of symbols ({len(_lowercase )})''' raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique __UpperCAmelCase: Tuple = set() for i in pbstring: if i not in abc: __UpperCAmelCase: Optional[Any] = F'''\'{i}\' not in list of symbols''' raise Exception(_lowercase ) elif i in tmppbl: __UpperCAmelCase: Any = F'''Duplicate symbol ({i})''' raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary __UpperCAmelCase: Any = {} for j in range(0 , len(_lowercase ) - 1 , 2 ): __UpperCAmelCase: int = pbstring[j + 1] __UpperCAmelCase: str = pbstring[j] return pb def UpperCamelCase__ ( _lowercase : str , _lowercase : RotorPositionT , _lowercase : RotorSelectionT = (rotora, rotora, rotora) , _lowercase : str = "" , ) -> str: __UpperCAmelCase: List[Any] = text.upper() __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Dict = _validator( _lowercase , _lowercase , plugb.upper() ) __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = rotor_position __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: List[str] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCAmelCase: Any = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCAmelCase: Optional[int] = plugboard[symbol] # rotor ra -------------------------- __UpperCAmelCase: int = abc.index(_lowercase ) + rotorposa __UpperCAmelCase: Any = rotora[index % len(_lowercase )] # rotor rb -------------------------- __UpperCAmelCase: List[str] = abc.index(_lowercase ) + rotorposa __UpperCAmelCase: int = rotora[index % len(_lowercase )] # rotor rc -------------------------- __UpperCAmelCase: Dict = abc.index(_lowercase ) + rotorposa __UpperCAmelCase: Union[str, Any] = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCAmelCase: Dict = reflector[symbol] # 2nd rotors __UpperCAmelCase: int = abc[rotora.index(_lowercase ) - rotorposa] __UpperCAmelCase: Tuple = abc[rotora.index(_lowercase ) - rotorposa] __UpperCAmelCase: Any = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCAmelCase: Optional[int] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): __UpperCAmelCase: Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): __UpperCAmelCase: int = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): __UpperCAmelCase: str = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 'This is my Python script that emulates the Enigma machine from WWII.' SCREAMING_SNAKE_CASE_ = (1, 1, 1) SCREAMING_SNAKE_CASE_ = 'pictures' SCREAMING_SNAKE_CASE_ = (rotora, rotora, rotora) SCREAMING_SNAKE_CASE_ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
523
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spm_char.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } SCREAMING_SNAKE_CASE_ = { 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_ = None , **snake_case_ , ): '''simple docstring''' __UpperCAmelCase: Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) __UpperCAmelCase: Union[str, Any] = vocab_file __UpperCAmelCase: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def lowercase_ ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Tuple = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __UpperCAmelCase: List[str] = self.__dict__.copy() __UpperCAmelCase: List[Any] = None return state def __setstate__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase: List[Any] = {} __UpperCAmelCase: Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' return self.sp_model.piece_to_id(snake_case_ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = self.sp_model.IdToPiece(snake_case_ ) return token def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = [] __UpperCAmelCase: Optional[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token __UpperCAmelCase: Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def lowercase_ ( self , snake_case_ , snake_case_=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) __UpperCAmelCase: Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(snake_case_ )) + suffix_ones return ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowercase_ ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase: Union[str, Any] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: __UpperCAmelCase: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
523
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _lowerCAmelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) lowercase = BlipProcessor(a , a ) processor.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Any , **a : Union[str, Any] ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).tokenizer def _lowerCAmelCase ( self : Tuple , **a : Any ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase = self.get_image_processor(do_normalize=a , padding_value=1.0 ) lowercase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=a , image_processor=a ) lowercase = self.prepare_image_inputs() lowercase = image_processor(a , return_tensors='''np''' ) lowercase = processor(images=a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=a , image_processor=a ) lowercase = '''lower newer''' lowercase = processor(text=a ) lowercase = tokenizer(a , return_token_type_ids=a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=a , image_processor=a ) lowercase = '''lower newer''' lowercase = self.prepare_image_inputs() lowercase = processor(text=a , images=a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(a ): processor() def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=a , image_processor=a ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(a ) lowercase = tokenizer.batch_decode(a ) self.assertListEqual(a , a ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=a , image_processor=a ) lowercase = '''lower newer''' lowercase = self.prepare_image_inputs() lowercase = processor(text=a , images=a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
396
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) lowercase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase = transform(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) return image def A_ ( __UpperCamelCase : str ): if "visual_encoder" in key: lowercase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __UpperCamelCase ) if "blocks" in key: lowercase = re.sub(R'''blocks''' , '''layers''' , __UpperCamelCase ) if "attn" in key: lowercase = re.sub(R'''attn''' , '''self_attn''' , __UpperCamelCase ) if "norm1" in key: lowercase = re.sub(R'''norm1''' , '''layer_norm1''' , __UpperCamelCase ) if "norm2" in key: lowercase = re.sub(R'''norm2''' , '''layer_norm2''' , __UpperCamelCase ) if "encoder.norm" in key: lowercase = re.sub(R'''encoder.norm''' , '''post_layernorm''' , __UpperCamelCase ) if "encoder.patch_embed.proj" in key: lowercase = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __UpperCamelCase ) if "encoder.pos_embed" in key: lowercase = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __UpperCamelCase ) if "encoder.cls_token" in key: lowercase = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , __UpperCamelCase ) if "self_attn" in key: lowercase = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , __UpperCamelCase ) return key @torch.no_grad() def A_ ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None ): if config_path is not None: lowercase = BlipConfig.from_pretrained(__UpperCamelCase ) else: lowercase = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowercase = BlipForConditionalGeneration(__UpperCamelCase ).eval() lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase = blip_decoder(pretrained=__UpperCamelCase , image_size=3_84 , vit='''base''' ) lowercase = pt_model.eval() lowercase = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value hf_model.load_state_dict(__UpperCamelCase ) lowercase = 3_84 lowercase = load_demo_image(image_size=__UpperCamelCase , device='''cpu''' ) lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase = tokenizer(['''a picture of'''] ).input_ids lowercase = hf_model.generate(__UpperCamelCase , __UpperCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowercase = hf_model.generate(__UpperCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__UpperCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase = blip_vqa(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='''base''' ) vqa_model.eval() lowercase = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value lowercase = BlipForQuestionAnswering(__UpperCamelCase ) hf_vqa_model.load_state_dict(__UpperCamelCase ) lowercase = ['''How many dogs are in this image?'''] lowercase = tokenizer(__UpperCamelCase , return_tensors='''pt''' ).input_ids lowercase = hf_vqa_model.generate(__UpperCamelCase , __UpperCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase = blip_itm(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='''base''' ) itm_model.eval() lowercase = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value lowercase = BlipForImageTextRetrieval(__UpperCamelCase ) lowercase = ['''A picture of a woman with a dog sitting in a beach'''] lowercase = tokenizer( __UpperCamelCase , return_tensors='''pt''' , padding='''max_length''' , truncation=__UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__UpperCamelCase ) hf_itm_model.eval() lowercase = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) lowercase = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
396
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ : Optional[Any] = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Dict: '''simple docstring''' if attention_mask is None: lowercase__ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase__ : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase__ : str = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : List[str] = parent lowercase__ : Tuple = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Tuple = is_training lowercase__ : Any = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : int = max_position_embeddings lowercase__ : str = eos_token_id lowercase__ : Tuple = pad_token_id lowercase__ : Union[str, Any] = bos_token_id lowercase__ : int = initializer_range def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase__ : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase__ : Dict = shift_tokens_right(SCREAMING_SNAKE_CASE_ , 1 , 2) lowercase__ : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return config, inputs_dict def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = 20 lowercase__ : Tuple = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = model.encode(inputs_dict["""input_ids"""]) lowercase__ , lowercase__ : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase__ : str = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : List[str] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : List[str] = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = model.encode(inputs_dict["""input_ids"""]) lowercase__ , lowercase__ : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase__ : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ : str = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Any = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( unittest.TestCase ): __lowerCAmelCase : Optional[Any] = 99 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase__ : Tuple = input_ids.shape[0] lowercase__ : List[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ : List[str] = self._get_config_and_data() lowercase__ : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE_) lowercase__ : Any = lm_model(input_ids=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase__ : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowercase__ : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowercase__ : Optional[int] = lm_model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowercase__ : int = shift_tokens_right(SCREAMING_SNAKE_CASE_ , 1 , 2) lowercase__ : Optional[int] = np.equal(SCREAMING_SNAKE_CASE_ , 1).astype(np.floataa).sum() lowercase__ : int = np.equal(SCREAMING_SNAKE_CASE_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(SCREAMING_SNAKE_CASE_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _snake_case ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : List[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __lowerCAmelCase : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = FlaxBlenderbotSmallModelTester(self) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase__ : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : int = model_class(SCREAMING_SNAKE_CASE_) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): return model.encode(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) with self.subTest("""JIT Enabled"""): lowercase__ : str = encode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase__ : int = encode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(jitted_output.shape , output.shape) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase__ : str = model_class(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase__ : Dict = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , encoder_outputs=SCREAMING_SNAKE_CASE_ , ) with self.subTest("""JIT Enabled"""): lowercase__ : int = decode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase__ : Optional[Any] = decode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(jitted_output.shape , output.shape) @slow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase__ : Any = np.ones((1, 1)) * model.config.eos_token_id lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCamelCase : str = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = """albert""" def __init__( self , UpperCAmelCase__=3_0_0_0_0 , UpperCAmelCase__=1_2_8 , UpperCAmelCase__=4_0_9_6 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1 , UpperCAmelCase__=6_4 , UpperCAmelCase__=1_6_3_8_4 , UpperCAmelCase__=1 , UpperCAmelCase__="gelu_new" , UpperCAmelCase__=0 , UpperCAmelCase__=0 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0.1 , UpperCAmelCase__="absolute" , UpperCAmelCase__=0 , UpperCAmelCase__=2 , UpperCAmelCase__=3 , **UpperCAmelCase__ , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _A : Optional[Any] = vocab_size _A : Optional[int] = embedding_size _A : str = hidden_size _A : Union[str, Any] = num_hidden_layers _A : Optional[int] = num_hidden_groups _A : Optional[Any] = num_attention_heads _A : Tuple = inner_group_num _A : Tuple = hidden_act _A : List[Any] = intermediate_size _A : str = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : List[Any] = type_vocab_size _A : Any = initializer_range _A : Tuple = layer_norm_eps _A : Dict = classifier_dropout_prob _A : Union[str, Any] = position_embedding_type class lowerCamelCase__ ( snake_case_ ): """simple docstring""" @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
700
'''simple docstring''' def lowercase ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int]): """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def lowercase ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : list[int] , lowerCAmelCase : int): """simple docstring""" if curr_ind == len(lowerCAmelCase): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCAmelCase)): if valid_connection(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase): # Insert current vertex into path as next transition _A : Tuple = next_ver # Validate created path if util_hamilton_cycle(lowerCAmelCase , lowerCAmelCase , curr_ind + 1): return True # Backtrack _A : Optional[int] = -1 return False def lowercase ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int = 0): """simple docstring""" _A : Optional[Any] = [-1] * (len(lowerCAmelCase) + 1) # initialize start and end of path with starting index _A : int = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCAmelCase , lowerCAmelCase , 1) else []
417
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''MCTCTFeatureExtractor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False def __call__( self : List[str] , *_UpperCAmelCase : int , **_UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ = kwargs.pop("audio" , _UpperCAmelCase ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , _UpperCAmelCase ) UpperCAmelCase_ = kwargs.pop("text" , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings["input_ids"] return inputs def lowercase__ ( self : List[str] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = kwargs.pop("input_features" , _UpperCAmelCase ) UpperCAmelCase_ = kwargs.pop("labels" , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels["input_ids"] return input_features def lowercase__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : str ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @contextmanager def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
82
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCAmelCase_ = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def a__ ( lowerCAmelCase__ ): if "stem.conv" in name: UpperCAmelCase_ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: UpperCAmelCase_ = name.replace("blocks" , "layers" ) if "head.fc" in name: UpperCAmelCase_ = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): UpperCAmelCase_ = "bit." + name if "bit" not in name and "classifier" not in name: UpperCAmelCase_ = "bit.encoder." + name return name def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = get_config(lowerCAmelCase__ ) # load original model from timm UpperCAmelCase_ = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model UpperCAmelCase_ = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val.squeeze() if "head" in key else val # load HuggingFace model UpperCAmelCase_ = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor UpperCAmelCase_ = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) UpperCAmelCase_ = transform.transforms UpperCAmelCase_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } UpperCAmelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = transform(lowerCAmelCase__ ).unsqueeze(0 ) UpperCAmelCase_ = processor(lowerCAmelCase__ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCAmelCase_ = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowerCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
82
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase) SCREAMING_SNAKE_CASE = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.bias'] return model def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = WavaVecaForAudioFrameClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase) SCREAMING_SNAKE_CASE = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.linear.bias'] return model def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = WavaVecaForXVector.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase) SCREAMING_SNAKE_CASE = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel): SCREAMING_SNAKE_CASE = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu') SCREAMING_SNAKE_CASE = checkpoint['Downstream'] SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(_UpperCAmelCase) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( _UpperCAmelCase , return_attention_mask=_UpperCAmelCase , do_normalize=_UpperCAmelCase) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith('ForSequenceClassification'): SCREAMING_SNAKE_CASE = convert_classification(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) elif arch.endswith('ForAudioFrameClassification'): SCREAMING_SNAKE_CASE = convert_diarization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) elif arch.endswith('ForXVector'): SCREAMING_SNAKE_CASE = convert_xvector(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''') if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_UpperCAmelCase) hf_model.save_pretrained(_UpperCAmelCase) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
710
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> str: debug_launcher(test_script.main) def SCREAMING_SNAKE_CASE__ ( self) -> Any: debug_launcher(test_ops.main)
444
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Dict = path_or_paths if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else {self.split: path_or_paths} _lowercase : Tuple = Text( cache_dir=_lowerCAmelCase , data_files=_lowerCAmelCase , features=_lowerCAmelCase , **_lowerCAmelCase , ) def __a ( self ): # Build iterable dataset if self.streaming: _lowercase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowercase : Any = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = None _lowercase : str = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) _lowercase : Dict = self.builder.as_dataset( split=self.split , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
66
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class snake_case : """simple docstring""" def __init__( self : Optional[int] ): __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = 0 def _lowerCamelCase ( self : Dict ): return self.head == self.tail def _lowerCamelCase ( self : int , __A : Any ): self.data.append(__A ) __UpperCamelCase = self.tail + 1 def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.data[self.head] __UpperCamelCase = self.head + 1 return ret def _lowerCamelCase ( self : Union[str, Any] ): return self.tail - self.head def _lowerCamelCase ( self : Optional[int] ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class snake_case : """simple docstring""" def __init__( self : str , __A : Any ): __UpperCamelCase = data __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = 1 def _lowerCamelCase ( self : str ): return self.data def _lowerCamelCase ( self : Optional[int] ): return self.left def _lowerCamelCase ( self : Tuple ): return self.right def _lowerCamelCase ( self : str ): return self.height def _lowerCamelCase ( self : int , __A : Any ): __UpperCamelCase = data def _lowerCamelCase ( self : Optional[Any] , __A : MyNode | None ): __UpperCamelCase = node def _lowerCamelCase ( self : Tuple , __A : MyNode | None ): __UpperCamelCase = node def _lowerCamelCase ( self : List[str] , __A : int ): __UpperCamelCase = height def lowercase__ ( __lowercase : MyNode | None ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def lowercase__ ( __lowercase : int , __lowercase : int ) -> int: """simple docstring""" if a > b: return a return b def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" print('left rotation node:' , node.get_data() ) __UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__lowercase ) __UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowercase ) __UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowercase ) return ret def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" print('right rotation node:' , node.get_data() ) __UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__lowercase ) __UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowercase ) __UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowercase ) return ret def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" __UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(__lowercase ) ) return right_rotation(__lowercase ) def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" __UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(__lowercase ) ) return left_rotation(__lowercase ) def lowercase__ ( __lowercase : MyNode | None , __lowercase : Any ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(__lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCamelCase = right_rotation(__lowercase ) else: __UpperCamelCase = lr_rotation(__lowercase ) else: node.set_right(insert_node(node.get_right() , __lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCamelCase = rl_rotation(__lowercase ) else: __UpperCamelCase = left_rotation(__lowercase ) __UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowercase ) return node def lowercase__ ( __lowercase : MyNode ) -> Any: """simple docstring""" while True: __UpperCamelCase = root.get_right() if right_child is None: break __UpperCamelCase = right_child return root.get_data() def lowercase__ ( __lowercase : MyNode ) -> Any: """simple docstring""" while True: __UpperCamelCase = root.get_left() if left_child is None: break __UpperCamelCase = left_child return root.get_data() def lowercase__ ( __lowercase : MyNode , __lowercase : Any ) -> MyNode | None: """simple docstring""" __UpperCamelCase = root.get_left() __UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCamelCase = get_left_most(__lowercase ) root.set_data(__lowercase ) root.set_right(del_node(__lowercase , __lowercase ) ) elif left_child is not None: __UpperCamelCase = left_child elif right_child is not None: __UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__lowercase , __lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__lowercase , __lowercase ) ) if get_height(__lowercase ) - get_height(__lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCamelCase = left_rotation(__lowercase ) else: __UpperCamelCase = rl_rotation(__lowercase ) elif get_height(__lowercase ) - get_height(__lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCamelCase = right_rotation(__lowercase ) else: __UpperCamelCase = lr_rotation(__lowercase ) __UpperCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__lowercase ) return root class snake_case : """simple docstring""" def __init__( self : Optional[Any] ): __UpperCamelCase = None def _lowerCamelCase ( self : List[Any] ): return get_height(self.root ) def _lowerCamelCase ( self : Dict , __A : Any ): print('insert:' + str(__A ) ) __UpperCamelCase = insert_node(self.root , __A ) def _lowerCamelCase ( self : Any , __A : Any ): print('delete:' + str(__A ) ) if self.root is None: print('Tree is empty!' ) return __UpperCamelCase = del_node(self.root , __A ) def __str__( self : Any , ): # a level traversale, gives a more intuitive look on the tree __UpperCamelCase = '' __UpperCamelCase = MyQueue() q.push(self.root ) __UpperCamelCase = self.get_height() if layer == 0: return output __UpperCamelCase = 0 while not q.is_empty(): __UpperCamelCase = q.pop() __UpperCamelCase = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__A ) q.push(__A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCamelCase = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , __A ) - 1: __UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowercase__ ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() a__ : Optional[int] =AVLtree() a__ : List[str] =list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
399
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase__ ( _lowerCamelCase ): def __UpperCamelCase ( self : Dict ) -> Optional[int]: A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'num_attention_heads' ) ) class lowerCAmelCase__ : def __init__( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=64 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : str=3 , __UpperCamelCase : Dict=2 , __UpperCamelCase : int=1 , __UpperCamelCase : Dict=16 , __UpperCamelCase : Tuple=[128, 256, 384] , __UpperCamelCase : List[Any]=[4, 6, 8] , __UpperCamelCase : List[str]=[2, 3, 4] , __UpperCamelCase : Optional[int]=[16, 16, 16] , __UpperCamelCase : str=0 , __UpperCamelCase : Dict=[2, 2, 2] , __UpperCamelCase : str=[2, 2, 2] , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Tuple=2 , ) -> str: A = parent A = batch_size A = image_size A = num_channels A = kernel_size A = stride A = padding A = hidden_sizes A = num_attention_heads A = depths A = key_dim A = drop_path_rate A = patch_size A = attention_ratio A = mlp_ratio A = initializer_range A = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] A = is_training A = use_labels A = num_labels A = initializer_range def __UpperCamelCase ( self : List[str] ) -> Dict: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.num_labels ) A = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : str ) -> Tuple: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any ) -> int: A = LevitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) A = (self.image_size, self.image_size) A , A = image_size[0], image_size[1] for _ in range(4 ): A = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) A = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : int ) -> Optional[Any]: A = self.num_labels A = LevitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] ) -> List[str]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : List[str] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A_ : List[Any] = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A_ : Union[str, Any] = False A_ : Tuple = False A_ : List[Any] = False A_ : List[Any] = False A_ : List[str] = False def __UpperCamelCase ( self : Any ) -> List[Any]: A = LevitModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : Dict ) -> Tuple: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def __UpperCamelCase ( self : Dict ) -> int: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='Levit does not output attentions' ) def __UpperCamelCase ( self : int ) -> List[str]: pass def __UpperCamelCase ( self : str ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: def check_hidden_states_output(__UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Any ): A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A = outputs.hidden_states A = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) A = (self.model_tester.image_size, self.model_tester.image_size) A , A = image_size[0], image_size[1] for _ in range(4 ): A = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) A = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: pass def __UpperCamelCase ( self : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> str: A = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self : Any ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> Any: if not self.model_tester.is_training: return A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) A = model(**__UpperCamelCase ).loss loss.backward() def __UpperCamelCase ( self : Tuple ) -> str: A , A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A = False A = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue A = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) A = model(**__UpperCamelCase ).loss loss.backward() def __UpperCamelCase ( self : List[str] ) -> int: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): A = problem_type['title'] A = problem_type['num_labels'] A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: A = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) A = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: A = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __UpperCamelCase ( self : Dict ) -> List[str]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = LevitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Dict ) -> List[Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: A = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) # verify the logits A = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
224
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case :Any ={'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] =['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Any =['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __snake_case :Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
224
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase ): _lowerCamelCase = StableDiffusionXLImgaImgPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} _lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=_a , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __magic_name__ = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) __magic_name__ = CLIPTextModel(_a ) __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_a ) __magic_name__ = CLIPTextModelWithProjection(_a ) __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_a ) __magic_name__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __magic_name__ = image / 2 + 0.5 if str(_a ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(_a ) else: __magic_name__ = torch.Generator(device=_a ).manual_seed(_a ) __magic_name__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.7_5, } return inputs def lowerCAmelCase__ ( self ): __magic_name__ = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.get_dummy_components() __magic_name__ = StableDiffusionXLImgaImgPipeline(**_a ) __magic_name__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __magic_name__ = self.get_dummy_inputs(_a ) __magic_name__ = sd_pipe(**_a ).images __magic_name__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): __magic_name__ = self.get_dummy_components() __magic_name__ = StableDiffusionXLImgaImgPipeline(**_a ) __magic_name__ = sd_pipe.to(_a ) __magic_name__ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) # forward without prompt embeds __magic_name__ = self.get_dummy_inputs(_a ) __magic_name__ = 3 * ['this is a negative prompt'] __magic_name__ = negative_prompt __magic_name__ = 3 * [inputs['prompt']] __magic_name__ = sd_pipe(**_a ) __magic_name__ = output.images[0, -3:, -3:, -1] # forward with prompt embeds __magic_name__ = self.get_dummy_inputs(_a ) __magic_name__ = 3 * ['this is a negative prompt'] __magic_name__ = 3 * [inputs.pop('''prompt''' )] ( __magic_name__ ) = sd_pipe.encode_prompt(_a , negative_prompt=_a ) __magic_name__ = sd_pipe( **_a , prompt_embeds=_a , negative_prompt_embeds=_a , pooled_prompt_embeds=_a , negative_pooled_prompt_embeds=_a , ) __magic_name__ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_="cpu" , UpperCamelCase_=torch.floataa , UpperCamelCase_=0 ): __magic_name__ = torch.Generator(device=_a ).manual_seed(_a ) __magic_name__ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) __magic_name__ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) __magic_name__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCAmelCase__ ( self ): __magic_name__ = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __magic_name__ = self.get_inputs(_a ) __magic_name__ = pipe(**_a ).images __magic_name__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __magic_name__ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
490
'''simple docstring''' import operator as op def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : Dict = [] _a : List[str] = lambda __a , __a : int(x / y ) # noqa: E731 integer division operation _a : List[Any] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(1_2 ) , 'Stack' , sep=' | ' ) print('-' * (3_0 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) else: _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __lowerCAmelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
229
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class A_ ( snake_case_ ): UpperCAmelCase__ = ['''image_processor''', '''feature_extractor'''] UpperCAmelCase__ = '''TvltImageProcessor''' UpperCAmelCase__ = '''TvltFeatureExtractor''' def __init__( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> List[str]: super().__init__(image_processor=__lowerCamelCase , feature_extractor=__lowerCamelCase ) __magic_name__ = image_processor __magic_name__ = feature_extractor def __call__( self : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=False , *__lowerCamelCase : int , **__lowerCamelCase : str , ) -> Tuple: if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) __magic_name__ = None if images is not None: __magic_name__ = self.image_processor(__lowerCamelCase , mask_pixel=__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if images_mixed is not None: __magic_name__ = self.image_processor(__lowerCamelCase , is_mixed=__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if audio is not None: __magic_name__ = self.feature_extractor( __lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , mask_audio=__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = {} if audio is not None: output_dict.update(__lowerCamelCase ) if images is not None: output_dict.update(__lowerCamelCase ) if images_mixed_dict is not None: output_dict.update(__lowerCamelCase ) return output_dict @property def _snake_case ( self : Any ) -> Dict: __magic_name__ = self.image_processor.model_input_names __magic_name__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
468
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:list ): '''simple docstring''' __magic_name__ = len(__lowerCamelCase ) for i in range(1 , __lowerCamelCase ): __magic_name__ = collection[i] __magic_name__ = 0 __magic_name__ = i - 1 while low <= high: __magic_name__ = (low + high) // 2 if val < collection[mid]: __magic_name__ = mid - 1 else: __magic_name__ = mid + 1 for j in range(__lowerCamelCase , __lowerCamelCase , -1 ): __magic_name__ = collection[j - 1] __magic_name__ = val return collection if __name__ == "__main__": lowercase = input('''Enter numbers separated by a comma:\n''').strip() lowercase = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
468
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
54
import re def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" if len(re.findall("""[ATCG]""" , _lowerCAmelCase ) ) != len(_lowerCAmelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
662
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: A_ = 192 A_ = 768 A_ = 12 A_ = 3 A_ = [800, 1333] A_ = False elif yolos_name == "yolos_s_dWr": A_ = 330 A_ = 14 A_ = 6 A_ = 1320 elif "yolos_s" in yolos_name: A_ = 384 A_ = 1536 A_ = 12 A_ = 6 elif "yolos_b" in yolos_name: A_ = [800, 1344] A_ = 91 A_ = '''huggingface/label-files''' A_ = '''coco-detection-id2label.json''' A_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) A_ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A_ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[: config.hidden_size, :] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[-config.hidden_size :, :] A_ = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if "backbone" in name: A_ = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: A_ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: A_ = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: A_ = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: A_ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: A_ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: A_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: A_ = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: A_ = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: A_ = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: A_ = key.split('''.''' ) A_ = int(key_split[2] ) A_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: A_ = val[:dim, :] A_ = val[ dim : dim * 2, : ] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = val return orig_state_dict def _lowerCamelCase ( ): '''simple docstring''' A_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): '''simple docstring''' A_ = get_yolos_config(SCREAMING_SNAKE_CASE ) # load original state_dict A_ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] # load 🤗 model A_ = YolosForObjectDetection(SCREAMING_SNAKE_CASE ) model.eval() A_ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by YolosImageProcessor A_ = 800 if yolos_name != '''yolos_ti''' else 512 A_ = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE ) A_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) A_ = model(**SCREAMING_SNAKE_CASE ) A_ ,A_ = outputs.logits, outputs.pred_boxes A_ ,A_ = None, None if yolos_name == "yolos_ti": A_ = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) A_ = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": A_ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) A_ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": A_ = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) A_ = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": A_ = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) A_ = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": A_ = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) A_ = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: A_ = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) A_ = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization='''hustvl''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
563
from __future__ import annotations def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
563
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int ): UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : str , **a__ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Any ): UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : Tuple ): UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=a__ ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(images=a__ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __snake_case ( self : Any ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=a__ ) UpperCAmelCase = [torch.ones((1, 3, 5, 5) )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks(a__ , a__ , a__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = processor.post_process_masks( a__ , torch.tensor(a__ ) , torch.tensor(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np UpperCAmelCase = [np.ones((1, 3, 5, 5) )] UpperCAmelCase = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(a__ ): UpperCAmelCase = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) @require_vision @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : List[str] ): UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[int] , **a__ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __snake_case ( self : int ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : int ): UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : str ): UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=a__ ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(images=a__ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=a__ ) UpperCAmelCase = [tf.ones((1, 3, 5, 5) )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks(a__ , a__ , a__ , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = processor.post_process_masks( a__ , tf.convert_to_tensor(a__ ) , tf.convert_to_tensor(a__ ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np UpperCAmelCase = [np.ones((1, 3, 5, 5) )] UpperCAmelCase = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCAmelCase = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors='''tf''' ) @require_vision @require_torchvision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : List[str] ): UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Union[str, Any] , **a__ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __snake_case ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __snake_case ( self : List[Any] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=a__ ) UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCAmelCase = [tf.convert_to_tensor(a__ )] UpperCAmelCase = [torch.tensor(a__ )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks( a__ , a__ , a__ , return_tensors='''tf''' ) UpperCAmelCase = processor.post_process_masks( a__ , a__ , a__ , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __snake_case ( self : List[Any] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=a__ ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(a__ , return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCAmelCase = processor(images=a__ , return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCAmelCase = image_processor(a__ , return_tensors='''tf''' )['''pixel_values'''].numpy() UpperCAmelCase = processor(images=a__ , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) )
51
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
1
from __future__ import annotations def UpperCAmelCase ( UpperCamelCase__ ) -> int: '''simple docstring''' if not nums: return 0 __lowerCAmelCase = nums[0] __lowerCAmelCase = 0 for num in nums[1:]: __lowerCAmelCase = ( max_excluding + num, max(_lowercase , _lowercase ), ) return max(_lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
704
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) __A : Optional[Any] = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: __A : Union[str, Any] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : int = [0] * args.vocab_size for k, v in counter.items(): __A : Optional[int] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
334
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _snake_case ( __UpperCAmelCase ): lowerCAmelCase :List[Any] = ['image_processor'] lowerCAmelCase :Any = 'SamImageProcessor' def __init__( self , _lowerCamelCase): super().__init__(snake_case__) UpperCAmelCase__ : Optional[Any] = self.image_processor UpperCAmelCase__ : Any = -10 UpperCAmelCase__ : Tuple = self.image_processor.size["""longest_edge"""] def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : Dict = self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # pop arguments that are not used in the foward but used nevertheless UpperCAmelCase__ : Union[str, Any] = encoding_image_processor["""original_sizes"""] if hasattr(snake_case__ , """numpy"""): # Checks if Torch or TF tensor UpperCAmelCase__ : List[Any] = original_sizes.numpy() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self._check_and_preprocess_points( input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , ) UpperCAmelCase__ : str = self._normalize_and_convert( snake_case__ , snake_case__ , input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , return_tensors=snake_case__ , ) return encoding_image_processor def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="pt" , ): if input_points is not None: if len(snake_case__) != len(snake_case__): UpperCAmelCase__ : Any = [ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0]) for point in input_points ] else: UpperCAmelCase__ : int = [ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__) for point, original_size in zip(snake_case__ , snake_case__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._pad_points_and_labels(snake_case__ , snake_case__) UpperCAmelCase__ : Dict = np.array(snake_case__) if input_labels is not None: UpperCAmelCase__ : Optional[int] = np.array(snake_case__) if input_boxes is not None: if len(snake_case__) != len(snake_case__): UpperCAmelCase__ : str = [ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] , is_bounding_box=snake_case__) for box in input_boxes ] else: UpperCAmelCase__ : Any = [ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ , is_bounding_box=snake_case__) for box, original_size in zip(snake_case__ , snake_case__) ] UpperCAmelCase__ : Tuple = np.array(snake_case__) if input_boxes is not None: if return_tensors == "pt": UpperCAmelCase__ : Dict = torch.from_numpy(snake_case__) # boxes batch size of 1 by default UpperCAmelCase__ : Union[str, Any] = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(snake_case__) # boxes batch size of 1 by default UpperCAmelCase__ : List[Any] = tf.expand_dims(snake_case__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes}) if input_points is not None: if return_tensors == "pt": UpperCAmelCase__ : Any = torch.from_numpy(snake_case__) # point batch size of 1 by default UpperCAmelCase__ : Optional[int] = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(snake_case__) # point batch size of 1 by default UpperCAmelCase__ : List[str] = tf.expand_dims(snake_case__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points}) if input_labels is not None: if return_tensors == "pt": UpperCAmelCase__ : Optional[Any] = torch.from_numpy(snake_case__) # point batch size of 1 by default UpperCAmelCase__ : int = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": UpperCAmelCase__ : Dict = tf.convert_to_tensor(snake_case__) # point batch size of 1 by default UpperCAmelCase__ : Optional[int] = tf.expand_dims(snake_case__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels}) return encoding_image_processor def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = max([point.shape[0] for point in input_points]) UpperCAmelCase__ : List[Any] = [] for i, point in enumerate(snake_case__): if point.shape[0] != expected_nb_points: UpperCAmelCase__ : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) UpperCAmelCase__ : str = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(snake_case__) UpperCAmelCase__ : int = processed_input_points return input_points, input_labels def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False): UpperCAmelCase__ , UpperCAmelCase__ : str = original_size UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor._get_preprocess_shape(snake_case__ , longest_edge=snake_case__) UpperCAmelCase__ : List[str] = deepcopy(snake_case__).astype(snake_case__) if is_bounding_box: UpperCAmelCase__ : int = coords.reshape(-1 , 2 , 2) UpperCAmelCase__ : Dict = coords[..., 0] * (new_w / old_w) UpperCAmelCase__ : Optional[int] = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCAmelCase__ : Optional[Any] = coords.reshape(-1 , 4) return coords def snake_case__ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): if input_points is not None: if hasattr(snake_case__ , """numpy"""): # Checks for TF or Torch tensor UpperCAmelCase__ : Optional[int] = input_points.numpy().tolist() if not isinstance(snake_case__ , snake_case__) or not isinstance(input_points[0] , snake_case__): raise ValueError("""Input points must be a list of list of floating points.""") UpperCAmelCase__ : List[str] = [np.array(snake_case__) for input_point in input_points] else: UpperCAmelCase__ : Optional[Any] = None if input_labels is not None: if hasattr(snake_case__ , """numpy"""): UpperCAmelCase__ : Optional[Any] = input_labels.numpy().tolist() if not isinstance(snake_case__ , snake_case__) or not isinstance(input_labels[0] , snake_case__): raise ValueError("""Input labels must be a list of list integers.""") UpperCAmelCase__ : Optional[int] = [np.array(snake_case__) for label in input_labels] else: UpperCAmelCase__ : Union[str, Any] = None if input_boxes is not None: if hasattr(snake_case__ , """numpy"""): UpperCAmelCase__ : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(snake_case__ , snake_case__) or not isinstance(input_boxes[0] , snake_case__) or not isinstance(input_boxes[0][0] , snake_case__) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""") UpperCAmelCase__ : int = [np.array(snake_case__).astype(np.floataa) for box in input_boxes] else: UpperCAmelCase__ : int = None return input_points, input_labels, input_boxes @property def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(snake_case__)) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.image_processor.post_process_masks(*snake_case__ , **snake_case__)
407
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
611
0
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" __a = len(__SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr __a = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __a = arr[mi::-1] + arr[mi + 1 : len(__SCREAMING_SNAKE_CASE )] # Reverse whole list __a = arr[cur - 1 :: -1] + arr[cur : len(__SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
201
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def a ( __UpperCAmelCase : str , __UpperCAmelCase : str = "cpu" , __UpperCAmelCase : Union[str, None] = None ) -> None: __magic_name__: List[Any] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__UpperCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) __magic_name__: Any = v.half() if save_path is None: # overwrite src_path __magic_name__: List[str] = src_path torch.save(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
96
"""simple docstring""" def a ( __UpperCAmelCase : List[Any] ) -> str: __magic_name__: Optional[int] = [0] * len(__UpperCAmelCase ) __magic_name__: str = [] __magic_name__: Any = [] __magic_name__: Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCAmelCase ) ): if indegree[i] == 0: queue.append(__UpperCAmelCase ) while queue: __magic_name__: Optional[Any] = queue.pop(0 ) cnt += 1 topo.append(__UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCAmelCase ) if cnt != len(__UpperCAmelCase ): print("""Cycle exists""" ) else: print(__UpperCAmelCase ) # Adjacency List of Graph __lowerCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
96
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : Optional[int] = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """unc-nlp/lxmert-base-uncased""": 5_12, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class __lowerCAmelCase( UpperCAmelCase__ ): __snake_case : int = VOCAB_FILES_NAMES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = LxmertTokenizer def __init__( self : int , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[Any]="[UNK]" , SCREAMING_SNAKE_CASE : str="[SEP]" , SCREAMING_SNAKE_CASE : List[Any]="[PAD]" , SCREAMING_SNAKE_CASE : Tuple="[CLS]" , SCREAMING_SNAKE_CASE : List[Any]="[MASK]" , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Tuple=None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , tokenize_chinese_chars=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ :Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ :Optional[int] = getattr(SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ :Dict = do_lower_case SCREAMING_SNAKE_CASE_ :Union[str, Any] = strip_accents SCREAMING_SNAKE_CASE_ :str = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ :Optional[int] = normalizer_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = do_lower_case def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Any = [self.sep_token_id] SCREAMING_SNAKE_CASE_ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE )
714
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
233
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : int = StableDiffusionControlNetImgaImgPipeline a__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"}) a__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase_= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase_= DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCAmelCase_= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase_= CLIPTextModel(_a ) UpperCAmelCase_= CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase_= { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str]=0 ) -> int: if str(_a ).startswith("""mps""" ): UpperCAmelCase_= torch.manual_seed(_a ) else: UpperCAmelCase_= torch.Generator(device=_a ).manual_seed(_a ) UpperCAmelCase_= 2 UpperCAmelCase_= randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) UpperCAmelCase_= floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_= Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) UpperCAmelCase_= { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowercase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : Optional[Any] = StableDiffusionControlNetImgaImgPipeline a__ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Tuple = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__UpperCAmelCase : Dict ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase_= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCAmelCase_= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCAmelCase_= DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCAmelCase_= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase_= CLIPTextModel(_a ) UpperCAmelCase_= CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase_= MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase_= { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any=0 ) -> Dict: if str(_a ).startswith("""mps""" ): UpperCAmelCase_= torch.manual_seed(_a ) else: UpperCAmelCase_= torch.Generator(device=_a ).manual_seed(_a ) UpperCAmelCase_= 2 UpperCAmelCase_= [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] UpperCAmelCase_= floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_= Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) UpperCAmelCase_= { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= self.pipeline_class(**_a ) pipe.to(_a ) UpperCAmelCase_= 10.0 UpperCAmelCase_= 4 UpperCAmelCase_= self.get_dummy_inputs(_a ) UpperCAmelCase_= steps UpperCAmelCase_= scale UpperCAmelCase_= pipe(**_a )[0] UpperCAmelCase_= self.get_dummy_inputs(_a ) UpperCAmelCase_= steps UpperCAmelCase_= scale UpperCAmelCase_= pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase_= self.get_dummy_inputs(_a ) UpperCAmelCase_= steps UpperCAmelCase_= scale UpperCAmelCase_= pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase_= self.get_dummy_inputs(_a ) UpperCAmelCase_= steps UpperCAmelCase_= scale UpperCAmelCase_= pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_= ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) UpperCAmelCase_= StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_= torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase_= """evil space-punk bird""" UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) UpperCAmelCase_= load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) UpperCAmelCase_= pipe( _a , _a , control_image=_a , generator=_a , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_= output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_= load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
593
from typing import Any import numpy as np def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray ): '''simple docstring''' return np.array_equal(UpperCamelCase__, matrix.conjugate().T ) def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray, UpperCamelCase__ : np.ndarray ): '''simple docstring''' UpperCamelCase__ = v.conjugate().T UpperCamelCase__ = v_star.dot(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, np.ndarray ) return (v_star_dot.dot(UpperCamelCase__ )) / (v_star.dot(UpperCamelCase__ )) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCamelCase__ = np.array([[1], [2], [3]] ) assert is_hermitian(UpperCamelCase__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(UpperCamelCase__, UpperCamelCase__ ) ) UpperCamelCase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(UpperCamelCase__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(UpperCamelCase__, UpperCamelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
240
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): a : Optional[int] = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = 5_0257 , UpperCamelCase = 1024 , UpperCamelCase = 768 , UpperCamelCase = 12 , UpperCamelCase = 12 , UpperCamelCase = None , UpperCamelCase = "gelu_new" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 1E-5 , UpperCamelCase = 0.02 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = False , UpperCamelCase = False , ) -> Tuple: super().__init__() __lowerCAmelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) __lowerCAmelCase = prefix_inner_dim __lowerCAmelCase = prefix_hidden_dim __lowerCAmelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowerCAmelCase = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowerCAmelCase = GPTaConfig( vocab_size=UpperCamelCase , n_positions=UpperCamelCase , n_embd=UpperCamelCase , n_layer=UpperCamelCase , n_head=UpperCamelCase , n_inner=UpperCamelCase , activation_function=UpperCamelCase , resid_pdrop=UpperCamelCase , embd_pdrop=UpperCamelCase , attn_pdrop=UpperCamelCase , layer_norm_epsilon=UpperCamelCase , initializer_range=UpperCamelCase , scale_attn_weights=UpperCamelCase , use_cache=UpperCamelCase , scale_attn_by_inverse_layer_idx=UpperCamelCase , reorder_and_upcast_attn=UpperCamelCase , ) __lowerCAmelCase = GPTaLMHeadModel(UpperCamelCase ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , ) -> str: __lowerCAmelCase = self.transformer.transformer.wte(UpperCamelCase ) __lowerCAmelCase = self.encode_prefix(UpperCamelCase ) __lowerCAmelCase = self.decode_prefix(UpperCamelCase ) __lowerCAmelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __lowerCAmelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __lowerCAmelCase = torch.cat((dummy_token, input_ids) , dim=1 ) __lowerCAmelCase = self.transformer(inputs_embeds=UpperCamelCase , labels=UpperCamelCase , attention_mask=UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase ) -> torch.Tensor: return torch.zeros(UpperCamelCase , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase ) def UpperCAmelCase_ ( self , UpperCamelCase ) -> List[Any]: return self.encode_prefix(UpperCamelCase ) @torch.no_grad() def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: __lowerCAmelCase = torch.split(UpperCamelCase , 1 , dim=0 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for feature in features: __lowerCAmelCase = self.decode_prefix(feature.to(UpperCamelCase ) ) # back to the clip feature # Only support beam search for now __lowerCAmelCase , __lowerCAmelCase = self.generate_beam( input_embeds=UpperCamelCase , device=UpperCamelCase , eos_token_id=UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __lowerCAmelCase = torch.stack(UpperCamelCase ) __lowerCAmelCase = torch.stack(UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase = 5 , UpperCamelCase = 67 , UpperCamelCase = 1.0 , UpperCamelCase = None , ) -> str: __lowerCAmelCase = eos_token_id __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = torch.ones(UpperCamelCase , device=UpperCamelCase , dtype=torch.int ) __lowerCAmelCase = torch.zeros(UpperCamelCase , device=UpperCamelCase , dtype=torch.bool ) if input_embeds is not None: __lowerCAmelCase = input_embeds else: __lowerCAmelCase = self.transformer.transformer.wte(UpperCamelCase ) for i in range(UpperCamelCase ): __lowerCAmelCase = self.transformer(inputs_embeds=UpperCamelCase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __lowerCAmelCase = logits.softmax(-1 ).log() if scores is None: __lowerCAmelCase , __lowerCAmelCase = logits.topk(UpperCamelCase , -1 ) __lowerCAmelCase = generated.expand(UpperCamelCase , *generated.shape[1:] ) __lowerCAmelCase , __lowerCAmelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __lowerCAmelCase = next_tokens else: __lowerCAmelCase = tokens.expand(UpperCamelCase , *tokens.shape[1:] ) __lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: __lowerCAmelCase = -float(np.inf ) __lowerCAmelCase = 0 __lowerCAmelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __lowerCAmelCase = scores_sum / seq_lengths[:, None] __lowerCAmelCase , __lowerCAmelCase = scores_sum_average.view(-1 ).topk(UpperCamelCase , -1 ) __lowerCAmelCase = next_tokens // scores_sum.shape[1] __lowerCAmelCase = seq_lengths[next_tokens_source] __lowerCAmelCase = next_tokens % scores_sum.shape[1] __lowerCAmelCase = next_tokens.unsqueeze(1 ) __lowerCAmelCase = tokens[next_tokens_source] __lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) __lowerCAmelCase = generated[next_tokens_source] __lowerCAmelCase = scores_sum_average * seq_lengths __lowerCAmelCase = is_stopped[next_tokens_source] __lowerCAmelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __lowerCAmelCase = torch.cat((generated, next_token_embed) , dim=1 ) __lowerCAmelCase = is_stopped + next_tokens.eq(UpperCamelCase ).squeeze() if is_stopped.all(): break __lowerCAmelCase = scores / seq_lengths __lowerCAmelCase = scores.argsort(descending=UpperCamelCase ) # tokens tensors are already padded to max_seq_length __lowerCAmelCase = [tokens[i] for i in order] __lowerCAmelCase = torch.stack(UpperCamelCase , dim=0 ) __lowerCAmelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
39
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase : str = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase : Optional[Any] = { '''squeezebert/squeezebert-uncased''': 5_1_2, '''squeezebert/squeezebert-mnli''': 5_1_2, '''squeezebert/squeezebert-mnli-headless''': 5_1_2, } lowerCAmelCase : Tuple = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( UpperCamelCase__ ): a : Dict = VOCAB_FILES_NAMES a : Any = PRETRAINED_VOCAB_FILES_MAP a : Dict = PRETRAINED_INIT_CONFIGURATION a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] = SqueezeBertTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ) -> List[Any]: super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(UpperCamelCase , normalizer_state.pop("type" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**UpperCamelCase ) __lowerCAmelCase = do_lower_case def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase=None ) -> str: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
39
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=13 , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : Dict=[1, 1, 2] , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : Dict=37 , lowerCAmelCase__ : Tuple="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : int=5_12 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Tuple=False , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Any = block_sizes SCREAMING_SNAKE_CASE : List[Any] = num_decoder_layers SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Optional[Any] = n_head SCREAMING_SNAKE_CASE : Optional[int] = d_head SCREAMING_SNAKE_CASE : Dict = d_inner SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_choices SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE : Optional[int] = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE : Optional[int] = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE : List[str] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE : Dict = self.num_hidden_layers + 2 def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Optional[Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __lowercase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE : int = TFFunnelModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : int = TFFunnelModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __lowercase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = TFFunnelBaseModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : int = TFFunnelBaseModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelBaseModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __lowercase ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = TFFunnelForPreTraining(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE : int = TFFunnelForMaskedLM(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelForSequenceClassification(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.num_choices SCREAMING_SNAKE_CASE : Dict = TFFunnelForMultipleChoice(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFFunnelForTokenClassification(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFFunnelForQuestionAnswering(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): _lowerCAmelCase : str = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase : int = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : int = False _lowerCAmelCase : Optional[int] = False def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) @require_tf class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : Optional[int] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _lowerCAmelCase : Any = False _lowerCAmelCase : int = False def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = TFFunnelModelTester(self , base=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ )
527
'''simple docstring''' import argparse from collections import defaultdict import yaml lowerCAmelCase_ : Tuple = 'docs/source/en/_toctree.yml' def UpperCAmelCase ( A : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = defaultdict(A ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE : Tuple = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE : Tuple = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE : Optional[int] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(A ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(A , key=lambda A : s["title"].lower() ) def UpperCAmelCase ( A : Any=False ): with open(A , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : str = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE : Dict = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE : Dict = api_doc[model_idx]['''sections'''] SCREAMING_SNAKE_CASE : List[Any] = [(idx, section) for idx, section in enumerate(A ) if '''sections''' in section] SCREAMING_SNAKE_CASE : int = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE : List[str] = modality_doc['''sections'''] SCREAMING_SNAKE_CASE : List[str] = clean_model_doc_toc(A ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE : Dict = True if overwrite: SCREAMING_SNAKE_CASE : int = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE : List[Any] = model_doc SCREAMING_SNAKE_CASE : Union[str, Any] = api_doc with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(A , allow_unicode=A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase_ : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
527
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def snake_case_ ( *a__ , **a__): pass def lowerCAmelCase__ ( UpperCamelCase_ : Image )-> str: A__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case_ ( self , a__ , a__ , a__): A__ = DepthEstimationPipeline(model=a__ , image_processor=a__) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self , a__ , a__): A__ = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''') self.assertEqual({'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)} , a__) import datasets A__ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''') A__ = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ]) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, ] , a__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''') def snake_case_ ( self): pass @slow @require_torch def snake_case_ ( self): A__ = '''Intel/dpt-large''' A__ = pipeline('''depth-estimation''' , model=a__) A__ = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''') A__ = hashimage(outputs['''depth''']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item()) , 2_9.3_0_4) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item()) , 2.6_6_2) @require_torch def snake_case_ ( self): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''')
702
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCAmelCase : def __init__( self , a__ , ): A__ = parent A__ = 1_3 A__ = 7 A__ = True A__ = True A__ = True A__ = True A__ = True A__ = False A__ = False A__ = False A__ = 2 A__ = 9_9 A__ = 0 A__ = 3_2 A__ = 2 A__ = 4 A__ = 0.1 A__ = 0.1 A__ = 5_1_2 A__ = 1_6 A__ = 2 A__ = 0.0_2 A__ = 3 A__ = 4 A__ = '''last''' A__ = True A__ = None A__ = 0 def snake_case_ ( self): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa) A__ = None if self.use_input_lengths: A__ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa) A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = TFFlaubertModel(config=a__) A__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} A__ = model(a__) A__ = [input_ids, input_mask] A__ = model(a__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = TFFlaubertWithLMHeadModel(a__) A__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = TFFlaubertForQuestionAnsweringSimple(a__) A__ = {'''input_ids''': input_ids, '''lengths''': input_lengths} A__ = model(a__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = TFFlaubertForSequenceClassification(a__) A__ = {'''input_ids''': input_ids, '''lengths''': input_lengths} A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = self.num_labels A__ = TFFlaubertForTokenClassification(config=a__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = self.num_choices A__ = TFFlaubertForMultipleChoice(config=a__) A__ = tf.tile(tf.expand_dims(a__ , 1) , (1, self.num_choices, 1)) A__ = tf.tile(tf.expand_dims(a__ , 1) , (1, self.num_choices, 1)) A__ = tf.tile(tf.expand_dims(a__ , 1) , (1, self.num_choices, 1)) A__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ , A__ , unittest.TestCase ): UpperCamelCase__ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase__ = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def snake_case_ ( self , a__ , a__ , a__ , a__ , a__): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case_ ( self): A__ = TFFlaubertModelTester(self) A__ = ConfigTester(self , config_class=a__ , emb_dim=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a__) @slow def snake_case_ ( self): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFFlaubertModel.from_pretrained(a__) self.assertIsNotNone(a__) @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def snake_case_ ( self): A__ = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''') A__ = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A__ = model(a__)[0] A__ = tf.TensorShape((1, 8, 5_1_2)) self.assertEqual(output.shape , a__) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
526
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a : Tuple = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
555
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE = 10**9 ) -> int: """simple docstring""" __a = 1 __a = 2 __a = 0 __a = 0 __a = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
582
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowercase = datasets.load_iris() __lowercase = np.array(data["""data"""]) __lowercase = np.array(data["""target"""]) __lowercase = data["target_names"] __lowercase = train_test_split(X, y) def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def lowercase ( A_ , A_ , A_ , A_ , A_=5 )-> int: '''simple docstring''' a : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified a : int = [] for data_point in data: a : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. a : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified a : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
710
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _A ( _a ): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : TransformeraDModel , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : KarrasDiffusionSchedulers , __UpperCAmelCase : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=__UpperCAmelCase , vae=__UpperCAmelCase , scheduler=__UpperCAmelCase) # create a imagenet -> id dictionary for easier use a : List[Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(","): a : Any = int(__UpperCAmelCase) a : str = dict(sorted(self.labels.items())) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Union[str, List[str]]): if not isinstance(__UpperCAmelCase , __UpperCAmelCase): a : str = list(__UpperCAmelCase) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''') return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : float = 4.0 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ): a : str = len(__UpperCAmelCase) a : List[str] = self.transformer.config.sample_size a : List[str] = self.transformer.config.in_channels a : Optional[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) a : Any = torch.cat([latents] * 2) if guidance_scale > 1 else latents a : str = torch.tensor(__UpperCAmelCase , device=self.device).reshape(-1) a : str = torch.tensor([1000] * batch_size , device=self.device) a : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__UpperCAmelCase) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: a : Any = latent_model_input[: len(__UpperCAmelCase) // 2] a : Optional[Any] = torch.cat([half, half] , dim=0) a : List[str] = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = t if not torch.is_tensor(__UpperCAmelCase): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a : List[str] = latent_model_input.device.type == "mps" if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : List[str] = torch.floataa if is_mps else torch.floataa else: a : List[Any] = torch.intaa if is_mps else torch.intaa a : Any = torch.tensor([timesteps] , dtype=__UpperCAmelCase , device=latent_model_input.device) elif len(timesteps.shape) == 0: a : List[Any] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a : Optional[Any] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output a : str = self.transformer( __UpperCAmelCase , timestep=__UpperCAmelCase , class_labels=__UpperCAmelCase).sample # perform guidance if guidance_scale > 1: a , a : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a , a : Dict = torch.split(__UpperCAmelCase , len(__UpperCAmelCase) // 2 , dim=0) a : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a : List[Any] = torch.cat([half_eps, half_eps] , dim=0) a : List[str] = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a , a : Optional[int] = torch.split(__UpperCAmelCase , __UpperCAmelCase , dim=1) else: a : int = noise_pred # compute previous image: x_t -> x_t-1 a : List[str] = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample if guidance_scale > 1: a , a : Union[str, Any] = latent_model_input.chunk(2 , dim=0) else: a : Any = latent_model_input a : str = 1 / self.vae.config.scaling_factor * latents a : Dict = self.vae.decode(__UpperCAmelCase).sample a : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": a : Tuple = self.numpy_to_pil(__UpperCAmelCase) if not return_dict: return (samples,) return ImagePipelineOutput(images=__UpperCAmelCase)
135
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Dict = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Optional[int] = '''Dummy User''' _lowerCAmelCase : Dict = '''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''' _lowerCAmelCase : Optional[int] = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : str = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Union[str, Any] = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Tuple = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCAmelCase_ ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCAmelCase_ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCAmelCase_ ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCAmelCase_ ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' HfFolder.save_token(lowerCAmelCase_ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> Any: '''simple docstring''' return HfApi(endpoint=lowerCAmelCase_ ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[str] = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase_ ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(lowerCAmelCase_ ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : str = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Optional[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Dict = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : str = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
46
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : str = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "xlm-roberta" def __init__( self : int , UpperCAmelCase__ : Union[str, Any]=3_0_5_2_2 , UpperCAmelCase__ : Optional[Any]=7_6_8 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=3_0_7_2 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Optional[int]=5_1_2 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Any="absolute" , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : int , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: __SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
682
0
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def _a ( self , **_a ) -> List[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def _a ( self , **_a ) -> List[Any]: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def _a ( self , **_a ) -> Any: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _a ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer""" SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer""" SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
12
0
def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowerCAmelCase = remove_duplicates(key.upper() ) __lowerCAmelCase = len(lowerCAmelCase_ ) # First fill cipher with key characters __lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(lowerCAmelCase_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCAmelCase_ ), 26 ): __lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowerCAmelCase = alphabet[i - offset] __lowerCAmelCase = char return cipher_alphabet def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : dict[str, str] ): return "".join(cipher_map.get(lowerCAmelCase_, lowerCAmelCase_ ) for ch in message.upper() ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : dict[str, str] ): __lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCAmelCase_, lowerCAmelCase_ ) for ch in message.upper() ) def a_ ( ): __lowerCAmelCase = input('Enter message to encode or decode: ' ).strip() __lowerCAmelCase = input('Enter keyword: ' ).strip() __lowerCAmelCase = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: __lowerCAmelCase = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) __lowerCAmelCase = create_cipher_map(lowerCAmelCase_ ) print(func(lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
0
'''simple docstring''' import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = multiprocessing.Manager() _a = manager.list() _a = multiprocessing.Process(target=UpperCamelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : List[str] ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _a = shutil.rmtree _a = os.rmdir _a = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _a = {} with swallow_io(): with time_limit(UpperCamelCase ): exec(UpperCamelCase , UpperCamelCase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f'failed: {e}' ) # Needed for cleaning up. _a = rmtree _a = rmdir _a = chdir @contextlib.contextmanager def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' def signal_handler(UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , UpperCamelCase ) signal.signal(signal.SIGALRM , UpperCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ (): '''simple docstring''' _a = WriteOnlyStringIO() with contextlib.redirect_stdout(UpperCamelCase ): with contextlib.redirect_stderr(UpperCamelCase ): with redirect_stdin(UpperCamelCase ): yield @contextlib.contextmanager def snake_case_ (): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(UpperCamelCase ): yield dirname class A ( _a ): pass class A ( io.StringIO ): def __lowerCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[int] ) -> int: """simple docstring""" raise OSError def __lowerCAmelCase ( self : Optional[Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" raise OSError def __lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" raise OSError def __lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" return False class A ( contextlib._RedirectStream ): # type: ignore lowercase_ = 'stdin' @contextlib.contextmanager def snake_case_ (UpperCamelCase : List[Any] ): '''simple docstring''' if root == ".": yield return _a = os.getcwd() os.chdir(UpperCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(UpperCamelCase ) def snake_case_ (UpperCamelCase : List[str]=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _a = None _a = None import os _a = '''1''' _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None _a = None import shutil _a = None _a = None _a = None import subprocess _a = None # type: ignore _a = None import sys _a = None _a = None _a = None _a = None _a = None
703
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _snake_case : str = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class A ( unittest.TestCase ,_a ): def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _a = load_tool('''text-question-answering''' ) self.tool.setup() _a = load_tool('''text-question-answering''' , remote=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _a = self.tool(lowerCAmelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase_ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _a = self.remote_tool(lowerCAmelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase_ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = self.tool(text=lowerCAmelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase_ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = self.remote_tool(text=lowerCAmelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase_ , '''launched the BigScience Research Workshop''' )
377
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case = None , snake_case = None , snake_case = True , snake_case = None , snake_case = False , snake_case = None , snake_case = True , snake_case = "arrow" , **snake_case , ): super().__init__( split=snake_case , features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , **snake_case , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=snake_case , features=snake_case , cache_dir=snake_case , working_dir=snake_case , **snake_case , ) def SCREAMING_SNAKE_CASE__ ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=snake_case , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
84
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if digit_amount > 0: return round(number - int(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) return number - int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
84
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = hf_hub_url(repo_id=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_SCREAMING_SNAKE_CASE )}"""
702
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" _UpperCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : str = "" else: _UpperCAmelCase : Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Any = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ViTMSNConfig() _UpperCAmelCase : int = 1_0_0_0 _UpperCAmelCase : str = "datasets/huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) ) _UpperCAmelCase : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = 3_8_4 _UpperCAmelCase : Any = 1_5_3_6 _UpperCAmelCase : Optional[Any] = 6 elif "l16" in checkpoint_url: _UpperCAmelCase : Optional[int] = 1_0_2_4 _UpperCAmelCase : Union[str, Any] = 4_0_9_6 _UpperCAmelCase : Any = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : List[Any] = 0.1 elif "b4" in checkpoint_url: _UpperCAmelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: _UpperCAmelCase : str = 7 _UpperCAmelCase : List[str] = 1_0_2_4 _UpperCAmelCase : int = 4_0_9_6 _UpperCAmelCase : List[str] = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : Optional[int] = 0.1 _UpperCAmelCase : Any = ViTMSNModel(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" )["target_encoder"] _UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) _UpperCAmelCase : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _UpperCAmelCase : Any = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _UpperCAmelCase : List[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
328
0
from argparse import ArgumentParser from .env import EnvironmentCommand def _a ( )-> int: SCREAMING_SNAKE_CASE_ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ = parser.parse_args() if not hasattr(lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ = args.func(lowerCAmelCase ) service.run() if __name__ == "__main__": main()
360
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE: Any = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: List[Any] = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[Any], SCREAMING_SNAKE_CASE__: Any ) -> Optional[int]: """simple docstring""" __a = [] for part_id in partition_order: __a = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(SCREAMING_SNAKE_CASE__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __a = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __a = spark.range(100 ).repartition(1 ) __a = Spark(SCREAMING_SNAKE_CASE__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __a = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __a = spark.range(10 ).repartition(2 ) __a = [1, 0] __a = _generate_iterable_examples(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Reverse the partitions. __a = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __a , __a = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ) -> Dict: """simple docstring""" __a = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __a = spark.range(10 ).repartition(1 ) __a = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __a = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __a = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: __a = lambda SCREAMING_SNAKE_CASE__ : x.reverse() __a = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__, [2, 1, 0] ) __a = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ).shuffle_data_sources(SCREAMING_SNAKE_CASE__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): __a , __a = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" __a = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __a = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __a = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 __a = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__, [0, 2] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): __a , __a = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __a = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 __a = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__, [1, 3] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): __a , __a = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" __a = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __a = spark.range(100 ).repartition(1 ) __a = Spark(SCREAMING_SNAKE_CASE__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
711
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: bool = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis __a = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] __a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(SCREAMING_SNAKE_CASE__, 1 ): if n < _p: # then we have our last prime to check __a = primes[:idx] break __a , __a = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __a = False for r in range(SCREAMING_SNAKE_CASE__ ): __a = pow(SCREAMING_SNAKE_CASE__, d * 2**r, SCREAMING_SNAKE_CASE__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __a = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __UpperCAmelCase ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
270
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Dict = (UniPCMultistepScheduler,) __lowercase : Dict = (('num_inference_steps', 25),) def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:int ): snake_case__ = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:str , _a:Dict=0 , **_a:Tuple ): snake_case__ = dict(self.forward_default_kwargs ) snake_case__ = kwargs.pop('''num_inference_steps''' , _a ) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config(**_a ) snake_case__ = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals snake_case__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) snake_case__ = scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals snake_case__ = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case__ , snake_case__ = sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample snake_case__ = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str=0 , **_a:List[str] ): snake_case__ = dict(self.forward_default_kwargs ) snake_case__ = kwargs.pop('''num_inference_steps''' , _a ) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) snake_case__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) snake_case__ = scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) snake_case__ = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample snake_case__ = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[Any]=None , **_a:List[str] ): if scheduler is None: snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(**_a ) snake_case__ = scheduler_class(**_a ) snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(**_a ) snake_case__ = scheduler_class(**_a ) snake_case__ = 10 snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): snake_case__ = model(_a , _a ) snake_case__ = scheduler.step(_a , _a , _a ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = dict(self.forward_default_kwargs ) snake_case__ = kwargs.pop('''num_inference_steps''' , _a ) for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample if num_inference_steps is not None and hasattr(_a , '''set_timesteps''' ): scheduler.set_timesteps(_a ) elif num_inference_steps is not None and not hasattr(_a , '''set_timesteps''' ): snake_case__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.10] snake_case__ = dummy_past_residuals[: scheduler.config.solver_order] snake_case__ = scheduler.timesteps[5] snake_case__ = scheduler.timesteps[6] snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:int ): # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case__ = UniPCMultistepScheduler(**self.get_scheduler_config() ) snake_case__ = self.full_loop(scheduler=_a ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 snake_case__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case__ = DEISMultistepScheduler.from_config(scheduler.config ) snake_case__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case__ = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case__ = self.full_loop(scheduler=_a ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , solver_order=_a , solver_type=_a , ) def SCREAMING_SNAKE_CASE__ ( self:int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , ) snake_case__ = self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self:Any ): self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.full_loop() snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.full_loop(prediction_type='''v_prediction''' ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) snake_case__ = scheduler_class(**_a ) snake_case__ = 10 snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): snake_case__ = model(_a , _a ) snake_case__ = scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa def SCREAMING_SNAKE_CASE__ ( self:List[str] , **_a:List[str] ): for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config(**_a ) snake_case__ = scheduler_class(**_a ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
33
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> Optional[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , a ): snake_case_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = randn_tensor(a , generator=a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
198
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _UpperCamelCase = """Create a default config file for Accelerate with only a few flags set.""" def _a ( _snake_case="no" , _snake_case = default_json_config_file , _snake_case = False ): """simple docstring""" UpperCAmelCase = Path(_snake_case ) path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCAmelCase = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase = torch.cuda.device_count() UpperCAmelCase = num_gpus UpperCAmelCase = False if num_gpus > 1: UpperCAmelCase = """MULTI_GPU""" else: UpperCAmelCase = """NO""" elif is_xpu_available() and use_xpu: UpperCAmelCase = torch.xpu.device_count() UpperCAmelCase = num_xpus UpperCAmelCase = False if num_xpus > 1: UpperCAmelCase = """MULTI_XPU""" else: UpperCAmelCase = """NO""" elif is_npu_available(): UpperCAmelCase = torch.npu.device_count() UpperCAmelCase = num_npus UpperCAmelCase = False if num_npus > 1: UpperCAmelCase = """MULTI_NPU""" else: UpperCAmelCase = """NO""" else: UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = 1 UpperCAmelCase = """NO""" UpperCAmelCase = ClusterConfig(**_snake_case ) config.to_json_file(_snake_case ) return path def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = parser.add_parser("""default""" , parents=_snake_case , help=_snake_case , formatter_class=_snake_case ) parser.add_argument( """--config_file""" , default=_snake_case , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=_snake_case , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=_snake_case ) return parser def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
74
"""simple docstring""" _UpperCamelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
74
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __A : Optional[Any] = logging.get_logger(__name__) # General docstring __A : int = 'PoolFormerConfig' # Base docstring __A : str = 'sail/poolformer_s12' __A : Any = [1, 5_1_2, 7, 7] # Image classification docstring __A : List[Any] = 'sail/poolformer_s12' __A : str = 'tabby, tabby cat' __A : Dict = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __a ( A__ : Optional[int] , A__ : float = 0.0 , A__ : bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE = 1 - drop_prob SCREAMING_SNAKE_CASE = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE = input.div(A__ ) * random_tensor return output class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Optional[float] = None ): super().__init__() SCREAMING_SNAKE_CASE = drop_prob def _snake_case ( self : int , __lowerCamelCase : torch.Tensor ): return drop_path(__lowerCamelCase , self.drop_prob , self.training ) def _snake_case ( self : List[Any] ): return "p={}".format(self.drop_prob ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=None ): super().__init__() SCREAMING_SNAKE_CASE = patch_size if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE = stride if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE = padding if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE = nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase ) SCREAMING_SNAKE_CASE = norm_layer(__lowerCamelCase ) if norm_layer else nn.Identity() def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = self.projection(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.norm(__lowerCamelCase ) return embeddings class _SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Any , **__lowerCamelCase : List[str] ): super().__init__(1 , __lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : Dict ): super().__init__() SCREAMING_SNAKE_CASE = nn.AvgPoolad(__lowerCamelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : int ): return self.pool(__lowerCamelCase ) - hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = PoolFormerDropPath(__lowerCamelCase ) if isinstance(config.hidden_act , __lowerCamelCase ): SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE = config.hidden_act def _snake_case ( self : Any , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.act_fn(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.drop(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.drop(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): super().__init__() SCREAMING_SNAKE_CASE = PoolFormerPooling(__lowerCamelCase ) SCREAMING_SNAKE_CASE = PoolFormerOutput(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(__lowerCamelCase ) # Useful for training neural nets SCREAMING_SNAKE_CASE = PoolFormerDropPath(__lowerCamelCase ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[int] ): if self.use_layer_scale: SCREAMING_SNAKE_CASE = self.pooling(self.before_norm(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE = hidden_states + self.drop_path(__lowerCamelCase ) SCREAMING_SNAKE_CASE = () SCREAMING_SNAKE_CASE = self.output(self.after_norm(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE = hidden_states + self.drop_path(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE = self.drop_path(self.pooling(self.before_norm(__lowerCamelCase ) ) ) # First residual connection SCREAMING_SNAKE_CASE = pooling_output + hidden_states SCREAMING_SNAKE_CASE = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE = self.drop_path(self.output(self.after_norm(__lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE = hidden_states + layer_output SCREAMING_SNAKE_CASE = (output,) + outputs return outputs class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Dict ): super().__init__() SCREAMING_SNAKE_CASE = config # stochastic depth decay rule SCREAMING_SNAKE_CASE = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE = nn.ModuleList(__lowerCamelCase ) # Transformer blocks SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowerCamelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = nn.ModuleList(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : List[Any]=True ): SCREAMING_SNAKE_CASE = () if output_hidden_states else None SCREAMING_SNAKE_CASE = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE = embedding_layer(__lowerCamelCase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = blk(__lowerCamelCase ) SCREAMING_SNAKE_CASE = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = PoolFormerConfig lowerCamelCase__ = "poolformer" lowerCamelCase__ = "pixel_values" lowerCamelCase__ = True def _snake_case ( self : Optional[Any] , __lowerCamelCase : Any ): if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any=False ): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = value __A : Optional[int] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __A : Dict = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , __snake_case , ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : str ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = PoolFormerEncoder(__lowerCamelCase ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self : Any ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) SCREAMING_SNAKE_CASE = self.encoder( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : List[str] ): super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self : Tuple , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.dense(__lowerCamelCase ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , __snake_case , ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : List[str] ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = PoolFormerModel(__lowerCamelCase ) # Final norm SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.LongTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.poolformer( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = outputs[0] SCREAMING_SNAKE_CASE = self.classifier(self.norm(__lowerCamelCase ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = "single_label_classification" else: SCREAMING_SNAKE_CASE = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
16
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __magic_name__: def __init__( self : Optional[int] , __UpperCamelCase : Collection[float] | None = None ): '''simple docstring''' if components is None: snake_case__ = [] snake_case__ = list(__UpperCamelCase ) def __len__( self : int ): '''simple docstring''' return len(self.__components ) def __str__( self : Dict ): '''simple docstring''' return "(" + ",".join(map(__UpperCamelCase , self.__components ) ) + ")" def __add__( self : str , __UpperCamelCase : Vector ): '''simple docstring''' snake_case__ = len(self ) if size == len(__UpperCamelCase ): snake_case__ = [self.__components[i] + other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) else: raise Exception("""must have the same size""" ) def __sub__( self : List[Any] , __UpperCamelCase : Vector ): '''simple docstring''' snake_case__ = len(self ) if size == len(__UpperCamelCase ): snake_case__ = [self.__components[i] - other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : List[str] , __UpperCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : Any , __UpperCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : Optional[Any] , __UpperCamelCase : float | Vector ): '''simple docstring''' if isinstance(__UpperCamelCase , (float, int) ): snake_case__ = [c * other for c in self.__components] return Vector(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and len(self ) == len(__UpperCamelCase ): snake_case__ = len(self ) snake_case__ = [self.__components[i] * other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return sum(__UpperCamelCase ) else: # error case raise Exception("""invalid operand!""" ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' return Vector(self.__components ) def __lowerCAmelCase( self : Union[str, Any] , __UpperCamelCase : int ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __lowerCAmelCase( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) snake_case__ = value def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) snake_case__ = [c**2 for c in self.__components] return math.sqrt(sum(__UpperCamelCase ) ) def __lowerCAmelCase( self : str , __UpperCamelCase : Vector , __UpperCamelCase : bool = False ): '''simple docstring''' snake_case__ = self * other snake_case__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case__ ( a ) -> Vector: '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return Vector([0] * dimension ) def snake_case__ ( a , a ) -> Vector: '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) snake_case__ = [0] * dimension snake_case__ = 1 return Vector(_SCREAMING_SNAKE_CASE ) def snake_case__ ( a , a , a ) -> Vector: '''simple docstring''' assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (isinstance(_SCREAMING_SNAKE_CASE , (int, float) )) ) return x * scalar + y def snake_case__ ( a , a , a ) -> Vector: '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) snake_case__ = [random.randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] return Vector(_SCREAMING_SNAKE_CASE ) class __magic_name__: def __init__( self : str , __UpperCamelCase : list[list[float]] , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case__ = matrix snake_case__ = w snake_case__ = h def __str__( self : List[Any] ): '''simple docstring''' snake_case__ = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : int , __UpperCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): snake_case__ = [] for i in range(self.__height ): snake_case__ = [ self.__matrix[i][j] + other.component(__UpperCamelCase , __UpperCamelCase ) for j in range(self.__width ) ] matrix.append(__UpperCamelCase ) return Matrix(__UpperCamelCase , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : Optional[Any] , __UpperCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): snake_case__ = [] for i in range(self.__height ): snake_case__ = [ self.__matrix[i][j] - other.component(__UpperCamelCase , __UpperCamelCase ) for j in range(self.__width ) ] matrix.append(__UpperCamelCase ) return Matrix(__UpperCamelCase , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : Dict , __UpperCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : str , __UpperCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : int , __UpperCamelCase : float | Vector ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): # matrix-vector if len(__UpperCamelCase ) == self.__width: snake_case__ = zero_vector(self.__height ) for i in range(self.__height ): snake_case__ = [ self.__matrix[i][j] * other.component(__UpperCamelCase ) for j in range(self.__width ) ] ans.change_component(__UpperCamelCase , sum(__UpperCamelCase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__UpperCamelCase , (int, float) ): # matrix-scalar snake_case__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__UpperCamelCase , self.__width , self.__height ) return None def __lowerCAmelCase( self : Tuple ): '''simple docstring''' return self.__height def __lowerCAmelCase( self : int ): '''simple docstring''' return self.__width def __lowerCAmelCase( self : str , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __lowerCAmelCase( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: snake_case__ = value else: raise Exception("""change_component: indices out of bounds""" ) def __lowerCAmelCase( self : Any , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) snake_case__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__UpperCamelCase ) ): snake_case__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(__UpperCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def __lowerCAmelCase( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__UpperCamelCase , __UpperCamelCase ) else: raise Exception("""Indices out of bounds""" ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: snake_case__ = [ self.__matrix[0][y] * self.cofactor(0 , __UpperCamelCase ) for y in range(self.__width ) ] return sum(__UpperCamelCase ) def snake_case__ ( a ) -> Matrix: '''simple docstring''' snake_case__ = [[0] * n for _ in range(_SCREAMING_SNAKE_CASE )] return Matrix(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( a , a , a , a ) -> Matrix: '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) snake_case__ = [ [random.randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE ) ] return Matrix(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
701
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def snake_case__ ( a , a , a , a , a ) -> Optional[int]: '''simple docstring''' snake_case__ = StableDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors snake_case__ = load_file(a ) snake_case__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: snake_case__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) snake_case__ = pipeline.text_encoder else: snake_case__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) snake_case__ = pipeline.unet # find the target layer snake_case__ = layer_infos.pop(0 ) while len(a ) > -1: try: snake_case__ = curr_layer.__getattr__(a ) if len(a ) > 0: snake_case__ = layer_infos.pop(0 ) elif len(a ) == 0: break except Exception: if len(a ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: snake_case__ = layer_infos.pop(0 ) snake_case__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(a ) else: pair_keys.append(a ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: snake_case__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) snake_case__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ).unsqueeze(2 ).unsqueeze(3 ) else: snake_case__ = state_dict[pair_keys[0]].to(torch.floataa ) snake_case__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ) # update visited list for item in pair_keys: visited.append(a ) return pipeline if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') a__ = parser.parse_args() a__ = args.base_model_path a__ = args.checkpoint_path a__ = args.dump_path a__ = args.lora_prefix_unet a__ = args.lora_prefix_text_encoder a__ = args.alpha a__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) a__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
566
0
'''simple docstring''' def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = [int(UpperCamelCase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(UpperCamelCase ) == 4 and all(0 <= int(UpperCamelCase ) <= 254 for octet in octets ) if __name__ == "__main__": _snake_case : Optional[Any] = input().strip() _snake_case : Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
22
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : str = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['LayoutLMv3FeatureExtractor'] _snake_case : Tuple = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( __lowerCamelCase ): '''simple docstring''' __snake_case = ["image_processor", "tokenizer"] __snake_case = "FlavaImageProcessor" __snake_case = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase_ , ) snake_case_ = kwargs.pop('''feature_extractor''' ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = self.image_processor def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case_ = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if images is not None: snake_case_ = self.image_processor( UpperCAmelCase_ , return_image_mask=UpperCAmelCase_ , return_codebook_pixels=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if text is not None and images is not None: encoding.update(UpperCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def UpperCamelCase__ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase__ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def UpperCamelCase__ ( self ): snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase_ , ) return self.image_processor_class @property def UpperCamelCase__ ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase_ , ) return self.image_processor
706
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase__ ( self ): snake_case_ = ort.SessionOptions() snake_case_ = False return options def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
531
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCamelCase : Dict = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __UpperCamelCase : str = {'''facebook/blenderbot-3B''': 128} class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = BlenderbotTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case="replace" , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _snake_case ) != add_prefix_space: lowerCAmelCase = getattr(_snake_case , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**_snake_case ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , _snake_case , _snake_case ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , _snake_case ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , _snake_case ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(_snake_case , state.pop('type' ) ) lowerCAmelCase = component_class(**_snake_case ) setattr(self.backend_tokenizer , _snake_case , _snake_case ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCamelCase__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else value lowerCAmelCase = value def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = kwargs.get('is_split_into_words' , _snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_snake_case , **_snake_case ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = kwargs.get('is_split_into_words' , _snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_snake_case ) lowerCAmelCase = ' '.join(_snake_case ) lowerCAmelCase = self.encode(_snake_case ) if len(_snake_case ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
4
from heapq import heappop, heappush import numpy as np def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' __lowercase , __lowercase = grid.shape __lowercase = [-1, 1, 0, 0] __lowercase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __lowercase , __lowercase = [(0, source)], set() __lowercase = np.full((rows, cols) , np.inf ) __lowercase = 0 __lowercase = np.empty((rows, cols) , dtype=_UpperCAmelCase ) __lowercase = None while queue: ((__lowercase) , (__lowercase)) = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __lowercase = [] while (x, y) != source: path.append((x, y) ) __lowercase , __lowercase = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): __lowercase , __lowercase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __lowercase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) __lowercase = dist + 1 __lowercase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
321
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] =False, False, False @dataclass class _a : _UpperCamelCase: Optional[int] = None _UpperCamelCase: bool = True _UpperCamelCase: bool = True _UpperCamelCase: Optional[str] = None # Automatically constructed _UpperCamelCase: ClassVar[str] = "dict" _UpperCamelCase: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) _UpperCamelCase: str = field(default="Audio" , init=snake_case_ , repr=snake_case_ ) def __call__( self ) -> List[str]: return self.pa_type def _snake_case ( self , lowercase_ ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowercase_ , lowercase_ ): return {"bytes": None, "path": value} elif isinstance(lowercase_ , lowercase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase : Dict = BytesIO() sf.write(lowercase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase : List[str] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowerCAmelCase : Dict = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767 lowerCAmelCase : List[str] = BytesIO(bytes() ) sf.write(lowercase_ , lowercase_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _snake_case ( self , lowercase_ , lowercase_ = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowerCAmelCase , lowerCAmelCase : Tuple = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowerCAmelCase : List[str] = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowerCAmelCase : Optional[Any] = token_per_repo_id or {} lowerCAmelCase : Dict = path.split("""::""" )[-1] try: lowerCAmelCase : List[Any] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowerCAmelCase : int = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase : Dict = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sf.read(lowercase_ ) else: lowerCAmelCase , lowerCAmelCase : List[str] = sf.read(lowercase_ ) lowerCAmelCase : List[Any] = array.T if self.mono: lowerCAmelCase : Tuple = librosa.to_mono(lowercase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase : int = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate ) lowerCAmelCase : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _snake_case ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _snake_case ( self , lowercase_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowerCAmelCase : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowerCAmelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : int = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowerCAmelCase : Dict = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCAmelCase : Any = storage.field("""bytes""" ) else: lowerCAmelCase : Optional[int] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCAmelCase : List[Any] = storage.field("""path""" ) else: lowerCAmelCase : Optional[int] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowercase_ , self.pa_type ) def _snake_case ( self , lowercase_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowercase_ ): with xopen(lowercase_ , """rb""" ) as f: lowerCAmelCase : Dict = f.read() return bytes_ lowerCAmelCase : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type )
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
import collections import os import re from pathlib import Path A_ : List[str] = 'src/transformers' # Matches is_xxx_available() A_ : Any = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} A_ : Optional[int] = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A_ : Dict = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available A_ : Dict = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") A_ : Tuple = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A_ : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", A_ : Dict = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], A_ : Tuple = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo A_ : Union[str, Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: A_ : Any = re.compile(r'^\s*try:') # Catches a line with else: A_ : Optional[Any] = re.compile(r'^\s*else:') def UpperCamelCase (lowercase_: Optional[Any] ) -> Any: if _re_test_backend.search(lowercase_ ) is None: return None A__ : Optional[int] = [b[0] for b in _re_backend.findall(lowercase_ )] backends.sort() return "_and_".join(lowercase_ ) def UpperCamelCase (lowercase_: Any ) -> Dict: with open(lowercase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : Optional[Any] = f.readlines() A__ : Optional[Any] = 0 while line_index < len(lowercase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase_ ): return None # First grab the objects without a specific backend in _import_structure A__ : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: A__ : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase_ ): A__ : str = _re_one_line_import_struct.search(lowercase_ ).groups()[0] A__ : Union[str, Any] = re.findall(r"""\[([^\]]+)\]""" , lowercase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue A__ : int = _re_import_struct_key_value.search(lowercase_ ) if single_line_import_search is not None: A__ : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 A__ : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. A__ : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): A__ : Any = lines[line_index] if _re_import_struct_add_one.search(lowercase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase_ ) is not None: A__ : Any = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(""", """ ) A__ : int = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_between_brackets.search(lowercase_ ) is not None: A__ : Any = _re_between_brackets.search(lowercase_ ).groups()[0].split(""", """ ) A__ : Any = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_quote_object.search(lowercase_ ) is not None: objects.append(_re_quote_object.search(lowercase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 A__ : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ : Any = [] while ( line_index < len(lowercase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): A__ : Dict = lines[line_index] A__ : Any = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ : List[str] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase_ ): # If the line is an if is_backend_available, we grab all objects associated. A__ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): A__ : Union[str, Any] = lines[line_index] A__ : List[str] = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 A__ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> List[Any]: def find_duplicates(lowercase_: Tuple ): return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ : str = [] for key in import_dict_objects.keys(): A__ : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) A__ : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ : Tuple = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCamelCase () -> str: A__ : str = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: A__ : Tuple = os.path.join(lowercase_ , """__init__.py""" ) A__ : Union[str, Any] = parse_init(lowercase_ ) if objects is not None: A__ : List[Any] = analyze_results(*lowercase_ ) if len(lowercase_ ) > 0: A__ : int = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(lowercase_ ) ) if len(lowercase_ ) > 0: raise ValueError("""\n\n""".join(lowercase_ ) ) def UpperCamelCase () -> Dict: A__ : int = [] for path, directories, files in os.walk(lowercase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue A__ : Union[str, Any] = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) ) A__ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowercase_ ) for fname in files: if fname == "__init__.py": continue A__ : Any = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) ) A__ : Union[str, Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase_ ) return submodules A_ : str = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCamelCase () -> str: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import A__ : Any = direct_transformers_import(lowercase_ ) A__ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase_ , """__init__.py""" ) , """r""" ) as f: A__ : str = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowercase_ ) ) ) A__ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase_ ) > 0: A__ : Dict = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
456
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging A_ : Any = logging.get_logger(__name__) class _a : '''simple docstring''' UpperCAmelCase__: str = None @experimental def UpperCamelCase (lowercase_: int , lowercase_: Any , lowercase_: str , lowercase_: str , lowercase_: List[str] , lowercase_: List[Any] , lowercase_: Union[str, Any] ) -> Union[str, Any]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return _map_with_joblib(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: Tuple , lowercase_: List[Any] , lowercase_: Tuple , lowercase_: Tuple , lowercase_: List[str] , lowercase_: Dict , lowercase_: Tuple ) -> Tuple: A__ : Union[str, Any] = num_proc if num_proc <= len(lowercase_ ) else len(lowercase_ ) A__ : str = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase_ ): A__ : Tuple = len(lowercase_ ) // num_proc A__ : Tuple = len(lowercase_ ) % num_proc A__ : Optional[Any] = div * index + min(lowercase_ , lowercase_ ) A__ : Union[str, Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(lowercase_ )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(lowercase_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) A__ , A__ : Optional[int] = None, None if not disable_tqdm: A__ , A__ : List[str] = (RLock(),), tqdm.set_lock with Pool(lowercase_ , initargs=lowercase_ , initializer=lowercase_ ) as pool: A__ : Optional[Any] = pool.map(lowercase_ , lowercase_ ) logger.info(f"""Finished {num_proc} processes""" ) A__ : Tuple = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(lowercase_ )} objects""" ) return mapped def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: Dict , lowercase_: str , lowercase_: Union[str, Any] , lowercase_: List[Any] , lowercase_: Dict , lowercase_: Optional[Any] ) -> Union[str, Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowercase_ ): return joblib.Parallel()( joblib.delayed(lowercase_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCamelCase (lowercase_: str ) -> str: A__ : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: A__ : Optional[Any] = None
456
1
import os import sys import unittest __UpperCamelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __UpperCamelCase : Optional[int] = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') __UpperCamelCase : List[Any] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Tuple = get_test_to_tester_mapping(_lowerCamelCase ) __lowerCamelCase : Optional[int] = get_test_to_tester_mapping(_lowerCamelCase ) __lowerCamelCase : Dict = {"""BertModelTest""": """BertModelTester"""} __lowerCamelCase : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : List[str] = get_model_to_test_mapping(_lowerCamelCase ) __lowerCamelCase : Optional[int] = get_model_to_test_mapping(_lowerCamelCase ) __lowerCamelCase : Optional[int] = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } __lowerCamelCase : Optional[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[str] = get_model_to_tester_mapping(_lowerCamelCase ) __lowerCamelCase : Optional[int] = get_model_to_tester_mapping(_lowerCamelCase ) __lowerCamelCase : int = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } __lowerCamelCase : Optional[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase )
458
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A,unittest.TestCase ): '''simple docstring''' a_ : List[Any] = ReformerTokenizer a_ : Optional[int] = ReformerTokenizerFast a_ : Optional[int] = True a_ : List[Any] = False a_ : Any = True def _snake_case ( self : Optional[int] ): '''simple docstring''' super().setUp() __lowerCamelCase : str = ReformerTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : List[str] = """<s>""" __lowerCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowerCamelCase ) , 1_0_0_0 ) def _snake_case ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def _snake_case ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : Optional[int] = self.get_rust_tokenizer() __lowerCamelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" __lowerCamelCase : Union[str, Any] = tokenizer.tokenize(_lowerCamelCase ) __lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) __lowerCamelCase : Tuple = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = self.get_rust_tokenizer() __lowerCamelCase : Dict = tokenizer.encode(_lowerCamelCase ) __lowerCamelCase : Dict = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : Any , _lowerCamelCase : int=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __lowerCamelCase : Any = """This is a simple input""" __lowerCamelCase : Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCamelCase : Union[str, Any] = ("""This is a simple input""", """This is a pair""") __lowerCamelCase : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) def _snake_case ( self : List[str] ): '''simple docstring''' pass def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Any = ReformerTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) __lowerCamelCase : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __lowerCamelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __lowerCamelCase : List[str] = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self : List[str] ): '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Dict = """Hello World!""" __lowerCamelCase : Any = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowerCamelCase : List[str] = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence __lowerCamelCase : int = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __lowerCamelCase : Union[str, Any] = """ """.join(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors="""pt""" ) __lowerCamelCase : Union[str, Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) __lowerCamelCase : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __lowerCamelCase : List[str] = encoded_sequence["""input_ids"""].shape __lowerCamelCase : Optional[Any] = ReformerModel(_lowerCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = {"""input_ids""": [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __lowerCamelCase : int = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=_lowerCamelCase , sequences=_lowerCamelCase , )
458
1
def __lowercase ( __lowerCAmelCase : list ): if len(__lowerCAmelCase ) <= 1: return [tuple(__lowerCAmelCase )] a__ = [] def generate(__lowerCAmelCase : int , __lowerCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __lowerCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even a__ , a__ = arr[k - 1], arr[i] else: # k is odd a__ , a__ = arr[k - 1], arr[0] generate(k - 1 , __lowerCAmelCase ) generate(len(__lowerCAmelCase ) , __lowerCAmelCase ) return res if __name__ == "__main__": snake_case : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Dict = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
335
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : List[str] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''lxmert''' UpperCAmelCase__ : Any = {} def __init__( self :Dict ,__snake_case :Optional[Any]=3_05_22 ,__snake_case :int=7_68 ,__snake_case :int=12 ,__snake_case :Any=95_00 ,__snake_case :Union[str, Any]=16_00 ,__snake_case :str=4_00 ,__snake_case :Optional[Any]=30_72 ,__snake_case :List[str]="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Dict=5_12 ,__snake_case :str=2 ,__snake_case :List[str]=0.02 ,__snake_case :Optional[int]=1E-12 ,__snake_case :Any=9 ,__snake_case :List[str]=5 ,__snake_case :Optional[Any]=5 ,__snake_case :str=20_48 ,__snake_case :Optional[Any]=4 ,__snake_case :str=6.67 ,__snake_case :Union[str, Any]=True ,__snake_case :str=True ,__snake_case :int=True ,__snake_case :List[str]=True ,__snake_case :List[Any]=True ,__snake_case :str=True ,__snake_case :List[str]=True ,**__snake_case :Optional[Any] ,) -> str: a__ = vocab_size a__ = hidden_size a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = num_qa_labels a__ = num_object_labels a__ = num_attr_labels a__ = l_layers a__ = x_layers a__ = r_layers a__ = visual_feat_dim a__ = visual_pos_dim a__ = visual_loss_normalizer a__ = task_matched a__ = task_mask_lm a__ = task_obj_predict a__ = task_qa a__ = visual_obj_loss a__ = visual_attr_loss a__ = visual_feat_loss a__ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__snake_case )
335
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase = { 'yjernite/retribert-base-uncased': 5_1_2, } __lowerCAmelCase = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Optional[Any] = RetriBertTokenizer __UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : str="[SEP]" ,_a : Union[str, Any]="[PAD]" ,_a : Dict="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Optional[int]=True ,_a : Optional[int]=None ,**_a : Dict ,): '''simple docstring''' super().__init__( UpperCAmelCase__ ,tokenizer_file=UpperCAmelCase__ ,do_lower_case=UpperCAmelCase__ ,unk_token=UpperCAmelCase__ ,sep_token=UpperCAmelCase__ ,pad_token=UpperCAmelCase__ ,cls_token=UpperCAmelCase__ ,mask_token=UpperCAmelCase__ ,tokenize_chinese_chars=UpperCAmelCase__ ,strip_accents=UpperCAmelCase__ ,**UpperCAmelCase__ ,) _a : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' ,UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,UpperCAmelCase__ ) != tokenize_chinese_chars ): _a : int = getattr(UpperCAmelCase__ ,normalizer_state.pop('type' ) ) _a : List[Any] = do_lower_case _a : Union[str, Any] = strip_accents _a : int = tokenize_chinese_chars _a : int = normalizer_class(**UpperCAmelCase__ ) _a : Union[str, Any] = do_lower_case def __lowercase ( self : Dict ,_a : Tuple ,_a : Union[str, Any]=None ): '''simple docstring''' _a : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Optional[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[Any] = [self.sep_token_id] _a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : str ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : Tuple = self._tokenizer.model.save(UpperCAmelCase__ ,name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
718
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[Any] = inspect.getfile(accelerate.test_utils ) _a : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _a : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Tuple = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() _a : Tuple = [sys.executable] + distributed_args execute_subprocess_async(_a ,env=os.environ.copy() )
319
0
'''simple docstring''' import math def __UpperCAmelCase ( A : Tuple ) -> str: UpperCAmelCase_ : int = [True] * n UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Any = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase_ : int = i * 2 while index < n: UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[int] = index + i UpperCAmelCase_ : Dict = [2] for i in range(3 , __SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(__SCREAMING_SNAKE_CASE ) return primes def __UpperCAmelCase ( A : Tuple = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> List[str]: UpperCAmelCase_ : str = math.floor(math.sqrt(__SCREAMING_SNAKE_CASE ) ) + 1_0_0 UpperCAmelCase_ : str = prime_sieve(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : int = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase_ : Tuple = primes[prime_index + 1] UpperCAmelCase_ : List[str] = last_prime**2 UpperCAmelCase_ : Dict = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase_ : str = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase_ : str = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase_ : List[Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase_ : Optional[int] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
541
import collections import os import re from pathlib import Path UpperCAmelCase = '''src/transformers''' # Matches is_xxx_available() UpperCAmelCase = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} UpperCAmelCase = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available UpperCAmelCase = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo UpperCAmelCase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: UpperCAmelCase = re.compile(R'''^\s*try:''') # Catches a line with else: UpperCAmelCase = re.compile(R'''^\s*else:''') def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None lowercase = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase = f.readlines() lowercase = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): lowercase = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] lowercase = re.findall(r'\[([^\]]+)\]' , __SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase = lines[line_index] lowercase = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase = lines[line_index] lowercase = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): def find_duplicates(__SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase = [] for key in import_dict_objects.keys(): lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase_ ( ): lowercase = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase = os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) lowercase = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: lowercase = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(__SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase_ ( ): lowercase = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue lowercase = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules UpperCAmelCase = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def UpperCAmelCase_ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowercase = direct_transformers_import(__SCREAMING_SNAKE_CASE ) lowercase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' ) as f: lowercase = f.read() import_structure_keys.update(set(re.findall(r'import_structure\[\"([^\"]*)\"\]' , __SCREAMING_SNAKE_CASE ) ) ) lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
84
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ = logging.getLogger(__name__) a_ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A_: """simple docstring""" a_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) a_ : int = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(SCREAMING_SNAKE_CASE__ )} , ) a_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : str = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Optional[Any] = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class A_: """simple docstring""" a_ : List[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """The input training data file (a text file)."""} ) a_ : Dict = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) a_ : str = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ : List[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) a_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) a_ : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) a_ : str = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) a_ : int = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether ot not to use whole word mask."""} ) a_ : Dict = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ : List[Any] = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) a_ : List[Any] = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) a_ : List[Any] = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) a_ : str = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCAmelCase_ ( __a : Any , __a : List[Any] , __a : Tuple = False , __a : Tuple = None , ): '''simple docstring''' def _dataset(__a : Optional[Any] , __a : Optional[int]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=__a , file_path=__a , block_size=args.block_size , ref_path=__a , ) return LineByLineTextDataset(tokenizer=__a , file_path=__a , block_size=args.block_size ) else: return TextDataset( tokenizer=__a , file_path=__a , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__a , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__a ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCamelCase : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _lowerCamelCase : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _lowerCamelCase : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: _lowerCamelCase : Dict = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) _lowerCamelCase : List[str] = AutoModelWithLMHead.from_config(__a ) model.resize_token_embeddings(len(__a ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: _lowerCamelCase : Optional[int] = tokenizer.max_len # Our input block size will be the max possible for the model else: _lowerCamelCase : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets _lowerCamelCase : Tuple = ( get_dataset(__a , tokenizer=__a , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _lowerCamelCase : List[Any] = ( get_dataset(__a , tokenizer=__a , evaluate=__a , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _lowerCamelCase : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=__a , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _lowerCamelCase : Any = DataCollatorForWholeWordMask( tokenizer=__a , mlm_probability=data_args.mlm_probability ) else: _lowerCamelCase : Optional[int] = DataCollatorForLanguageModeling( tokenizer=__a , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _lowerCamelCase : Tuple = Trainer( model=__a , args=__a , data_collator=__a , train_dataset=__a , eval_dataset=__a , prediction_loss_only=__a , ) # Training if training_args.do_train: _lowerCamelCase : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__a ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : List[str] = trainer.evaluate() _lowerCamelCase : List[Any] = math.exp(eval_output['eval_loss'] ) _lowerCamelCase : str = {"perplexity": perplexity} _lowerCamelCase : Any = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(__a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __a , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(__a ) return results def UpperCAmelCase_ ( __a : int ): '''simple docstring''' main() if __name__ == "__main__": main()
719
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , ) assert hasattr(self , 'env' ) def _lowerCAmelCase ( self , A ): _lowerCamelCase : List[str] = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _lowerCamelCase : Any = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version='py36' , ) def _lowerCAmelCase ( self , A ): TrainingJobAnalytics(A ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(2,)] ) def _lowerCAmelCase ( self , A ): # create estimator _lowerCamelCase : List[Any] = self.create_estimator(A ) # run training estimator.fit() # result dataframe _lowerCamelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCamelCase : Dict = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowerCamelCase : Dict = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A )
349
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: A_: Tuple = None A_: Union[str, Any] = logging.get_logger(__name__) A_: Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} A_: List[Any] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } A_: Union[str, Any] = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off A_: Union[str, Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = NllbTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , **UpperCAmelCase , ): '''simple docstring''' _lowercase = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token _lowercase = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) _lowercase = vocab_file _lowercase = False if not self.vocab_file else True _lowercase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowercase = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowercase = src_lang if src_lang is not None else """eng_Latn""" _lowercase = self.convert_tokens_to_ids(self._src_lang ) _lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowercase = src_lang _lowercase = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) _lowercase = self.convert_tokens_to_ids(UpperCAmelCase ) _lowercase = tgt_lang_id return inputs def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = "eng_Latn" , UpperCAmelCase = None , UpperCAmelCase = "fra_Latn" , **UpperCAmelCase , ): '''simple docstring''' _lowercase = src_lang _lowercase = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: _lowercase = [] _lowercase = [self.eos_token_id, self.cur_lang_code] else: _lowercase = [self.cur_lang_code] _lowercase = [self.eos_token_id] _lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: _lowercase = [] _lowercase = [self.eos_token_id, self.cur_lang_code] else: _lowercase = [self.cur_lang_code] _lowercase = [self.eos_token_id] _lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return _lowercase = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
398
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_: Tuple = logging.get_logger(__name__) A_: str = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower_vision_model' def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=288 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_channels _lowercase = patch_size _lowercase = image_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = stop_gradient _lowercase = share_layernorm _lowercase = remove_last_layer @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower_text_model' def __init__( self , UpperCAmelCase=50265 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=1 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=514 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = initializer_factor _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = pad_token_id _lowercase = bos_token_id _lowercase = eos_token_id @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower' def __init__( self , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=768 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=False , UpperCAmelCase="add" , UpperCAmelCase=12 , UpperCAmelCase=6 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' _lowercase = kwargs.pop("""text_config_dict""" , UpperCAmelCase ) _lowercase = kwargs.pop("""vision_config_dict""" , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) _lowercase = share_cross_modal_transformer_layers _lowercase = hidden_act _lowercase = hidden_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = share_link_tower_layers _lowercase = link_tower_type _lowercase = num_attention_heads _lowercase = num_hidden_layers _lowercase = tie_word_embeddings _lowercase = init_layernorm_from_vision_encoder if text_config is None: _lowercase = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _lowercase = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _lowercase = BridgeTowerTextConfig(**UpperCAmelCase ) _lowercase = BridgeTowerVisionConfig(**UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.text_config.to_dict() _lowercase = self.vision_config.to_dict() _lowercase = self.__class__.model_type return output
398
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): UpperCAmelCase__ = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_A ) assert base_extractor.is_extractable(_A ) UpperCAmelCase__ = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(_A , _A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding='utf-8' ) else: UpperCAmelCase__ = output_path.read_text(encoding='utf-8' ) UpperCAmelCase__ = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): UpperCAmelCase__ = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } UpperCAmelCase__ = input_paths[compression_format] if input_path is None: UpperCAmelCase__ = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_A ) UpperCAmelCase__ = Extractor.infer_extractor_format(_A ) assert extractor_format is not None UpperCAmelCase__ = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(_A , _A , _A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding='utf-8' ) else: UpperCAmelCase__ = output_path.read_text(encoding='utf-8' ) UpperCAmelCase__ = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def a_ ( lowerCamelCase , lowerCamelCase ): import tarfile UpperCAmelCase__ = tmp_path / 'data_dot_dot' directory.mkdir() UpperCAmelCase__ = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(_A , 'w' ) as f: f.add(_A , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def a_ ( lowerCamelCase ): import tarfile UpperCAmelCase__ = tmp_path / 'data_sym_link' directory.mkdir() UpperCAmelCase__ = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=_A ) with tarfile.TarFile(_A , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } UpperCAmelCase__ = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ = tmp_path / 'extracted' TarExtractor.extract(_A , _A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(_A ) assert zipfile.is_zipfile(str(_A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_A ) # but we're right
709
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase__ : Optional[Any] = ['model.decoder.embed_positions.weights'] def a_ ( lowerCamelCase ): if "emb" in name: UpperCAmelCase__ = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: UpperCAmelCase__ = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: UpperCAmelCase__ = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: UpperCAmelCase__ = name.replace('linear1' , 'fc1' ) if "linear2" in name: UpperCAmelCase__ = name.replace('linear2' , 'fc2' ) if "norm1" in name: UpperCAmelCase__ = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: UpperCAmelCase__ = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: UpperCAmelCase__ = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: UpperCAmelCase__ = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: UpperCAmelCase__ = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase__ = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = list(state_dict.keys() ) UpperCAmelCase__ = {} for key in keys: UpperCAmelCase__ = state_dict.pop(lowerCamelCase ) UpperCAmelCase__ = rename_keys(lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase__ = val[:hidden_size, :] UpperCAmelCase__ = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase__ = val else: UpperCAmelCase__ = val return state_dict, enc_dec_proj_state_dict def a_ ( lowerCamelCase ): if checkpoint == "small": # default config values UpperCAmelCase__ = 1_0_2_4 UpperCAmelCase__ = 2_4 UpperCAmelCase__ = 1_6 elif checkpoint == "medium": UpperCAmelCase__ = 1_5_3_6 UpperCAmelCase__ = 4_8 UpperCAmelCase__ = 2_4 elif checkpoint == "large": UpperCAmelCase__ = 2_0_4_8 UpperCAmelCase__ = 4_8 UpperCAmelCase__ = 3_2 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) UpperCAmelCase__ = MusicgenDecoderConfig( hidden_size=lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase , num_attention_heads=lowerCamelCase , ) return config @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="cpu" ): UpperCAmelCase__ = MusicGen.get_pretrained(lowerCamelCase , device=lowerCamelCase ) UpperCAmelCase__ = decoder_config_from_checkpoint(lowerCamelCase ) UpperCAmelCase__ = fairseq_model.lm.state_dict() UpperCAmelCase__ , UpperCAmelCase__ = rename_state_dict( lowerCamelCase , hidden_size=decoder_config.hidden_size ) UpperCAmelCase__ = TaEncoderModel.from_pretrained('t5-base' ) UpperCAmelCase__ = EncodecModel.from_pretrained('facebook/encodec_32khz' ) UpperCAmelCase__ = MusicgenForCausalLM(lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase__ , UpperCAmelCase__ = decoder.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowerCamelCase ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model UpperCAmelCase__ = MusicgenForConditionalGeneration(text_encoder=lowerCamelCase , audio_encoder=lowerCamelCase , decoder=lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase ) # check we can do a forward pass UpperCAmelCase__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase__ = model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('Incorrect shape for logits' ) # now construct the processor UpperCAmelCase__ = AutoTokenizer.from_pretrained('t5-base' ) UpperCAmelCase__ = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) UpperCAmelCase__ = MusicgenProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) # set the appropriate bos/pad token ids UpperCAmelCase__ = 2_0_4_8 UpperCAmelCase__ = 2_0_4_8 # set other default generation config params UpperCAmelCase__ = int(3_0 * audio_encoder.config.frame_rate ) UpperCAmelCase__ = True UpperCAmelCase__ = 3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowerCamelCase ) processor.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) lowerCAmelCase__ : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
632
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = BarthezTokenizer _UpperCamelCase : List[str] = BarthezTokenizerFast _UpperCamelCase : List[Any] = True _UpperCamelCase : Tuple = True def __a ( self ): super().setUp() _lowercase : int = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer def __a ( self ): _lowercase : Dict = '<pad>' _lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_lowerCAmelCase ) , 1_0_1_1_2_2 ) def __a ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def __a ( self ): _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : Optional[Any] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _lowercase : Any = self.tokenizer( _lowerCAmelCase , max_length=len(_lowerCAmelCase ) , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _lowercase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): if not self.test_rust_tokenizer: return _lowercase : int = self.get_tokenizer() _lowercase : Tuple = self.get_rust_tokenizer() _lowercase : List[str] = 'I was born in 92000, and this is falsé.' _lowercase : str = tokenizer.tokenize(_lowerCAmelCase ) _lowercase : Optional[int] = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Tuple = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = self.get_rust_tokenizer() _lowercase : Optional[int] = tokenizer.encode(_lowerCAmelCase ) _lowercase : int = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @slow def __a ( self ): # fmt: off _lowercase : List[str] = {'input_ids': [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _lowercase : Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_lowerCAmelCase , )
66
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] ="""Speech2TextFeatureExtractor""" __UpperCAmelCase : Union[str, Any] ="""Speech2TextTokenizer""" def __init__( self , __a , __a ): super().__init__(__a , __a ) __lowerCAmelCase = self.feature_extractor __lowerCAmelCase = False def __call__( self , *__a , **__a ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) __lowerCAmelCase = kwargs.pop("raw_speech" ) else: __lowerCAmelCase = kwargs.pop("audio" , __a ) __lowerCAmelCase = kwargs.pop("sampling_rate" , __a ) __lowerCAmelCase = kwargs.pop("text" , __a ) if len(__a ) > 0: __lowerCAmelCase = args[0] __lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __lowerCAmelCase = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: __lowerCAmelCase = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: __lowerCAmelCase = encodings["input_ids"] return inputs def snake_case ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def snake_case ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer yield __lowerCAmelCase = self.feature_extractor __lowerCAmelCase = False
636
0
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=14 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=0.02 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = rotary_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = None UpperCamelCase__ = vocab_size - 1 UpperCamelCase__ = vocab_size - 1 UpperCamelCase__ = vocab_size - 1 def _lowerCamelCase ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _lowerCamelCase ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(_lowercase ) UpperCamelCase__ = model.init_cache(input_ids.shape[0] , _lowercase ) UpperCamelCase__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) UpperCamelCase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCamelCase__ = model( input_ids[:, -1:] , attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , position_ids=_lowercase , ) UpperCamelCase__ = model(_lowercase ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(_lowercase ) UpperCamelCase__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCamelCase__ = model.init_cache(input_ids.shape[0] , _lowercase ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) UpperCamelCase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCamelCase__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowercase , position_ids=_lowercase , ) UpperCamelCase__ = model(_lowercase , attention_mask=_lowercase ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): snake_case : Optional[int] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _lowerCamelCase ( self ): UpperCamelCase__ = FlaxGPTJModelTester(self ) def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase , _lowercase ) def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowercase , _lowercase , _lowercase , _lowercase ) @tooslow def _lowerCamelCase ( self ): UpperCamelCase__ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) UpperCamelCase__ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=_lowercase , truncation=_lowercase ) UpperCamelCase__ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) UpperCamelCase__ = False UpperCamelCase__ = model.config.eos_token_id UpperCamelCase__ = jax.jit(model.generate ) UpperCamelCase__ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCamelCase__ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) UpperCamelCase__ = [ """Hello this is a long string of text.\n\nI\'m trying to get the text of the""", """Hey, I\'m a little late to the party. I\'m going to""", ] self.assertListEqual(_lowercase , _lowercase ) @is_pt_flax_cross_test def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ = self._prepare_for_class(_lowercase , _lowercase ) UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(_lowercase , _lowercase ) UpperCamelCase__ , UpperCamelCase__ = pt_inputs["""input_ids"""].shape UpperCamelCase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = pt_model_class(_lowercase ).eval() UpperCamelCase__ = model_class(_lowercase , dtype=jnp.floataa ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase ) UpperCamelCase__ = fx_state with torch.no_grad(): UpperCamelCase__ = pt_model(**_lowercase ).to_tuple() UpperCamelCase__ = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowercase ) UpperCamelCase__ = model_class.from_pretrained(_lowercase , from_pt=_lowercase ) UpperCamelCase__ = fx_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ = self._prepare_for_class(_lowercase , _lowercase ) UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(_lowercase , _lowercase ) UpperCamelCase__ = pt_model_class(_lowercase ).eval() UpperCamelCase__ = model_class(_lowercase , dtype=jnp.floataa ) UpperCamelCase__ = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params ) UpperCamelCase__ , UpperCamelCase__ = pt_inputs["""input_ids"""].shape UpperCamelCase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase__ = pt_model(**_lowercase ).to_tuple() UpperCamelCase__ = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowercase ) UpperCamelCase__ = pt_model_class.from_pretrained(_lowercase , from_flax=_lowercase ) with torch.no_grad(): UpperCamelCase__ = pt_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
703
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """data2vec-audio""" def __init__( self , __lowerCAmelCase=32 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="gelu" , __lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase=False , __lowerCAmelCase=16 , __lowerCAmelCase=19 , __lowerCAmelCase=5 , __lowerCAmelCase=0.05 , __lowerCAmelCase=10 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0 , __lowerCAmelCase=10 , __lowerCAmelCase=0 , __lowerCAmelCase="sum" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=256 , __lowerCAmelCase=(512, 512, 512, 512, 1500) , __lowerCAmelCase=(5, 3, 3, 1, 1) , __lowerCAmelCase=(1, 2, 3, 1, 1) , __lowerCAmelCase=512 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=3 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = conv_pos_kernel_size UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # adapter UpperCamelCase__ = add_adapter UpperCamelCase__ = adapter_kernel_size UpperCamelCase__ = adapter_stride UpperCamelCase__ = num_adapter_layers UpperCamelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = xvector_output_dim @property def _lowerCamelCase ( self ): return math.prod(self.conv_stride )
548
0
def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = [[] for _ in range(__lowercase )] a_ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(__lowercase ) <= key: return input_string for position, character in enumerate(__lowercase ): a_ = position % (lowest * 2) # puts it in bounds a_ = min(__lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__lowercase ) a_ = ["".join(__lowercase ) for row in temp_grid] a_ = "".join(__lowercase ) return output_string def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = [] a_ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string a_ = [[] for _ in range(__lowercase )] # generates template for position in range(len(__lowercase ) ): a_ = position % (lowest * 2) # puts it in bounds a_ = min(__lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) a_ = 0 for row in temp_grid: # fills in the characters a_ = input_string[counter : counter + len(__lowercase )] grid.append(list(__lowercase ) ) counter += len(__lowercase ) a_ = "" # reads as zigzag for position in range(len(__lowercase ) ): a_ = position % (lowest * 2) # puts it in bounds a_ = min(__lowercase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = {} for key_guess in range(1 , len(__lowercase ) ): # tries every key a_ = decrypt(__lowercase , __lowercase ) return results if __name__ == "__main__": import doctest doctest.testmod()
483
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase ( self ): _snake_case ,_snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) _snake_case : List[Any] = "A painting of a squirrel eating a burger" _snake_case : Union[str, Any] = jax.device_count() _snake_case : List[Any] = num_samples * [prompt] _snake_case : Tuple = sd_pipe.prepare_inputs(lowercase_ ) _snake_case : str = replicate(lowercase_ ) _snake_case : Dict = shard(lowercase_ ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : List[Any] = jax.random.split(lowercase_ , jax.device_count() ) _snake_case : Tuple = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : str = images[0, 253:256, 253:256, -1] _snake_case : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Optional[Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ): _snake_case : Optional[Any] = "stabilityai/stable-diffusion-2" _snake_case ,_snake_case : List[Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowercase_ , subfolder="scheduler" ) _snake_case ,_snake_case : int = FlaxStableDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , revision="bf16" , dtype=jnp.bfloataa , ) _snake_case : str = scheduler_params _snake_case : Dict = "A painting of a squirrel eating a burger" _snake_case : Dict = jax.device_count() _snake_case : Optional[int] = num_samples * [prompt] _snake_case : List[str] = sd_pipe.prepare_inputs(lowercase_ ) _snake_case : Optional[int] = replicate(lowercase_ ) _snake_case : Union[str, Any] = shard(lowercase_ ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : Union[str, Any] = jax.random.split(lowercase_ , jax.device_count() ) _snake_case : str = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : List[str] = images[0, 253:256, 253:256, -1] _snake_case : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Dict = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
670
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __lowercase ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Tuple = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE :List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __SCREAMING_SNAKE_CASE :Dict = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __SCREAMING_SNAKE_CASE :Optional[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __SCREAMING_SNAKE_CASE :List[Any] = False @property def snake_case__ ( self : Tuple ): return 32 @property def snake_case__ ( self : int ): return 32 @property def snake_case__ ( self : Optional[int] ): return self.time_input_dim @property def snake_case__ ( self : Optional[int] ): return self.time_input_dim * 4 @property def snake_case__ ( self : Tuple ): return 100 @property def snake_case__ ( self : Dict ): torch.manual_seed(0 ) __magic_name__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ = UNetaDConditionModel(**__a ) return model @property def snake_case__ ( self : Optional[int] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case__ ( self : str ): torch.manual_seed(0 ) __magic_name__ = VQModel(**self.dummy_movq_kwargs ) return model def snake_case__ ( self : List[str] ): __magic_name__ = self.dummy_unet __magic_name__ = self.dummy_movq __magic_name__ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __magic_name__ = DDIMScheduler(**__a ) __magic_name__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case__ ( self : Tuple , a__ : List[str] , a__ : Optional[Any]=0 ): __magic_name__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) __magic_name__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) # create init_image __magic_name__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __magic_name__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(__a ) else: __magic_name__ = torch.Generator(device=__a ).manual_seed(__a ) __magic_name__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case__ ( self : Dict ): __magic_name__ = """cpu""" __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**__a ) __magic_name__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __magic_name__ = pipe(**self.get_dummy_inputs(__a ) ) __magic_name__ = output.images __magic_name__ = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __magic_name__ = image[0, -3:, -3:, -1] __magic_name__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Optional[int] ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __magic_name__ = init_image.resize((512, 512) ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __magic_name__ = torch.from_numpy(np.array(__a ) ).float() / 255.0 __magic_name__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __magic_name__ = """A robot, 4k photo""" __magic_name__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__a ) __magic_name__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __magic_name__ = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) __magic_name__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) __magic_name__ = pipe_prior( __a , image=__a , strength=0.85 , generator=__a , negative_prompt='''''' , ).to_tuple() __magic_name__ = pipeline( image=__a , image_embeds=__a , negative_image_embeds=__a , hint=__a , generator=__a , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__a , __a )
720
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = """instructblip_vision_model""" def __init__( self : List[Any] , a__ : Union[str, Any]=1408 , a__ : Tuple=6144 , a__ : Dict=39 , a__ : Union[str, Any]=16 , a__ : int=224 , a__ : str=14 , a__ : Any="gelu" , a__ : Dict=1E-6 , a__ : Tuple=0.0 , a__ : List[str]=1E-10 , a__ : List[Any]=True , **a__ : List[str] , ): super().__init__(**a__ ) __magic_name__ = hidden_size __magic_name__ = intermediate_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = patch_size __magic_name__ = image_size __magic_name__ = initializer_range __magic_name__ = attention_dropout __magic_name__ = layer_norm_eps __magic_name__ = hidden_act __magic_name__ = qkv_bias @classmethod def snake_case__ ( cls : int , a__ : Union[str, os.PathLike] , **a__ : Optional[Any] ): cls._set_token_in_kwargs(a__ ) __magic_name__ , __magic_name__ = cls.get_config_dict(a__ , **a__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": __magic_name__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a__ , **a__ ) class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :int = """instructblip_qformer""" def __init__( self : str , a__ : Union[str, Any]=3_0522 , a__ : Any=768 , a__ : Tuple=12 , a__ : List[Any]=12 , a__ : Dict=3072 , a__ : Dict="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : str=0.02 , a__ : Tuple=1E-12 , a__ : str=0 , a__ : List[Any]="absolute" , a__ : Tuple=2 , a__ : Optional[int]=1408 , **a__ : Optional[int] , ): super().__init__(pad_token_id=a__ , **a__ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = cross_attention_frequency __magic_name__ = encoder_hidden_size @classmethod def snake_case__ ( cls : Optional[int] , a__ : Union[str, os.PathLike] , **a__ : List[Any] ): cls._set_token_in_kwargs(a__ ) __magic_name__ , __magic_name__ = cls.get_config_dict(a__ , **a__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": __magic_name__ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a__ , **a__ ) class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[Any] = """instructblip""" __SCREAMING_SNAKE_CASE :Dict = True def __init__( self : List[Any] , a__ : Tuple=None , a__ : Union[str, Any]=None , a__ : Optional[int]=None , a__ : Tuple=32 , **a__ : Union[str, Any] ): super().__init__(**a__ ) if vision_config is None: __magic_name__ = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: __magic_name__ = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: __magic_name__ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __magic_name__ = InstructBlipVisionConfig(**a__ ) __magic_name__ = InstructBlipQFormerConfig(**a__ ) __magic_name__ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __magic_name__ = CONFIG_MAPPING[text_model_type](**a__ ) __magic_name__ = self.text_config.tie_word_embeddings __magic_name__ = self.text_config.is_encoder_decoder __magic_name__ = num_query_tokens __magic_name__ = self.vision_config.hidden_size __magic_name__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __magic_name__ = 1.0 __magic_name__ = 0.02 @classmethod def snake_case__ ( cls : Optional[int] , a__ : InstructBlipVisionConfig , a__ : InstructBlipQFormerConfig , a__ : PretrainedConfig , **a__ : Dict , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **a__ , ) def snake_case__ ( self : Dict ): __magic_name__ = copy.deepcopy(self.__dict__ ) __magic_name__ = self.vision_config.to_dict() __magic_name__ = self.qformer_config.to_dict() __magic_name__ = self.text_config.to_dict() __magic_name__ = self.__class__.model_type return output
245
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "data2vec-vision" def __init__( self , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-1_2 , _a=2_2_4 , _a=1_6 , _a=3 , _a=False , _a=False , _a=False , _a=False , _a=0.1 , _a=0.1 , _a=True , _a=[3, 5, 7, 1_1] , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=2_5_6 , _a=1 , _a=False , _a=2_5_5 , **_a , ) -> List[str]: super().__init__(**_a ) _a : Union[str, Any] = hidden_size _a : Dict = num_hidden_layers _a : Any = num_attention_heads _a : Optional[Any] = intermediate_size _a : Union[str, Any] = hidden_act _a : str = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : List[str] = initializer_range _a : str = layer_norm_eps _a : List[str] = image_size _a : str = patch_size _a : Optional[int] = num_channels _a : List[str] = use_mask_token _a : Optional[Any] = use_absolute_position_embeddings _a : Tuple = use_relative_position_bias _a : Optional[int] = use_shared_relative_position_bias _a : Any = layer_scale_init_value _a : List[str] = drop_path_rate _a : Dict = use_mean_pooling # decode head attributes (semantic segmentation) _a : str = out_indices _a : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) _a : Optional[int] = use_auxiliary_head _a : Optional[Any] = auxiliary_loss_weight _a : List[Any] = auxiliary_channels _a : str = auxiliary_num_convs _a : List[str] = auxiliary_concat_input _a : Optional[Any] = semantic_loss_ignore_index class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowercase ( self ) -> float: return 1e-4
14
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase : List[Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]=None) -> List[str]: '''simple docstring''' if subparsers is not None: __UpperCamelCase : int = subparsers.add_parser("tpu-config" , description=_description) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description) # Core arguments __UpperCamelCase : Optional[Any] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`.") config_args.add_argument( "--config_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_lowerCamelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_lowerCamelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __UpperCamelCase : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU.") pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_lowerCamelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it.") if subparsers is not None: parser.set_defaults(func=_lowerCamelCase) return parser def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Dict: '''simple docstring''' __UpperCamelCase : List[str] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCamelCase): __UpperCamelCase : Dict = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCamelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: __UpperCamelCase : int = defaults.commands if not args.tpu_name: __UpperCamelCase : int = defaults.tpu_name if not args.tpu_zone: __UpperCamelCase : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCamelCase : List[str] = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __UpperCamelCase : Optional[int] = "accelerate -U" elif isinstance(parse(args.accelerate_version) , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod.") if args.command_file: with open(args.command_file , "r") as f: __UpperCamelCase : List[Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCamelCase : str = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command __UpperCamelCase : str = "; ".join(_lowerCamelCase) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCamelCase : List[Any] = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(_lowerCamelCase)}') return subprocess.run(_lowerCamelCase) print("Successfully setup pod.") def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = tpu_command_parser() __UpperCamelCase : Optional[Any] = parser.parse_args() tpu_command_launcher(_lowerCamelCase)
557
0
'''simple docstring''' __snake_case = { '''km/h''': 1.0, '''m/s''': 3.6, '''mph''': 1.60_9344, '''knot''': 1.852, } __snake_case = { '''km/h''': 1.0, '''m/s''': 0.2_7777_7778, '''mph''': 0.6_2137_1192, '''knot''': 0.5_3995_6803, } def a ( __a , __a , __a ) -> float: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: UpperCamelCase__ :Optional[Any] = ( f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' f'''Valid values are: {", ".join(__a )}''' ) raise ValueError(__a ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import torch from torch import nn class lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1 , UpperCamelCase_=False ): '''simple docstring''' super().__init__() UpperCamelCase__ :Dict = n_token UpperCamelCase__ :List[Any] = d_embed UpperCamelCase__ :Dict = d_proj UpperCamelCase__ :Dict = cutoffs + [n_token] UpperCamelCase__ :Union[str, Any] = [0] + self.cutoffs UpperCamelCase__ :Any = div_val UpperCamelCase__ :int = self.cutoffs[0] UpperCamelCase__ :List[Any] = len(self.cutoffs ) - 1 UpperCamelCase__ :List[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase__ :Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase__ :Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase__ :Union[str, Any] = nn.ModuleList() UpperCamelCase__ :str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase_ , UpperCamelCase_ ) ) ) else: self.out_projs.append(UpperCamelCase_ ) self.out_layers.append(nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase__ , UpperCamelCase__ :List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ :Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase_ , UpperCamelCase_ ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase_ , r_idx - l_idx ) ) UpperCamelCase__ :Tuple = keep_order def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if proj is None: UpperCamelCase__ :List[str] = nn.functional.linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase__ :Any = nn.functional.linear(UpperCamelCase_ , proj.t().contiguous() ) UpperCamelCase__ :Union[str, Any] = nn.functional.linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCamelCase__ :Optional[Any] = hidden[..., :-1, :].contiguous() UpperCamelCase__ :Optional[Any] = labels[..., 1:].contiguous() UpperCamelCase__ :Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase__ :str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCamelCase__ :int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase__ :Optional[int] = self._compute_logit(UpperCamelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase__ :int = labels != -100 UpperCamelCase__ :List[Any] = torch.zeros_like(UpperCamelCase_ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase__ :str = ( -nn.functional.log_softmax(UpperCamelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase__ :Dict = nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ :Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ :str = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ :Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ :Optional[Any] = self.out_layers[i].weight UpperCamelCase__ :Optional[int] = self.out_layers[i].bias if i == 0: UpperCamelCase__ :str = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase__ :List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase_ ) biases.append(UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ :str = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) if labels is None: UpperCamelCase__ :Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase__ :Any = torch.zeros_like(UpperCamelCase_ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase__ :Any = 0 UpperCamelCase__ :str = [0] + self.cutoffs for i in range(len(UpperCamelCase_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase__ :Any = (labels >= l_idx) & (labels < r_idx) UpperCamelCase__ :int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase__ :Tuple = labels.index_select(0 , UpperCamelCase_ ) - l_idx UpperCamelCase__ :str = head_logprob.index_select(0 , UpperCamelCase_ ) UpperCamelCase__ :int = hidden.index_select(0 , UpperCamelCase_ ) else: UpperCamelCase__ :Dict = hidden if i == 0: if labels is not None: UpperCamelCase__ :Any = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ :List[str] = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ :str = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) UpperCamelCase__ :Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase__ :List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ :List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase__ :Dict = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.n_clusters == 0: UpperCamelCase__ :Optional[Any] = self._compute_logit(UpperCamelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ :List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ :Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ :Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ :str = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ :List[Any] = self.out_layers[i].weight UpperCamelCase__ :List[Any] = self.out_layers[i].bias if i == 0: UpperCamelCase__ :Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase__ :Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase_ ) biases.append(UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ :Optional[int] = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase__ :Union[str, Any] = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) UpperCamelCase__ :int = [0] + self.cutoffs for i in range(len(UpperCamelCase_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase__ :str = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ :List[str] = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Tuple = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) UpperCamelCase__ :Optional[Any] = head_logprob[:, -i] + tail_logprob_i UpperCamelCase__ :Union[str, Any] = logprob_i return out
280
0
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = ["""torch""", """scipy"""] def __init__( self , *__magic_name__ , **__magic_name__ ): requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def UpperCamelCase__ ( cls , *__magic_name__ , **__magic_name__ ): requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def UpperCamelCase__ ( cls , *__magic_name__ , **__magic_name__ ): requires_backends(cls , ["""torch""", """scipy"""] )
681
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _a ( lowerCamelCase ): # vision encoder if "img_encoder.pos_embed" in name: lowerCamelCase : Tuple = name.replace("""img_encoder.pos_embed""", """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase : Union[str, Any] = name.replace("""img_encoder.patch_embed.proj""", """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase : Optional[int] = name.replace("""img_encoder.patch_embed.norm""", """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowerCamelCase : List[str] = name.replace("""img_encoder.layers""", """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowerCamelCase : List[Any] = name.replace("""blocks""", """layers""" ) if "attn" in name and "pre_assign" not in name: lowerCamelCase : Optional[int] = name.replace("""attn""", """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase : Optional[int] = name.replace("""proj""", """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase : Any = name.replace("""pre_assign_attn.attn.proj""", """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowerCamelCase : Optional[Any] = name.replace("""norm1""", """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase : Union[str, Any] = name.replace("""norm2""", """layer_norm2""" ) if "img_encoder.norm" in name: lowerCamelCase : Optional[int] = name.replace("""img_encoder.norm""", """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase : int = name.replace("""text_encoder.token_embedding""", """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowerCamelCase : Optional[Any] = name.replace("""text_encoder.positional_embedding""", """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase : Optional[Any] = name.replace("""text_encoder.transformer.resblocks.""", """text_model.encoder.layers.""" ) if "ln_1" in name: lowerCamelCase : Optional[Any] = name.replace("""ln_1""", """layer_norm1""" ) if "ln_2" in name: lowerCamelCase : str = name.replace("""ln_2""", """layer_norm2""" ) if "c_fc" in name: lowerCamelCase : Any = name.replace("""c_fc""", """fc1""" ) if "c_proj" in name: lowerCamelCase : Tuple = name.replace("""c_proj""", """fc2""" ) if "text_encoder" in name: lowerCamelCase : List[str] = name.replace("""text_encoder""", """text_model""" ) if "ln_final" in name: lowerCamelCase : Tuple = name.replace("""ln_final""", """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase : Optional[int] = name.replace("""img_projector.linear_hidden.""", """visual_projection.""" ) if "img_projector.linear_out." in name: lowerCamelCase : Tuple = name.replace("""img_projector.linear_out.""", """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowerCamelCase : Tuple = name.replace("""text_projector.linear_hidden""", """text_projection""" ) if "text_projector.linear_out" in name: lowerCamelCase : Tuple = name.replace("""text_projector.linear_out""", """text_projection.3""" ) return name def _a ( lowerCamelCase, lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase : Tuple = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase : Any = key.split(""".""" ) lowerCamelCase , lowerCamelCase : Optional[Any] = int(key_split[2] ), int(key_split[4] ) lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: lowerCamelCase : int = val[:dim, :] lowerCamelCase : List[str] = val[dim : dim * 2, :] lowerCamelCase : Dict = val[-dim:, :] else: lowerCamelCase : List[Any] = val[:dim] lowerCamelCase : List[Any] = val[dim : dim * 2] lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase : str = key.split(""".""" ) lowerCamelCase : Optional[int] = int(key_split[3] ) lowerCamelCase : List[str] = config.text_config.hidden_size if "weight" in key: lowerCamelCase : Optional[int] = val[:dim, :] lowerCamelCase : Any = val[ dim : dim * 2, : ] lowerCamelCase : Optional[Any] = val[-dim:, :] else: lowerCamelCase : Union[str, Any] = val[:dim] lowerCamelCase : Optional[int] = val[dim : dim * 2] lowerCamelCase : Union[str, Any] = val[-dim:] else: lowerCamelCase : List[Any] = rename_key(lowerCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase : Any = val.squeeze_() else: lowerCamelCase : Union[str, Any] = val return orig_state_dict def _a ( ): lowerCamelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase : List[str] = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase="groupvit-gcc-yfcc", lowerCamelCase=False ): lowerCamelCase : int = GroupViTConfig() lowerCamelCase : Dict = GroupViTModel(lowerCamelCase ).eval() lowerCamelCase : Optional[int] = torch.load(lowerCamelCase, map_location="""cpu""" )["""model"""] lowerCamelCase : Tuple = convert_state_dict(lowerCamelCase, lowerCamelCase ) lowerCamelCase , lowerCamelCase : Tuple = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase ) == 0) # verify result lowerCamelCase : int = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowerCamelCase : int = prepare_img() lowerCamelCase : int = processor(text=["""a photo of a cat""", """a photo of a dog"""], images=lowerCamelCase, padding=lowerCamelCase, return_tensors="""pt""" ) with torch.no_grad(): lowerCamelCase : int = model(**lowerCamelCase ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase : Any = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase : Any = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image, lowerCamelCase, atol=1e-3 ) processor.save_pretrained(lowerCamelCase ) model.save_pretrained(lowerCamelCase ) print("""Successfully saved processor and model to""", lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCamelCase, organization="""nielsr""" ) model.push_to_hub(lowerCamelCase, organization="""nielsr""" ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _lowerCamelCase =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
681
1
'''simple docstring''' from torch import nn def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a : int = numpy.array([0, 0]) a : Optional[Any] = numpy.array([0.5, 0.866_0254]) a : Tuple = numpy.array([1, 0]) a : List[str] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _SCREAMING_SNAKE_CASE ( _lowercase : list[numpy.ndarray] , _lowercase : int ) ->list[numpy.ndarray]: '''simple docstring''' a : List[str] = initial_vectors for _ in range(_lowercase ): a : Optional[Any] = iteration_step(_lowercase ) return vectors def _SCREAMING_SNAKE_CASE ( _lowercase : list[numpy.ndarray] ) ->list[numpy.ndarray]: '''simple docstring''' a : Union[str, Any] = [] for i, start_vector in enumerate(vectors[:-1] ): a : str = vectors[i + 1] new_vectors.append(_lowercase ) a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _SCREAMING_SNAKE_CASE ( _lowercase : numpy.ndarray , _lowercase : float ) ->numpy.ndarray: '''simple docstring''' a : int = numpy.radians(_lowercase ) a, a : Optional[int] = numpy.cos(_lowercase ), numpy.sin(_lowercase ) a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowercase , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : list[numpy.ndarray] ) ->None: '''simple docstring''' a : Dict = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a, a : Any = zip(*_lowercase ) plt.plot(_lowercase , _lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a : Optional[int] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
633
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCAmelCase ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None @property def A ( self : Optional[Any] ) -> Union[str, Any]: return self.feat_extract_tester.prepare_feat_extract_dict() def A ( self : List[Any] ) -> Optional[Any]: lowercase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A_ , '''feature_size''' ) ) self.assertTrue(hasattr(A_ , '''sampling_rate''' ) ) self.assertTrue(hasattr(A_ , '''padding_value''' ) ) def A ( self : str ) -> List[str]: lowercase_ : Any = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Dict = feat_extract.model_input_names[0] lowercase_ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(A_ ) == len(A_ ) for x, y in zip(A_ , processed_features[input_name] ) ) ) lowercase_ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) lowercase_ : int = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowercase_ : Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase_ : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def A ( self : List[str] ) -> Optional[int]: lowercase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) lowercase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : List[Any] = feat_extract.model_input_names[0] lowercase_ : str = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowercase_ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase_ : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) lowercase_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : List[str] = feat_extract.model_input_names[0] lowercase_ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) lowercase_ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase_ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def A ( self : int , A : Union[str, Any]=False ) -> Optional[Any]: def _inputs_have_equal_length(A : int ): lowercase_ : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(A_ ) != length: return False return True def _inputs_are_equal(A : int , A : Optional[int] ): if len(A_ ) != len(A_ ): return False for input_slice_a, input_slice_a in zip(A_ , A_ ): if not np.allclose(np.asarray(A_ ) , np.asarray(A_ ) , atol=1e-3 ): return False return True lowercase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=A_ ) lowercase_ : Tuple = feat_extract.model_input_names[0] lowercase_ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase_ : Dict = self.feat_extract_tester.seq_length_diff lowercase_ : Optional[int] = self.feat_extract_tester.max_seq_length + pad_diff lowercase_ : Optional[int] = self.feat_extract_tester.min_seq_length lowercase_ : List[str] = self.feat_extract_tester.batch_size lowercase_ : str = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase_ : Optional[Any] = feat_extract.pad(A_ , padding=A_ ) lowercase_ : List[str] = input_a[input_name] lowercase_ : Optional[Any] = feat_extract.pad(A_ , padding='''longest''' ) lowercase_ : List[Any] = input_a[input_name] lowercase_ : List[str] = feat_extract.pad(A_ , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) lowercase_ : Optional[int] = input_a[input_name] lowercase_ : Any = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' ) lowercase_ : int = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''max_length''' )[input_name] lowercase_ : List[Any] = feat_extract.pad( A_ , padding='''max_length''' , max_length=A_ , return_tensors='''np''' ) lowercase_ : List[str] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase_ : List[str] = feat_extract.pad(A_ , pad_to_multiple_of=10 ) lowercase_ : Union[str, Any] = input_a[input_name] lowercase_ : int = feat_extract.pad(A_ , padding='''longest''' , pad_to_multiple_of=10 ) lowercase_ : List[Any] = input_a[input_name] lowercase_ : Union[str, Any] = feat_extract.pad( A_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A_ ) lowercase_ : str = input_a[input_name] lowercase_ : str = feat_extract.pad( A_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A_ , return_tensors='''np''' , ) lowercase_ : Any = input_a[input_name] self.assertTrue(all(len(A_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) lowercase_ : int = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(A_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowercase_ : List[str] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def A ( self : List[Any] , A : Optional[int]=False ) -> Dict: def _inputs_have_equal_length(A : Any ): lowercase_ : List[Any] = len(input[0] ) for input_slice in input[1:]: if len(A_ ) != length: return False return True def _inputs_are_equal(A : str , A : str ): if len(A_ ) != len(A_ ): return False for input_slice_a, input_slice_a in zip(A_ , A_ ): if not np.allclose(np.asarray(A_ ) , np.asarray(A_ ) , atol=1e-3 ): return False return True lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=A_ ) lowercase_ : List[str] = feat_extract.model_input_names[0] lowercase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowercase_ : Optional[int] = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=A_ ) lowercase_ : Union[str, Any] = input_a[input_name] lowercase_ : str = feat_extract.pad(A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) lowercase_ : Any = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertFalse(_inputs_have_equal_length(A_ ) ) # truncate to smallest with np lowercase_ : str = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=A_ , ) lowercase_ : List[Any] = input_a[input_name] lowercase_ : Union[str, Any] = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) lowercase_ : Dict = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A_ ) ) # truncate to middle lowercase_ : Optional[int] = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A_ , return_tensors='''np''' , ) lowercase_ : Any = input_a[input_name] lowercase_ : Optional[int] = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A_ ) lowercase_ : Tuple = input_a[input_name] lowercase_ : Optional[Any] = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) lowercase_ : List[Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , truncation=A_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''longest''' , truncation=A_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''longest''' , truncation=A_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''max_length''' , truncation=A_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase_ : Any = 12 lowercase_ : Optional[int] = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A_ , truncation=A_ , ) lowercase_ : str = input_a[input_name] lowercase_ : Any = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A_ , ) lowercase_ : Optional[int] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase_ : List[str] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowercase_ : Any = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertFalse(_inputs_have_equal_length(A_ ) ) def A ( self : int ) -> str: self._check_padding(numpify=A_ ) def A ( self : Optional[int] ) -> Optional[Any]: self._check_padding(numpify=A_ ) def A ( self : List[Any] ) -> Dict: self._check_truncation(numpify=A_ ) def A ( self : int ) -> str: self._check_truncation(numpify=A_ ) @require_torch def A ( self : Optional[Any] ) -> List[str]: lowercase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : str = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : Union[str, Any] = feat_extract.model_input_names[0] lowercase_ : Tuple = BatchFeature({input_name: speech_inputs} ) lowercase_ : Optional[Any] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase_ : Union[str, Any] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def A ( self : int ) -> Tuple: lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Dict = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : Tuple = feat_extract.model_input_names[0] lowercase_ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase_ : Optional[Any] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase_ : Optional[int] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def A ( self : Dict ) -> List[Any]: lowercase_ : List[Any] = self.feat_extract_dict lowercase_ : Union[str, Any] = True lowercase_ : int = self.feature_extraction_class(**A_ ) lowercase_ : Dict = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : List[str] = [len(A_ ) for x in speech_inputs] lowercase_ : Optional[Any] = feat_extract.model_input_names[0] lowercase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) lowercase_ : Optional[int] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , A_ ) def A ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ : int = self.feat_extract_dict lowercase_ : int = True lowercase_ : int = self.feature_extraction_class(**A_ ) lowercase_ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : int = [len(A_ ) for x in speech_inputs] lowercase_ : List[str] = feat_extract.model_input_names[0] lowercase_ : List[str] = BatchFeature({input_name: speech_inputs} ) lowercase_ : Any = min(A_ ) lowercase_ : List[str] = feat_extract.pad( A_ , padding='''max_length''' , max_length=A_ , truncation=A_ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
705
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowercase ( ): lowercase_ : int = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=__snake_case , default=__snake_case , required=__snake_case , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=__snake_case , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=__snake_case , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=__snake_case , default=4_2 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=__snake_case , default=0 , help='''cuda_id.''' , ) lowercase_ : Optional[Any] = parser.parse_args() return args def lowercase ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : str ): if not len(__snake_case ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) lowercase_ , lowercase_ : Union[str, Any] = imgs[0].size lowercase_ : Dict = Image.new('''RGB''' , size=(cols * w, rows * h) ) lowercase_ , lowercase_ : str = grid.size for i, img in enumerate(__snake_case ): grid.paste(__snake_case , box=(i % cols * w, i // cols * h) ) return grid def lowercase ( __snake_case : Dict , __snake_case : List[str]="robotic cat with wings" , __snake_case : Optional[int]=7.5 , __snake_case : Tuple=5_0 , __snake_case : Dict=1 , __snake_case : List[Any]=4_2 , ): lowercase_ : Optional[Any] = torch.Generator(pipeline.device ).manual_seed(__snake_case ) lowercase_ : str = pipeline( __snake_case , guidance_scale=__snake_case , num_inference_steps=__snake_case , generator=__snake_case , num_images_per_prompt=__snake_case , ).images lowercase_ : Dict = int(math.sqrt(__snake_case ) ) lowercase_ : Union[str, Any] = image_grid(__snake_case , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __A : Union[str, Any] = parse_args() # Load models and create wrapper for stable diffusion __A : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __A : int = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __A : Tuple = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __A : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __A : Union[str, Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __A : int = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __A : List[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __A : Tuple = unet.to(torch.device('''cuda''', args.cuda_id)) __A : str = pipeline.to(unet.device) __A , __A : Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __A : Tuple = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
141
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } UpperCAmelCase = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } UpperCAmelCase = { '''jukebox''': 512, } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES _UpperCamelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case , snake_case , snake_case=["v3", "v2", "v2"] , snake_case=512 , snake_case=5 , snake_case="<|endoftext|>" , **snake_case , ): lowercase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token super().__init__( unk_token=snake_case , n_genres=snake_case , version=snake_case , max_n_lyric_tokens=snake_case , **snake_case , ) lowercase = version lowercase = max_n_lyric_tokens lowercase = n_genres with open(snake_case , encoding='utf-8' ) as vocab_handle: lowercase = json.load(snake_case ) with open(snake_case , encoding='utf-8' ) as vocab_handle: lowercase = json.load(snake_case ) with open(snake_case , encoding='utf-8' ) as vocab_handle: lowercase = json.load(snake_case ) lowercase = r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowercase = oov.replace(r'\-\'' , r'\-+\'' ) lowercase = regex.compile(snake_case ) lowercase = {v: k for k, v in self.artists_encoder.items()} lowercase = {v: k for k, v in self.genres_encoder.items()} lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE__ ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = [self.artists_encoder.get(snake_case , 0 ) for artist in list_artists] for genres in range(len(snake_case ) ): lowercase = [self.genres_encoder.get(snake_case , 0 ) for genre in list_genres[genres]] lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowercase = [[self.lyrics_encoder.get(snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return list(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): lowercase , lowercase , lowercase = self.prepare_for_tokenization(snake_case , snake_case , snake_case ) lowercase = self._tokenize(snake_case ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowercase = artists[idx].lower() lowercase = [genres[idx].lower()] else: lowercase = self._normalize(artists[idx] ) + '.v2' lowercase = [ self._normalize(snake_case ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowercase = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' lowercase = {vocab[index]: index + 1 for index in range(len(snake_case ) )} lowercase = 0 lowercase = len(snake_case ) + 1 lowercase = self.vocab lowercase = {v: k for k, v in self.vocab.items()} lowercase = '' else: lowercase = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) lowercase = self._run_strip_accents(snake_case ) lowercase = lyrics.replace('\\' , '\n' ) lowercase = self.out_of_vocab.sub('' , snake_case ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = unicodedata.normalize('NFD' , snake_case ) lowercase = [] for char in text: lowercase = unicodedata.category(snake_case ) if cat == "Mn": continue output.append(snake_case ) return "".join(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ( [chr(snake_case ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(snake_case ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(snake_case ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) lowercase = frozenset(snake_case ) lowercase = re.compile(r'_+' ) lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) lowercase = pattern.sub('_' , snake_case ).strip('_' ) return text def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return " ".join(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): # Convert to TensorType if not isinstance(snake_case , snake_case ): lowercase = TensorType(snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf lowercase = tf.constant lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch lowercase = torch.tensor lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 lowercase = jnp.array lowercase = _is_jax else: lowercase = np.asarray lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowercase = [inputs] if not is_tensor(snake_case ): lowercase = as_tensor(snake_case ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self , snake_case , snake_case , snake_case="" , snake_case="pt" ): lowercase = [0, 0, 0] lowercase = [artist] * len(self.version ) lowercase = [genres] * len(self.version ) lowercase , lowercase , lowercase = self.tokenize(snake_case , snake_case , snake_case ) lowercase , lowercase , lowercase = self._convert_token_to_id(snake_case , snake_case , snake_case ) lowercase = [-INFINITY] * len(full_tokens[-1] ) lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=snake_case ) ) lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=snake_case ) ) lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=snake_case ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.artists_decoder.get(snake_case ) lowercase = [self.genres_decoder.get(snake_case ) for genre in genres_index] lowercase = [self.lyrics_decoder.get(snake_case ) for character in lyric_index] return artist, genres, lyrics
84
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = "pytorch_model.bin" @dataclasses.dataclass class A : _SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} ,) @dataclasses.dataclass class A : _SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """A csv or a json file containing the validation data."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """The name of the task to train on."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class A : _SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default="""accuracy""" ,metadata={"""help""": """The evaluation metric used for the task."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default="""no""" ,metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=10 ,metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 ,metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 ,metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=100 ,metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Random seed for initialization."""} ,) def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: _snake_case : Optional[Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _snake_case : Any = dataset.filter(lambda lowercase_ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _snake_case : Any = int(eval_result * len(lowercase_ ) ) print(lowercase_ ) _snake_case : Optional[int] = dataset.sort('''probability''' , reverse=lowercase_ ) _snake_case : int = dataset.select(range(lowercase_ ) ) _snake_case : Union[str, Any] = dataset.remove_columns(['''label''', '''probability'''] ) _snake_case : int = dataset.rename_column('''prediction''' , '''label''' ) _snake_case : Optional[Any] = dataset.map(lambda lowercase_ : {"label": idalabel[example["label"]]} ) _snake_case : Tuple = dataset.shuffle(seed=args.seed ) _snake_case : Dict = os.path.join(lowercase_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase_ , index=lowercase_ ) else: dataset.to_json(lowercase_ ) def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) -> Union[str, Any]: _snake_case : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _snake_case : Optional[int] = STModelArguments(model_name_or_path=lowercase_ ) _snake_case : Optional[int] = STDataArguments(train_file=lowercase_ , infer_file=lowercase_ ) _snake_case : Union[str, Any] = STTrainingArguments(output_dir=lowercase_ ) _snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase_ ).items(): setattr(lowercase_ , lowercase_ , lowercase_ ) for key, value in kwargs.items(): if hasattr(lowercase_ , lowercase_ ): setattr(lowercase_ , lowercase_ , lowercase_ ) # Sanity checks _snake_case : Optional[Any] = {} _snake_case : int = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _snake_case : int = args.train_file _snake_case : str = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _snake_case : Optional[Any] = args.eval_file for key in data_files: _snake_case : Optional[Any] = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: _snake_case : int = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _snake_case : Dict = f'''{args.output_dir}/self-train_iter-{{}}'''.format _snake_case : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) accelerator.wait_for_everyone() _snake_case : Dict = None _snake_case : str = None _snake_case : int = 0 _snake_case : Dict = False # Show the progress bar _snake_case : Any = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _snake_case : Union[str, Any] = data_dir_format(lowercase_ ) assert os.path.exists(lowercase_ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _snake_case : List[Any] = os.path.join(lowercase_ , '''stage-1''' ) _snake_case : str = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase_ , lowercase_ ): arguments_dict.update({key: value} ) _snake_case : List[Any] = os.path.join(lowercase_ , '''best-checkpoint''' , lowercase_ ) if os.path.exists(lowercase_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowercase_ , lowercase_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowercase_ ) finetune(**lowercase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase_ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowercase_ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _snake_case : int = os.path.join(lowercase_ , '''best-checkpoint''' ) _snake_case : Any = os.path.join(lowercase_ , '''stage-2''' ) # Update arguments_dict _snake_case : Dict = model_path _snake_case : Union[str, Any] = data_files['''train'''] _snake_case : Optional[int] = current_output_dir _snake_case : Dict = os.path.join(lowercase_ , '''best-checkpoint''' , lowercase_ ) if os.path.exists(lowercase_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowercase_ , lowercase_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowercase_ ) finetune(**lowercase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase_ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowercase_ ) _snake_case : List[Any] = iteration _snake_case : Any = data_dir_format(iteration + 1 ) _snake_case : Optional[int] = AutoConfig.from_pretrained(os.path.join(lowercase_ , '''best-checkpoint''' ) ) _snake_case : Union[str, Any] = config.idalabel _snake_case : Tuple = os.path.join(lowercase_ , '''eval_results_best-checkpoint.json''' ) _snake_case : Any = os.path.join(lowercase_ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase_ ) with open(lowercase_ , '''r''' ) as f: _snake_case : Tuple = float(json.load(lowercase_ )[args.eval_metric] ) _snake_case : List[str] = os.path.join(lowercase_ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase_ ) # Loading the dataset from local csv or json files. _snake_case : str = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] _snake_case : Dict = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase_ , exist_ok=lowercase_ ) shutil.copy(lowercase_ , os.path.join(lowercase_ , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase_ ): shutil.copy(lowercase_ , os.path.join(lowercase_ , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.wait_for_everyone() _snake_case : Tuple = os.path.join(lowercase_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _snake_case : Tuple = eval_result if best_iteration is None: _snake_case : Union[str, Any] = new_iteration _snake_case : List[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _snake_case : Optional[int] = new_iteration _snake_case : Optional[int] = new_eval_result _snake_case : Optional[int] = 0 else: if new_eval_result == best_eval_result: _snake_case : int = new_iteration _snake_case : str = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _snake_case : Dict = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowercase_ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase_ , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase_ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase_ , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase_ , '''eval_results_best-iteration.json''' ) , )
326
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp _lowerCAmelCase : int = 5 _lowerCAmelCase : str = 10 @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = SpeechaTextTokenizer _lowerCamelCase : Tuple = False _lowerCamelCase : Dict = True def lowercase ( self ): super().setUp() lowerCAmelCase : Dict = sp.SentencePieceProcessor() spm_model.Load(snake_case__ ) lowerCAmelCase : int = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(snake_case__ ) )] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : int = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) lowerCAmelCase : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : str = '<pad>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 1001 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def lowercase ( self ): lowerCAmelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def lowercase ( self ): # fmt: off lowerCAmelCase : int = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : Optional[Any] = """valhalla/s2t_mustc_multilinguial_medium""" _lowerCamelCase : int = """C'est trop cool""" _lowerCamelCase : List[str] = """Esto es genial""" @classmethod def lowercase ( cls ): lowerCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase ( self ): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def lowercase ( self ): self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def lowercase ( self ): self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) lowerCAmelCase : List[str] = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase : Union[str, Any] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCAmelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = 'fr' lowerCAmelCase : str = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , snake_case__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase ( self ): lowerCAmelCase : List[Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase : Dict = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' def snake_case_ (UpperCamelCase : list[int] , UpperCamelCase : list[int] ): '''simple docstring''' _a = len(UpperCamelCase ) print('''The following activities are selected:''' ) # The first activity is always selected _a = 0 print(UpperCamelCase , end=''',''' ) # Consider rest of the activities for j in range(UpperCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCamelCase , end=''',''' ) _a = j if __name__ == "__main__": import doctest doctest.testmod() _snake_case : Optional[Any] = [1, 3, 0, 5, 8, 5] _snake_case : Tuple = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
22
"""simple docstring""" import functools def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[Any] = len(_A ) snake_case_ :Optional[int] = len(_A ) @functools.cache def min_distance(_A, _A ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ :str = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, _A ), 1 + min_distance(_A, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
584
0
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Tuple=False ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): snake_case__ : int = len(set_a.intersection(snake_case_ ) ) if alternative_union: snake_case__ : List[Any] = len(snake_case_ ) + len(snake_case_ ) else: snake_case__ : List[str] = len(set_a.union(snake_case_ ) ) return intersection / union if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ): snake_case__ : Dict = [element for element in set_a if element in set_b] if alternative_union: snake_case__ : int = len(snake_case_ ) + len(snake_case_ ) return len(snake_case_ ) / union else: snake_case__ : List[str] = set_a + [element for element in set_b if element not in set_a] return len(snake_case_ ) / len(snake_case_ ) return len(snake_case_ ) / len(snake_case_ ) return None if __name__ == "__main__": __lowerCamelCase : str = {"""a""", """b""", """c""", """d""", """e"""} __lowerCamelCase : int = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
719
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters snake_case_ : List[Any] = logging.get_logger(__name__) def lowercase_ ( _lowercase : Tuple , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Tuple=None , _lowercase : List[Any]=None ): '''simple docstring''' if "." in tensor_name: UpperCAmelCase : Optional[Any] = tensor_name.split("." ) for split in splits[:-1]: UpperCAmelCase : int = getattr(_lowercase , _lowercase ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCAmelCase : Optional[int] = new_module UpperCAmelCase : Union[str, Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCAmelCase : str = tensor_name in module._buffers UpperCAmelCase : List[Any] = getattr(_lowercase , _lowercase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCAmelCase : Any = False UpperCAmelCase : List[str] = False if is_buffer or not is_bitsandbytes_available(): UpperCAmelCase : List[Any] = False UpperCAmelCase : List[Any] = False else: UpperCAmelCase : Union[str, Any] = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCAmelCase : List[Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCAmelCase : int = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCAmelCase : List[str] = old_value.to(_lowercase ) elif isinstance(_lowercase , torch.Tensor ): UpperCAmelCase : str = value.to("cpu" ) if value.dtype == torch.inta: UpperCAmelCase : Any = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: UpperCAmelCase : str = torch.tensor(_lowercase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowercase ) and fpaa_statistics is None: UpperCAmelCase : Union[str, Any] = new_value.T UpperCAmelCase : Tuple = old_value.__dict__ if is_abit: UpperCAmelCase : Optional[int] = bnb.nn.IntaParams(_lowercase , requires_grad=_lowercase , **_lowercase ).to(_lowercase ) elif is_abit: UpperCAmelCase : Tuple = bnb.nn.Paramsabit(_lowercase , requires_grad=_lowercase , **_lowercase ).to(_lowercase ) UpperCAmelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCAmelCase : Any = old_value.to(_lowercase ) elif isinstance(_lowercase , torch.Tensor ): UpperCAmelCase : Any = value.to(_lowercase ) else: UpperCAmelCase : List[Any] = torch.tensor(_lowercase , device=_lowercase ) if is_buffer: UpperCAmelCase : List[Any] = new_value else: UpperCAmelCase : List[Any] = nn.Parameter(_lowercase , requires_grad=old_value.requires_grad ) UpperCAmelCase : List[Any] = new_value def lowercase_ ( _lowercase : str , _lowercase : Optional[int]=None , _lowercase : List[str]=None , _lowercase : Tuple=None , _lowercase : Union[str, Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase : Any = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase , nn.Linear ) or isinstance(_lowercase , _lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase , _lowercase ): UpperCAmelCase , UpperCAmelCase : List[str] = module.weight.shape else: UpperCAmelCase : Dict = module.in_features UpperCAmelCase : Optional[Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCAmelCase : List[Any] = bnb.nn.LinearabitLt( _lowercase , _lowercase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCAmelCase : Optional[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCAmelCase : List[str] = bnb.nn.Linearabit( _lowercase , _lowercase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCAmelCase : int = True # Store the module class in case we need to transpose the weight later UpperCAmelCase : Union[str, Any] = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCAmelCase , UpperCAmelCase : str = _replace_with_bnb_linear( _lowercase , _lowercase , _lowercase , _lowercase , has_been_replaced=_lowercase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( _lowercase : List[str] , _lowercase : Union[str, Any]=None , _lowercase : Dict=None , _lowercase : Any=None ): '''simple docstring''' UpperCAmelCase : Tuple = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert UpperCAmelCase , UpperCAmelCase : List[Any] = _replace_with_bnb_linear( _lowercase , _lowercase , _lowercase , _lowercase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowercase_ ( *_lowercase : List[str] , **_lowercase : List[str] ): '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _lowercase , ) return replace_with_bnb_linear(*_lowercase , **_lowercase ) def lowercase_ ( *_lowercase : Tuple , **_lowercase : Optional[Any] ): '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _lowercase , ) return set_module_quantized_tensor_to_device(*_lowercase , **_lowercase ) def lowercase_ ( _lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCAmelCase : Optional[Any] = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase : Optional[Any] = sum(_lowercase , [] ) UpperCAmelCase : List[str] = len(_lowercase ) > 0 # Check if it is a base model UpperCAmelCase : Dict = not hasattr(_lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase : str = list(model.named_children() ) UpperCAmelCase : Tuple = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase : Tuple = set(_lowercase ) - set(_lowercase ) UpperCAmelCase : Optional[int] = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCAmelCase : List[Any] = [".weight", ".bias"] UpperCAmelCase : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase : List[Any] = name.replace(_lowercase , "" ) filtered_module_names.append(_lowercase ) return filtered_module_names
595
"""simple docstring""" from math import ceil def lowercase_ ( _lowercase : Any , _lowercase : Dict ): '''simple docstring''' UpperCAmelCase : List[str] = list(range(0 , _lowercase ) ) UpperCAmelCase : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCAmelCase : Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(_lowercase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowercase ) # Missing blocks UpperCAmelCase : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] UpperCAmelCase : Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(_lowercase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(_lowercase ) ) if len(_lowercase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(_lowercase ) ) if len(_lowercase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(_lowercase ) ) def lowercase_ ( _lowercase : Union[str, Any] , _lowercase : int ): '''simple docstring''' UpperCAmelCase : str = list(range(_lowercase ) ) UpperCAmelCase : Tuple = int(ceil(n_layers / len(_lowercase ) ) ) UpperCAmelCase : Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , _lowercase , _lowercase )] return dict(zip(_lowercase , _lowercase ) )
595
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( A__ ): def __init__( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[torch.Generator] = None , UpperCamelCase__ : int = 50 , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , **UpperCamelCase__ : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCamelCase__ , ) UpperCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=UpperCamelCase__ ), "This is a local test"
717
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __magic_name__ ( A__ ): lowercase : "DiagonalGaussianDistribution" class __magic_name__ ( A__, A__ ): lowercase : Union[str, Any] =True @register_to_config def __init__( self : List[str] , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase__ : Tuple[int] = (64,) , UpperCamelCase__ : int = 1 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : int = 4 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : float = 0.1_82_15 , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase = Encoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , down_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , act_fn=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , double_z=UpperCamelCase__ , ) # pass init params to Decoder UpperCAmelCase = Decoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , up_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , act_fn=UpperCamelCase__ , ) UpperCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase = nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) UpperCAmelCase = False UpperCAmelCase = False # only relevant if vae tiling is enabled UpperCAmelCase = self.config.sample_size UpperCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase = 0.25 def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=False ) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase__ , (Encoder, Decoder) ): UpperCAmelCase = value def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : bool = True ) -> Tuple: '''simple docstring''' UpperCAmelCase = use_tiling def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.enable_tiling(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase = True def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCAmelCase = {} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase__ , "set_processor" ): UpperCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , UpperCamelCase__ , UpperCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return processors def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(UpperCamelCase__ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : List[Any] ): if hasattr(UpperCamelCase__ , "set_processor" ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.set_processor(UpperCamelCase__ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , UpperCamelCase__ , UpperCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase__ , return_dict=UpperCamelCase__ ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase = [self.encoder(UpperCamelCase__ ) for x_slice in x.split(1 )] UpperCAmelCase = torch.cat(UpperCamelCase__ ) else: UpperCAmelCase = self.encoder(UpperCamelCase__ ) UpperCAmelCase = self.quant_conv(UpperCamelCase__ ) UpperCAmelCase = DiagonalGaussianDistribution(UpperCamelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase__ , return_dict=UpperCamelCase__ ) UpperCAmelCase = self.post_quant_conv(UpperCamelCase__ ) UpperCAmelCase = self.decoder(UpperCamelCase__ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: UpperCAmelCase = [self._decode(UpperCamelCase__ ).sample for z_slice in z.split(1 )] UpperCAmelCase = torch.cat(UpperCamelCase__ ) else: UpperCAmelCase = self._decode(UpperCamelCase__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase = min(a.shape[2] , b.shape[2] , UpperCamelCase__ ) for y in range(UpperCamelCase__ ): UpperCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' UpperCAmelCase = min(a.shape[3] , b.shape[3] , UpperCamelCase__ ) for x in range(UpperCamelCase__ ): UpperCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> AutoencoderKLOutput: '''simple docstring''' UpperCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase = [] for i in range(0 , x.shape[2] , UpperCamelCase__ ): UpperCAmelCase = [] for j in range(0 , x.shape[3] , UpperCamelCase__ ): UpperCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase = self.encoder(UpperCamelCase__ ) UpperCAmelCase = self.quant_conv(UpperCamelCase__ ) row.append(UpperCamelCase__ ) rows.append(UpperCamelCase__ ) UpperCAmelCase = [] for i, row in enumerate(UpperCamelCase__ ): UpperCAmelCase = [] for j, tile in enumerate(UpperCamelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__ ) if j > 0: UpperCAmelCase = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase__ , dim=3 ) ) UpperCAmelCase = torch.cat(UpperCamelCase__ , dim=2 ) UpperCAmelCase = DiagonalGaussianDistribution(UpperCamelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase = [] for i in range(0 , z.shape[2] , UpperCamelCase__ ): UpperCAmelCase = [] for j in range(0 , z.shape[3] , UpperCamelCase__ ): UpperCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase = self.post_quant_conv(UpperCamelCase__ ) UpperCAmelCase = self.decoder(UpperCamelCase__ ) row.append(UpperCamelCase__ ) rows.append(UpperCamelCase__ ) UpperCAmelCase = [] for i, row in enumerate(UpperCamelCase__ ): UpperCAmelCase = [] for j, tile in enumerate(UpperCamelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__ ) if j > 0: UpperCAmelCase = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase__ , dim=3 ) ) UpperCAmelCase = torch.cat(UpperCamelCase__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase = sample UpperCAmelCase = self.encode(UpperCamelCase__ ).latent_dist if sample_posterior: UpperCAmelCase = posterior.sample(generator=UpperCamelCase__ ) else: UpperCAmelCase = posterior.mode() UpperCAmelCase = self.decode(UpperCamelCase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ )
457
0
'''simple docstring''' from itertools import permutations def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : tuple ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False a_ : List[Any] = [7, 11, 13, 17] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : int = 10 ): """simple docstring""" return sum( int("""""".join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(f"{solution() = }")
442
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowerCAmelCase_ : int = {'target_lang': 'fi', 'source_lang': 'en'} lowerCAmelCase_ : str = '>>zh<<' lowerCAmelCase_ : List[str] = 'Helsinki-NLP/' if is_torch_available(): lowerCAmelCase_ : Dict = 'pt' elif is_tf_available(): lowerCAmelCase_ : Union[str, Any] = 'tf' else: lowerCAmelCase_ : int = 'jax' @require_sentencepiece class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : Dict = MarianTokenizer __magic_name__ : Any = False __magic_name__ : str = True def lowercase_ ( self : Any ): '''simple docstring''' super().setUp() a_ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] a_ : Optional[int] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) a_ : List[str] = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) a_ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple , **lowercase__ : int ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase_ ( self : int , lowercase__ : int ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Optional[int] = """</s>""" a_ : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase_ ( self : str ): '''simple docstring''' a_ : str = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) a_ : Any = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) a_ : str = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) a_ : Union[str, Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) a_ : Union[str, Any] = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def lowercase_ ( self : str ): '''simple docstring''' a_ : int = self.get_tokenizer() a_ : Dict = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : List[str] = self.get_tokenizer() a_ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : Optional[int] = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowercase_ ( self : int ): '''simple docstring''' a_ : Tuple = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) a_ : Tuple = """Tämä on testi""" a_ : Union[str, Any] = """This is a test""" a_ : Union[str, Any] = [76, 7, 2047, 2] a_ : Optional[int] = [69, 12, 11, 940, 2] a_ : Optional[Any] = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) a_ : Optional[int] = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) a_ : str = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
442
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __A(lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" _UpperCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def __A(lowerCAmelCase , lowerCAmelCase ) -> str: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _UpperCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" _UpperCamelCase = dct.pop(lowerCAmelCase ) _UpperCamelCase = val def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" if "handwritten" in checkpoint_url: _UpperCamelCase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _UpperCamelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def __A(lowerCAmelCase , lowerCAmelCase ) -> str: """simple docstring""" _UpperCamelCase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase ) _UpperCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase = 1_0_2_4 _UpperCamelCase = 4_0_9_6 _UpperCamelCase = 2_4 _UpperCamelCase = 1_6 _UpperCamelCase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = False _UpperCamelCase = """relu""" _UpperCamelCase = 1_0_2_4 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False # load HuggingFace model _UpperCamelCase = ViTModel(lowerCAmelCase , add_pooling_layer=lowerCAmelCase ) _UpperCamelCase = TrOCRForCausalLM(lowerCAmelCase ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=lowerCAmelCase , decoder=lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" , check_hash=lowerCAmelCase )["""model"""] _UpperCamelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase = state_dict.pop(lowerCAmelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: _UpperCamelCase = val else: _UpperCamelCase = val # load state dict model.load_state_dict(lowerCAmelCase ) # Check outputs on an image _UpperCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase = RobertaTokenizer.from_pretrained("""roberta-large""" ) _UpperCamelCase = TrOCRProcessor(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = processor(images=prepare_img(lowerCAmelCase ) , return_tensors="""pt""" ).pixel_values # verify logits _UpperCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase = model(pixel_values=lowerCAmelCase , decoder_input_ids=lowerCAmelCase ) _UpperCamelCase = outputs.logits _UpperCamelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
717
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger() @dataclass class lowerCAmelCase__ : UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=__lowercase ) UpperCamelCase_ : list = field(default_factory=__lowercase ) def A_ ( self , a , a , a ) -> str: '''simple docstring''' _UpperCamelCase = len(list(m.modules() ) ) == 1 or isinstance(a , nn.Convad ) or isinstance(a , nn.BatchNormad ) if has_not_submodules: self.traced.append(a ) def __call__( self , a ) -> Optional[int]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a ) [x.remove() for x in self.handles] return self @property def A_ ( self ) -> Optional[int]: '''simple docstring''' return list(filter(lambda a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__ : UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=__lowercase ) UpperCamelCase_ : List = field(default_factory=__lowercase ) def __call__( self , a ) -> List[Any]: '''simple docstring''' _UpperCamelCase = Tracker(self.dest )(a ).parametrized _UpperCamelCase = Tracker(self.src )(a ).parametrized _UpperCamelCase = list(filter(lambda a : type(a ) not in self.src_skip , a ) ) _UpperCamelCase = list(filter(lambda a : type(a ) not in self.dest_skip , a ) ) if len(a ) != len(a ): raise Exception( F'Numbers of operations are different. Source module has {len(a )} operations while' F' destination module has {len(a )}.' ) for dest_m, src_m in zip(a , a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True ) -> Optional[Any]: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): _UpperCamelCase = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ).eval() _UpperCamelCase = ResNetForImageClassification(lowerCAmelCase ).eval() _UpperCamelCase = ModuleTransfer(src=lowerCAmelCase , dest=lowerCAmelCase ) _UpperCamelCase = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowerCAmelCase ) assert torch.allclose(from_model(lowerCAmelCase ) , our_model(lowerCAmelCase ).logits ), "The model logits don't match the original one." _UpperCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase , ) # we can use the convnext one _UpperCamelCase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __A(lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True ) -> Tuple: """simple docstring""" _UpperCamelCase = """imagenet-1k-id2label.json""" _UpperCamelCase = 1_0_0_0 _UpperCamelCase = (1, num_labels) _UpperCamelCase = """huggingface/label-files""" _UpperCamelCase = num_labels _UpperCamelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _UpperCamelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = partial(lowerCAmelCase , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid=lowerCAmelCase ) _UpperCamelCase = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(lowerCAmelCase , names_to_config[model_name] , lowerCAmelCase , lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
202
0