code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import sys from collections import defaultdict class _A : def __init__( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [] def lowercase__ ( self : int , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" return self.node_position[vertex] def lowercase__ ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[str] = pos def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __snake_case : int = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __snake_case : int = 2 * start + 1 else: __snake_case : Any = 2 * start + 2 if heap[smallest_child] < heap[start]: __snake_case , __snake_case : Tuple = heap[smallest_child], positions[smallest_child] __snake_case , __snake_case : Dict = ( heap[start], positions[start], ) __snake_case , __snake_case : Union[str, Any] = temp, tempa __snake_case : Tuple = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = position[index] while index != 0: __snake_case : List[str] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __snake_case : Optional[Any] = heap[parent] __snake_case : Dict = position[parent] self.set_position(position[parent] , __magic_name__ ) else: __snake_case : int = val __snake_case : int = temp self.set_position(__magic_name__ , __magic_name__ ) break __snake_case : List[str] = parent else: __snake_case : Dict = val __snake_case : Optional[int] = temp self.set_position(__magic_name__ , 0 ) def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : Any = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = positions[0] __snake_case : Optional[int] = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = Heap() __snake_case : List[Any] = [0] * len(_lowerCamelCase ) __snake_case : Dict = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __snake_case : List[Any] = [] # Heap of Distance of vertices from their neighboring vertex __snake_case : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) __snake_case : Optional[int] = [] __snake_case : List[str] = 1 __snake_case : Any = sys.maxsize for neighbor, distance in adjacency_list[0]: __snake_case : List[str] = 0 __snake_case : List[Any] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): __snake_case : Tuple = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __snake_case : Any = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): __snake_case : Tuple = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) __snake_case : int = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase = int(input("Enter number of edges: ").strip()) __UpperCamelCase = defaultdict(list) for _ in range(edges_number): __UpperCamelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case ( enum.Enum ): lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 @add_end_docstrings(__UpperCAmelCase ) class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self :Any , *_lowerCamelCase :Optional[Any] , **_lowerCamelCase :List[str] ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __SCREAMING_SNAKE_CASE : List[str] = None if self.model.config.prefix is not None: __SCREAMING_SNAKE_CASE : int = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __SCREAMING_SNAKE_CASE : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self._sanitize_parameters(prefix=_lowerCamelCase , **self._forward_params ) __SCREAMING_SNAKE_CASE : Optional[int] = {**self._preprocess_params, **preprocess_params} __SCREAMING_SNAKE_CASE : List[str] = {**self._forward_params, **forward_params} def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Optional[int]=None , _lowerCamelCase :int=None , _lowerCamelCase :List[str]=None , _lowerCamelCase :List[Any]=None , _lowerCamelCase :str=None , _lowerCamelCase :Optional[int]=None , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :str=None , **_lowerCamelCase :Dict , ): __SCREAMING_SNAKE_CASE : Optional[int] = {} if prefix is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = prefix if prefix: __SCREAMING_SNAKE_CASE : Any = self.tokenizer( _lowerCamelCase , padding=_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) __SCREAMING_SNAKE_CASE : str = handle_long_generation preprocess_params.update(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = generate_kwargs __SCREAMING_SNAKE_CASE : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE : List[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE : List[str] = ReturnType.TENSORS if return_type is not None: __SCREAMING_SNAKE_CASE : int = return_type if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: __SCREAMING_SNAKE_CASE : Dict = self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) if len(_lowerCamelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def SCREAMING_SNAKE_CASE_ ( self :Dict , *_lowerCamelCase :Any , **_lowerCamelCase :str ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_lowerCamelCase , **_lowerCamelCase ) def __call__( self :Any , _lowerCamelCase :Union[str, Any] , **_lowerCamelCase :List[Any] ): return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Optional[int]="" , _lowerCamelCase :List[Any]=None , **_lowerCamelCase :int ): __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( prefix + prompt_text , padding=_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE : Tuple = prompt_text if handle_long_generation == "hole": __SCREAMING_SNAKE_CASE : Optional[int] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __SCREAMING_SNAKE_CASE : Any = generate_kwargs['''max_new_tokens'''] else: __SCREAMING_SNAKE_CASE : Optional[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __SCREAMING_SNAKE_CASE : str = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __SCREAMING_SNAKE_CASE : Optional[Any] = inputs['''attention_mask'''][:, -keep_length:] return inputs def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :Optional[Any] , **_lowerCamelCase :int ): __SCREAMING_SNAKE_CASE : Optional[int] = model_inputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Dict = model_inputs.get('''attention_mask''' , _lowerCamelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Dict = 1 else: __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.shape[0] __SCREAMING_SNAKE_CASE : int = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __SCREAMING_SNAKE_CASE : Dict = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __SCREAMING_SNAKE_CASE : Any = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __SCREAMING_SNAKE_CASE : Optional[Any] = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __SCREAMING_SNAKE_CASE : List[str] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __SCREAMING_SNAKE_CASE : Tuple = self.model.generate(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": __SCREAMING_SNAKE_CASE : Optional[Any] = generated_sequence.reshape(_lowerCamelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.reshape(_lowerCamelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :List[str] , _lowerCamelCase :Union[str, Any]=ReturnType.FULL_TEXT , _lowerCamelCase :Optional[int]=True ): __SCREAMING_SNAKE_CASE : List[str] = model_outputs['''generated_sequence'''][0] __SCREAMING_SNAKE_CASE : int = model_outputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Dict = model_outputs['''prompt_text'''] __SCREAMING_SNAKE_CASE : Any = generated_sequence.numpy().tolist() __SCREAMING_SNAKE_CASE : List[str] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.decode( _lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __SCREAMING_SNAKE_CASE : List[str] = 0 else: __SCREAMING_SNAKE_CASE : List[Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , ) ) if return_type == ReturnType.FULL_TEXT: __SCREAMING_SNAKE_CASE : List[str] = prompt_text + text[prompt_length:] else: __SCREAMING_SNAKE_CASE : str = text[prompt_length:] __SCREAMING_SNAKE_CASE : Dict = {'''generated_text''': all_text} records.append(_lowerCamelCase ) return records
401
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self :Dict , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = str(id_ ) __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = {} # {vertex:distance} def __lt__( self :Any , _lowerCamelCase :Any ): return self.key < other.key def __repr__( self :Any ): return self.id def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :str ): self.neighbors.append(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :Any , _lowerCamelCase :Tuple ): __SCREAMING_SNAKE_CASE : int = weight def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase_ ) graph[b - 1].add_edge(graph[a - 1] , lowercase_ ) def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = [] for u in graph: __SCREAMING_SNAKE_CASE : Tuple = math.inf __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Dict = graph[:] while q: __SCREAMING_SNAKE_CASE : Tuple = min(lowercase_ ) q.remove(lowercase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Tuple = u __SCREAMING_SNAKE_CASE : List[str] = u.edges[v.id] for i in range(1 , len(lowercase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' for u in graph: __SCREAMING_SNAKE_CASE : Optional[Any] = math.inf __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = list(lowercase_ ) hq.heapify(lowercase_ ) while h: __SCREAMING_SNAKE_CASE : int = hq.heappop(lowercase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Union[str, Any] = u __SCREAMING_SNAKE_CASE : int = u.edges[v.id] hq.heapify(lowercase_ ) for i in range(1 , len(lowercase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
401
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A : Any = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __lowerCAmelCase ( a__ ) -> Dict: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from transformers.testing_utils import pytest_terminal_summary_main __a = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a__ , id=a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __a = 0 # Doctest custom flag to ignore output. A : int = doctest.register_optionflag('IGNORE_RESULT') A : Any = doctest.OutputChecker class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _snake_case , _snake_case , _snake_case ) A : Optional[int] = CustomOutputChecker A : str = HfDoctestModule A : str = HfDocTestParser
219
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __A( unittest.TestCase ): snake_case_ = MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __a = text_generator('''This is a test''' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __a = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _snake_case , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __a = text_generator('''This is a test''' , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case ) self.assertEqual( _snake_case , [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ] , ) __a = text_generator.model.config.eos_token_id __a = '''<pad>''' __a = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ], [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __a = text_generator('''This is a test''' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __a = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TextGenerationPipeline(model=_snake_case , tokenizer=_snake_case ) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = '''Hello I believe in''' __a = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __a = text_generator(_snake_case ) self.assertEqual( _snake_case , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __a = text_generator(_snake_case , stop_sequence=''' fe''' ) self.assertEqual(_snake_case , [{'''generated_text''': '''Hello I believe in fe'''}] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = text_generator.model __a = text_generator.tokenizer __a = text_generator('''This is a test''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __a = text_generator('''This is a test''' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __a = pipeline(task='''text-generation''' , model=_snake_case , tokenizer=_snake_case , return_full_text=_snake_case ) __a = text_generator('''This is a test''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __a = text_generator('''This is a test''' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __a = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: __a = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], ] , ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_full_text=_snake_case , return_text=_snake_case ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_full_text=_snake_case , return_tensors=_snake_case ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_text=_snake_case , return_tensors=_snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __a = text_generator('''''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __a = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __a = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) __a = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_snake_case ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' import torch # Classic `model_kwargs` __a = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' import torch __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' import torch __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_snake_case , top_p=0.5 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = '''Hello world''' __a = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __a = logging.get_logger('''transformers.generation.tf_utils''' ) else: __a = logging.get_logger('''transformers.generation.utils''' ) __a = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(_snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_new_tokens=1 ) self.assertNotIn(_snake_case , cl.out ) with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_length=10 ) self.assertNotIn(_snake_case , cl.out )
219
1
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 1: UpperCAmelCase_ = F"""Input value of [number={number}] must be > 0""" raise ValueError(_UpperCamelCase ) UpperCAmelCase_ = 1 for i in range(1 , _UpperCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _UpperCamelCase : tuple[int, int] , _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = position UpperCAmelCase_ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCamelCase ) return permissible_positions def __lowerCamelCase ( _UpperCamelCase : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def __lowerCamelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : int ): '''simple docstring''' if is_complete(_UpperCamelCase ): return True for position in get_valid_pos(_UpperCamelCase , len(_UpperCamelCase ) ): UpperCAmelCase_ , UpperCAmelCase_ = position if board[y][x] == 0: UpperCAmelCase_ = curr + 1 if open_knight_tour_helper(_UpperCamelCase , _UpperCamelCase , curr + 1 ): return True UpperCAmelCase_ = 0 return False def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): UpperCAmelCase_ = 1 if open_knight_tour_helper(_UpperCamelCase , (i, j) , 1 ): return board UpperCAmelCase_ = 0 UpperCAmelCase_ = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = set() # edges = list of graph's edges __magic_name__ : List[str] = get_edges(_A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __magic_name__ ,__magic_name__ : Any = edges.pop() chosen_vertices.add(_A ) chosen_vertices.add(_A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_A ) return chosen_vertices def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
324
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: str = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''gpt_neo''' lowercase__ : int = ['''past_key_values'''] lowercase__ : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase__=5_02_57 , lowerCAmelCase__=20_48 , lowerCAmelCase__=20_48 , lowerCAmelCase__=24 , lowerCAmelCase__=[[["global", "local"], 12]] , lowerCAmelCase__=16 , lowerCAmelCase__=None , lowerCAmelCase__=2_56 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=5_02_56 , lowerCAmelCase__=5_02_56 , **lowerCAmelCase__ , ) -> int: __magic_name__ : Any = vocab_size __magic_name__ : Dict = max_position_embeddings __magic_name__ : Tuple = hidden_size __magic_name__ : Tuple = num_layers __magic_name__ : Optional[int] = num_heads __magic_name__ : Optional[int] = intermediate_size __magic_name__ : Tuple = window_size __magic_name__ : str = activation_function __magic_name__ : Union[str, Any] = resid_dropout __magic_name__ : str = embed_dropout __magic_name__ : List[Any] = attention_dropout __magic_name__ : Union[str, Any] = classifier_dropout __magic_name__ : List[str] = layer_norm_epsilon __magic_name__ : Tuple = initializer_range __magic_name__ : Any = use_cache __magic_name__ : Optional[int] = bos_token_id __magic_name__ : Union[str, Any] = eos_token_id __magic_name__ : Optional[Any] = attention_types __magic_name__ : Optional[Any] = self.expand_attention_types_params(lowerCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @staticmethod def __magic_name__ ( lowerCAmelCase__ ) -> List[str]: __magic_name__ : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" import torch __magic_name__ : Tuple = input.size() __magic_name__ : str = len(_A ) __magic_name__ : Optional[int] = shape[dimension] __magic_name__ : List[str] = torch.arange(0, _A, _A ) __magic_name__ : Optional[Any] = torch.div(sizedim - size, _A, rounding_mode="""floor""" ) + 1 __magic_name__ : Union[str, Any] = torch.arange(_A ) + low_indices[:min_length][:, None] __magic_name__ : Optional[Any] = [slice(_A )] * rank __magic_name__ : int = indices __magic_name__ : Optional[Any] = input[s] __magic_name__ : Any = list(range(0, rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_A ) def UpperCamelCase ( _A, _A ): """simple docstring""" import torch __magic_name__ : str = torch.arange(1, _A ) __magic_name__ : Union[str, Any] = torch.remainder(_A, _A ) __magic_name__ : Dict = remainders == 0 __magic_name__ : Dict = candidates[divisor_indices] __magic_name__ : Tuple = torch.max(_A ) return largest_divisor, torch.div(_A, _A, rounding_mode="""floor""" ) class snake_case__ ( _lowerCAmelCase ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: __magic_name__ : str = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) __magic_name__ : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: __magic_name__ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def __magic_name__ ( self ) -> int: return self._config.num_heads def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : List[str] = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() __magic_name__ : Optional[int] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : str = seqlen + 2 __magic_name__ : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __magic_name__ : Optional[Any] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] __magic_name__ : Any = common_inputs["""attention_mask"""] if self.use_past: __magic_name__ : Optional[Any] = ordered_inputs["""attention_mask"""].dtype __magic_name__ : Any = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def __magic_name__ ( self ) -> int: return 13
324
1
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = '''token-classification''' def __init__( self : str , lowerCAmelCase__ : str ): """simple docstring""" if type(lowerCAmelCase__ ) == dict: __SCREAMING_SNAKE_CASE : List[Any] = Namespace(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = import_module("""tasks""" ) try: __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowerCAmelCase__ , hparams.task_type ) __SCREAMING_SNAKE_CASE : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) __SCREAMING_SNAKE_CASE : int = self.token_classification_task.get_labels(hparams.labels ) __SCREAMING_SNAKE_CASE : Dict = CrossEntropyLoss().ignore_index super().__init__(lowerCAmelCase__ , len(self.labels ) , self.mode ) def UpperCamelCase__ ( self : Any , **lowerCAmelCase__ : List[str] ): """simple docstring""" return self.model(**lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __SCREAMING_SNAKE_CASE : int = self(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.hparams for mode in ["train", "dev", "test"]: __SCREAMING_SNAKE_CASE : int = self._feature_file(lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = torch.load(lowerCAmelCase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __SCREAMING_SNAKE_CASE : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.token_classification_task.convert_examples_to_features( lowerCAmelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCAmelCase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self._feature_file(lowerCAmelCase__ ) logger.info("""Loading features from cached file %s""" , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = torch.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __SCREAMING_SNAKE_CASE : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __SCREAMING_SNAKE_CASE : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __SCREAMING_SNAKE_CASE : Any = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , batch_size=lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ): """simple docstring""" """Compute validation""" "" __SCREAMING_SNAKE_CASE : int = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __SCREAMING_SNAKE_CASE : Optional[int] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __SCREAMING_SNAKE_CASE : Dict = self(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs[:2] __SCREAMING_SNAKE_CASE : List[Any] = logits.detach().cpu().numpy() __SCREAMING_SNAKE_CASE : List[str] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __SCREAMING_SNAKE_CASE : str = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __SCREAMING_SNAKE_CASE : int = np.argmax(lowerCAmelCase__ , axis=2 ) __SCREAMING_SNAKE_CASE : int = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __SCREAMING_SNAKE_CASE : Any = dict(enumerate(self.labels ) ) __SCREAMING_SNAKE_CASE : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] __SCREAMING_SNAKE_CASE : List[str] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __SCREAMING_SNAKE_CASE : List[Any] = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(lowerCAmelCase__ , lowerCAmelCase__ ), """precision""": precision_score(lowerCAmelCase__ , lowerCAmelCase__ ), """recall""": recall_score(lowerCAmelCase__ , lowerCAmelCase__ ), """f1""": fa_score(lowerCAmelCase__ , lowerCAmelCase__ ), } __SCREAMING_SNAKE_CASE : Dict = dict(results.items() ) __SCREAMING_SNAKE_CASE : Tuple = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self._eval_end(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self._eval_end(lowerCAmelCase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __SCREAMING_SNAKE_CASE : Any = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=lowerCAmelCase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=lowerCAmelCase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCAmelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase__ : List[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = NERTransformer(args) UpperCamelCase__ : Optional[Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase__ : List[str] = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase__ : Tuple = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
178
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): if number > 0: raise ValueError("""input must be a negative integer""" ) __SCREAMING_SNAKE_CASE : str = len(bin(_lowerCamelCase )[3:] ) __SCREAMING_SNAKE_CASE : Any = bin(abs(_lowerCamelCase ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE : Optional[int] = ( ( """1""" + """0""" * (binary_number_length - len(_lowerCamelCase )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
178
1
def _UpperCamelCase ( lowerCAmelCase_ = 1_0_0_0_0_0_0 ) ->int: UpperCAmelCase = set(range(3 , lowerCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase_ , lowerCAmelCase_ ) ) ) UpperCAmelCase = [float(lowerCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase_ , limit + 1 , lowerCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
377
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( __snake_case ): def __init__( self : Dict , *__lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def _lowercase ( self : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str = "eval" ) -> List[str]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(__lowerCamelCase ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def _lowercase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : str = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
377
1
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A_ = """xvjiarui/stable-diffusion-2-inpainting""" A_ , A_ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) A_ = """Face of a yellow cat, high resolution, sitting on a park bench""" A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = num_samples * [init_image] A_ = num_samples * [mask_image] A_ , A_ , A_ = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # shard inputs and rng A_ = replicate(UpperCAmelCase__ ) A_ = jax.random.split(UpperCAmelCase__ , jax.device_count() ) A_ = shard(UpperCAmelCase__ ) A_ = shard(UpperCAmelCase__ ) A_ = shard(UpperCAmelCase__ ) A_ = pipeline( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ) A_ = output.images.reshape(UpperCAmelCase__ , 512 , 512 , 3 ) A_ = images[0, 253:256, 253:256, -1] A_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : str = '''▁''' _lowerCamelCase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCamelCase : Any = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowerCamelCase : int = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class lowercase ( a ): lowercase__ : Any = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : str="</s>" , _UpperCamelCase : str="</s>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Union[str, Any]="<pad>" , _UpperCamelCase : List[str]="<mask>" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : int , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , _UpperCamelCase : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __snake_case( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : Dict , _UpperCamelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : List[str] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case( self : Optional[int] , _UpperCamelCase : Any ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case( self : Any , _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def __snake_case( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
403
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase ( a ): def __init__( self : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = process SCREAMING_SNAKE_CASE = params def __len__( self : List[str] ) -> Dict: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dataset[i] SCREAMING_SNAKE_CASE = self.process(_UpperCamelCase , **self.params ) return processed class lowercase ( a ): def __init__( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=None ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = loader SCREAMING_SNAKE_CASE = infer SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __len__( self : Dict ) -> str: '''simple docstring''' return len(self.loader ) def __iter__( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(self.loader ) return self def __snake_case( self : Any ) -> str: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_UpperCamelCase , _UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(_UpperCamelCase ) self._loader_batch_index += 1 return result def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE = next(self.iterator ) SCREAMING_SNAKE_CASE = self.infer(_UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_UpperCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE = processed else: SCREAMING_SNAKE_CASE = list(processed.keys() )[0] SCREAMING_SNAKE_CASE = processed[key] if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase ( a ): def __init__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None ) -> List[str]: '''simple docstring''' super().__init__(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __iter__( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(self.loader ) SCREAMING_SNAKE_CASE = None return self def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.subiterator is None: SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class lowercase ( a ): def __iter__( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(self.loader ) return self def __snake_case( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE = self.loader_batch_item() SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(_UpperCamelCase ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_UpperCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE = processed else: SCREAMING_SNAKE_CASE = list(processed.keys() )[0] SCREAMING_SNAKE_CASE = processed[key] if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE = observed_batch_size SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE = self.loader_batch_item() SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(_UpperCamelCase ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(_UpperCamelCase ) return accumulator class lowercase ( a ): def __init__( self : List[str] , _UpperCamelCase : Dataset , _UpperCamelCase : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = key def __len__( self : str ) -> List[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' return self.dataset[i][self.key] class lowercase ( a ): def __init__( self : int , _UpperCamelCase : Dataset , _UpperCamelCase : str , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = keya SCREAMING_SNAKE_CASE = keya def __len__( self : str ) -> str: '''simple docstring''' return len(self.dataset ) def __getitem__( self : str , _UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
403
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase_ : Union[str, Any] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase_ : Union[str, Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase_ : List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def A__ ( lowerCamelCase , lowerCamelCase ) -> tuple[str, float]: UpperCamelCase_: Optional[int] = len([g for position, g in enumerate(lowerCamelCase ) if g == main_target[position]] ) return (item, float(lowerCamelCase )) def A__ ( lowerCamelCase , lowerCamelCase ) -> tuple[str, str]: UpperCamelCase_: Optional[int] = random.randint(0 , len(lowerCamelCase ) - 1 ) UpperCamelCase_: Dict = parent_a[:random_slice] + parent_a[random_slice:] UpperCamelCase_: Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Optional[int] = list(lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: UpperCamelCase_: Optional[Any] = random.choice(lowerCamelCase ) return "".join(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> list[str]: UpperCamelCase_: Optional[Any] = [] # Generate more children proportionally to the fitness score. UpperCamelCase_: List[str] = int(parent_a[1] * 1_00 ) + 1 UpperCamelCase_: List[str] = 10 if child_n >= 10 else child_n for _ in range(lowerCamelCase ): UpperCamelCase_: List[str] = population_score[random.randint(0 , lowerCamelCase )][0] UpperCamelCase_, UpperCamelCase_: Tuple = crossover(parent_a[0] , lowerCamelCase ) # Append new string to the population list. pop.append(mutate(lowerCamelCase , lowerCamelCase ) ) pop.append(mutate(lowerCamelCase , lowerCamelCase ) ) return pop def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: UpperCamelCase_: Union[str, Any] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCamelCase_: str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCamelCase_: Union[str, Any] = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowerCamelCase ) # Generate random starting population. UpperCamelCase_: Union[str, Any] = [] for _ in range(lowerCamelCase ): population.append("""""".join([random.choice(lowerCamelCase ) for i in range(len(lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCamelCase_, UpperCamelCase_: Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCamelCase_: Dict = [evaluate(lowerCamelCase , lowerCamelCase ) for item in population] # Check if there is a matching evolution. UpperCamelCase_: Any = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCamelCase_: List[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCamelCase ) # Normalize population score to be between 0 and 1. UpperCamelCase_: Optional[Any] = [ (item, score / len(lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(lowerCamelCase ): population.extend(select(population_score[int(lowerCamelCase )] , lowerCamelCase , lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase_ : Any = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) lowerCamelCase_ : str = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ : Optional[Any] ={"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple =[ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =[ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A_ : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
483
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = data def __iter__( self ): """simple docstring""" for element in self.data: yield element def lowerCamelCase_ ( UpperCAmelCase__=True ): """simple docstring""" a_ = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ): """simple docstring""" if iterable: a_ = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: a_ = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) a_ = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) a_ = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): """simple docstring""" a_ = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) a_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) a_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): a_ = ddp_model(batch[0].float() ) a_ = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase_ ( ): """simple docstring""" a_ = True a_ = False a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): a_ = train_dl.batch_sampler.even_batches a_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase_ ( ): """simple docstring""" a_ = True a_ = False a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): a_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) a_ = accelerator.state.distributed_type a_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) a_ = original_state if __name__ == "__main__": main()
483
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self : Dict , a : Optional[Any] , a : int=13 , a : int=7 , a : List[str]=True , a : Union[str, Any]=True , a : Any=True , a : str=True , a : List[str]=99 , a : List[str]=32 , a : int=2 , a : Any=4 , a : List[Any]=37 , a : Any="gelu" , a : List[str]=0.1 , a : Optional[int]=0.1 , a : Tuple=5_12 , a : List[Any]=16 , a : Any=2 , a : Optional[Any]=0.02 , a : str=3 , a : Optional[Any]=4 , a : Optional[int]=None , ) ->int: SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : Dict = 13 SCREAMING_SNAKE_CASE__ : List[Any] = 7 SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : Dict = 99 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 32 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE__ : Dict = 37 SCREAMING_SNAKE_CASE__ : int = "gelu" SCREAMING_SNAKE_CASE__ : str = 0.1 SCREAMING_SNAKE_CASE__ : List[Any] = 0.1 SCREAMING_SNAKE_CASE__ : Dict = 5_12 SCREAMING_SNAKE_CASE__ : str = 16 SCREAMING_SNAKE_CASE__ : Dict = 2 SCREAMING_SNAKE_CASE__ : str = 0.02 SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 SCREAMING_SNAKE_CASE__ : Optional[Any] = 4 SCREAMING_SNAKE_CASE__ : str = None def A_ ( self : Dict ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : int = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Union[str, Any] , a : Optional[Any] , a : str , a : Optional[int] , a : Tuple , a : Union[str, Any] , a : Optional[int] , a : Optional[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = TFRoFormerModel(config=A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ : str = model(A__ ) SCREAMING_SNAKE_CASE__ : str = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[Any] , a : Dict , a : Optional[int] , a : Optional[Any] , a : Optional[Any] , a : List[str] , a : Dict , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : int = TFRoFormerForCausalLM(config=A__ ) SCREAMING_SNAKE_CASE__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE__ : str = model(A__ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A_ ( self : Dict , a : Tuple , a : str , a : Optional[Any] , a : Union[str, Any] , a : Union[str, Any] , a : Dict , a : int ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = TFRoFormerForMaskedLM(config=A__ ) SCREAMING_SNAKE_CASE__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE__ : Tuple = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , a : Optional[int] , a : Optional[Any] , a : List[str] , a : List[Any] , a : Optional[Any] , a : Union[str, Any] , a : int ) ->Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = TFRoFormerForSequenceClassification(config=A__ ) SCREAMING_SNAKE_CASE__ : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE__ : str = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Any , a : int , a : Optional[Any] , a : Tuple , a : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE__ : Dict = TFRoFormerForMultipleChoice(config=A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Optional[Any] , a : Dict , a : Optional[Any] , a : Any , a : Dict , a : str , a : int , a : Optional[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Any = TFRoFormerForTokenClassification(config=A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE__ : Tuple = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Optional[int] , a : Optional[Any] , a : Dict , a : Tuple , a : List[str] , a : str , a : Optional[int] , a : str ) ->Dict: SCREAMING_SNAKE_CASE__ : Any = TFRoFormerForQuestionAnswering(config=A__ ) SCREAMING_SNAKE_CASE__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE__ : Any = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def A_ ( self : List[str] , a : str , a : int , a : Union[str, Any] , a : List[str] , a : List[Any] ) ->Union[str, Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A_ ( self : Tuple ) ->Any: SCREAMING_SNAKE_CASE__ : List[str] = TFRoFormerModelTester(self ) SCREAMING_SNAKE_CASE__ : int = ConfigTester(self , config_class=A__ , hidden_size=37 ) def A_ ( self : str ) ->str: self.config_tester.run_common_tests() def A_ ( self : List[str] ) ->Any: SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def A_ ( self : Dict ) ->List[str]: SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def A_ ( self : Tuple ) ->int: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def A_ ( self : Tuple ) ->Tuple: SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def A_ ( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def A_ ( self : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def A_ ( self : Any ) ->List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def A_ ( self : Tuple ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(A__ ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def A_ ( self : Union[str, Any] ) ->int: SCREAMING_SNAKE_CASE__ : List[Any] = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE__ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(A__ )[0] # TODO Replace vocab size SCREAMING_SNAKE_CASE__ : Optional[Any] = 5_00_00 SCREAMING_SNAKE_CASE__ : List[str] = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = 1e-4 def A_ ( self : Any ) ->List[str]: SCREAMING_SNAKE_CASE__ : str = tf.constant([[4, 10]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = emba(input_ids.shape ) SCREAMING_SNAKE_CASE__ : Dict = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def A_ ( self : Optional[int] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) SCREAMING_SNAKE_CASE__ : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) SCREAMING_SNAKE_CASE__ : int = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = 1e-4 def A_ ( self : str ) ->List[Any]: # 2,12,16,64 SCREAMING_SNAKE_CASE__ : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 SCREAMING_SNAKE_CASE__ : Dict = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) SCREAMING_SNAKE_CASE__ : Optional[int] = embed_positions([2, 16, 7_68] )[None, None, :, :] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
721
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Dict ) ->str: SCREAMING_SNAKE_CASE__ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : int = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def A_ ( self : int ) ->Union[str, Any]: pass @slow @require_torch def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : str = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : List[Any] = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) SCREAMING_SNAKE_CASE__ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass
26
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : List[str] = """openai/whisper-base""" a_ : List[str] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) a_ : List[Any] = """transcriber""" a_ : Union[str, Any] = WhisperProcessor a_ : List[Any] = WhisperForConditionalGeneration a_ : int = ["""audio"""] a_ : List[str] = ["""text"""] def _lowerCAmelCase ( self , A ): return self.pre_processor(A , return_tensors='pt' ).input_features def _lowerCAmelCase ( self , A ): return self.model.generate(inputs=A ) def _lowerCAmelCase ( self , A ): return self.pre_processor.batch_decode(A , skip_special_tokens=A )[0]
437
"""simple docstring""" def UpperCAmelCase_ ( __a : int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = int(__a ) if decimal in (0, 1): # Exit cases for the recursion return str(__a ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = divmod(__a , 2 ) return binary_recursive(__a ) + str(__a ) def UpperCAmelCase_ ( __a : str ): '''simple docstring''' _lowerCamelCase : int = str(__a ).strip() if not number: raise ValueError('No input value was provided' ) _lowerCamelCase : Tuple = '-' if number.startswith('-' ) else '' _lowerCamelCase : List[Any] = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f"{negative}0b{binary_recursive(int(__a ) )}" if __name__ == "__main__": from doctest import testmod testmod()
437
1
"""simple docstring""" import math class __A : def lowerCamelCase__ ( self : str , __snake_case : list[list[float]] , __snake_case : list[int] ) -> int: __magic_name__: Dict = 0.0 __magic_name__: Tuple = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCamelCase__ ( self : Dict , __snake_case : list[list[int | float]] , __snake_case : list[int] , __snake_case : int , __snake_case : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def a ( ) -> None: # Training Examples ( m, n ) __magic_name__: Union[str, Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __magic_name__: int = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __magic_name__: Optional[int] = SelfOrganizingMap() __magic_name__: List[Any] = 3 __magic_name__: Tuple = 0.5 for _ in range(UpperCamelCase__ ): for j in range(len(UpperCamelCase__ ) ): # training sample __magic_name__: Any = training_samples[j] # Compute the winning vector __magic_name__: Optional[int] = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # Update the winning vector __magic_name__: List[Any] = self_organizing_map.update(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # classify test sample __magic_name__: Dict = [0, 0, 0, 1] __magic_name__: Dict = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
720
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __A ( unittest.TestCase ): UpperCAmelCase__ = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: __magic_name__: int = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output __magic_name__: Dict = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) __magic_name__: Dict = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) __magic_name__: Optional[Any] = text_generator("""This is a test""" , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ] , ) __magic_name__: List[str] = text_generator.model.config.eos_token_id __magic_name__: Dict = """<pad>""" __magic_name__: Dict = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__: int = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output __magic_name__: Optional[Any] = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) __magic_name__: Optional[int] = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Tuple ) -> Any: __magic_name__: int = TextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return text_generator, ["This is a test", "Another test"] def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: Tuple = """Hello I believe in""" __magic_name__: List[str] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) __magic_name__: List[Any] = text_generator(__snake_case ) self.assertEqual( __snake_case , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) __magic_name__: List[str] = text_generator(__snake_case , stop_sequence=""" fe""" ) self.assertEqual(__snake_case , [{"""generated_text""": """Hello I believe in fe"""}] ) def lowerCamelCase__ ( self : Any , __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> str: __magic_name__: Optional[int] = text_generator.model __magic_name__: Union[str, Any] = text_generator.tokenizer __magic_name__: Union[str, Any] = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) __magic_name__: str = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) __magic_name__: Optional[int] = pipeline(task="""text-generation""" , model=__snake_case , tokenizer=__snake_case , return_full_text=__snake_case ) __magic_name__: Tuple = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) __magic_name__: Optional[int] = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) __magic_name__: List[str] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: __magic_name__: Union[str, Any] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): __magic_name__: Any = text_generator("""test""" , return_full_text=__snake_case , return_text=__snake_case ) with self.assertRaises(__snake_case ): __magic_name__: List[str] = text_generator("""test""" , return_full_text=__snake_case , return_tensors=__snake_case ) with self.assertRaises(__snake_case ): __magic_name__: Tuple = text_generator("""test""" , return_text=__snake_case , return_tensors=__snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __magic_name__: int = text_generator("""""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __magic_name__: Any = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __magic_name__: Union[str, Any] = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0 ) __magic_name__: List[str] = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(__snake_case ): text_generator( """This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : List[str] ) -> List[str]: import torch # Classic `model_kwargs` __magic_name__: Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __magic_name__: Optional[int] = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __magic_name__: Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __magic_name__: Optional[Any] = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __magic_name__: int = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __magic_name__: Any = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def lowerCamelCase__ ( self : List[str] ) -> Any: import torch __magic_name__: List[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : Dict ) -> Any: import torch __magic_name__: List[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__snake_case , top_p=0.5 ) def lowerCamelCase__ ( self : List[str] ) -> Any: __magic_name__: Optional[int] = """Hello world""" __magic_name__: List[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": __magic_name__: str = logging.get_logger("""transformers.generation.tf_utils""" ) else: __magic_name__: Any = logging.get_logger("""transformers.generation.utils""" ) __magic_name__: Union[str, Any] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__snake_case ) as cl: __magic_name__: Dict = text_generator(__snake_case , max_length=1_0 , max_new_tokens=1 ) self.assertIn(__snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(__snake_case ) as cl: __magic_name__: str = text_generator(__snake_case , max_new_tokens=1 ) self.assertNotIn(__snake_case , cl.out ) with CaptureLogger(__snake_case ) as cl: __magic_name__: Dict = text_generator(__snake_case , max_length=1_0 ) self.assertNotIn(__snake_case , cl.out )
213
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a ( SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase : UNetaDModel _lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : UNetaDModel , SCREAMING_SNAKE_CASE : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 20_00 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.unet.config.sample_size UpperCamelCase__ : List[str] = (batch_size, 3, img_size, img_size) UpperCamelCase__ : int = self.unet UpperCamelCase__ : List[str] = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ) * self.scheduler.init_noise_sigma UpperCamelCase__ : Optional[int] = sample.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) self.scheduler.set_sigmas(SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase__ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCamelCase__ : List[Any] = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample UpperCamelCase__ : List[str] = self.scheduler.step_correct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample # prediction step UpperCamelCase__ : Any = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample UpperCamelCase__ : Optional[Any] = self.scheduler.step_pred(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = output.prev_sample, output.prev_sample_mean UpperCamelCase__ : Tuple = sample_mean.clamp(0 , 1 ) UpperCamelCase__ : str = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
228
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _lowerCamelCase : Optional[Any] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _lowerCamelCase : Optional[int] = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ) -> int: SCREAMING_SNAKE_CASE : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = bs[:] SCREAMING_SNAKE_CASE : int = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE : Any = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def __a ( __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = set() SCREAMING_SNAKE_CASE : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE : Union[str, Any] = char return pairs class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self : Dict , snake_case : Optional[int] , snake_case : Tuple , snake_case : Dict="replace" , snake_case : Optional[Any]="<s>" , snake_case : Dict="</s>" , snake_case : str="</s>" , snake_case : Tuple="<s>" , snake_case : List[Any]="<unk>" , snake_case : Dict="<pad>" , snake_case : int="<mask>" , snake_case : Any=False , **snake_case : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token SCREAMING_SNAKE_CASE : int = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token SCREAMING_SNAKE_CASE : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token SCREAMING_SNAKE_CASE : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : str = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(snake_case ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : Optional[int] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE : List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE : Union[str, Any] = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE : str = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE : List[str] = dict(zip(snake_case , range(len(snake_case ) ) ) ) SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE : List[str] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : str ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : List[str] , snake_case : int ): '''simple docstring''' if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : int = tuple(snake_case ) SCREAMING_SNAKE_CASE : Dict = get_pairs(snake_case ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : List[str] = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = bigram SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = 0 while i < len(snake_case ): try: SCREAMING_SNAKE_CASE : List[str] = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Any = tuple(snake_case ) SCREAMING_SNAKE_CASE : Tuple = new_word if len(snake_case ) == 1: break else: SCREAMING_SNAKE_CASE : Union[str, Any] = get_pairs(snake_case ) SCREAMING_SNAKE_CASE : List[Any] = ' '.join(snake_case ) SCREAMING_SNAKE_CASE : Dict = word return word def lowerCamelCase_ ( self : Any , snake_case : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] for token in re.findall(self.pat , snake_case ): SCREAMING_SNAKE_CASE : Any = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(' ' ) ) return bpe_tokens def lowerCamelCase_ ( self : Any , snake_case : int ): '''simple docstring''' return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : List[Any] , snake_case : Dict ): '''simple docstring''' return self.decoder.get(snake_case ) def lowerCamelCase_ ( self : List[Any] , snake_case : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ''.join(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCamelCase_ ( self : Union[str, Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : List[str] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '\n' ) SCREAMING_SNAKE_CASE : str = 0 with open(snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE : List[str] = token_index writer.write(' '.join(snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def lowerCamelCase_ ( self : int , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Optional[Any]=False , **snake_case : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE : Union[str, Any] = ' ' + text return (text, kwargs) def lowerCamelCase_ ( self : List[str] , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str] , snake_case : "Conversation" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = ' '.join(snake_case ) SCREAMING_SNAKE_CASE : str = self.encode(snake_case ) if len(snake_case ) > self.model_max_length: SCREAMING_SNAKE_CASE : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
352
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A : List[Any] = logging.get_logger(__name__) _A : int = """▁""" _A : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model"""} _A : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } _A : Any = { """facebook/mbart-large-en-ro""": 10_24, """facebook/mbart-large-cc25""": 10_24, } # fmt: off _A : Union[str, Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = ["""input_ids""", """attention_mask"""] __lowerCAmelCase = [] __lowerCAmelCase = [] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a = None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it lowercase : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token lowercase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , tokenizer_file=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) lowercase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase : Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase : Optional[Any] = 1 lowercase : Tuple = len(self.sp_model ) lowercase : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_a ) } lowercase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase : Union[str, Any] = src_lang if src_lang is not None else "en_XX" lowercase : List[Any] = self.lang_code_to_id[self._src_lang] lowercase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): lowercase : Any = self.__dict__.copy() lowercase : List[str] = None lowercase : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _a ): lowercase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase : List[Any] = {} lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ): return self._src_lang @src_lang.setter def __magic_name__ ( self , _a ): lowercase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) lowercase : List[Any] = [1] * len(self.prefix_tokens ) lowercase : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def __magic_name__ ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , _a , _a = None ): lowercase : List[Any] = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase : Optional[Any] = src_lang lowercase : Union[str, Any] = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) lowercase : List[str] = self.convert_tokens_to_ids(_a ) lowercase : str = tgt_lang_id return inputs def __magic_name__ ( self ): lowercase : Tuple = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , _a ): return self.sp_model.encode(_a , out_type=_a ) def __magic_name__ ( self , _a ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : int = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , _a ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , _a ): lowercase : int = "".join(_a ).replace(_a , " " ).strip() return out_string def __magic_name__ ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Dict = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def __magic_name__ ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): lowercase : List[str] = src_lang lowercase : Dict = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __magic_name__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , _a ): lowercase : Dict = self.lang_code_to_id[src_lang] lowercase : Any = [] lowercase : List[str] = [self.eos_token_id, self.cur_lang_code] def __magic_name__ ( self , _a ): lowercase : str = self.lang_code_to_id[lang] lowercase : List[str] = [] lowercase : List[Any] = [self.eos_token_id, self.cur_lang_code]
721
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _A : Optional[Any] = logging.get_logger(__name__) def __magic_name__ ( __snake_case : str , __snake_case : str ) -> Dict: lowercase : List[Any] = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict lowercase : Optional[int] = torch.load(hf_hub_download(repo_id=__snake_case , filename="pytorch_model.bin" ) ) lowercase : Optional[Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): lowercase : List[str] = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue lowercase : Union[str, Any] = tensor_value lowercase : List[str] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer lowercase : Tuple = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _A : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
518
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""num_attention_heads""" ) ) class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=6_40 ,_lowerCAmelCase=4 ,_lowerCAmelCase="silu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = last_hidden_size lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = conv_kernel_size lowerCamelCase__ = output_stride lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = use_labels lowerCamelCase__ = is_training lowerCamelCase__ = num_labels lowerCamelCase__ = initializer_range lowerCamelCase__ = scope def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MobileViTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MobileViTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MobileViTForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _UpperCamelCase = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = MobileViTModelTester(self ) lowerCamelCase__ = MobileViTConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.hidden_states lowerCamelCase__ = 5 self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ = 2 for i in range(len(_lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = MobileViTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(_lowerCAmelCase ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**_lowerCAmelCase ) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = model.to(_lowerCAmelCase ) lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**_lowerCAmelCase ) lowerCamelCase__ = outputs.logits # verify the logits lowerCamelCase__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] ,device=_lowerCAmelCase ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = model.to(_lowerCAmelCase ) lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**_lowerCAmelCase ) lowerCamelCase__ = outputs.logits.detach().cpu() lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ,target_sizes=[(50, 60)] ) lowerCamelCase__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,_lowerCAmelCase ) lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) lowerCamelCase__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
50
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: # Initialise PyTorch model _snake_case : List[str] = BertConfig.from_json_file(lowercase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case : Dict = BertForPreTraining(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
326
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __SCREAMING_SNAKE_CASE ( __a): @staticmethod @abstractmethod def UpperCamelCase__ ( _UpperCamelCase ): """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase__ ( self ): """simple docstring""" raise NotImplementedError()
706
from collections import deque from .hash_table import HashTable class __SCREAMING_SNAKE_CASE ( __lowercase): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) lowerCAmelCase__ = self.values[key] def UpperCamelCase__ ( self ): """simple docstring""" return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
365
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2000 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowerCamelCase_ = self.unet.config.sample_size lowerCamelCase_ = (batch_size, 3, img_size, img_size) lowerCamelCase_ = self.unet lowerCamelCase_ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ) * self.scheduler.init_noise_sigma lowerCamelCase_ = sample.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) self.scheduler.set_sigmas(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase_ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = self.scheduler.step_correct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample # prediction step lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = self.scheduler.step_pred(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ ,lowerCamelCase_ = output.prev_sample, output.prev_sample_mean lowerCamelCase_ = sample_mean.clamp(0 , 1 ) lowerCamelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
42
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list: """simple docstring""" snake_case_ : Tuple = len(_UpperCamelCase ) snake_case_ : Union[str, Any] = [[0] * n for i in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): snake_case_ : Any = y_points[i] for i in range(2 , _UpperCamelCase ): for j in range(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[int] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
60
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase_ ( _lowerCamelCase=32 , _lowerCamelCase=10 , _lowerCamelCase=100 , _lowerCamelCase=1026 , _lowerCamelCase=True , _lowerCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowerCamelCase__ , lowerCamelCase__ : Dict = generate_datasets( _UpperCamelCase , _UpperCamelCase , number=_UpperCamelCase , min_len=1026 , trim=_UpperCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase__ : int = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model lowerCamelCase__ : Union[str, Any] = load_gpta('gpt2' ).to(_UpperCamelCase ) print('computing perplexity on objective set' ) lowerCamelCase__ : int = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).item() print('perplexity on objective set:' , _UpperCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=15 , _lowerCamelCase=128 , _lowerCamelCase=100 , _lowerCamelCase="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowerCamelCase__ : Optional[int] = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model lowerCamelCase__ : int = SecondaryLearner(_UpperCamelCase ) # Train secondary learner lowerCamelCase__ : Any = train_secondary_learner( _UpperCamelCase , _UpperCamelCase , max_epochs=_UpperCamelCase , batch_size=_UpperCamelCase , eval_freq=100 , igf_model_path=_UpperCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=32 , _lowerCamelCase=1000 , _lowerCamelCase=16 , _lowerCamelCase=1.0 , _lowerCamelCase=recopy_gpta , _lowerCamelCase=None , _lowerCamelCase=10 , _lowerCamelCase="gpt2_finetuned.pt" , ): lowerCamelCase__ : Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) lowerCamelCase__ : int = RandomSampler(_UpperCamelCase ) lowerCamelCase__ : Any = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase ) lowerCamelCase__ : str = max_steps // (len(_UpperCamelCase )) + 1 lowerCamelCase__ : str = 0 lowerCamelCase__ : Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = recopy_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCamelCase ) secondary_learner.eval() lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = [] # Compute the performance of the transformer model at the beginning lowerCamelCase__ : int = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) for epoch in range(int(_UpperCamelCase ) ): for step, example in enumerate(_UpperCamelCase ): torch.cuda.empty_cache() lowerCamelCase__ : Optional[int] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCamelCase__ : Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase__ : List[Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) lowerCamelCase__ : Any = True if secondary_learner is not None: lowerCamelCase__ : List[str] = secondary_learner.forward( torch.tensor(_UpperCamelCase , dtype=torch.long , device=_UpperCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase__ : List[str] = -1 if predicted_q < threshold: lowerCamelCase__ : Union[str, Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase__ : Dict = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase__ : Union[str, Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase__ : Tuple = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_UpperCamelCase , type=_UpperCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_UpperCamelCase , default=_UpperCamelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_UpperCamelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_UpperCamelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_UpperCamelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_UpperCamelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_UpperCamelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_UpperCamelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_UpperCamelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_UpperCamelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_UpperCamelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_UpperCamelCase , type=_UpperCamelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_UpperCamelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_UpperCamelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_UpperCamelCase , type=_UpperCamelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_UpperCamelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner lowerCamelCase__ : str = joblib.load('data/IGF_values.jbl' ) # Train secondary learner lowerCamelCase__ : Any = training_secondary_learner( _UpperCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model lowerCamelCase__ : List[str] = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase__ , lowerCamelCase__ : Tuple = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_UpperCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCamelCase , secondary_learner=_UpperCamelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" lowercase__ :str = {str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( UpperCAmelCase_ ) ->int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCAmelCase_ ) ) def lowerCamelCase_ ( ) ->int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(UpperCAmelCase_ ) ) if __name__ == "__main__": print(solution())
522
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : str = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _A : Union[str, Any] = 'CIDAS/clipseg-rd64-refined' _A : Tuple = 'image_segmenter' _A : List[Any] = CLIPSegForImageSegmentation _A : List[str] = ['image', 'text'] _A : Optional[int] = ['image'] def __init__( self : List[str] , *__lowercase : Union[str, Any] , **__lowercase : Any ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*__lowercase , **__lowercase ) def A_ ( self : int , __lowercase : "Image" , __lowercase : str ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__lowercase , return_tensors='''pt''' ) def A_ ( self : List[Any] , __lowercase : List[Any] ): '''simple docstring''' with torch.no_grad(): __UpperCAmelCase : List[str] = self.model(**__lowercase ).logits return logits def A_ ( self : int , __lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = outputs.cpu().detach().numpy() __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Any = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
522
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase : Dict = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCAmelCase : int = cvtColor(img, COLOR_BGR2GRAY) def a__ ( ) -> Optional[int]: lowerCamelCase = cn.convert_to_negative(snake_case__ ) # assert negative_img array for at least one True assert negative_img.any() def a__ ( ) -> Dict: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case__ , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def a__ ( ) -> str: lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a__ ( ) -> Tuple: lowerCamelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase = canny.canny(snake_case__ ) # assert canny array for at least one True assert canny_array.any() def a__ ( ) -> Optional[int]: assert gg.gaussian_filter(snake_case__ , 5 , sigma=0.9 ).all() def a__ ( ) -> Union[str, Any]: # laplace diagonals lowerCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase = conv.img_convolve(snake_case__ , snake_case__ ).astype(snake_case__ ) assert res.any() def a__ ( ) -> int: assert med.median_filter(snake_case__ , 3 ).any() def a__ ( ) -> str: lowerCamelCase , lowerCamelCase = sob.sobel_filter(snake_case__ ) assert grad.any() and theta.any() def a__ ( ) -> str: lowerCamelCase = sp.make_sepia(snake_case__ , 20 ) assert sepia.all() def a__ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" ) -> Dict: lowerCamelCase = bs.Burkes(imread(snake_case__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def a__ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[str]: lowerCamelCase = rs.NearestNeighbour(imread(snake_case__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def a__ ( ) -> Optional[Any]: lowerCamelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. lowerCamelCase = imread(snake_case__ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = image[x_coordinate][y_coordinate] lowerCamelCase = lbp.get_neighbors_pixel( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase = lbp.local_binary_value(snake_case__ , snake_case__ , snake_case__ ) assert lbp_image.any()
533
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase : List[str] = HfApi() lowerCAmelCase : Tuple = {} # fmt: off lowerCAmelCase : List[str] = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) lowerCAmelCase : Dict = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) lowerCAmelCase : str = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) lowerCAmelCase : List[Any] = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) lowerCAmelCase : int = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) lowerCAmelCase : int = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) lowerCAmelCase : Union[str, Any] = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) lowerCAmelCase : List[str] = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) lowerCAmelCase : Optional[int] = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) lowerCAmelCase : Any = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) lowerCAmelCase : Union[str, Any] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) lowerCAmelCase : str = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) lowerCAmelCase : List[str] = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) lowerCAmelCase : Optional[Any] = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) lowerCAmelCase : int = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on lowerCAmelCase : Optional[int] = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase : Dict = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): lowerCAmelCase : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase : Dict = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase : List[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
533
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 10 def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [1, 2, 3, 4] SCREAMING_SNAKE_CASE_ : Any = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE_ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = process_story(lowercase__ ) self.assertEqual(lowercase__ , [] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : int = process_story(lowercase__ ) self.assertEqual(lowercase__ , [] ) self.assertEqual(lowercase__ , [] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = process_story(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = ["It was the best of times."] self.assertEqual(lowercase__ , lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase__ , 0 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase__ , 23 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase__ , 1 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 101 SCREAMING_SNAKE_CASE_ : str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = compute_token_type_ids(lowercase__ , lowercase__ ) np.testing.assert_array_equal(lowercase__ , lowercase__ )
421
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Dict = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image snake_case_ = imread('image_data/lena.jpg', 1) # convert to its negative snake_case_ = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
421
1
from sklearn.metrics import matthews_corrcoef import datasets a : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" a : Optional[int] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" a : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _lowercase( self , A , A , A=None ) -> List[Any]: return { "matthews_correlation": float(matthews_corrcoef(A , A , sample_weight=A ) ), }
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
"""simple docstring""" from math import pow, sqrt def SCREAMING_SNAKE_CASE ( *snake_case): __snake_case = len(snake_case) > 0 and all(value > 0.0 for value in values) return result def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return ( round(sqrt(molar_mass_a / molar_mass_a), 6) if validate(snake_case, snake_case) else ValueError('''Input Error: Molar mass values must greater than 0.''') ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a), 6) if validate(snake_case, snake_case, snake_case) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''') ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a), 6) if validate(snake_case, snake_case, snake_case) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''') ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a, 2), 6) if validate(snake_case, snake_case, snake_case) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''') ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): return ( round(pow(effusion_rate_a / effusion_rate_a, 2) / molar_mass, 6) if validate(snake_case, snake_case, snake_case) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''') )
564
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowercase : str = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = BartphoTokenizer UpperCamelCase_ : Dict = False UpperCamelCase_ : Optional[Any] = True def lowercase ( self : Tuple ) -> Dict: super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(A_ , range(len(A_ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) __snake_case = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : List[Any] , **A_ : Optional[int] ) -> Any: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[Any] , A_ : List[Any] ) -> Tuple: __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def lowercase ( self : Optional[int] ) -> Dict: __snake_case = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
564
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Union[str, Any] = datasets.map( __A , batched=__A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : str = 8 else: __UpperCAmelCase : Optional[Any] = None return tokenizer.pad( __A , padding='''longest''' , max_length=__A , pad_to_multiple_of=__A , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCAmelCase : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__A , collate_fn=__A , batch_size=__A ) __UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase = mocked_dataloaders # noqa: F811 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __A ) == "1": __UpperCAmelCase : Union[str, Any] = 2 # Initialize accelerator __UpperCAmelCase : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Dict = config['''lr'''] __UpperCAmelCase : Tuple = int(config['''num_epochs'''] ) __UpperCAmelCase : List[Any] = int(config['''seed'''] ) __UpperCAmelCase : Tuple = int(config['''batch_size'''] ) __UpperCAmelCase : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__A ) def inner_training_loop(lowercase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Any = AdamW(params=model.parameters() , lr=__A ) __UpperCAmelCase : Tuple = get_dataloaders(__A , __A ) # Instantiate scheduler __UpperCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase : List[Any] = accelerator.prepare( __A , __A , __A , __A , __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : List[str] = model(**__A ) __UpperCAmelCase : int = outputs.loss accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**__A ) __UpperCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__A , references=__A , ) __UpperCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __A ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__A , default=__A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __UpperCAmelCase : Tuple = parser.parse_args() __UpperCAmelCase : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__A , __A ) if __name__ == "__main__": main()
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : bool ,a__ : list[int] ,a__ : float ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 ,node_index * 2 ,a__ ,a__ ,a__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,a__ ,a__ ,a__ ) ,) if is_max else min( minimax(depth + 1 ,node_index * 2 ,a__ ,a__ ,a__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,a__ ,a__ ,a__ ) ,) ) def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = [90, 23, 6, 33, 21, 65, 123, 34423] __A : List[Any] = math.log(len(a__ ) ,2 ) print(f"""Optimal value : {minimax(0 ,0 ,a__ ,a__ ,a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Any = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['''ViTFeatureExtractor'''] lowerCamelCase_ : Optional[int] = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[str] , lowercase : List[Any]=1_3 , lowercase : Union[str, Any]=7 , lowercase : Dict=True , lowercase : Optional[int]=True , lowercase : List[Any]=True , lowercase : Dict=True , lowercase : List[str]=9_9 , lowercase : Dict=1_6 , lowercase : Dict=3_6 , lowercase : str=6 , lowercase : List[Any]=6 , lowercase : int=6 , lowercase : Union[str, Any]=3_7 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : List[str]=0.1 , lowercase : str=5_1_2 , lowercase : Any=1_6 , lowercase : str=2 , lowercase : List[Any]=0.0_2 , lowercase : Tuple=3 , lowercase : Dict=4 , lowercase : Dict=None , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = embedding_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_hidden_groups UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def A ( self : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ) -> str: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Dict , lowercase : str , lowercase : int , lowercase : List[str] , lowercase : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCamelCase__ = model(lowercase , token_type_ids=lowercase ) UpperCamelCase__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : int , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , sentence_order_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A ( self : Optional[int] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any: '''simple docstring''' UpperCamelCase__ = AlbertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AlbertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any , lowercase : Optional[Any] , lowercase : Any , lowercase : Dict , lowercase : Any , lowercase : Optional[int] , lowercase : str , lowercase : Dict ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = AlbertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , lowercase : int , lowercase : Any , lowercase : Tuple , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = AlbertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = self.num_choices UpperCamelCase__ = AlbertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' __a : Any = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __a : List[Any] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = True def A ( self : Any , lowercase : int , lowercase : Dict , lowercase : Optional[Any]=False ) -> Tuple: '''simple docstring''' UpperCamelCase__ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowercase , hidden_size=3_7 ) def A ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def A ( self : Tuple ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*lowercase ) @slow def A ( self : Optional[int] ) -> Any: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = AlbertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(lowercase , attention_mask=lowercase )[0] UpperCamelCase__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowercase ) UpperCamelCase__ = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1e-4 ) )
265
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' return " ".join( ''''''.join(word[::-1] ) if len(lowerCamelCase__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
640
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( __UpperCamelCase ): def __init__( self : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any]=768 ): super().__init__(snake_case__ ) lowerCAmelCase__ = proj_size lowerCAmelCase__ = CLIPVisionModel(snake_case__ ) lowerCAmelCase__ = PaintByExampleMapper(snake_case__ ) lowerCAmelCase__ = nn.LayerNorm(config.hidden_size ) lowerCAmelCase__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=False ): lowerCAmelCase__ = self.model(pixel_values=snake_case__ ) lowerCAmelCase__ = clip_output.pooler_output lowerCAmelCase__ = self.mapper(latent_states[:, None] ) lowerCAmelCase__ = self.final_layer_norm(snake_case__ ) lowerCAmelCase__ = self.proj_out(snake_case__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): def __init__( self : int , snake_case__ : Dict ): super().__init__() lowerCAmelCase__ = (config.num_hidden_layers + 1) // 5 lowerCAmelCase__ = config.hidden_size lowerCAmelCase__ = 1 lowerCAmelCase__ = nn.ModuleList( [ BasicTransformerBlock(snake_case__ , snake_case__ , snake_case__ , activation_fn="""gelu""" , attention_bias=snake_case__ ) for _ in range(snake_case__ ) ] ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[int] ): for block in self.blocks: lowerCAmelCase__ = block(snake_case__ ) return hidden_states
644
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Any) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(a_): _lowerCAmelCase:Optional[int] = AutoConfig.from_pretrained(a_) self.assertIsNotNone(a_) self.assertIsInstance(a_ ,a_) _lowerCAmelCase:Dict = FlaxAutoModel.from_pretrained(a_) self.assertIsNotNone(a_) self.assertIsInstance(a_ ,a_) @slow def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(a_): _lowerCAmelCase:Any = AutoConfig.from_pretrained(a_) self.assertIsNotNone(a_) self.assertIsInstance(a_ ,a_) _lowerCAmelCase:Optional[int] = FlaxAutoModel.from_pretrained(a_) self.assertIsNotNone(a_) self.assertIsInstance(a_ ,a_) @slow def __UpperCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowerCAmelCase:Union[str, Any] = AutoTokenizer.from_pretrained(a_) _lowerCAmelCase:Optional[int] = FlaxBertModel.from_pretrained(a_) _lowerCAmelCase:Optional[Any] = tokenizer('''Do you support jax jitted function?''' ,return_tensors=TensorType.JAX) @jax.jit def eval(**a__ : str): return model(**a_) eval(**a_).block_until_ready() @slow def __UpperCamelCase ( self : int) -> Optional[Any]: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: _lowerCAmelCase:Union[str, Any] = AutoTokenizer.from_pretrained(a_) _lowerCAmelCase:List[Any] = FlaxRobertaModel.from_pretrained(a_) _lowerCAmelCase:Tuple = tokenizer('''Do you support jax jitted function?''' ,return_tensors=TensorType.JAX) @jax.jit def eval(**a__ : List[Any]): return model(**a_) eval(**a_).block_until_ready() def __UpperCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( a_ ,'''bert-base is not a local folder and is not a valid model identifier'''): _lowerCAmelCase:Union[str, Any] = FlaxAutoModel.from_pretrained('''bert-base''') def __UpperCamelCase ( self : int) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( a_ ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): _lowerCAmelCase:List[Any] = FlaxAutoModel.from_pretrained(a_ ,revision='''aaaaaa''') def __UpperCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( a_ ,'''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' ,): _lowerCAmelCase:str = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''') def __UpperCamelCase ( self : List[str]) -> Tuple: """simple docstring""" with self.assertRaisesRegex(a_ ,'''Use `from_pt=True` to load this model'''): _lowerCAmelCase:List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''')
706
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
439
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( _UpperCamelCase : Any ): '''simple docstring''' UpperCAmelCase_ = image.size UpperCAmelCase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase_ = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCAmelCase_ = np.array(snake_case_ ).astype(np.floataa ) / 255.0 UpperCAmelCase_ = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ = torch.from_numpy(snake_case_ ) return 2.0 * image - 1.0 class lowerCamelCase ( UpperCamelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , ) ->List[Any]: super().__init__() self.register_modules(vqvae=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Any , UpperCAmelCase__ : str = None , UpperCAmelCase__ : List[Any] = 1 , UpperCAmelCase__ : Optional[Any] = 100 , UpperCAmelCase__ : Any = 0.0 , UpperCAmelCase__ : str = None , UpperCAmelCase__ : Optional[int] = "pil" , UpperCAmelCase__ : Optional[int] = True , ) ->Union[Tuple, ImagePipelineOutput]: if isinstance(UpperCAmelCase__ , PIL.Image.Image ): UpperCAmelCase_ = 1 elif isinstance(UpperCAmelCase__ , torch.Tensor ): UpperCAmelCase_ = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) if isinstance(UpperCAmelCase__ , PIL.Image.Image ): UpperCAmelCase_ = preprocess(UpperCAmelCase__ ) UpperCAmelCase_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase_ = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase_ = next(self.unet.parameters() ).dtype UpperCAmelCase_ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) UpperCAmelCase_ = image.to(device=self.device , dtype=UpperCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase__ , device=self.device ) UpperCAmelCase_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for t in self.progress_bar(UpperCAmelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase_ = torch.cat([latents, image] , dim=1 ) UpperCAmelCase_ = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual UpperCAmelCase_ = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase_ = self.vqvae.decode(UpperCAmelCase__ ).sample UpperCAmelCase_ = torch.clamp(UpperCAmelCase__ , -1.0 , 1.0 ) UpperCAmelCase_ = image / 2 + 0.5 UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
390
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger(__name__) def A__ ( snake_case_ : List[Any] ): SCREAMING_SNAKE_CASE__: str= torch.load(snake_case_ , map_location='''cpu''' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE__: Any= torch.load(snake_case_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights SCREAMING_SNAKE_CASE__: List[str]= [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: str= { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE__: Union[str, Any]= sd.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: int= list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE__: int= sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE__: Optional[Any]= key.replace('''.qkv_proj.''' , '''.q_proj.''' ) SCREAMING_SNAKE_CASE__: Optional[int]= key.replace('''.qkv_proj.''' , '''.k_proj.''' ) SCREAMING_SNAKE_CASE__: List[str]= key.replace('''.qkv_proj.''' , '''.v_proj.''' ) SCREAMING_SNAKE_CASE__: Optional[int]= value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= torch.split(snake_case_ , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE__: List[Any]= q SCREAMING_SNAKE_CASE__: Any= k SCREAMING_SNAKE_CASE__: Optional[Any]= v del sd[key] return sd @torch.no_grad() def A__ ( snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Tuple=None ): SCREAMING_SNAKE_CASE__: List[str]= load_checkpoint(snake_case_ ) if config is not None: SCREAMING_SNAKE_CASE__: Any= OPTConfig.from_pretrained(snake_case_ ) else: SCREAMING_SNAKE_CASE__: Optional[int]= OPTConfig() SCREAMING_SNAKE_CASE__: Union[str, Any]= OPTModel(snake_case_ ).half().eval() model.load_state_dict(snake_case_ ) # Check results Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') lowercase_ : int = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
64
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Union[str, Any] = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
244
"""simple docstring""" def _snake_case ( lowerCamelCase__ : Dict ) -> Dict: lowerCamelCase_ : Dict =[0] * len(lowerCamelCase__ ) lowerCamelCase_ : Tuple =[] lowerCamelCase_ : Optional[int] =[1] * len(lowerCamelCase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCamelCase__ ) ): if indegree[i] == 0: queue.append(lowerCamelCase__ ) while queue: lowerCamelCase_ : List[Any] =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase_ : Union[str, Any] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCamelCase__ ) print(max(lowerCamelCase__ ) ) # Adjacency list of Graph A__ : List[str] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
244
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A ( __snake_case: Tuple , __snake_case: List[str] ) -> str: """simple docstring""" __magic_name__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __magic_name__ = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('RGB' ) __magic_name__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) __magic_name__ = transform(__snake_case ).unsqueeze(0 ).to(__snake_case ) return image def A ( __snake_case: List[Any] ) -> Any: """simple docstring""" if "visual_encoder" in key: __magic_name__ = re.sub('visual_encoder*' , 'vision_model.encoder' , __snake_case ) if "blocks" in key: __magic_name__ = re.sub(r'blocks' , 'layers' , __snake_case ) if "attn" in key: __magic_name__ = re.sub(r'attn' , 'self_attn' , __snake_case ) if "norm1" in key: __magic_name__ = re.sub(r'norm1' , 'layer_norm1' , __snake_case ) if "norm2" in key: __magic_name__ = re.sub(r'norm2' , 'layer_norm2' , __snake_case ) if "encoder.norm" in key: __magic_name__ = re.sub(r'encoder.norm' , 'post_layernorm' , __snake_case ) if "encoder.patch_embed.proj" in key: __magic_name__ = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , __snake_case ) if "encoder.pos_embed" in key: __magic_name__ = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , __snake_case ) if "encoder.cls_token" in key: __magic_name__ = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , __snake_case ) if "self_attn" in key: __magic_name__ = re.sub(r'self_attn.proj' , 'self_attn.projection' , __snake_case ) return key @torch.no_grad() def A ( __snake_case: List[str] , __snake_case: Optional[Any]=None ) -> Optional[Any]: """simple docstring""" if config_path is not None: __magic_name__ = BlipConfig.from_pretrained(__snake_case ) else: __magic_name__ = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __magic_name__ = BlipForConditionalGeneration(__snake_case ).eval() __magic_name__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __magic_name__ = blip_decoder(pretrained=__snake_case , image_size=3_8_4 , vit='base' ) __magic_name__ = pt_model.eval() __magic_name__ = pt_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(__snake_case ) __magic_name__ = rename_key(__snake_case ) __magic_name__ = value hf_model.load_state_dict(__snake_case ) __magic_name__ = 3_8_4 __magic_name__ = load_demo_image(image_size=__snake_case , device='cpu' ) __magic_name__ = BertTokenizer.from_pretrained('bert-base-uncased' ) __magic_name__ = tokenizer(['a picture of'] ).input_ids __magic_name__ = hf_model.generate(__snake_case , __snake_case ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __magic_name__ = hf_model.generate(__snake_case ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__snake_case ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __magic_name__ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __magic_name__ = blip_vqa(pretrained=__snake_case , image_size=__snake_case , vit='base' ) vqa_model.eval() __magic_name__ = vqa_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(__snake_case ) __magic_name__ = rename_key(__snake_case ) __magic_name__ = value __magic_name__ = BlipForQuestionAnswering(__snake_case ) hf_vqa_model.load_state_dict(__snake_case ) __magic_name__ = ['How many dogs are in this image?'] __magic_name__ = tokenizer(__snake_case , return_tensors='pt' ).input_ids __magic_name__ = hf_vqa_model.generate(__snake_case , __snake_case ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __magic_name__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __magic_name__ = blip_itm(pretrained=__snake_case , image_size=__snake_case , vit='base' ) itm_model.eval() __magic_name__ = itm_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(__snake_case ) __magic_name__ = rename_key(__snake_case ) __magic_name__ = value __magic_name__ = BlipForImageTextRetrieval(__snake_case ) __magic_name__ = ['A picture of a woman with a dog sitting in a beach'] __magic_name__ = tokenizer( __snake_case , return_tensors='pt' , padding='max_length' , truncation=__snake_case , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(__snake_case ) hf_itm_model.eval() __magic_name__ = hf_itm_model(__snake_case , __snake_case , use_itm_head=__snake_case ) __magic_name__ = hf_itm_model(__snake_case , __snake_case , use_itm_head=__snake_case ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") snake_case : str = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
545
"""simple docstring""" import argparse import copy def A ( __snake_case: Union[str, Any] ) -> Tuple: """simple docstring""" __magic_name__ = {} with open(__snake_case ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __magic_name__ = [] _list.append([line.split()[1], line.split()[2]] ) __magic_name__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __magic_name__ = [] _list.append([line.split()[0], line.split()[2]] ) __magic_name__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A ( __snake_case: Optional[Any] , __snake_case: str ) -> List[str]: """simple docstring""" with open(__snake_case ) as f: __magic_name__ = f.read(1 ) __magic_name__ = start_node __magic_name__ = [] __magic_name__ = start_node __magic_name__ = 0 while visiting not in first_solution: __magic_name__ = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__snake_case ) and k[0] not in first_solution: __magic_name__ = k[1] __magic_name__ = k[0] first_solution.append(__snake_case ) __magic_name__ = distance_of_first_solution + int(__snake_case ) __magic_name__ = best_node first_solution.append(__snake_case ) __magic_name__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __magic_name__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def A ( __snake_case: Union[str, Any] , __snake_case: Optional[Any] ) -> Dict: """simple docstring""" __magic_name__ = [] for n in solution[1:-1]: __magic_name__ = solution.index(__snake_case ) for kn in solution[1:-1]: __magic_name__ = solution.index(__snake_case ) if n == kn: continue __magic_name__ = copy.deepcopy(__snake_case ) __magic_name__ = kn __magic_name__ = n __magic_name__ = 0 for k in _tmp[:-1]: __magic_name__ = _tmp[_tmp.index(__snake_case ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __magic_name__ = distance + int(i[1] ) _tmp.append(__snake_case ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __magic_name__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __snake_case : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A ( __snake_case: List[str] , __snake_case: Union[str, Any] , __snake_case: List[str] , __snake_case: Optional[int] , __snake_case: List[str] ) -> Dict: """simple docstring""" __magic_name__ = 1 __magic_name__ = first_solution __magic_name__ = [] __magic_name__ = distance_of_first_solution __magic_name__ = solution while count <= iters: __magic_name__ = find_neighborhood(__snake_case , __snake_case ) __magic_name__ = 0 __magic_name__ = neighborhood[index_of_best_solution] __magic_name__ = len(__snake_case ) - 1 __magic_name__ = False while not found: __magic_name__ = 0 while i < len(__snake_case ): if best_solution[i] != solution[i]: __magic_name__ = best_solution[i] __magic_name__ = solution[i] break __magic_name__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __magic_name__ = True __magic_name__ = best_solution[:-1] __magic_name__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __magic_name__ = cost __magic_name__ = solution else: __magic_name__ = index_of_best_solution + 1 __magic_name__ = neighborhood[index_of_best_solution] if len(__snake_case ) >= size: tabu_list.pop(0 ) __magic_name__ = count + 1 return best_solution_ever, best_cost def A ( __snake_case: Union[str, Any]=None ) -> Tuple: """simple docstring""" __magic_name__ = generate_neighbours(args.File ) __magic_name__ , __magic_name__ = generate_first_solution( args.File , __snake_case ) __magic_name__ , __magic_name__ = tabu_search( __snake_case , __snake_case , __snake_case , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": snake_case : str = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
545
1
"""simple docstring""" a_ = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) a_ = frozenset(["prompt", "negative_prompt"]) a_ = frozenset([]) a_ = frozenset(["image"]) a_ = frozenset( [ "image", "height", "width", "guidance_scale", ] ) a_ = frozenset(["image"]) a_ = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) a_ = frozenset(["prompt", "image", "negative_prompt"]) a_ = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) a_ = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) a_ = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) a_ = frozenset(["image", "mask_image"]) a_ = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) a_ = frozenset(["example_image", "image", "mask_image"]) a_ = frozenset(["class_labels"]) a_ = frozenset(["class_labels"]) a_ = frozenset(["batch_size"]) a_ = frozenset([]) a_ = frozenset(["batch_size"]) a_ = frozenset([]) a_ = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) a_ = frozenset(["prompt", "negative_prompt"]) a_ = frozenset(["input_tokens"]) a_ = frozenset(["input_tokens"])
621
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
621
1
from maths.prime_check import is_prime def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): __lowerCAmelCase = F"Input value of [number={number}] must be an integer" raise TypeError(UpperCamelCase ) if is_prime(UpperCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
611
class a : def __init__( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" __lowerCAmelCase = arr.split("," ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase_ = input("please input some numbers:") UpperCamelCase_ = SubArray(whole_array) UpperCamelCase_ = array.solve_sub_array() print(("the results is:", re))
611
1
"""simple docstring""" import requests __lowerCAmelCase : Optional[int] = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase : int = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def A_ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = True while ask_again: SCREAMING_SNAKE_CASE_: Dict = input(_UpperCAmelCase ) try: if default is not None and len(_UpperCAmelCase ) == 0: return default return convert_value(_UpperCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=[] , _UpperCAmelCase=None , _UpperCAmelCase=0 ): SCREAMING_SNAKE_CASE_: Any = BulletMenu(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = menu.run(default_choice=_UpperCAmelCase ) return convert_value(_UpperCAmelCase ) if convert_value is not None else result def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(_UpperCAmelCase ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = int(_UpperCAmelCase ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = int(_UpperCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(_UpperCAmelCase ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(_UpperCAmelCase ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def A_ ( _UpperCAmelCase ): return {"yes": True, "no": False}[value.lower()] class __lowercase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: int = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = usage.replace("<command> [<args>] " , "") return usage
671
from __future__ import annotations from math import ceil, floor, sqrt def A_ ( _UpperCAmelCase = 2_00_00_00 ): SCREAMING_SNAKE_CASE_: list[int] = [0] SCREAMING_SNAKE_CASE_: int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target SCREAMING_SNAKE_CASE_: int = 0 # the area corresponding to the grid that gives the product closest to target SCREAMING_SNAKE_CASE_: int = 0 # an estimate of b, using the quadratic formula SCREAMING_SNAKE_CASE_: float # the largest integer less than b_estimate SCREAMING_SNAKE_CASE_: int # the largest integer less than b_estimate SCREAMING_SNAKE_CASE_: int # the triangle number corresponding to b_floor SCREAMING_SNAKE_CASE_: int # the triangle number corresponding to b_ceil SCREAMING_SNAKE_CASE_: int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): SCREAMING_SNAKE_CASE_: List[Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 SCREAMING_SNAKE_CASE_: Any = floor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ceil(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = triangle_numbers[b_floor] SCREAMING_SNAKE_CASE_: List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE_: int = triangle_b_first_guess * triangle_a SCREAMING_SNAKE_CASE_: int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE_: Optional[Any] = triangle_b_second_guess * triangle_a SCREAMING_SNAKE_CASE_: Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
671
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase_ = 25_0004 lowerCamelCase_ = 25_0020 @require_sentencepiece @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = MBartTokenizer __magic_name__ = MBartTokenizerFast __magic_name__ = True __magic_name__ = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Optional[int] = MBartTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : Optional[int] = MBartTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ : Dict = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Any = tempfile.mkdtemp() UpperCAmelCase_ : Dict = tokenizer_r.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ : Optional[int] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way UpperCAmelCase_ : Any = tokenizer_r.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way UpperCAmelCase_ : Union[str, Any] = tokenizer_r.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ : List[str] = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ : Union[str, Any] = tokenizer_r.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = '''facebook/mbart-large-en-ro''' __magic_name__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __magic_name__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __magic_name__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ) -> Dict: UpperCAmelCase_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCAmelCase_ : Tuple = 1 return cls def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) UpperCAmelCase_ : Optional[Any] = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCAmelCase_ : Any = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: UpperCAmelCase_ : List[str] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = 10 UpperCAmelCase_ : List[str] = self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_026, 250_001] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = MBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="pt" ) UpperCAmelCase_ : List[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ : Optional[int] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase_ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_ : Union[str, Any] = self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ : int = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ : Any = targets["input_ids"] UpperCAmelCase_ : Optional[int] = shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: UpperCAmelCase_ : str = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX "input_ids": [[62, 3_034, 2, 250_004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
708
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCamelCase_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCamelCase_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
463
0
def a__ ( lowercase__ = 1 , lowercase__ = 1_0_0_0 ): '''simple docstring''' UpperCAmelCase_ =1 UpperCAmelCase_ =0 for divide_by_number in range(lowercase__ , digit + 1 ): UpperCAmelCase_ =[] UpperCAmelCase_ =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =divide_by_number else: has_been_divided.append(lowercase__ ) UpperCAmelCase_ =now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Union[str, Any] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
33
'''simple docstring''' from itertools import permutations def UpperCAmelCase_ ( __lowerCamelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowercase_ :List[Any] = [7, 11, 13, 17] for i, test in enumerate(__lowerCamelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase_ ( __lowerCamelCase : int = 10 ): return sum( int("".join(map(__lowerCamelCase ,__lowerCamelCase ) ) ) for num in permutations(range(__lowerCamelCase ) ) if is_substring_divisible(__lowerCamelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
172
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , lowerCAmelCase=None ) -> int: '''simple docstring''' _lowercase ={} if top_k is not None: _lowercase =top_k return {}, {}, postprocess_params def __call__( self , lowerCAmelCase , **lowerCAmelCase ) -> Dict: '''simple docstring''' return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =load_image(lowerCAmelCase ) _lowercase =self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =self.model(**lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=5 ) -> str: '''simple docstring''' if top_k > self.model.config.num_labels: _lowercase =self.model.config.num_labels if self.framework == "pt": _lowercase =model_outputs.logits.softmax(-1 )[0] _lowercase , _lowercase =probs.topk(lowerCAmelCase ) elif self.framework == "tf": _lowercase =stable_softmax(model_outputs.logits , axis=-1 )[0] _lowercase =tf.math.top_k(lowerCAmelCase , k=lowerCAmelCase ) _lowercase , _lowercase =topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase =scores.tolist() _lowercase =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase , lowerCAmelCase )]
380
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowercase_ = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['BeitFeatureExtractor'] lowercase_ = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
380
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : list[list[str]] = [[] for _ in range(UpperCamelCase )] lowerCAmelCase__ : List[str] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(UpperCamelCase ) <= key: return input_string for position, character in enumerate(UpperCamelCase ): lowerCAmelCase__ : Tuple = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Optional[Any] = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCamelCase ) lowerCAmelCase__ : Tuple = ["""""".join(UpperCamelCase ) for row in temp_grid] lowerCAmelCase__ : Tuple = """""".join(UpperCamelCase ) return output_string def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Tuple = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string lowerCAmelCase__ : list[list[str]] = [[] for _ in range(UpperCamelCase )] # generates template for position in range(len(UpperCamelCase ) ): lowerCAmelCase__ : Optional[Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : str = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) lowerCAmelCase__ : List[str] = 0 for row in temp_grid: # fills in the characters lowerCAmelCase__ : Union[str, Any] = input_string[counter : counter + len(UpperCamelCase )] grid.append(list(UpperCamelCase ) ) counter += len(UpperCamelCase ) lowerCAmelCase__ : List[str] = """""" # reads as zigzag for position in range(len(UpperCamelCase ) ): lowerCAmelCase__ : Union[str, Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : int = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = {} for key_guess in range(1 , len(UpperCamelCase ) ): # tries every key lowerCAmelCase__ : Dict = decrypt(UpperCamelCase , UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
565
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _lowerCAmelCase = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "mumbai" ): """simple docstring""" lowerCAmelCase__ : List[str] = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase__ : Union[str, Any] = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase__ : str = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
565
1
'''simple docstring''' import cmath import math def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> complex: '''simple docstring''' snake_case_ = math.radians(__UpperCAmelCase ) snake_case_ = math.radians(__UpperCAmelCase ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = cmath.rect(__UpperCAmelCase, __UpperCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a : int = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a : str = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ), dtype=__UpperCAmelCase )[0] @deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: snake_case_ = _readaa(__UpperCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = bytestream.read(rows * cols * num_images ) snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta ) snake_case_ = data.reshape(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, 1 ) return data @deprecated(__UpperCAmelCase, '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = labels_dense.shape[0] snake_case_ = numpy.arange(__UpperCAmelCase ) * num_classes snake_case_ = numpy.zeros((num_labels, num_classes) ) snake_case_ = 1 return labels_one_hot @deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=10 ) -> Dict: '''simple docstring''' print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: snake_case_ = _readaa(__UpperCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = bytestream.read(__UpperCAmelCase ) snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__UpperCAmelCase, __UpperCAmelCase ) return labels class a : @deprecated( lowercase_ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=False , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=dtypes.floataa , lowercase_ : Any=True , lowercase_ : Optional[int]=None , ): snake_case_ ,snake_case_ = random_seed.get_seed(lowercase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) snake_case_ = dtypes.as_dtype(lowercase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: snake_case_ = 1_0000 snake_case_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" snake_case_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case_ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case_ = images.astype(numpy.floataa ) snake_case_ = numpy.multiply(lowercase_ , 1.0 / 255.0 ) snake_case_ = images snake_case_ = labels snake_case_ = 0 snake_case_ = 0 @property def A_ ( self : int ): return self._images @property def A_ ( self : Tuple ): return self._labels @property def A_ ( self : str ): return self._num_examples @property def A_ ( self : List[str] ): return self._epochs_completed def A_ ( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=False , lowercase_ : Dict=True ): if fake_data: snake_case_ = [1] * 784 snake_case_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase_ )], [fake_label for _ in range(lowercase_ )], ) snake_case_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case_ = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case_ = self.images[perma] snake_case_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case_ = self._num_examples - start snake_case_ = self._images[start : self._num_examples] snake_case_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case_ = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case_ = self.images[perm] snake_case_ = self.labels[perm] # Start next epoch snake_case_ = 0 snake_case_ = batch_size - rest_num_examples snake_case_ = self._index_in_epoch snake_case_ = self._images[start:end] snake_case_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size snake_case_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__UpperCAmelCase, '''Please write your own downloading logic.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' if not gfile.Exists(__UpperCAmelCase ): gfile.MakeDirs(__UpperCAmelCase ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if not gfile.Exists(__UpperCAmelCase ): urllib.request.urlretrieve(__UpperCAmelCase, __UpperCAmelCase ) # noqa: S310 with gfile.GFile(__UpperCAmelCase ) as f: snake_case_ = f.size() print('''Successfully downloaded''', __UpperCAmelCase, __UpperCAmelCase, '''bytes.''' ) return filepath @deprecated( __UpperCAmelCase, '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=False, __UpperCAmelCase=dtypes.floataa, __UpperCAmelCase=True, __UpperCAmelCase=5000, __UpperCAmelCase=None, __UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=__UpperCAmelCase, one_hot=__UpperCAmelCase, dtype=__UpperCAmelCase, seed=__UpperCAmelCase ) snake_case_ = fake() snake_case_ = fake() snake_case_ = fake() return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase ) if not source_url: # empty string check snake_case_ = DEFAULT_SOURCE_URL snake_case_ = '''train-images-idx3-ubyte.gz''' snake_case_ = '''train-labels-idx1-ubyte.gz''' snake_case_ = '''t10k-images-idx3-ubyte.gz''' snake_case_ = '''t10k-labels-idx1-ubyte.gz''' snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + train_images_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_images(__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + test_images_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_images(__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase ) if not 0 <= validation_size <= len(__UpperCAmelCase ): snake_case_ = ( '''Validation size should be between 0 and ''' F"{len(__UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(__UpperCAmelCase ) snake_case_ = train_images[:validation_size] snake_case_ = train_labels[:validation_size] snake_case_ = train_images[validation_size:] snake_case_ = train_labels[validation_size:] snake_case_ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase )
593
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''decision_transformer''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , _UpperCAmelCase : Optional[int]=17 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Optional[int]=4096 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Optional[int]=1024 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple="relu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : int=1e-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=50256 , _UpperCAmelCase : Dict=50256 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]=False , **_UpperCAmelCase : Dict , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = state_dim UpperCAmelCase_ = act_dim UpperCAmelCase_ = hidden_size UpperCAmelCase_ = max_ep_len UpperCAmelCase_ = action_tanh UpperCAmelCase_ = vocab_size UpperCAmelCase_ = n_positions UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_inner UpperCAmelCase_ = activation_function UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scale_attn_weights UpperCAmelCase_ = use_cache UpperCAmelCase_ = scale_attn_by_inverse_layer_idx UpperCAmelCase_ = reorder_and_upcast_attn UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
82
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowercase__( A ): snake_case__ : List[Any] = {} snake_case__ : int = tokenizer(example['content'] , truncation=A )['input_ids'] snake_case__ : int = len(example['content'] ) / len(output['input_ids'] ) return output lowerCamelCase : Optional[Any] = HfArgumentParser(PretokenizationArguments) lowerCamelCase : int = parser.parse_args() if args.num_workers is None: lowerCamelCase : str = multiprocessing.cpu_count() lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase : Tuple = time.time() lowerCamelCase : str = load_dataset(args.dataset_name, split='train') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCamelCase : int = time.time() lowerCamelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCamelCase : Optional[int] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
170
0
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase( UpperCAmelCase_ : str = "" , ) -> Tuple: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase( UpperCAmelCase_ : Optional[Any] = "" ) -> Optional[int]: if len(__lowerCAmelCase ) == 0: return True lowerCAmelCase__ = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase__ = {} for character in lower_case_input_str: lowerCAmelCase__ = character_freq_dict.get(__lowerCAmelCase , 0 ) + 1 lowerCAmelCase__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase( UpperCAmelCase_ : Optional[int] = "" ) -> List[Any]: print("""\nFor string = """ , __lowerCAmelCase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(__lowerCAmelCase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(__lowerCAmelCase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _UpperCamelCase = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
718
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _UpperCamelCase = False @skip_mps class lowerCamelCase__ ( _A, _A, _A, unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionAttendAndExcitePipeline A__ = False A__ = TEXT_TO_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) A__ = TEXT_TO_IMAGE_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowercase__ ( cls : Optional[int] ) -> Any: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__A ) @classmethod def lowercase__ ( cls : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__A ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__A , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase__ = CLIPTextModel(__A ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Tuple , __A : Optional[int] , __A : Optional[int]=0 ) -> List[Any]: '''simple docstring''' if str(__A ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(__A ) else: lowerCAmelCase__ = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase__ = lowerCAmelCase__ = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = """cpu""" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase__ = self.get_dummy_inputs(__A ) lowerCAmelCase__ = pipe(**__A ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCAmelCase__ = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) lowerCAmelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1E-3 ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def lowercase__ ( self : str ) -> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : Optional[int] ) -> Tuple: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__A ) @classmethod def lowercase__ ( cls : int ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__A ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = torch.manual_seed(51 ) lowerCAmelCase__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=__A , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowerCAmelCase__ = """a painting of an elephant with glasses""" lowerCAmelCase__ = [5, 7] lowerCAmelCase__ = pipe( prompt=__A , token_indices=__A , guidance_scale=7.5 , generator=__A , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-1
211
0
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: lowercase__: Any = len(__UpperCAmelCase ) lowercase__: Any = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase__: List[str] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
586
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = "distilbert" _UpperCAmelCase :Any = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=512 , _UpperCAmelCase=False , _UpperCAmelCase=6 , _UpperCAmelCase=12 , _UpperCAmelCase=768 , _UpperCAmelCase=4 * 768 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.2 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): lowercase__: Any = vocab_size lowercase__: Optional[int] = max_position_embeddings lowercase__: int = sinusoidal_pos_embds lowercase__: Dict = n_layers lowercase__: List[str] = n_heads lowercase__: Tuple = dim lowercase__: Union[str, Any] = hidden_dim lowercase__: List[str] = dropout lowercase__: Optional[int] = attention_dropout lowercase__: Dict = activation lowercase__: Union[str, Any] = initializer_range lowercase__: Optional[Any] = qa_dropout lowercase__: Dict = seq_classif_dropout super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @property def _snake_case ( self ): if self.task == "multiple-choice": lowercase__: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__: Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
586
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , ): super().__init__() self.register_modules(transformer=__lowerCAmelCase , vae=__lowerCAmelCase , scheduler=__lowerCAmelCase ) # create a imagenet -> id dictionary for easier use UpperCamelCase_ : Dict = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): UpperCamelCase_ : str = int(__lowerCAmelCase ) UpperCamelCase_ : Dict = dict(sorted(self.labels.items() ) ) def _UpperCAmelCase ( self , __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Any = list(__lowerCAmelCase ) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = 4.0 , __lowerCAmelCase = None , __lowerCAmelCase = 50 , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , ): UpperCamelCase_ : Optional[Any] = len(__lowerCAmelCase ) UpperCamelCase_ : Any = self.transformer.config.sample_size UpperCamelCase_ : str = self.transformer.config.in_channels UpperCamelCase_ : str = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCAmelCase , device=self.device , dtype=self.transformer.dtype , ) UpperCamelCase_ : List[str] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCamelCase_ : Union[str, Any] = torch.tensor(__lowerCAmelCase , device=self.device ).reshape(-1 ) UpperCamelCase_ : Union[str, Any] = torch.tensor([10_00] * batch_size , device=self.device ) UpperCamelCase_ : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCamelCase_ : Optional[int] = latent_model_input[: len(__lowerCAmelCase ) // 2] UpperCamelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCamelCase_ : List[str] = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : int = t if not torch.is_tensor(__lowerCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCamelCase_ : Optional[int] = latent_model_input.device.type == """mps""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : List[str] = torch.floataa if is_mps else torch.floataa else: UpperCamelCase_ : str = torch.intaa if is_mps else torch.intaa UpperCamelCase_ : Tuple = torch.tensor([timesteps] , dtype=__lowerCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCamelCase_ : Tuple = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase_ : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCamelCase_ : Dict = self.transformer( __lowerCAmelCase , timestep=__lowerCAmelCase , class_labels=__lowerCAmelCase ).sample # perform guidance if guidance_scale > 1: UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCamelCase_ , UpperCamelCase_ : Dict = torch.split(__lowerCAmelCase , len(__lowerCAmelCase ) // 2 , dim=0 ) UpperCamelCase_ : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCamelCase_ : Union[str, Any] = torch.cat([half_eps, half_eps] , dim=0 ) UpperCamelCase_ : int = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCamelCase_ , UpperCamelCase_ : List[str] = torch.split(__lowerCAmelCase , __lowerCAmelCase , dim=1 ) else: UpperCamelCase_ : Dict = noise_pred # compute previous image: x_t -> x_t-1 UpperCamelCase_ : Union[str, Any] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample if guidance_scale > 1: UpperCamelCase_ , UpperCamelCase_ : Any = latent_model_input.chunk(2 , dim=0 ) else: UpperCamelCase_ : List[Any] = latent_model_input UpperCamelCase_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents UpperCamelCase_ : List[str] = self.vae.decode(__lowerCAmelCase ).sample UpperCamelCase_ : int = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ : Optional[int] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ : Optional[int] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCAmelCase )
543
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : str = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() UpperCamelCase_ : int = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) UpperCamelCase_ : Tuple = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } UpperCamelCase_ : Optional[Any] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } UpperCamelCase_ : int = tempfile.mkdtemp() UpperCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_ : List[Any] = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) # load decoder from hub UpperCamelCase_ : Union[str, Any] = """hf-internal-testing/ngram-beam-search-decoder""" def _UpperCAmelCase ( self , **__lowerCAmelCase ): UpperCamelCase_ : str = self.add_kwargs_tokens_map.copy() kwargs.update(__lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__lowerCAmelCase ) def _UpperCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.get_tokenizer() UpperCamelCase_ : str = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_decoder() UpperCamelCase_ : int = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=__lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_tokenizer() UpperCamelCase_ : Any = self.get_decoder() UpperCamelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[Any] = floats_list((3, 10_00) ) UpperCamelCase_ : Tuple = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase_ : str = processor(__lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.get_feature_extractor() UpperCamelCase_ : List[Any] = self.get_tokenizer() UpperCamelCase_ : List[Any] = self.get_decoder() UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[str] = """This is a test string""" UpperCamelCase_ : Optional[Any] = processor(text=__lowerCAmelCase ) UpperCamelCase_ : int = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCAmelCase ( self , __lowerCAmelCase=(2, 10, 16) , __lowerCAmelCase=77 ): np.random.seed(__lowerCAmelCase ) return np.random.rand(*__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_tokenizer() UpperCamelCase_ : Optional[int] = self.get_decoder() UpperCamelCase_ : int = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCamelCase_ : Any = processor.decode(__lowerCAmelCase ) UpperCamelCase_ : Any = decoder.decode_beams(__lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase_ : str = self.get_tokenizer() UpperCamelCase_ : List[Any] = self.get_decoder() UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCamelCase_ : List[Any] = processor.batch_decode(__lowerCAmelCase ) else: with get_context(__lowerCAmelCase ).Pool() as pool: UpperCamelCase_ : Any = processor.batch_decode(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : Tuple = list(__lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: UpperCamelCase_ : Optional[int] = decoder.decode_beams_batch(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(__lowerCAmelCase , decoded_processor.lm_score ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_tokenizer() UpperCamelCase_ : Tuple = self.get_decoder() UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[str] = self._get_dummy_logits() UpperCamelCase_ : Dict = 15 UpperCamelCase_ : str = -20.0 UpperCamelCase_ : Dict = -4.0 UpperCamelCase_ : Union[str, Any] = processor.batch_decode( __lowerCAmelCase , beam_width=__lowerCAmelCase , beam_prune_logp=__lowerCAmelCase , token_min_logp=__lowerCAmelCase , ) UpperCamelCase_ : Any = decoded_processor_out.text UpperCamelCase_ : Tuple = list(__lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: UpperCamelCase_ : str = decoder.decode_beams_batch( __lowerCAmelCase , __lowerCAmelCase , beam_width=__lowerCAmelCase , beam_prune_logp=__lowerCAmelCase , token_min_logp=__lowerCAmelCase , ) UpperCamelCase_ : str = [d[0][0] for d in decoded_decoder_out] UpperCamelCase_ : List[str] = [d[0][2] for d in decoded_decoder_out] UpperCamelCase_ : Union[str, Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __lowerCAmelCase ) self.assertTrue(np.array_equal(__lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , __lowerCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(__lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , __lowerCAmelCase , atol=1E-3 ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = self.get_feature_extractor() UpperCamelCase_ : Union[str, Any] = self.get_tokenizer() UpperCamelCase_ : int = self.get_decoder() UpperCamelCase_ : Dict = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : str = self._get_dummy_logits() UpperCamelCase_ : Optional[int] = 2.0 UpperCamelCase_ : List[str] = 5.0 UpperCamelCase_ : Optional[Any] = -20.0 UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Union[str, Any] = processor.batch_decode( __lowerCAmelCase , alpha=__lowerCAmelCase , beta=__lowerCAmelCase , unk_score_offset=__lowerCAmelCase , lm_score_boundary=__lowerCAmelCase , ) UpperCamelCase_ : List[str] = decoded_processor_out.text UpperCamelCase_ : List[str] = list(__lowerCAmelCase ) decoder.reset_params( alpha=__lowerCAmelCase , beta=__lowerCAmelCase , unk_score_offset=__lowerCAmelCase , lm_score_boundary=__lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: UpperCamelCase_ : int = decoder.decode_beams_batch( __lowerCAmelCase , __lowerCAmelCase , ) UpperCamelCase_ : Any = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase_ : int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCamelCase_ : Any = os.listdir(__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase_ : Tuple = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCamelCase_ : Union[str, Any] = os.listdir(__lowerCAmelCase ) UpperCamelCase_ : str = os.listdir(__lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Dict = floats_list((3, 10_00) ) UpperCamelCase_ : List[Any] = processor_wavaveca(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase_ : Tuple = processor_auto(__lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) UpperCamelCase_ : Optional[int] = self._get_dummy_logits() UpperCamelCase_ : Dict = processor_wavaveca.batch_decode(__lowerCAmelCase ) UpperCamelCase_ : Any = processor_auto.batch_decode(__lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = self.get_feature_extractor() UpperCamelCase_ : int = self.get_tokenizer() UpperCamelCase_ : List[Any] = self.get_decoder() UpperCamelCase_ : List[str] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : int = self._get_dummy_logits()[0] UpperCamelCase_ : List[Any] = processor.decode(__lowerCAmelCase , output_word_offsets=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Union[str, Any] = self._get_dummy_logits() UpperCamelCase_ : Dict = processor.batch_decode(__lowerCAmelCase , output_word_offsets=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase ( self ): import torch UpperCamelCase_ : str = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) UpperCamelCase_ : Union[str, Any] = iter(__lowerCAmelCase ) UpperCamelCase_ : int = next(__lowerCAmelCase ) UpperCamelCase_ : List[str] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) UpperCamelCase_ : Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCamelCase_ : Dict = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): UpperCamelCase_ : List[Any] = model(__lowerCAmelCase ).logits.cpu().numpy() UpperCamelCase_ : Tuple = processor.decode(logits[0] , output_word_offsets=__lowerCAmelCase ) UpperCamelCase_ : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCamelCase_ : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] UpperCamelCase_ : Optional[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__lowerCAmelCase , """word""" ) ) , __lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(__lowerCAmelCase , """word""" ) ) , output.text ) # output times UpperCamelCase_ : str = torch.tensor(self.get_from_offsets(__lowerCAmelCase , """start_time""" ) ) UpperCamelCase_ : Union[str, Any] = torch.tensor(self.get_from_offsets(__lowerCAmelCase , """end_time""" ) ) # fmt: off UpperCamelCase_ : Union[str, Any] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) UpperCamelCase_ : Union[str, Any] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=0.01 ) )
543
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): lowerCAmelCase__ = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase__ = Features({'question': Value('string' ), 'context': Value('string' )} ) lowerCAmelCase__ = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) lowerCAmelCase__ = "question" lowerCAmelCase__ = "context" lowerCAmelCase__ = "answers" @property def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
463
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""linear""" a_ : List[Any] ="""cosine""" a_ : Optional[int] ="""cosine_with_restarts""" a_ : List[str] ="""polynomial""" a_ : Optional[Any] ="""constant""" a_ : List[str] ="""constant_with_warmup""" a_ : Optional[int] ="""piecewise_constant""" def lowerCamelCase_ ( lowerCAmelCase: Optimizer , lowerCAmelCase: int = -1 )-> Optional[Any]: return LambdaLR(lowerCAmelCase , lambda lowerCAmelCase : 1 , last_epoch=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optimizer , lowerCAmelCase: int , lowerCAmelCase: int = -1 )-> Tuple: def lr_lambda(lowerCAmelCase: int ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1.0 , lowerCAmelCase ) ) return 1.0 return LambdaLR(lowerCAmelCase , lowerCAmelCase , last_epoch=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optimizer , lowerCAmelCase: str , lowerCAmelCase: int = -1 )-> Union[str, Any]: _snake_case : Any = {} _snake_case : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: _snake_case , _snake_case : Tuple = rule_str.split(':' ) _snake_case : Optional[int] = int(lowerCAmelCase ) _snake_case : List[Any] = float(lowerCAmelCase ) _snake_case : int = value _snake_case : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase: List[str] , lowerCAmelCase: str ): def rule_func(lowerCAmelCase: int ) -> float: _snake_case : List[str] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _snake_case : Any = create_rules_function(lowerCAmelCase , lowerCAmelCase ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , last_epoch=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any]=-1 )-> Union[str, Any]: def lr_lambda(lowerCAmelCase: int ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optimizer , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: float = 0.5 , lowerCAmelCase: int = -1 )-> str: def lr_lambda(lowerCAmelCase: Union[str, Any] ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) _snake_case : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optimizer , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int = 1 , lowerCAmelCase: int = -1 )-> Tuple: def lr_lambda(lowerCAmelCase: Optional[Any] ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) _snake_case : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict=1E-7 , lowerCAmelCase: Union[str, Any]=1.0 , lowerCAmelCase: Any=-1 )-> Any: _snake_case : int = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(lowerCAmelCase: int ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _snake_case : Optional[int] = lr_init - lr_end _snake_case : str = num_training_steps - num_warmup_steps _snake_case : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps _snake_case : List[str] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase_ ( lowerCAmelCase: Union[str, SchedulerType] , lowerCAmelCase: Optimizer , lowerCAmelCase: Optional[str] = None , lowerCAmelCase: Optional[int] = None , lowerCAmelCase: Optional[int] = None , lowerCAmelCase: int = 1 , lowerCAmelCase: float = 1.0 , lowerCAmelCase: int = -1 , )-> Dict: _snake_case : Union[str, Any] = SchedulerType(lowerCAmelCase ) _snake_case : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase , last_epoch=lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase , step_rules=lowerCAmelCase , last_epoch=lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase , num_warmup_steps=lowerCAmelCase , last_epoch=lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase , num_warmup_steps=lowerCAmelCase , num_training_steps=lowerCAmelCase , num_cycles=lowerCAmelCase , last_epoch=lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase , num_warmup_steps=lowerCAmelCase , num_training_steps=lowerCAmelCase , power=lowerCAmelCase , last_epoch=lowerCAmelCase , ) return schedule_func( lowerCAmelCase , num_warmup_steps=lowerCAmelCase , num_training_steps=lowerCAmelCase , last_epoch=lowerCAmelCase )
411
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] UpperCAmelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def lowerCamelCase (a_ :str , a_ :Any) -> Optional[Any]: lowercase :Dict = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowercase :Optional[int] = int(re.match(R'''.*layer_(\d*).*''' , a_)[1]) layer_number -= 3 return F"""h.{layer_number}.""" + key def lowerCamelCase (a_ :Tuple) -> Optional[Any]: if dtype == torch.bool: return 1 / 8 lowercase :Tuple = re.search(R'''[^\d](\d+)$''' , str(a_)) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""") lowercase :str = int(bit_search.groups()[0]) return bit_size // 8 def lowerCamelCase (a_ :Tuple , a_ :Optional[int] , a_ :Dict , a_ :List[Any] , a_ :int) -> Tuple: # Construct model if bloom_config_file == "": lowercase :str = BloomConfig() else: lowercase :List[str] = BloomConfig.from_json_file(a_) if shard_model: lowercase :Any = os.listdir(a_) lowercase :Optional[int] = sorted(filter(lambda a_: s.startswith('''layer''') and "model_00" in s , a_)) lowercase :Optional[Any] = {'''weight_map''': {}, '''metadata''': {}} lowercase :Dict = 0 lowercase :List[Any] = None lowercase :List[str] = BloomConfig() for j, file in enumerate(a_): print('''Processing file: {}'''.format(a_)) lowercase :Union[str, Any] = None for i in range(a_): # load all TP files lowercase :Optional[int] = file.replace('''model_00''' , F"""model_0{i}""") lowercase :Union[str, Any] = torch.load(os.path.join(a_ , a_) , map_location='''cpu''') # Rename keys in the transformers names lowercase :Any = list(temp.keys()) for key in keys: lowercase :Dict = temp.pop(a_) if tensors is None: lowercase :Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(a_) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase :Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks lowercase :List[str] = torch.cat([tensors[key], temp[key]] , dim=a_) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): lowercase :Optional[Any] = tensors[key] / pretraining_tp torch.save( a_ , os.path.join( a_ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1).zfill(5) , str(len(a_)).zfill(5)) , ) , ) for key in tensors.keys(): lowercase :Dict = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype) if key not in index_dict["weight_map"]: lowercase :List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1).zfill(5) , str(len(a_)).zfill(5)) lowercase :List[Any] = BloomConfig() lowercase :List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowercase :Optional[int] = total_size with open(a_ , '''w''' , encoding='''utf-8''') as f: f.write(config.to_json_string()) with open(os.path.join(a_ , WEIGHTS_NAME + '''.index.json''') , '''w''' , encoding='''utf-8''') as f: lowercase :List[str] = json.dumps(a_ , indent=2 , sort_keys=a_) + '''\n''' f.write(a_) else: lowercase :int = BloomModel(a_) lowercase :Dict = os.listdir(a_) lowercase :str = sorted(filter(lambda a_: s.startswith('''layer''') and "model_00" in s , a_)) lowercase :Optional[int] = None for i, file in enumerate(a_): lowercase :Dict = None for i in range(a_): # load all TP files lowercase :Union[str, Any] = file.replace('''model_00''' , F"""model_0{i}""") lowercase :Dict = torch.load(os.path.join(a_ , a_) , map_location='''cpu''') # Rename keys in the transformers names lowercase :str = list(temp.keys()) for key in keys: lowercase :Union[str, Any] = temp.pop(a_) if tensors is None: lowercase :int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a_) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase :Any = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks lowercase :int = torch.cat([tensors[key], temp[key]] , dim=a_) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): lowercase :Dict = tensors[key] / pretraining_tp lowercase :Tuple = model.load_state_dict(a_ , strict=a_) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: lowercase :Any = set(other_keys.missing_keys) else: lowercase :List[str] = missing_keys.intersection(set(other_keys.missing_keys)) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(a_ , exist_ok=a_) lowercase :Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase :Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""") if config.torch_dtype is not None: lowercase :str = model.to(config.torch_dtype) torch.save(model.state_dict() , a_) print(F"""Save configuration file to {pytorch_config_dump_path}""") with open(a_ , '''w''' , encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) UpperCAmelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
712
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase = ''' Human: <<task>> Assistant: ''' UpperCAmelCase = '''huggingface-tools/default-prompts''' UpperCAmelCase = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def lowerCamelCase (a_ :int , a_ :str , a_ :Dict="run") -> Optional[Any]: if prompt_or_repo_id is None: lowercase :Tuple = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , a_) is not None: return prompt_or_repo_id lowercase :List[str] = cached_file( a_ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name}) with open(a_ , '''r''' , encoding='''utf-8''') as f: return f.read()
475
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a__ ( UpperCamelCase__ ): def __get__( self , A , A=None ) -> List[str]: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) a = "__cached_" + self.fget.__name__ a = getattr(A , A , A ) if cached is None: a = self.fget(A ) setattr(A , A , A ) return cached def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[Any]: a = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''') def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Any: if is_torch_fx_proxy(__UpperCamelCase): return True if is_torch_available(): import torch if isinstance(__UpperCamelCase , torch.Tensor): return True if is_tf_available(): import tensorflow as tf if isinstance(__UpperCamelCase , tf.Tensor): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__UpperCamelCase , (jnp.ndarray, Tracer)): return True return isinstance(__UpperCamelCase , np.ndarray) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Any: return isinstance(__UpperCamelCase , np.ndarray) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[int]: return _is_numpy(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: import torch return isinstance(__UpperCamelCase , torch.Tensor) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Any: return False if not is_torch_available() else _is_torch(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: import torch return isinstance(__UpperCamelCase , torch.device) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: return False if not is_torch_available() else _is_torch_device(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: import torch if isinstance(__UpperCamelCase , __UpperCamelCase): if hasattr(__UpperCamelCase , __UpperCamelCase): a = getattr(__UpperCamelCase , __UpperCamelCase) else: return False return isinstance(__UpperCamelCase , torch.dtype) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Any: return False if not is_torch_available() else _is_torch_dtype(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: import tensorflow as tf return isinstance(__UpperCamelCase , tf.Tensor) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: return False if not is_tf_available() else _is_tensorflow(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__UpperCamelCase , "is_symbolic_tensor"): return tf.is_symbolic_tensor(__UpperCamelCase) return type(__UpperCamelCase) == tf.Tensor def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: import jax.numpy as jnp # noqa: F811 return isinstance(__UpperCamelCase , jnp.ndarray) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: return False if not is_flax_available() else _is_jax(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Dict: if isinstance(__UpperCamelCase , (dict, UserDict)): return {k: to_py_obj(__UpperCamelCase) for k, v in obj.items()} elif isinstance(__UpperCamelCase , (list, tuple)): return [to_py_obj(__UpperCamelCase) for o in obj] elif is_tf_tensor(__UpperCamelCase): return obj.numpy().tolist() elif is_torch_tensor(__UpperCamelCase): return obj.detach().cpu().tolist() elif is_jax_tensor(__UpperCamelCase): return np.asarray(__UpperCamelCase).tolist() elif isinstance(__UpperCamelCase , (np.ndarray, np.number)): # tolist also works on 0d np arrays return obj.tolist() else: return obj def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[int]: if isinstance(__UpperCamelCase , (dict, UserDict)): return {k: to_numpy(__UpperCamelCase) for k, v in obj.items()} elif isinstance(__UpperCamelCase , (list, tuple)): return np.array(__UpperCamelCase) elif is_tf_tensor(__UpperCamelCase): return obj.numpy() elif is_torch_tensor(__UpperCamelCase): return obj.detach().cpu().numpy() elif is_jax_tensor(__UpperCamelCase): return np.asarray(__UpperCamelCase) else: return obj class a__ ( UpperCamelCase__ ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = fields(self ) # Safety and consistency checks if not len(A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) a = getattr(self , class_fields[0].name ) a = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A ): if isinstance(A , A ): a = first_field.items() a = True else: try: a = iter(A ) a = True except TypeError: a = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A ): if ( not isinstance(A , (list, tuple) ) or not len(A ) == 2 or not isinstance(element[0] , A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute a = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: a = element[1] elif first_field is not None: a = first_field else: for field in class_fields: a = getattr(self , field.name ) if v is not None: a = v def __delitem__( self , *A , **A ) -> List[str]: '''simple docstring''' raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def lowerCAmelCase_ ( self , *A , **A ) -> str: '''simple docstring''' raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def lowerCAmelCase_ ( self , *A , **A ) -> Union[str, Any]: '''simple docstring''' raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def lowerCAmelCase_ ( self , *A , **A ) -> List[Any]: '''simple docstring''' raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self , A ) -> List[str]: '''simple docstring''' if isinstance(A , A ): a = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A , A ) -> List[Any]: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A , A ) super().__setattr__(A , A ) def __setitem__( self , A , A ) -> Any: '''simple docstring''' super().__setitem__(A , A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A , A ) def lowerCAmelCase_ ( self ) -> Tuple[Any]: '''simple docstring''' return tuple(self[k] for k in self.keys() ) class a__ ( UpperCamelCase__ , UpperCamelCase__ ): @classmethod def lowerCAmelCase_ ( cls , A ) -> List[Any]: '''simple docstring''' raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class a__ ( UpperCamelCase__ ): a : List[str] = """longest""" a : int = """max_length""" a : str = """do_not_pad""" class a__ ( UpperCamelCase__ ): a : List[str] = """pt""" a : Dict = """tf""" a : int = """np""" a : str = """jax""" class a__ : def __init__( self , A ) -> Any: '''simple docstring''' a = context_managers a = ExitStack() def __enter__( self ) -> Dict: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(A ) def __exit__( self , *A , **A ) -> str: '''simple docstring''' self.stack.__exit__(*A , **A ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[str]: a = infer_framework(__UpperCamelCase) if framework == "tf": a = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": a = inspect.signature(model_class.forward) # PyTorch models else: a = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Any: a = model_class.__name__ a = infer_framework(__UpperCamelCase) if framework == "tf": a = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": a = inspect.signature(model_class.forward) # PyTorch models else: a = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase = "" , __UpperCamelCase = ".") -> int: def _flatten_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="."): for k, v in d.items(): a = str(__UpperCamelCase) + delimiter + str(__UpperCamelCase) if parent_key else k if v and isinstance(__UpperCamelCase , __UpperCamelCase): yield from flatten_dict(__UpperCamelCase , __UpperCamelCase , delimiter=__UpperCamelCase).items() else: yield key, v return dict(_flatten_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase)) @contextmanager def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase = False) -> Optional[int]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase=None) -> int: if is_numpy_array(__UpperCamelCase): return np.transpose(__UpperCamelCase , axes=__UpperCamelCase) elif is_torch_tensor(__UpperCamelCase): return array.T if axes is None else array.permute(*__UpperCamelCase) elif is_tf_tensor(__UpperCamelCase): import tensorflow as tf return tf.transpose(__UpperCamelCase , perm=__UpperCamelCase) elif is_jax_tensor(__UpperCamelCase): return jnp.transpose(__UpperCamelCase , axes=__UpperCamelCase) else: raise ValueError(f'''Type not supported for transpose: {type(__UpperCamelCase)}.''') def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> str: if is_numpy_array(__UpperCamelCase): return np.reshape(__UpperCamelCase , __UpperCamelCase) elif is_torch_tensor(__UpperCamelCase): return array.reshape(*__UpperCamelCase) elif is_tf_tensor(__UpperCamelCase): import tensorflow as tf return tf.reshape(__UpperCamelCase , __UpperCamelCase) elif is_jax_tensor(__UpperCamelCase): return jnp.reshape(__UpperCamelCase , __UpperCamelCase) else: raise ValueError(f'''Type not supported for reshape: {type(__UpperCamelCase)}.''') def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase=None) -> List[str]: if is_numpy_array(__UpperCamelCase): return np.squeeze(__UpperCamelCase , axis=__UpperCamelCase) elif is_torch_tensor(__UpperCamelCase): return array.squeeze() if axis is None else array.squeeze(dim=__UpperCamelCase) elif is_tf_tensor(__UpperCamelCase): import tensorflow as tf return tf.squeeze(__UpperCamelCase , axis=__UpperCamelCase) elif is_jax_tensor(__UpperCamelCase): return jnp.squeeze(__UpperCamelCase , axis=__UpperCamelCase) else: raise ValueError(f'''Type not supported for squeeze: {type(__UpperCamelCase)}.''') def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Dict: if is_numpy_array(__UpperCamelCase): return np.expand_dims(__UpperCamelCase , __UpperCamelCase) elif is_torch_tensor(__UpperCamelCase): return array.unsqueeze(dim=__UpperCamelCase) elif is_tf_tensor(__UpperCamelCase): import tensorflow as tf return tf.expand_dims(__UpperCamelCase , axis=__UpperCamelCase) elif is_jax_tensor(__UpperCamelCase): return jnp.expand_dims(__UpperCamelCase , axis=__UpperCamelCase) else: raise ValueError(f'''Type not supported for expand_dims: {type(__UpperCamelCase)}.''') def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[str]: if is_numpy_array(__UpperCamelCase): return np.size(__UpperCamelCase) elif is_torch_tensor(__UpperCamelCase): return array.numel() elif is_tf_tensor(__UpperCamelCase): import tensorflow as tf return tf.size(__UpperCamelCase) elif is_jax_tensor(__UpperCamelCase): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__UpperCamelCase)}.''') def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> int: for key, value in auto_map.items(): if isinstance(__UpperCamelCase , (tuple, list)): a = [f'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: a = f'''{repo_id}--{value}''' return auto_map def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: for base_class in inspect.getmro(__UpperCamelCase): a = base_class.__module__ a = base_class.__name__ if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch") or name == "PreTrainedModel": return "pt" elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''')
515
from ..utils import DummyObject, requires_backends class a__ ( metaclass=UpperCamelCase__ ): a : int = ["""torch""", """scipy"""] def __init__( self , *A , **A ) -> str: '''simple docstring''' requires_backends(self , ["torch", "scipy"] ) @classmethod def lowerCAmelCase_ ( cls , *A , **A ) -> Any: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowerCAmelCase_ ( cls , *A , **A ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] )
515
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[Any] = logging.get_logger() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": _snake_case : int = timm.create_model('levit_128s' , pretrained=__lowerCAmelCase ) else: _snake_case : List[Any] = timm.create_model('levit_128' , pretrained=__lowerCAmelCase ) if hidden_sizes == 1_92: _snake_case : Union[str, Any] = timm.create_model('levit_192' , pretrained=__lowerCAmelCase ) if hidden_sizes == 2_56: _snake_case : Optional[int] = timm.create_model('levit_256' , pretrained=__lowerCAmelCase ) if hidden_sizes == 3_84: _snake_case : int = timm.create_model('levit_384' , pretrained=__lowerCAmelCase ) from_model.eval() _snake_case : List[Any] = LevitForImageClassificationWithTeacher(__lowerCAmelCase ).eval() _snake_case : Optional[Any] = OrderedDict() _snake_case : Any = from_model.state_dict() _snake_case : int = list(from_model.state_dict().keys() ) _snake_case : Union[str, Any] = list(our_model.state_dict().keys() ) print(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for i in range(len(__lowerCAmelCase ) ): _snake_case : Tuple = weights[og_keys[i]] our_model.load_state_dict(__lowerCAmelCase ) _snake_case : Union[str, Any] = torch.randn((2, 3, 2_24, 2_24) ) _snake_case : Tuple = from_model(__lowerCAmelCase ) _snake_case : Any = our_model(__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ), "The model logits don't match the original one." _snake_case : Optional[Any] = name print(__lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _snake_case : str = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def A__( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ): _snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' _snake_case : List[Any] = 10_00 _snake_case : Dict = (1, num_labels) _snake_case : Dict = '''huggingface/label-files''' _snake_case : Optional[Any] = num_labels _snake_case : int = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Union[str, Any] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : Dict = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} _snake_case : Optional[int] = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) _snake_case : Union[str, Any] = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } _snake_case : List[str] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowercase_ : Dict = parser.parse_args() lowercase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase__( datasets.BuilderConfig ): """simple docstring""" a :Optional[datasets.Features] = None a :str = "utf-8" a :Optional[str] = None a :Optional[str] = None a :bool = True # deprecated a :Optional[int] = None # deprecated a :int = 10 << 20 # 10MB a :Optional[bool] = None class lowercase__( datasets.ArrowBasedBuilder ): """simple docstring""" a :Any = JsonConfig def _lowercase ( self : Dict ) -> Optional[int]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase_ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): lowercase_ = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase_ = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase_ = self.config.features.arrow_schema.field(SCREAMING_SNAKE_CASE_ ).type lowercase_ = pa_table.append_column(SCREAMING_SNAKE_CASE_ , pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=SCREAMING_SNAKE_CASE_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase_ = table_cast(SCREAMING_SNAKE_CASE_ , self.config.features.arrow_schema ) return pa_table def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(SCREAMING_SNAKE_CASE_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) # We keep only the field we are interested in lowercase_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): lowercase_ = set().union(*[row.keys() for row in dataset] ) lowercase_ = {col: [row.get(SCREAMING_SNAKE_CASE_ ) for row in dataset] for col in keys} else: lowercase_ = dataset lowercase_ = pa.Table.from_pydict(SCREAMING_SNAKE_CASE_ ) yield file_idx, self._cast_table(SCREAMING_SNAKE_CASE_ ) # If the file has one json object per line else: with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: lowercase_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase_ = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) lowercase_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(SCREAMING_SNAKE_CASE_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase_ = batch.decode(self.config.encoding , errors=SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) try: while True: try: lowercase_ = paj.read_json( io.BytesIO(SCREAMING_SNAKE_CASE_ ) , read_options=paj.ReadOptions(block_size=SCREAMING_SNAKE_CASE_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(SCREAMING_SNAKE_CASE_ , pa.ArrowInvalid ) and "straddling" not in str(SCREAMING_SNAKE_CASE_ ) or block_size > len(SCREAMING_SNAKE_CASE_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(SCREAMING_SNAKE_CASE_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( SCREAMING_SNAKE_CASE_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # list is the only sequence type supported in JSON try: lowercase_ = set().union(*[row.keys() for row in dataset] ) lowercase_ = {col: [row.get(SCREAMING_SNAKE_CASE_ ) for row in dataset] for col in keys} lowercase_ = pa.Table.from_pydict(SCREAMING_SNAKE_CASE_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(SCREAMING_SNAKE_CASE_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) batch_idx += 1
97
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase : Tuple = { '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } __lowerCAmelCase : Optional[int] = f"""{src_lang}-{tgt_lang}""" __lowerCAmelCase : int = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) __lowerCAmelCase : Any = os.path.join(lowercase__ , '''README.md''' ) print(f"""Generating {path}""" ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowercase__ ) # make sure we are under the root of the project _UpperCamelCase = Path(__file__).resolve().parent.parent.parent _UpperCamelCase = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _UpperCamelCase = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
583
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowerCamelCase : str = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) __lowerCamelCase : str = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) __lowerCamelCase : Optional[Any] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) __lowerCamelCase : str = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) __lowerCamelCase : List[Any] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) __lowerCamelCase : Optional[Any] = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) __lowerCamelCase : Dict = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) __lowerCamelCase : Tuple = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) __lowerCamelCase : Tuple = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) __lowerCamelCase : Optional[int] = key.replace('image_encoder.module' , 'flava.image_model' ) __lowerCamelCase : List[Any] = key.replace('text_encoder.module' , 'flava.text_model' ) __lowerCamelCase : List[Any] = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) __lowerCamelCase : str = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) __lowerCamelCase : int = key.replace('text_projection' , 'flava.text_projection' ) __lowerCamelCase : Any = key.replace('image_projection' , 'flava.image_projection' ) __lowerCamelCase : List[Any] = value.float() for key, value in codebook_state_dict.items(): __lowerCamelCase : List[Any] = value return upgrade @torch.no_grad() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if config_path is not None: __lowerCamelCase : Any = FlavaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase : List[str] = FlavaConfig() __lowerCamelCase : List[str] = FlavaForPreTraining(UpperCamelCase__ ).eval() __lowerCamelCase : List[str] = convert_dalle_checkpoint(UpperCamelCase__ , UpperCamelCase__ , save_checkpoint=UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): __lowerCamelCase : Optional[Any] = torch.load(UpperCamelCase__ , map_location='cpu' ) else: __lowerCamelCase : Optional[int] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' ) __lowerCamelCase : List[str] = upgrade_state_dict(UpperCamelCase__ , UpperCamelCase__ ) hf_model.load_state_dict(UpperCamelCase__ ) __lowerCamelCase : int = hf_model.state_dict() __lowerCamelCase : Any = count_parameters(UpperCamelCase__ ) __lowerCamelCase : Dict = count_parameters(UpperCamelCase__ ) + count_parameters(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
669
import math def UpperCamelCase__( UpperCamelCase__ : int )->list: A__ = [True] * n A__ = False A__ = False A__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A__ = i * 2 while index < n: A__ = False A__ = index + i A__ = [2] for i in range(3 , UpperCamelCase__ , 2 ): if is_prime[i]: primes.append(UpperCamelCase__ ) return primes def UpperCamelCase__( UpperCamelCase__ : int = 99_99_66_66_33_33 )->int: A__ = math.floor(math.sqrt(UpperCamelCase__ ) ) + 1_00 A__ = prime_sieve(UpperCamelCase__ ) A__ = 0 A__ = 0 A__ = primes[prime_index] while (last_prime**2) <= limit: A__ = primes[prime_index + 1] A__ = last_prime**2 A__ = next_prime**2 # Get numbers divisible by lps(current) A__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
190
0
import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase_ = 'src/transformers' # Matches is_xxx_available() lowerCAmelCase_ = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase_ = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase_ = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase_ = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase_ = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase_ = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase_ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase_ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase_ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase_ = re.compile(R'^\s*try:') # Catches a line with else: lowerCAmelCase_ = re.compile(R'^\s*else:') def snake_case ( UpperCAmelCase : Dict ): if _re_test_backend.search(UpperCAmelCase ) is None: return None A = [b[0] for b in _re_backend.findall(UpperCAmelCase )] backends.sort() return "_and_".join(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): with open(UpperCAmelCase, 'r', encoding='utf-8', newline='\n' ) as f: A = f.readlines() A = 0 while line_index < len(UpperCAmelCase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure A = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCAmelCase ): A = _re_one_line_import_struct.search(UpperCAmelCase ).groups()[0] A = re.findall('\[([^\]]+)\]', UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A = _re_import_struct_key_value.search(UpperCAmelCase ) if single_line_import_search is not None: A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(UpperCAmelCase ) > 0] objects.extend(UpperCAmelCase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A = lines[line_index] if _re_import_struct_add_one.search(UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCAmelCase ) is not None: A = _re_import_struct_add_many.search(UpperCAmelCase ).groups()[0].split(', ' ) A = [obj[1:-1] for obj in imports if len(UpperCAmelCase ) > 0] objects.extend(UpperCAmelCase ) elif _re_between_brackets.search(UpperCAmelCase ) is not None: A = _re_between_brackets.search(UpperCAmelCase ).groups()[0].split(', ' ) A = [obj[1:-1] for obj in imports if len(UpperCAmelCase ) > 0] objects.extend(UpperCAmelCase ) elif _re_quote_object.search(UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(UpperCAmelCase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A = [] while ( line_index < len(UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A = lines[line_index] A = _re_import.search(UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A = {'none': objects} # Let's continue with backend-specific objects while line_index < len(UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A = lines[line_index] A = _re_import.search(UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case ( UpperCAmelCase : List[str], UpperCAmelCase : List[Any] ): def find_duplicates(UpperCAmelCase : Optional[int] ): return [k for k, v in collections.Counter(UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A = [] for key in import_dict_objects.keys(): A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A = 'base imports' if key == 'none' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def snake_case ( ): A = [] for root, _, files in os.walk(UpperCAmelCase ): if "__init__.py" in files: A = os.path.join(UpperCAmelCase, '__init__.py' ) A = parse_init(UpperCAmelCase ) if objects is not None: A = analyze_results(*UpperCAmelCase ) if len(UpperCAmelCase ) > 0: A = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(UpperCAmelCase ) ) if len(UpperCAmelCase ) > 0: raise ValueError('\n\n'.join(UpperCAmelCase ) ) def snake_case ( ): A = [] for path, directories, files in os.walk(UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCAmelCase ) / folder).glob('*.py' ) ) ) == 0: continue A = str((Path(UpperCAmelCase ) / folder).relative_to(UpperCAmelCase ) ) A = short_path.replace(os.path.sep, '.' ) submodules.append(UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue A = str((Path(UpperCAmelCase ) / fname).relative_to(UpperCAmelCase ) ) A = short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(UpperCAmelCase ) return submodules lowerCAmelCase_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. A = importlib.util.spec_from_file_location( 'transformers', os.path.join(UpperCAmelCase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A = spec.loader.load_module() A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCAmelCase ) > 0: A = '\n'.join(f'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' f'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
110
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowerCAmelCase_ = '▁' class UpperCamelCase ( snake_case__ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = AlbertTokenizer def __init__( self : str ,_SCREAMING_SNAKE_CASE : int=None ,_SCREAMING_SNAKE_CASE : List[str]=None ,_SCREAMING_SNAKE_CASE : List[str]=True ,_SCREAMING_SNAKE_CASE : str=True ,_SCREAMING_SNAKE_CASE : Optional[int]=False ,_SCREAMING_SNAKE_CASE : List[str]="[CLS]" ,_SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" ,_SCREAMING_SNAKE_CASE : Tuple="<unk>" ,_SCREAMING_SNAKE_CASE : Union[str, Any]="[SEP]" ,_SCREAMING_SNAKE_CASE : Tuple="<pad>" ,_SCREAMING_SNAKE_CASE : Any="[CLS]" ,_SCREAMING_SNAKE_CASE : Optional[int]="[MASK]" ,**_SCREAMING_SNAKE_CASE : Any ,) -> Tuple: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A = ( AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ,normalized=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else mask_token ) super().__init__( _SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,do_lower_case=_SCREAMING_SNAKE_CASE ,remove_space=_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ,bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def A( self : int ,_SCREAMING_SNAKE_CASE : List[int] ,_SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A( self : List[Any] ,_SCREAMING_SNAKE_CASE : List[int] ,_SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : str ,_SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
110
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case__ ( UpperCamelCase__ ): _SCREAMING_SNAKE_CASE : str = "xlm-roberta-xl" def __init__( self : Dict , A__ : Optional[Any]=25_08_80 , A__ : List[Any]=25_60 , A__ : Optional[Any]=36 , A__ : Any=32 , A__ : int=1_02_40 , A__ : List[Any]="gelu" , A__ : Union[str, Any]=0.1 , A__ : Optional[Any]=0.1 , A__ : str=5_14 , A__ : Union[str, Any]=1 , A__ : Optional[int]=0.02 , A__ : str=1E-05 , A__ : str=1 , A__ : int=0 , A__ : Tuple=2 , A__ : Optional[int]="absolute" , A__ : str=True , A__ : Any=None , **A__ : Dict , ) -> int: '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) snake_case_ : List[str] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Any = hidden_act snake_case_ : List[str] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : Any = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Dict = position_embedding_type snake_case_ : Any = use_cache snake_case_ : Dict = classifier_dropout class snake_case__ ( UpperCamelCase__ ): @property def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ :Optional[Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :Tuple = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :List[str] = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :Tuple = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys UpperCAmelCase__ :Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
704
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : str ): """simple docstring""" __lowerCamelCase : Any = """laion/clap-htsat-unfused""" __lowerCamelCase : List[Any] = tempfile.mkdtemp() def a_ ( self : Optional[int] , **A__ : Union[str, Any] ): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **A__ ) def a_ ( self : str , **A__ : Any ): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A__ ) def a_ ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : str ): """simple docstring""" __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = self.get_feature_extractor() __lowerCamelCase : Dict = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) def a_ ( self : str ): """simple docstring""" __lowerCamelCase : str = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCamelCase : Any = self.get_feature_extractor(do_normalize=A__ , padding_value=1.0 ) __lowerCamelCase : List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : Dict = self.get_feature_extractor() __lowerCamelCase : Tuple = self.get_tokenizer() __lowerCamelCase : Optional[int] = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) __lowerCamelCase : Dict = floats_list((3, 1000) ) __lowerCamelCase : str = feature_extractor(A__ , return_tensors="""np""" ) __lowerCamelCase : Any = processor(audios=A__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Any ): """simple docstring""" __lowerCamelCase : Optional[Any] = self.get_feature_extractor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : str = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) __lowerCamelCase : int = """This is a test string""" __lowerCamelCase : Any = processor(text=A__ ) __lowerCamelCase : Any = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : List[Any] ): """simple docstring""" __lowerCamelCase : Optional[int] = self.get_feature_extractor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : int = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) __lowerCamelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : int = processor.batch_decode(A__ ) __lowerCamelCase : List[Any] = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def a_ ( self : str ): """simple docstring""" __lowerCamelCase : Any = self.get_feature_extractor() __lowerCamelCase : List[Any] = self.get_tokenizer() __lowerCamelCase : Any = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
483
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case = StableDiffusionInpaintPipeline snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case = frozenset([] ) def __UpperCAmelCase ( self : int ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase__ = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCamelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ).resize((64, 64) ) lowerCamelCase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = StableDiffusionInpaintPipeline(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __UpperCAmelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Union[str, Any] ): lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowerCamelCase__ = """stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() lowerCamelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowerCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowerCamelCase__ = """stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , safety_checker=SCREAMING_SNAKE_CASE_ , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() lowerCamelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowerCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __UpperCAmelCase ( self : List[str] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase__ = """stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase__ = PNDMScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder="""scheduler""" ) lowerCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
129
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int=13 , SCREAMING_SNAKE_CASE_ : Any=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : str=99 , SCREAMING_SNAKE_CASE_ : List[Any]=16 , SCREAMING_SNAKE_CASE_ : List[Any]=36 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : str=6 , SCREAMING_SNAKE_CASE_ : List[str]=6 , SCREAMING_SNAKE_CASE_ : List[Any]=37 , SCREAMING_SNAKE_CASE_ : List[str]="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Any=512 , SCREAMING_SNAKE_CASE_ : Optional[Any]=16 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : List[Any]=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = embedding_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_hidden_groups lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : List[str] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ): lowerCamelCase__ = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , sentence_order_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCamelCase__ = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) snake_case = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) snake_case = True def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict=False ): lowerCamelCase__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def __UpperCAmelCase ( self : Union[str, Any] ): lowerCamelCase__ = AlbertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __UpperCAmelCase ( self : Tuple ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : List[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Optional[int] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def __UpperCAmelCase ( self : Optional[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : List[str] ): lowerCamelCase__ = AlbertModel.from_pretrained("""albert-base-v2""" ) lowerCamelCase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
129
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : Optional[Any] , A : Any ) -> Any: """simple docstring""" while second != 0: __snake_case : List[Any] = first & second first ^= second __snake_case : Optional[Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __A = int(input('''Enter the first number: ''').strip()) __A = int(input('''Enter the second number: ''').strip()) print(f'''{add(first, second) = }''')
713
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : list ) -> list: """simple docstring""" __snake_case : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping __snake_case : Optional[Any] = True for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __snake_case ,__snake_case : int = input_list[i + 1], input_list[i] # swapping if elements not in order __snake_case : List[Any] = False for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __snake_case ,__snake_case : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order __snake_case : Any = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
61
0
from collections.abc import Callable class UpperCamelCase_ : '''simple docstring''' def __init__( self , UpperCamelCase = None) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = [] # Stores indexes of each item for supporting updates and deletion. UpperCamelCase__ : Optional[int] = {} # Stores current size of heap. UpperCamelCase__ : Dict = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCamelCase__ : Union[str, Any] = key or (lambda UpperCamelCase: x) def lowerCAmelCase__ ( self , UpperCamelCase) -> Optional[int]: return int((i - 1) / 2) if i > 0 else None def lowerCAmelCase__ ( self , UpperCamelCase) -> Optional[Any]: UpperCamelCase__ : List[Any] = int(2 * i + 1) return left if 0 < left < self.size else None def lowerCAmelCase__ ( self , UpperCamelCase) -> Union[str, Any]: UpperCamelCase__ : Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase) -> str: UpperCamelCase__ , UpperCamelCase__ : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCamelCase__ , UpperCamelCase__ : Tuple = self.arr[j], self.arr[i] def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase) -> Optional[int]: return self.arr[i][1] < self.arr[j][1] def lowerCAmelCase__ ( self , UpperCamelCase) -> List[str]: UpperCamelCase__ : Dict = self._left(_UpperCAmelCase) UpperCamelCase__ : List[str] = self._right(_UpperCAmelCase) UpperCamelCase__ : str = i if left is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase): UpperCamelCase__ : str = left if right is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase): UpperCamelCase__ : Dict = right return valid_parent def lowerCAmelCase__ ( self , UpperCamelCase) -> Union[str, Any]: UpperCamelCase__ : Any = self._parent(_UpperCAmelCase) while parent is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase): self._swap(_UpperCAmelCase , _UpperCAmelCase) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = parent, self._parent(_UpperCAmelCase) def lowerCAmelCase__ ( self , UpperCamelCase) -> int: UpperCamelCase__ : str = self._get_valid_parent(_UpperCAmelCase) while valid_parent != index: self._swap(_UpperCAmelCase , _UpperCAmelCase) UpperCamelCase__ , UpperCamelCase__ : List[Any] = valid_parent, self._get_valid_parent(_UpperCAmelCase) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase) -> Union[str, Any]: if item not in self.pos_map: return UpperCamelCase__ : str = self.pos_map[item] UpperCamelCase__ : Optional[Any] = [item, self.key(_UpperCAmelCase)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_UpperCAmelCase) self._heapify_down(_UpperCAmelCase) def lowerCAmelCase__ ( self , UpperCamelCase) -> int: if item not in self.pos_map: return UpperCamelCase__ : List[str] = self.pos_map[item] del self.pos_map[item] UpperCamelCase__ : Any = self.arr[self.size - 1] UpperCamelCase__ : Dict = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_UpperCAmelCase) self._heapify_down(_UpperCAmelCase) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase) -> Any: UpperCamelCase__ : Any = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(_UpperCAmelCase)]) else: UpperCamelCase__ : Dict = [item, self.key(_UpperCAmelCase)] UpperCamelCase__ : Tuple = self.size self.size += 1 self._heapify_up(self.size - 1) def lowerCAmelCase__ ( self) -> Optional[Any]: return self.arr[0] if self.size else None def lowerCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase__ : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def _lowercase ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
410
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCamelCase_ : Tuple = """__DUMMY_TRANSFORMERS_USER__""" lowerCamelCase_ : List[Any] = """Dummy User""" lowerCamelCase_ : Optional[int] = """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""" lowerCamelCase_ : int = """https://hub-ci.huggingface.co""" lowerCamelCase_ : Optional[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCamelCase_ : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCamelCase_ : str = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def A__ ( lowerCamelCase ) -> int: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> List[Any]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowerCamelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> List[Any]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase , lowerCamelCase ) -> Dict: HfFolder.save_token(lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def A__ ( ) -> Any: return HfApi(endpoint=lowerCamelCase ) @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = HfFolder.get_token() HfFolder.save_token(lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase ) @pytest.fixture def A__ ( lowerCamelCase ) -> Dict: def _cleanup_repo(lowerCamelCase ): hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def A__ ( lowerCamelCase ) -> int: @contextmanager def _temporary_repo(lowerCamelCase ): try: yield repo_id finally: cleanup_repo(lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: str = F'''repo_txt_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: Dict = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: UpperCamelCase_: Optional[Any] = F'''repo_zipped_txt_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: Tuple = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: UpperCamelCase_: Any = F'''repo_zipped_img_data-{int(time.time() * 1_0E3 )}''' UpperCamelCase_: List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: return hf_private_dataset_repo_zipped_img_data_
670
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ = tuple[int, int] class A : def __init__(self : Any , __UpperCAmelCase : set[int] , __UpperCAmelCase : Mapping[EdgeT, int] ) -> None: """simple docstring""" UpperCAmelCase__ = vertices UpperCAmelCase__ = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : EdgeT , __UpperCAmelCase : int ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase__ = weight def lowercase_ (self : Union[str, Any] ) -> Graph: """simple docstring""" UpperCAmelCase__ = Graph({min(self.vertices )} , {} ) UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase__ = edge UpperCAmelCase__ = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def lowerCAmelCase_ ( __A = "p107_network.txt" ) -> int: '''simple docstring''' UpperCAmelCase__ = os.path.abspath(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 with open(SCREAMING_SNAKE_CASE__ ) as f: UpperCAmelCase__ = f.read().strip().split("\n" ) UpperCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1, len(SCREAMING_SNAKE_CASE__ ) ): for edgea in range(SCREAMING_SNAKE_CASE__ ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase__ = Graph(set(range(len(SCREAMING_SNAKE_CASE__ ) ) ), SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = graph.prims_algorithm() UpperCAmelCase__ = sum(graph.edges.values() ) UpperCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
486
from random import shuffle import tensorflow as tf from numpy import array def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = int(SCREAMING_SNAKE_CASE__ ) assert noofclusters < len(SCREAMING_SNAKE_CASE__ ) # Find out the dimensionality SCREAMING_SNAKE_CASE__ : List[Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE__ : List[Any] = list(range(len(SCREAMING_SNAKE_CASE__ ) ) ) shuffle(SCREAMING_SNAKE_CASE__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE__ : Tuple = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE__ : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE__ : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(SCREAMING_SNAKE_CASE__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE__ : List[Any] = tf.placeholder("float64" , [dim] ) SCREAMING_SNAKE_CASE__ : Dict = [] for centroid in centroids: cent_assigns.append(tf.assign(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE__ : Tuple = [tf.Variable(0 ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE__ : Tuple = tf.placeholder("int32" ) SCREAMING_SNAKE_CASE__ : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE__ : int = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE__ : str = tf.reduce_mean(SCREAMING_SNAKE_CASE__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE__ : Dict = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.placeholder("float" , [noofclusters] ) SCREAMING_SNAKE_CASE__ : Tuple = tf.argmin(SCREAMING_SNAKE_CASE__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE__ : Tuple = tf.initialize_all_variables() # Initialize all variables sess.run(SCREAMING_SNAKE_CASE__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE__ : Tuple = 1_00 for _ in range(SCREAMING_SNAKE_CASE__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : Any = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE__ : Tuple = [ sess.run(SCREAMING_SNAKE_CASE__ , feed_dict={va: vect, va: sess.run(SCREAMING_SNAKE_CASE__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE__ : Any = sess.run( SCREAMING_SNAKE_CASE__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(SCREAMING_SNAKE_CASE__ ): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE__ : Dict = [ vectors[i] for i in range(len(SCREAMING_SNAKE_CASE__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE__ : str = sess.run( SCREAMING_SNAKE_CASE__ , feed_dict={mean_input: array(SCREAMING_SNAKE_CASE__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments SCREAMING_SNAKE_CASE__ : int = sess.run(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = sess.run(SCREAMING_SNAKE_CASE__ ) return centroids, assignments
663
0
"""simple docstring""" import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None ) -> Union[str, Any]: self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) def a__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None ) -> Any: if red is not None: _lowerCamelCase : Tuple = red if green is not None: _lowerCamelCase : Optional[Any] = green if blue is not None: _lowerCamelCase : Any = blue if red_edge is not None: _lowerCamelCase : List[str] = red_edge if nir is not None: _lowerCamelCase : Any = nir return True def a__ ( self , _lowercase="" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None ) -> Optional[Any]: self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) _lowerCamelCase : int = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def a__ ( self ) -> Union[str, Any]: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def a__ ( self ) -> Optional[int]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def a__ ( self ) -> Dict: return self.nir * (self.red / (self.green**2)) def a__ ( self ) -> str: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def a__ ( self ) -> str: return (self.nir - self.red) / (self.nir + self.red) def a__ ( self ) -> str: return (self.nir - self.blue) / (self.nir + self.blue) def a__ ( self ) -> Any: return (self.redEdge - self.red) / (self.redEdge + self.red) def a__ ( self ) -> Any: return (self.nir - self.green) / (self.nir + self.green) def a__ ( self ) -> Any: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def a__ ( self ) -> Any: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def a__ ( self ) -> Tuple: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def a__ ( self ) -> Any: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def a__ ( self , _lowercase=0.08 , _lowercase=1.22 , _lowercase=0.03 ) -> str: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def a__ ( self ) -> Dict: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def a__ ( self ) -> List[str]: return (self.nir / self.green) - 1 def a__ ( self ) -> Dict: return (self.nir / self.redEdge) - 1 def a__ ( self ) -> Tuple: return (self.red - self.blue) / self.red def a__ ( self ) -> Optional[int]: _lowerCamelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def a__ ( self ) -> List[Any]: return self.nir - self.green def a__ ( self ) -> Union[str, Any]: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def a__ ( self ) -> Dict: _lowerCamelCase : List[str] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def a__ ( self , _lowercase=0.16 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def a__ ( self , _lowercase=0.5 ) -> Any: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def a__ ( self ) -> Union[str, Any]: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def a__ ( self , _lowercase=None , _lowercase=None ) -> int: return (self.nir - b) / (a * self.red) def a__ ( self ) -> Tuple: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def a__ ( self ) -> Dict: return (self.red + self.green + self.blue) / 30.5 def a__ ( self ) -> int: return self.nir / self.red def a__ ( self ) -> str: return (self.rvi() - 1) / (self.rvi() + 1) def a__ ( self ) -> int: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def a__ ( self ) -> Optional[int]: return self.green / (self.nir + self.red + self.green) def a__ ( self ) -> Optional[int]: return self.nir / (self.nir + self.red + self.green) def a__ ( self ) -> Optional[int]: return self.red / (self.nir + self.red + self.green) def a__ ( self ) -> Any: return (self.green - self.red) / (self.green + self.red) def a__ ( self ) -> str: return (self.red - self.green) / (self.red + self.green) def a__ ( self ) -> List[str]: _lowerCamelCase : Dict = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _lowerCamelCase : List[str] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def a__ ( self ) -> Dict: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def a__ ( self ) -> str: return self.nir / self.red def a__ ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def a__ ( self ) -> Any: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
719
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] ={ 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """sew-d""" def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase=2 , _lowercase=512 , _lowercase=256 , _lowercase=True , _lowercase=True , _lowercase=("p2c", "c2p") , _lowercase="layer_norm" , _lowercase="gelu_python" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1E-7 , _lowercase=1E-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ) -> str: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : Optional[int] = list(_lowercase ) _lowerCamelCase : Any = list(_lowercase ) _lowerCamelCase : Dict = list(_lowercase ) _lowerCamelCase : List[Any] = conv_bias _lowerCamelCase : Dict = num_conv_pos_embeddings _lowerCamelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = squeeze_factor _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = position_buckets _lowerCamelCase : str = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Tuple = norm_rel_ebd _lowerCamelCase : Union[str, Any] = list(_lowercase ) _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : str = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : int = final_dropout _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Dict = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[str] = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : List[str] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # sequence classification _lowerCamelCase : Optional[int] = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def a__ ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
558
0
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE ( __snake_case : int ): _A = [] _A = 2 _A = int(math.sqrt(__snake_case ) ) # Size of every segment _A = [True] * (end + 1) _A = [] while start <= end: if temp[start] is True: in_prime.append(__snake_case ) for i in range(start * start , end + 1 , __snake_case ): _A = False start += 1 prime += in_prime _A = end + 1 _A = min(2 * end , __snake_case ) while low <= n: _A = [True] * (high - low + 1) for each in in_prime: _A = math.floor(low / each ) * each if t < low: t += each for j in range(__snake_case , high + 1 , __snake_case ): _A = False for j in range(len(__snake_case ) ): if temp[j] is True: prime.append(j + low ) _A = high + 1 _A = min(high + end , __snake_case ) return prime print(sieve(10**6))
107
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase : str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowercase_ ( unittest.TestCase ): def _lowercase ( self: Dict): '''simple docstring''' __lowerCAmelCase = """laion/clap-htsat-unfused""" __lowerCAmelCase = tempfile.mkdtemp() def _lowercase ( self: Optional[int], **_lowercase: List[str]): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint, **UpperCamelCase__) def _lowercase ( self: Dict, **_lowercase: Union[str, Any]): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint, **UpperCamelCase__) def _lowercase ( self: Tuple): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _lowercase ( self: str): '''simple docstring''' __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = ClapProcessor(tokenizer=UpperCamelCase__, feature_extractor=UpperCamelCase__) processor.save_pretrained(self.tmpdirname) __lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, UpperCamelCase__) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, UpperCamelCase__) def _lowercase ( self: List[str]): '''simple docstring''' __lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) __lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""") __lowerCAmelCase = self.get_feature_extractor(do_normalize=UpperCamelCase__, padding_value=1.0) __lowerCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=UpperCamelCase__, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, UpperCamelCase__) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, UpperCamelCase__) def _lowercase ( self: List[str]): '''simple docstring''' __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=UpperCamelCase__, feature_extractor=UpperCamelCase__) __lowerCAmelCase = floats_list((3, 1000)) __lowerCAmelCase = feature_extractor(UpperCamelCase__, return_tensors="""np""") __lowerCAmelCase = processor(audios=UpperCamelCase__, return_tensors="""np""") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def _lowercase ( self: List[str]): '''simple docstring''' __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=UpperCamelCase__, feature_extractor=UpperCamelCase__) __lowerCAmelCase = """This is a test string""" __lowerCAmelCase = processor(text=UpperCamelCase__) __lowerCAmelCase = tokenizer(UpperCamelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=UpperCamelCase__, feature_extractor=UpperCamelCase__) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(UpperCamelCase__) __lowerCAmelCase = tokenizer.batch_decode(UpperCamelCase__) self.assertListEqual(UpperCamelCase__, UpperCamelCase__) def _lowercase ( self: List[str]): '''simple docstring''' __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=UpperCamelCase__, feature_extractor=UpperCamelCase__) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg="""`processor` and `feature_extractor` model input names do not match""", )
711
def UpperCAmelCase ( UpperCamelCase__ = 10_00 ) -> int: '''simple docstring''' __lowerCAmelCase = -1 __lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCAmelCase = n - a - b if c * c == (a * a + b * b): __lowerCAmelCase = a * b * c if candidate >= product: __lowerCAmelCase = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
334
0
_lowercase = range(2, 20 + 1) _lowercase = [10**k for k in range(ks[-1] + 1)] _lowercase = {} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : str = sum(a_i[j] for j in range(snake_case__ , len(snake_case__))) lowerCAmelCase_ : int = sum(a_i[j] * base[j] for j in range(min(len(snake_case__) , snake_case__))) lowerCAmelCase_ : Optional[Any] = 0, 0 lowerCAmelCase_ : Any = n - i lowerCAmelCase_ : Union[str, Any] = memo.get(snake_case__) if sub_memo is not None: lowerCAmelCase_ : List[str] = sub_memo.get(snake_case__) if jumps is not None and len(snake_case__) > 0: # find and make the largest jump without going over lowerCAmelCase_ : List[str] = -1 for _k in range(len(snake_case__) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase_ : Any = _k break if max_jump >= 0: lowerCAmelCase_ : str = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase_ : List[Any] = diff + c for j in range(min(snake_case__ , len(snake_case__))): lowerCAmelCase_ : Union[str, Any] = divmod(snake_case__ , 10) if new_c > 0: add(snake_case__ , snake_case__ , snake_case__) else: lowerCAmelCase_ : Any = [] else: lowerCAmelCase_ : List[str] = {c: []} lowerCAmelCase_ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase_ : Optional[int] = next_term(snake_case__ , k - 1 , i + dn , snake_case__) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase_ : str = compute(snake_case__ , snake_case__ , i + dn , snake_case__) diff += _diff dn += terms_jumped lowerCAmelCase_ : Optional[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase_ : Dict = 0 while j < len(snake_case__): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(snake_case__ , (diff, dn, k)) return (diff, dn) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if i >= n: return 0, i if k > len(snake_case__): a_i.extend([0 for _ in range(k - len(snake_case__))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase_ : int = i lowerCAmelCase_ : Union[str, Any] = 0, 0, 0 for j in range(len(snake_case__)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase_ : Tuple = ds_c + ds_b diff += addend lowerCAmelCase_ : List[Any] = 0 for j in range(snake_case__): lowerCAmelCase_ : int = a_i[j] + addend lowerCAmelCase_ : Any = divmod(snake_case__ , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(snake_case__ , snake_case__ , snake_case__) return diff, i - start_i def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for j in range(snake_case__ , len(snake_case__)): lowerCAmelCase_ : List[str] = digits[j] + addend if s >= 10: lowerCAmelCase_ : str = divmod(snake_case__ , 10) lowerCAmelCase_ : Optional[int] = addend // 10 + quotient else: lowerCAmelCase_ : int = s lowerCAmelCase_ : Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase_ : str = divmod(snake_case__ , 10) digits.append(snake_case__) def UpperCamelCase ( snake_case__ = 10**15): lowerCAmelCase_ : Optional[int] = [1] lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[Any] = 0 while True: lowerCAmelCase_ : List[str] = next_term(snake_case__ , 20 , i + dn , snake_case__) dn += terms_jumped if dn == n - i: break lowerCAmelCase_ : int = 0 for j in range(len(snake_case__)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"{solution() = }")
659
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def lowercase__(A ) ->bool: """simple docstring""" lowercase__ : str= credit_card_number lowercase__ : Any= 0 lowercase__ : Optional[Any]= len(A ) - 2 for i in range(A , -1 , -2 ): # double the value of every second digit lowercase__ : Union[str, Any]= int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ : Optional[Any]= cc_number[:i] + str(A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(A ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase__(A ) ->bool: """simple docstring""" lowercase__ : List[str]= f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(A ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(A ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(A ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
218
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase ( ): '''simple docstring''' __A = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" __A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return image def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' __A = dct.pop(lowerCAmelCase__ ) __A = val def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __A = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) __A = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __A = torch.cat((q_bias, torch.zeros_like(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ ), v_bias) ) __A = qkv_bias def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' __A = 364 if "coco" in model_name else 224 __A = BlipaVisionConfig(image_size=lowerCAmelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __A = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=lowerCAmelCase__ ).to_dict() elif "opt-6.7b" in model_name: __A = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=lowerCAmelCase__ ).to_dict() elif "t5-xl" in model_name: __A = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __A = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() __A = BlipaConfig(vision_config=lowerCAmelCase__ , text_config=lowerCAmelCase__ ) return config, image_size @torch.no_grad() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): '''simple docstring''' __A = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) __A = tokenizer("\n" , add_special_tokens=lowerCAmelCase__ ).input_ids[0] __A , __A = get_blipa_config(lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __A = BlipaForConditionalGeneration(lowerCAmelCase__ ).eval() __A = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } __A , __A = model_name_to_original[model_name] # load original model print("Loading original model..." ) __A = "cuda" if torch.cuda.is_available() else "cpu" __A , __A , __A = load_model_and_preprocess( name=lowerCAmelCase__ , model_type=lowerCAmelCase__ , is_eval=lowerCAmelCase__ , device=lowerCAmelCase__ ) original_model.eval() print("Done!" ) # update state dict keys __A = original_model.state_dict() __A = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __A = state_dict.pop(lowerCAmelCase__ ) if key.startswith("Qformer.bert" ): __A = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __A = key.replace("self" , "attention" ) if "opt_proj" in key: __A = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: __A = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): __A = key.replace("opt" , "language" ) if key.startswith("t5" ): __A = key.replace("t5" , "language" ) __A = val # read in qv biases read_in_q_v_bias(lowerCAmelCase__ , lowerCAmelCase__ ) __A , __A = hf_model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __A = load_demo_image() __A = vis_processors["eval"](lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __A = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(lowerCAmelCase__ ) # create processor __A = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) __A = BlipaProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __A = processor(images=lowerCAmelCase__ , return_tensors="pt" ).pixel_values.to(lowerCAmelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) hf_model.to(lowerCAmelCase__ ) with torch.no_grad(): if "opt" in model_name: __A = original_model({"image": original_pixel_values, "text_input": [""]} ).logits __A = hf_model(lowerCAmelCase__ , lowerCAmelCase__ ).logits else: __A = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits __A = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __A = hf_model(lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __A = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=lowerCAmelCase__ ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __A = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=lowerCAmelCase__ ) else: # cast to same type __A = logits.dtype assert torch.allclose(original_logits.to(lowerCAmelCase__ ) , lowerCAmelCase__ , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) __A = "" __A = tokenizer(lowerCAmelCase__ , return_tensors="pt" ).input_ids.to(lowerCAmelCase__ ) __A = original_model.generate({"image": original_pixel_values} ) __A = hf_model.generate( lowerCAmelCase__ , lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , lowerCAmelCase__ ) __A = input_ids.shape[1] __A = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCAmelCase__ ) __A = [text.strip() for text in output_text] print("HF generation:" , lowerCAmelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCAmelCase__ ) hf_model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": snake_case_ : Optional[int] =argparse.ArgumentParser() snake_case_ : List[str] =[ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) snake_case_ : Any =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return "".join(sorted(lowerCAmelCase__ ) ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return word_by_signature[signature(lowerCAmelCase__ )] snake_case_ : str =Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') snake_case_ : List[str] =sorted({word.strip().lower() for word in data.splitlines()}) snake_case_ : str =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case_ : List[str] ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
205
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[torch.FloatTensor] = None lowercase : torch.FloatTensor = None lowercase : Optional[Tuple[torch.FloatTensor]] = None lowercase : Optional[Tuple[torch.FloatTensor]] = None class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=5_12 , __UpperCamelCase="cls" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : str = project_dim __UpperCamelCase : Union[str, Any] = pooler_fn __UpperCamelCase : List[Any] = learn_encoder __UpperCamelCase : Union[str, Any] = use_attention_mask class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Dict = [R'pooler', R'logit_scale'] lowercase : Optional[int] = [R'position_ids', R'predictions.decoder.bias'] lowercase : str = 'roberta' lowercase : int = RobertaSeriesConfig def __init__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' super().__init__(__UpperCamelCase ) __UpperCamelCase : List[Any] = XLMRobertaModel(__UpperCamelCase ) __UpperCamelCase : int = nn.Linear(config.hidden_size , config.project_dim ) __UpperCamelCase : str = getattr(__UpperCamelCase , "has_pre_transformation" , __UpperCamelCase ) if self.has_pre_transformation: __UpperCamelCase : int = nn.Linear(config.hidden_size , config.project_dim ) __UpperCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __lowerCamelCase ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Optional[Any] = self.base_model( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , position_ids=__UpperCamelCase , head_mask=__UpperCamelCase , inputs_embeds=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__UpperCamelCase , ) if self.has_pre_transformation: __UpperCamelCase : Any = outputs["hidden_states"][-2] __UpperCamelCase : Tuple = self.pre_LN(__UpperCamelCase ) __UpperCamelCase : str = self.transformation_pre(__UpperCamelCase ) return TransformationModelOutput( projection_state=__UpperCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __UpperCamelCase : int = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__UpperCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
327
def UpperCAmelCase_ (_lowerCAmelCase : int = 60_08_51_47_51_43 ): try: __UpperCamelCase : Optional[Any] = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __UpperCamelCase : List[Any] = 2 __UpperCamelCase : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __UpperCamelCase : int = i while n % i == 0: __UpperCamelCase : Optional[Any] = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
327
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCAmelCase ( lowercase : int , lowercase : Any=1 ) ->Any: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def _lowerCAmelCase ( lowercase : Optional[int] , lowercase : str=0 ) ->int: """simple docstring""" lowercase__ = [] for old_item in old_list: lowercase__ = old_item.replace('''in_layers.0''' , '''norm1''' ) lowercase__ = new_item.replace('''in_layers.2''' , '''conv1''' ) lowercase__ = new_item.replace('''out_layers.0''' , '''norm2''' ) lowercase__ = new_item.replace('''out_layers.3''' , '''conv2''' ) lowercase__ = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) lowercase__ = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) lowercase__ = shave_segments(lowercase , n_shave_prefix_segments=lowercase ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def _lowerCAmelCase ( lowercase : Tuple , lowercase : Optional[Any]=0 ) ->Optional[Any]: """simple docstring""" lowercase__ = [] for old_item in old_list: lowercase__ = old_item lowercase__ = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) lowercase__ = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) lowercase__ = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) lowercase__ = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) lowercase__ = shave_segments(lowercase , n_shave_prefix_segments=lowercase ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def _lowerCAmelCase ( lowercase : Tuple , lowercase : List[str] , lowercase : Tuple , lowercase : Any=None , lowercase : List[str]=None , lowercase : Tuple=None ) ->Union[str, Any]: """simple docstring""" assert isinstance(lowercase , lowercase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__ = old_checkpoint[path] lowercase__ = old_tensor.shape[0] // 3 lowercase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__ = old_tensor.shape[0] // config['''num_head_channels'''] // 3 lowercase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__ , lowercase__ , lowercase__ = old_tensor.split(channels // num_heads , dim=1 ) lowercase__ = query.reshape(lowercase ) lowercase__ = key.reshape(lowercase ) lowercase__ = value.reshape(lowercase ) for path in paths: lowercase__ = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__ = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) lowercase__ = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) lowercase__ = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__ = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__ = old_checkpoint[path['''old''']][:, :, 0] else: lowercase__ = old_checkpoint[path['''old''']] def _lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : str ) ->str: """simple docstring""" lowercase__ = {} lowercase__ = checkpoint['''time_embed.0.weight'''] lowercase__ = checkpoint['''time_embed.0.bias'''] lowercase__ = checkpoint['''time_embed.2.weight'''] lowercase__ = checkpoint['''time_embed.2.bias'''] lowercase__ = checkpoint['''input_blocks.0.0.weight'''] lowercase__ = checkpoint['''input_blocks.0.0.bias'''] lowercase__ = checkpoint['''out.0.weight'''] lowercase__ = checkpoint['''out.0.bias'''] lowercase__ = checkpoint['''out.2.weight'''] lowercase__ = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only lowercase__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(lowercase ) } # Retrieves the keys for the middle blocks only lowercase__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(lowercase ) } # Retrieves the keys for the output blocks only lowercase__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(lowercase ) } for i in range(1 , lowercase ): lowercase__ = (i - 1) // (config['''num_res_blocks'''] + 1) lowercase__ = (i - 1) % (config['''num_res_blocks'''] + 1) lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: lowercase__ = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] lowercase__ = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue lowercase__ = renew_resnet_paths(lowercase ) lowercase__ = {'''old''': F'''input_blocks.{i}.0''', '''new''': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowercase__ = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( lowercase , lowercase , lowercase , additional_replacements=[meta_path, resnet_op] , config=lowercase ) if len(lowercase ): lowercase__ = renew_attention_paths(lowercase ) lowercase__ = { '''old''': F'''input_blocks.{i}.1''', '''new''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { F'''input_blocks.{i}.1.qkv.bias''': { '''key''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', '''query''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', '''value''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { '''key''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', '''query''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', '''value''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( lowercase , lowercase , lowercase , additional_replacements=[meta_path] , attention_paths_to_split=lowercase , config=lowercase , ) lowercase__ = middle_blocks[0] lowercase__ = middle_blocks[1] lowercase__ = middle_blocks[2] lowercase__ = renew_resnet_paths(lowercase ) assign_to_checkpoint(lowercase , lowercase , lowercase , config=lowercase ) lowercase__ = renew_resnet_paths(lowercase ) assign_to_checkpoint(lowercase , lowercase , lowercase , config=lowercase ) lowercase__ = renew_attention_paths(lowercase ) lowercase__ = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( lowercase , lowercase , lowercase , attention_paths_to_split=lowercase , config=lowercase ) for i in range(lowercase ): lowercase__ = i // (config['''num_res_blocks'''] + 1) lowercase__ = i % (config['''num_res_blocks'''] + 1) lowercase__ = [shave_segments(lowercase , 2 ) for name in output_blocks[i]] lowercase__ = {} for layer in output_block_layers: lowercase__ , lowercase__ = layer.split('''.''' )[0], shave_segments(lowercase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowercase ) else: lowercase__ = [layer_name] if len(lowercase ) > 1: lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] lowercase__ = renew_resnet_paths(lowercase ) lowercase__ = renew_resnet_paths(lowercase ) lowercase__ = {'''old''': F'''output_blocks.{i}.0''', '''new''': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(lowercase , lowercase , lowercase , additional_replacements=[meta_path] , config=lowercase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__ = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) lowercase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] lowercase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(lowercase ) == 2: lowercase__ = [] if len(lowercase ): lowercase__ = renew_attention_paths(lowercase ) lowercase__ = { '''old''': F'''output_blocks.{i}.1''', '''new''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { F'''output_blocks.{i}.1.qkv.bias''': { '''key''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', '''query''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', '''value''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { '''key''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', '''query''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', '''value''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( lowercase , lowercase , lowercase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=lowercase , ) else: lowercase__ = renew_resnet_paths(lowercase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__ = '''.'''.join(['''output_blocks''', str(lowercase ), path['''old''']] ) lowercase__ = '''.'''.join(['''up_blocks''', str(lowercase ), '''resnets''', str(lowercase ), path['''new''']] ) lowercase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase = json.loads(f.read()) _lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) _lowerCAmelCase = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) _lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
720
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
318
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class __magic_name__ : """simple docstring""" def __init__( self : Tuple , _lowercase : Tuple ): """simple docstring""" _UpperCamelCase: Any = data _UpperCamelCase: Node | None = None class __magic_name__ : """simple docstring""" def __init__( self : Tuple ): """simple docstring""" _UpperCamelCase: str = None _UpperCamelCase: Optional[int] = None def __iter__( self : Any ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.head while self.head: yield node.data _UpperCamelCase: Tuple = node.next if node == self.head: break def __len__( self : Dict ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ): """simple docstring""" return "->".join(str(__UpperCAmelCase ) for item in iter(self ) ) def lowerCAmelCase ( self : int , _lowercase : Union[str, Any] ): """simple docstring""" self.insert_nth(len(self ) , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , _lowercase : Dict ): """simple docstring""" self.insert_nth(0 , __UpperCAmelCase ) def lowerCAmelCase ( self : Any , _lowercase : Union[str, Any] , _lowercase : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) _UpperCamelCase: Optional[Any] = Node(__UpperCAmelCase ) if self.head is None: _UpperCamelCase: int = new_node # first node points itself _UpperCamelCase: int = new_node elif index == 0: # insert at head _UpperCamelCase: str = self.head _UpperCamelCase: Any = new_node else: _UpperCamelCase: Union[str, Any] = self.head for _ in range(index - 1 ): _UpperCamelCase: Optional[int] = temp.next _UpperCamelCase: List[str] = temp.next _UpperCamelCase: Optional[Any] = new_node if index == len(self ) - 1: # insert at tail _UpperCamelCase: str = new_node def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" return self.delete_nth(0 ) def lowerCAmelCase ( self : Any ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase ( self : Dict , _lowercase : Optional[int] = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) _UpperCamelCase: List[str] = self.head if self.head == self.tail: # just one node _UpperCamelCase: Union[str, Any] = None elif index == 0: # delete head node _UpperCamelCase: List[str] = self.tail.next.next _UpperCamelCase: Tuple = self.head.next else: _UpperCamelCase: Dict = self.head for _ in range(index - 1 ): _UpperCamelCase: List[str] = temp.next _UpperCamelCase: Optional[int] = temp.next _UpperCamelCase: int = temp.next.next if index == len(self ) - 1: # delete at tail _UpperCamelCase: Optional[Any] = temp return delete_node.data def lowerCAmelCase ( self : List[Any] ): """simple docstring""" return len(self ) == 0 def lowerCAmelCase_ ( ) -> None: '''simple docstring''' _UpperCamelCase: int = CircularLinkedList() assert len(_SCREAMING_SNAKE_CASE ) == 0 assert circular_linked_list.is_empty() is True assert str(_SCREAMING_SNAKE_CASE ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_SCREAMING_SNAKE_CASE ) == i circular_linked_list.insert_nth(_SCREAMING_SNAKE_CASE , i + 1 ) assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
271
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_SCREAMING_SNAKE_CASE ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
93
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ :Any = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Tuple = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[Any] = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase__ :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Dict = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : Tuple = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ :Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
374
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : str ): A__ = [int(_lowerCamelCase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(_lowerCamelCase ) == 4 and all(0 <= int(_lowerCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": __lowerCAmelCase : Dict =input().strip() __lowerCAmelCase : List[Any] ="valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
440
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Union[str, Any] ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict =_LazyModule(__name__, globals()["__file__"], _import_structure)
440
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowercase( __snake_case : Features ) -> Optional[int]: __snake_case = np.inf def set_batch_size(__snake_case : FeatureType ) -> None: nonlocal batch_size if isinstance(__snake_case ,__snake_case ): __snake_case = min(__snake_case ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__snake_case ,__snake_case ): __snake_case = min(__snake_case ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__snake_case ,__snake_case ) and feature.dtype == "binary": __snake_case = min(__snake_case ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__snake_case ,__snake_case ) return None if batch_size is np.inf else batch_size class _lowerCamelCase (lowerCamelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): super().__init__( SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , streaming=SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = path_or_paths if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else {self.split: path_or_paths} __snake_case = _PACKAGED_DATASETS_MODULES['parquet'][1] __snake_case = Parquet( cache_dir=SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , hash=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def __lowerCamelCase ( self ): # Build iterable dataset if self.streaming: __snake_case = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __snake_case = None __snake_case = None __snake_case = None __snake_case = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , num_proc=self.num_proc , ) __snake_case = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): __snake_case = dataset __snake_case = path_or_buf __snake_case = batch_size or get_writer_batch_size(dataset.features ) __snake_case = parquet_writer_kwargs def __lowerCamelCase ( self ): __snake_case = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __snake_case = self._write(file_obj=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , **self.parquet_writer_kwargs ) else: __snake_case = self._write(file_obj=self.path_or_buf , batch_size=SCREAMING_SNAKE_CASE_ , **self.parquet_writer_kwargs ) return written def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): __snake_case = 0 __snake_case = parquet_writer_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE_ ) __snake_case = self.dataset.features.arrow_schema __snake_case = pq.ParquetWriter(SCREAMING_SNAKE_CASE_ , schema=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , SCREAMING_SNAKE_CASE_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __snake_case = query_table( table=self.dataset._data , key=slice(SCREAMING_SNAKE_CASE_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(SCREAMING_SNAKE_CASE_ ) written += batch.nbytes writer.close() return written
345
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _lowerCamelCase (unittest.TestCase ): def __lowerCamelCase ( self ): __snake_case = tempfile.mkdtemp() __snake_case = BlipImageProcessor() __snake_case = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __snake_case = BlipaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def __lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ): __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ): __snake_case = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __snake_case = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __snake_case = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = 'lower newer' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = 'lower newer' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = 'lower newer' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
345
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = '▁' _lowerCamelCase = {'vocab_file': 'prophetnet.tokenizer'} _lowerCamelCase = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } _lowerCamelCase = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } _lowerCamelCase = { 'microsoft/xprophetnet-large-wiki100-cased': 5_12, } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ = collections.OrderedDict() with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as reader: UpperCAmelCase_ = reader.readlines() for index, token in enumerate(__UpperCamelCase ): UpperCAmelCase_ = token.rstrip('''\n''' ) UpperCAmelCase_ = index return vocab class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any]="[SEP]" , __snake_case : List[Any]="[SEP]" , __snake_case : Dict="[SEP]" , __snake_case : Any="[UNK]" , __snake_case : Tuple="[PAD]" , __snake_case : Optional[Any]="[CLS]" , __snake_case : str="[MASK]" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Union[str, Any] , ): UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab UpperCAmelCase_ = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): UpperCAmelCase_ = F'[unused{i}]' UpperCAmelCase_ = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab UpperCAmelCase_ = 12 UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__snake_case ) def __getstate__( self : List[Any] ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Union[str, Any] , __snake_case : Dict ): UpperCAmelCase_ = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return ([0] * len(__snake_case )) + [1] return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase_ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self : Any ): return len(self.sp_model ) + self.fairseq_offset def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowerCamelCase_ ( self : str , __snake_case : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Any ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase_ ( self : str , __snake_case : Dict ): UpperCAmelCase_ = ''''''.join(__snake_case ).replace(__snake_case , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self : Any , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
144
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _lowerCamelCase = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } _lowerCamelCase = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ = create_model( '''HTSAT-tiny''' , '''roberta''' , __UpperCamelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=__UpperCamelCase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Optional[int]: UpperCAmelCase_ = {} UpperCAmelCase_ = R'''.*sequential.(\d+).*''' UpperCAmelCase_ = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(__UpperCamelCase , __UpperCamelCase ) if re.match(__UpperCamelCase , __UpperCamelCase ): # replace sequential layers with list UpperCAmelCase_ = re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) UpperCAmelCase_ = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(__UpperCamelCase )//3}.linear.' ) elif re.match(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase_ = int(re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Any=False ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ = init_clap(__UpperCamelCase , enable_fusion=__UpperCamelCase ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(__UpperCamelCase ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(__UpperCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) transformers_config.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') _lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
144
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : str = '''cvt''' def __init__( self , snake_case=3 , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[64, 192, 384] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[4.0, 4.0, 4.0] , snake_case=[0.0, 0.0, 0.0] , snake_case=[0.0, 0.0, 0.0] , snake_case=[0.0, 0.0, 0.1] , snake_case=[True, True, True] , snake_case=[False, False, True] , snake_case=["dw_bn", "dw_bn", "dw_bn"] , snake_case=[3, 3, 3] , snake_case=[1, 1, 1] , snake_case=[2, 2, 2] , snake_case=[1, 1, 1] , snake_case=[1, 1, 1] , snake_case=0.02 , snake_case=1e-1_2 , **snake_case , ): super().__init__(**snake_case ) snake_case_ = num_channels snake_case_ = patch_sizes snake_case_ = patch_stride snake_case_ = patch_padding snake_case_ = embed_dim snake_case_ = num_heads snake_case_ = depth snake_case_ = mlp_ratio snake_case_ = attention_drop_rate snake_case_ = drop_rate snake_case_ = drop_path_rate snake_case_ = qkv_bias snake_case_ = cls_token snake_case_ = qkv_projection_method snake_case_ = kernel_qkv snake_case_ = padding_kv snake_case_ = stride_kv snake_case_ = padding_q snake_case_ = stride_q snake_case_ = initializer_range snake_case_ = layer_norm_eps
702
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=1 / 255 , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_pad def a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self , snake_case , snake_case=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(snake_case , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(snake_case , key=lambda snake_case : item[0] )[0] snake_case_ = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = DetrImageProcessor if is_vision_available() else None def a ( self ): snake_case_ = DetrImageProcessingTester(self ) @property def a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'rescale_factor' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) def a ( self ): snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def a ( self ): pass def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ): # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def a ( self ): # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
108
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = 0 @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.txt""" ) ) UpperCAmelCase : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" , use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """merges.txt""" ) ) UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" , use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.txt""" ) ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """merges.txt""" ) ) UpperCAmelCase : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case , _SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = TOKENIZER_MAPPING.values() UpperCAmelCase : Optional[int] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _SCREAMING_SNAKE_CASE ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = """Hello, world. How are you?""" UpperCAmelCase : Optional[int] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual("""[UNK]""" , tokens[0] ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : int = get_tokenizer_config("""bert-base-cased""" ) UpperCAmelCase : List[Any] = config.pop("""_commit_hash""" , _SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase : List[Any] = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Any = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[str] = False class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[str] = NewTokenizer __lowerCAmelCase : Optional[Any] = False try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCAmelCase : str = AutoTokenizer.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
160
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor A: Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
160
1
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE__ ( __A = "laptop" ) -> Optional[int]: _snake_case = F'https://www.amazon.in/laptop/s?k={product}' _snake_case = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } _snake_case = BeautifulSoup(requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).text ) # Initialize a Pandas dataframe with the column titles _snake_case = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: _snake_case = item.ha.text _snake_case = """https://www.amazon.in/""" + item.ha.a["""href"""] _snake_case = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: _snake_case = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: _snake_case = """Not available""" try: _snake_case = ( """₹""" + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: _snake_case = """""" try: _snake_case = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: _snake_case = float('nan' ) except AttributeError: pass _snake_case = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _snake_case = """ """ _snake_case = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : int = "headphones" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
713
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = self.vocab_size - 1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTDoubleHeadsModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = OpenAIGPTForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowercase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowercase = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = inputs_dict['labels'] _snake_case = inputs_dict['labels'] _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case = OpenAIGPTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = OpenAIGPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCAmelCase_ ) _snake_case = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president is _snake_case = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the _snake_case = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
542
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '''▁''' lowerCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCAmelCase = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off lowerCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A ( A_ ): UpperCamelCase_ : Tuple =VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] =['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[int] =[] UpperCamelCase_ : List[int] =[] def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<unk>" , lowerCAmelCase="m2m100" , lowerCAmelCase = None , lowerCAmelCase=8 , **lowerCAmelCase , ): __lowercase= {} if sp_model_kwargs is None else sp_model_kwargs __lowercase= language_codes __lowercase= FAIRSEQ_LANGUAGE_CODES[language_codes] __lowercase= {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __lowercase= kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , language_codes=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= vocab_file __lowercase= load_json(lowerCAmelCase ) __lowercase= {v: k for k, v in self.encoder.items()} __lowercase= spm_file __lowercase= load_spm(lowerCAmelCase , self.sp_model_kwargs ) __lowercase= len(self.encoder ) __lowercase= { self.get_lang_token(lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase ) } __lowercase= {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase )} __lowercase= {v: k for k, v in self.lang_token_to_id.items()} __lowercase= src_lang if src_lang is not None else 'en' __lowercase= tgt_lang __lowercase= self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __lowercase= num_madeup_words @property def _A (self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _A (self ): return self._src_lang @src_lang.setter def _A (self , lowerCAmelCase ): __lowercase= new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A (self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def _A (self , lowerCAmelCase ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCAmelCase , self.encoder[self.unk_token] ) def _A (self , lowerCAmelCase ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCAmelCase , self.unk_token ) def _A (self , lowerCAmelCase ): __lowercase= [] __lowercase= '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token __lowercase= [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) __lowercase= [1] * len(self.prefix_tokens ) __lowercase= [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A (self ): __lowercase= {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowercase= self.__dict__.copy() __lowercase= None return state def __setstate__(self , lowerCAmelCase ): __lowercase= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase= {} __lowercase= load_spm(self.spm_file , self.sp_model_kwargs ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= Path(lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __lowercase= save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __lowercase= save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase , 'wb' ) as fi: __lowercase= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (str(lowerCAmelCase ), str(lowerCAmelCase )) def _A (self , lowerCAmelCase , lowerCAmelCase = "en" , lowerCAmelCase = None , lowerCAmelCase = "ro" , **lowerCAmelCase , ): __lowercase= src_lang __lowercase= tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowercase= src_lang __lowercase= self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , **lowerCAmelCase ) __lowercase= self.get_lang_id(lowerCAmelCase ) __lowercase= tgt_lang_id return inputs def _A (self ): self.set_src_lang_special_tokens(self.src_lang ) def _A (self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A (self , lowerCAmelCase ): __lowercase= self.get_lang_token(lowerCAmelCase ) __lowercase= self.lang_token_to_id[lang_token] __lowercase= [self.cur_lang_id] __lowercase= [self.eos_token_id] def _A (self , lowerCAmelCase ): __lowercase= self.get_lang_token(lowerCAmelCase ) __lowercase= self.lang_token_to_id[lang_token] __lowercase= [self.cur_lang_id] __lowercase= [self.eos_token_id] def _A (self , lowerCAmelCase ): return self.lang_code_to_token[lang] def _A (self , lowerCAmelCase ): __lowercase= self.get_lang_token(lowerCAmelCase ) return self.lang_token_to_id[lang_token] def _lowerCamelCase( lowercase__ , lowercase__ ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' __lowercase= sentencepiece.SentencePieceProcessor(**lowercase__ ) spm.Load(str(lowercase__ ) ) return spm def _lowerCamelCase( lowercase__ ) -> Union[Dict, List]: '''simple docstring''' with open(lowercase__ , 'r' ) as f: return json.load(lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> None: '''simple docstring''' with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ , indent=2 )
230
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Tuple =RobertaTokenizer UpperCamelCase_ : int =RobertaTokenizerFast UpperCamelCase_ : Tuple =True UpperCamelCase_ : List[Any] ={'''cls_token''': '''<s>'''} def _A (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase= [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __lowercase= dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) __lowercase= ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowercase= {'unk_token': '<unk>'} __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def _A (self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def _A (self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def _A (self , lowerCAmelCase ): __lowercase= 'lower newer' __lowercase= 'lower newer' return input_text, output_text def _A (self ): __lowercase= self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase= 'lower newer' __lowercase= ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __lowercase= tokenizer.tokenize(lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowercase= tokens + [tokenizer.unk_token] __lowercase= [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def _A (self ): __lowercase= self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def _A (self ): __lowercase= self.tokenizer_class.from_pretrained('roberta-base' ) __lowercase= tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase ) __lowercase= tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase ) __lowercase= tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) __lowercase= tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) __lowercase= tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __lowercase= tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _A (self ): __lowercase= self.get_tokenizer() __lowercase= 'Encode this sequence.' __lowercase= tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __lowercase= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) __lowercase= tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) __lowercase= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) __lowercase= tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __lowercase= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowercase= tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) # Testing spaces after special tokens __lowercase= '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase )} ) # mask token has a left space __lowercase= tokenizer.convert_tokens_to_ids(lowerCAmelCase ) __lowercase= 'Encode <mask> sequence' __lowercase= 'Encode <mask>sequence' __lowercase= tokenizer.encode(lowerCAmelCase ) __lowercase= encoded.index(lowerCAmelCase ) __lowercase= tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) __lowercase= tokenizer.encode(lowerCAmelCase ) __lowercase= encoded.index(lowerCAmelCase ) __lowercase= tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) def _A (self ): pass def _A (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowercase= self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) __lowercase= self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) __lowercase= 'A, <mask> AllenNLP sentence.' __lowercase= tokenizer_r.encode_plus(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) __lowercase= tokenizer_p.encode_plus(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __lowercase= tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __lowercase= tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _A (self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase= self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase= json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCAmelCase ) def _A (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowercase= 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __lowercase= f'{text_of_1_token} {text_of_1_token}' __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ), len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ), len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) __lowercase= f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ) + 1, 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ), 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) __lowercase= self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) __lowercase= tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ), 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , )
230
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCAmelCase (unittest.TestCase ): def __init__( self: str , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any=7 , UpperCAmelCase_: List[Any]=3 , UpperCAmelCase_: Tuple=18 , UpperCAmelCase_: Union[str, Any]=30 , UpperCAmelCase_: int=400 , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: List[Any]=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 18, """width""": 18} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = apply_ocr def UpperCamelCase ( self: Any ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase ( self: str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """apply_ocr""" ) ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase_ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase_ ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor() from datasets import load_dataset _SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) _SCREAMING_SNAKE_CASE = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _SCREAMING_SNAKE_CASE = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _SCREAMING_SNAKE_CASE = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase_ ) self.assertListEqual(encoding.boxes , UpperCAmelCase_ ) # with apply_OCR = False _SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
569
import numpy as np def __lowerCamelCase ( snake_case__ ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
569
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): __lowercase = 0 @slow def snake_case__ ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowerCAmelCase_ ) , 0 ) def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def snake_case__ ( self ): __lowercase = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) # Check that tokenizer_type ≠ model_type __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , config=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCAmelCase_ , "vocab.txt" ) ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , tokenizer_type="bert" , use_fast=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCAmelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCAmelCase_ , "merges.txt" ) ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , tokenizer_type="gpt2" , use_fast=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @require_tokenizers def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCAmelCase_ , "vocab.txt" ) ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , tokenizer_type="bert" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCAmelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCAmelCase_ , "merges.txt" ) ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , tokenizer_type="gpt2" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case__ ( self ): with pytest.raises(lowerCAmelCase_ ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def snake_case__ ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(lowerCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCAmelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , lowerCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def snake_case__ ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCAmelCase_ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): __lowercase = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def snake_case__ ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __lowercase = TOKENIZER_MAPPING.values() __lowercase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCAmelCase_ ) @require_tokenizers def snake_case__ ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , lowerCAmelCase_ ) @require_tokenizers def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=lowerCAmelCase_ ) __lowercase = "Hello, world. How are you?" __lowercase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) __lowercase = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=lowerCAmelCase_ ) __lowercase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case__ ( self ): # Check we can load the tokenizer config of an online model. __lowercase = get_tokenizer_config("bert-base-cased" ) __lowercase = config.pop("_commit_hash" , lowerCAmelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCAmelCase_ , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase = get_tokenizer_config(lowerCAmelCase_ ) self.assertDictEqual(lowerCAmelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = get_tokenizer_config(lowerCAmelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def snake_case__ ( self ): try: AutoConfig.register("custom" , lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) __lowercase = CustomTokenizer.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case__ ( self ): try: AutoConfig.register("custom" , lowerCAmelCase_ ) # Can register in two steps AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowerCAmelCase_ , fast_tokenizer_class=lowerCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ , fast_tokenizer_class=lowerCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoTokenizer.register(lowerCAmelCase_ , fast_tokenizer_class=lowerCAmelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = BertTokenizerFast.from_pretrained(lowerCAmelCase_ ) bert_tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = CustomTokenizerFast.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase_ ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def snake_case__ ( self ): class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = False class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = NewTokenizer __lowerCAmelCase = False try: AutoConfig.register("custom" , lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , fast_tokenizer_class=lowerCAmelCase_ ) # If remote code is not set, the default is to use local __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=lowerCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self ): __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __lowercase = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def snake_case__ ( self ): with self.assertRaisesRegex( lowerCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): __lowercase = AutoTokenizer.from_pretrained("bert-base" ) def snake_case__ ( self ): with self.assertRaisesRegex( lowerCAmelCase_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , revision="aaaaaa" ) def snake_case__ ( self ): # Make sure we have cached the tokenizer. __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
321
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None lowerCAmelCase__ = namedtuple('CoinsDistribResult', 'moves excess') def __lowercase ( _UpperCAmelCase ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_UpperCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
321
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''perceiver''' def __init__( self : str , lowercase_ : Union[str, Any]=256 , lowercase_ : Dict=1280 , lowercase_ : List[str]=768 , lowercase_ : int=1 , lowercase_ : Any=26 , lowercase_ : Tuple=8 , lowercase_ : Any=8 , lowercase_ : int=None , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]="kv" , lowercase_ : Optional[int]=1 , lowercase_ : str=1 , lowercase_ : Tuple="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=1E-12 , lowercase_ : List[Any]=True , lowercase_ : List[str]=262 , lowercase_ : Tuple=2048 , lowercase_ : int=56 , lowercase_ : int=[368, 496] , lowercase_ : Tuple=16 , lowercase_ : List[Any]=1920 , lowercase_ : Optional[Any]=16 , lowercase_ : Tuple=[1, 16, 224, 224] , **lowercase_ : Tuple , ): super().__init__(**lowercase_ ) lowercase_ : Any = num_latents lowercase_ : Dict = d_latents lowercase_ : Tuple = d_model lowercase_ : List[Any] = num_blocks lowercase_ : Optional[Any] = num_self_attends_per_block lowercase_ : Tuple = num_self_attention_heads lowercase_ : Any = num_cross_attention_heads lowercase_ : Union[str, Any] = qk_channels lowercase_ : Union[str, Any] = v_channels lowercase_ : Optional[Any] = cross_attention_shape_for_attention lowercase_ : Any = self_attention_widening_factor lowercase_ : int = cross_attention_widening_factor lowercase_ : Optional[int] = hidden_act lowercase_ : Any = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : int = layer_norm_eps lowercase_ : Optional[int] = use_query_residual # masked language modeling attributes lowercase_ : Dict = vocab_size lowercase_ : Dict = max_position_embeddings # image classification attributes lowercase_ : Any = image_size # flow attributes lowercase_ : str = train_size # multimodal autoencoding attributes lowercase_ : Dict = num_frames lowercase_ : Optional[Any] = audio_samples_per_frame lowercase_ : Optional[Any] = samples_per_patch lowercase_ : int = output_shape class __magic_name__ ( _UpperCAmelCase): @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): if self.task == "multiple-choice": lowercase_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return 1E-4 def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(lowercase_ , lowercase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ : Dict = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ : int = preprocessor.num_special_tokens_to_add(lowercase_ ) lowercase_ : Optional[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowercase_ : Optional[int] = [""" """.join(["""a"""] ) * seq_length] * batch_size lowercase_ : List[Any] = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) ) lowercase_ : List[Any] = inputs.pop("""input_ids""" ) return inputs elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ : int = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase_ : Union[str, Any] = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase_ : List[Any] = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) lowercase_ : str = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
711
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : str = tau * frequency / samplerate lowercase_ : Tuple = sin(UpperCAmelCase__ ) lowercase_ : int = cos(UpperCAmelCase__ ) lowercase_ : Any = _sin / (2 * q_factor) lowercase_ : Dict = (1 - _cos) / 2 lowercase_ : Optional[int] = 1 - _cos lowercase_ : Dict = 1 + alpha lowercase_ : List[Any] = -2 * _cos lowercase_ : Union[str, Any] = 1 - alpha lowercase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : str = tau * frequency / samplerate lowercase_ : Optional[int] = sin(UpperCAmelCase__ ) lowercase_ : Dict = cos(UpperCAmelCase__ ) lowercase_ : Optional[int] = _sin / (2 * q_factor) lowercase_ : Dict = (1 + _cos) / 2 lowercase_ : str = -1 - _cos lowercase_ : Dict = 1 + alpha lowercase_ : Optional[Any] = -2 * _cos lowercase_ : List[Any] = 1 - alpha lowercase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : int = tau * frequency / samplerate lowercase_ : int = sin(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = cos(UpperCAmelCase__ ) lowercase_ : str = _sin / (2 * q_factor) lowercase_ : str = _sin / 2 lowercase_ : Any = 0 lowercase_ : Optional[Any] = -ba lowercase_ : Dict = 1 + alpha lowercase_ : Union[str, Any] = -2 * _cos lowercase_ : Union[str, Any] = 1 - alpha lowercase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : List[str] = tau * frequency / samplerate lowercase_ : Any = sin(UpperCAmelCase__ ) lowercase_ : List[Any] = cos(UpperCAmelCase__ ) lowercase_ : Optional[Any] = _sin / (2 * q_factor) lowercase_ : Any = 1 - alpha lowercase_ : Optional[Any] = -2 * _cos lowercase_ : Optional[int] = 1 + alpha lowercase_ : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase_ : Dict = tau * frequency / samplerate lowercase_ : Tuple = sin(UpperCAmelCase__ ) lowercase_ : List[Any] = cos(UpperCAmelCase__ ) lowercase_ : List[Any] = _sin / (2 * q_factor) lowercase_ : Any = 10 ** (gain_db / 40) lowercase_ : List[str] = 1 + alpha * big_a lowercase_ : List[Any] = -2 * _cos lowercase_ : Dict = 1 - alpha * big_a lowercase_ : str = 1 + alpha / big_a lowercase_ : List[str] = -2 * _cos lowercase_ : Tuple = 1 - alpha / big_a lowercase_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase_ : Dict = tau * frequency / samplerate lowercase_ : Union[str, Any] = sin(UpperCAmelCase__ ) lowercase_ : Any = cos(UpperCAmelCase__ ) lowercase_ : Any = _sin / (2 * q_factor) lowercase_ : Any = 10 ** (gain_db / 40) lowercase_ : Any = (big_a + 1) - (big_a - 1) * _cos lowercase_ : int = (big_a + 1) + (big_a - 1) * _cos lowercase_ : Tuple = (big_a - 1) - (big_a + 1) * _cos lowercase_ : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos lowercase_ : int = 2 * sqrt(UpperCAmelCase__ ) * alpha lowercase_ : Tuple = big_a * (pmc + aaa) lowercase_ : List[str] = 2 * big_a * mpc lowercase_ : Union[str, Any] = big_a * (pmc - aaa) lowercase_ : Optional[int] = ppmc + aaa lowercase_ : Optional[int] = -2 * pmpc lowercase_ : Any = ppmc - aaa lowercase_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase_ : str = tau * frequency / samplerate lowercase_ : int = sin(UpperCAmelCase__ ) lowercase_ : int = cos(UpperCAmelCase__ ) lowercase_ : Dict = _sin / (2 * q_factor) lowercase_ : Union[str, Any] = 10 ** (gain_db / 40) lowercase_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos lowercase_ : Optional[int] = (big_a + 1) + (big_a - 1) * _cos lowercase_ : Any = (big_a - 1) - (big_a + 1) * _cos lowercase_ : str = (big_a - 1) + (big_a + 1) * _cos lowercase_ : Optional[int] = 2 * sqrt(UpperCAmelCase__ ) * alpha lowercase_ : Tuple = big_a * (ppmc + aaa) lowercase_ : List[Any] = -2 * big_a * pmpc lowercase_ : Optional[Any] = big_a * (ppmc - aaa) lowercase_ : Optional[Any] = pmc + aaa lowercase_ : int = 2 * mpc lowercase_ : Tuple = pmc - aaa lowercase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
30
0
from collections import deque from .hash_table import HashTable class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : List[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.values[key] def a__ ( self ) -> int: return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Optional[int]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
30
def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for i in range(1 , 1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
30
1
"""simple docstring""" import math def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(snake_case_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ : Tuple = """Enter the base and the power separated by a comma: """ lowercase_ : List[Any] = map(int, input(prompt).split(''',''')) lowercase_ : Any = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ : Union[str, Any] = res(xa, ya) lowercase_ : Optional[int] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
703
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = 42 @flax_register_to_config class UpperCamelCase ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A__ = 32 A__ = 4 A__ = 4 A__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") A__ = False A__ = (320, 640, 1280, 1280) A__ = 2 A__ = 8 A__ = None A__ = 1280 A__ = 0.0 A__ = False A__ = jnp.floataa A__ = True A__ = 0 A__ = False def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) _SCREAMING_SNAKE_CASE : int = jnp.zeros(snake_case__ , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE : str = jnp.ones((1,) , dtype=jnp.intaa ) _SCREAMING_SNAKE_CASE : Any = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = jax.random.split(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels _SCREAMING_SNAKE_CASE : List[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input _SCREAMING_SNAKE_CASE : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : int = (num_attention_heads,) * len(self.down_block_types ) # down _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : List[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _SCREAMING_SNAKE_CASE : str = output_channel _SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] _SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _SCREAMING_SNAKE_CASE : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _SCREAMING_SNAKE_CASE : str = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = down_blocks # mid _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Optional[Any] = list(reversed(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Any = list(reversed(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Any = list(reversed(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _SCREAMING_SNAKE_CASE : Union[str, Any] = output_channel _SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[i] _SCREAMING_SNAKE_CASE : List[Any] = reversed_block_out_channels[min(i + 1 , len(snake_case__ ) - 1 )] _SCREAMING_SNAKE_CASE : Optional[Any] = i == len(snake_case__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _SCREAMING_SNAKE_CASE : int = FlaxCrossAttnUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _SCREAMING_SNAKE_CASE : str = FlaxUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = output_channel _SCREAMING_SNAKE_CASE : int = up_blocks # out _SCREAMING_SNAKE_CASE : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__ = True , snake_case__ = False , ): """simple docstring""" if not isinstance(snake_case__ , jnp.ndarray ): _SCREAMING_SNAKE_CASE : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE : Tuple = timesteps.astype(dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE : Tuple = jnp.expand_dims(snake_case__ , 0 ) _SCREAMING_SNAKE_CASE : List[str] = self.time_proj(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = self.time_embedding(snake_case__ ) # 2. pre-process _SCREAMING_SNAKE_CASE : Dict = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_in(snake_case__ ) # 3. down _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _SCREAMING_SNAKE_CASE : str = () for down_block_res_sample, down_block_additional_residual in zip( snake_case__ , snake_case__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _SCREAMING_SNAKE_CASE : Union[str, Any] = new_down_block_res_samples # 4. mid _SCREAMING_SNAKE_CASE : Dict = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _SCREAMING_SNAKE_CASE : List[str] = down_block_res_samples[-(self.layers_per_block + 1) :] _SCREAMING_SNAKE_CASE : int = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = up_block( snake_case__ , temb=snake_case__ , encoder_hidden_states=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train , ) else: _SCREAMING_SNAKE_CASE : List[str] = up_block(snake_case__ , temb=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train ) # 6. post-process _SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = self.conv_out(snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.transpose(snake_case__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case__ )
295
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A : str = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase__ ( lowerCamelCase : List[Any] ): config.addinivalue_line( 'markers' ,'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' ,'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' ,'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' ,'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' ,'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' ,'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCAmelCase__ ( lowerCamelCase : int ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ): from transformers.testing_utils import pytest_terminal_summary_main _A : int = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase ,id=lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : str ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: _A : Union[str, Any] = 0 # Doctest custom flag to ignore output. A : int = doctest.register_optionflag('''IGNORE_RESULT''') A : Dict = doctest.OutputChecker class __lowerCamelCase ( a_ ): """simple docstring""" def A ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) A : Optional[int] = CustomOutputChecker A : int = HfDoctestModule A : Dict = HfDocTestParser
128
'''simple docstring''' from math import factorial def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowerCamelCase ,lowerCamelCase ) or not isinstance(lowerCamelCase ,lowerCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _A : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _A : Any = float(factorial(lowerCamelCase ) ) coefficient /= factorial(lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
128
1
from __future__ import annotations import os from collections.abc import Mapping SCREAMING_SNAKE_CASE__ = tuple[int, int] class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , _snake_case : set[int] , _snake_case : Mapping[EdgeT, int] ): """simple docstring""" A__ = vertices A__ = { (min(UpperCAmelCase__ ), max(UpperCAmelCase__ )): weight for edge, weight in edges.items() } def _a ( self : Any , _snake_case : EdgeT , _snake_case : int ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) A__ = weight def _a ( self : List[Any] ): """simple docstring""" A__ = Graph({min(self.vertices )} , {} ) A__ = 42 A__ = 42 A__ = 42 A__ = 42 while len(subgraph.vertices ) < len(self.vertices ): A__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: A__ = edge A__ = weight subgraph.add_edge(UpperCAmelCase__ , UpperCAmelCase__ ) return subgraph def A ( __UpperCamelCase = "p107_network.txt" ) -> int: A__ = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) A__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) A__ = {} A__ = 42 A__ = 42 A__ = 42 with open(__UpperCamelCase ) as f: A__ = f.read().strip().split('\n' ) A__ = [line.split(',' ) for line in data] for edgea in range(1 , len(__UpperCamelCase ) ): for edgea in range(__UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": A__ = int(adjaceny_matrix[edgea][edgea] ) A__ = Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase ) A__ = graph.prims_algorithm() A__ = sum(graph.edges.values() ) A__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'{solution() = }')
721
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : Any , _snake_case : Optional[int]=13 , _snake_case : Optional[Any]=64 , _snake_case : List[str]=2 , _snake_case : Any=3 , _snake_case : Union[str, Any]=True , _snake_case : Dict=True , _snake_case : int=32 , _snake_case : int=5 , _snake_case : Union[str, Any]=4 , _snake_case : int=37 , _snake_case : Tuple="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Dict=0.1 , _snake_case : List[str]=10 , _snake_case : Union[str, Any]=0.02 , _snake_case : Dict=[1, 16, 4, 4] , _snake_case : Dict=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size A__ = (self.image_size // 32) ** 2 A__ = num_patches + 1 def _a ( self : Any ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : Tuple ): """simple docstring""" A__ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_snake_case , ) def _a ( self : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" A__ = ViTHybridModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[str] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Any ): """simple docstring""" A__ = self.type_sequence_label_size A__ = ViTHybridForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Dict ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A__ : str = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) A__ : Union[str, Any] = False A__ : Any = False A__ : Union[str, Any] = False def _a ( self : Dict ): """simple docstring""" A__ = ViTHybridModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def _a ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self : int ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def _a ( self : List[str] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Any ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def _a ( self : Any ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: A__ = model_class(config=_snake_case ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": A__ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _a ( self : int ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTHybridModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> Union[str, Any]: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Tuple ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _snake_case ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): A__ = model(**_snake_case ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow @require_accelerate def _a ( self : List[Any] ): """simple docstring""" A__ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) A__ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = model(**_snake_case ) A__ = outputs.logits # model predicts one of the 1000 ImageNet classes A__ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
52
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = 'laion/clap-htsat-unfused' __lowerCAmelCase = tempfile.mkdtemp() def lowercase ( self : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def lowercase ( self : str , **lowerCAmelCase_ : Optional[int] ) -> List[str]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCAmelCase = self.get_feature_extractor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) __lowerCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) __lowerCAmelCase = floats_list((3, 1_0_0_0) ) __lowerCAmelCase = feature_extractor(lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = processor(audios=lowerCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) __lowerCAmelCase = 'This is a test string' __lowerCAmelCase = processor(text=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : int ) -> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
53
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class _SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self , lowerCamelCase ): snake_case__ = data snake_case__ = None def __str__( self ): return F"""{self.data}""" class _SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self ): snake_case__ = None def __iter__( self ): snake_case__ = self.top while node: yield node.data snake_case__ = node.next def __str__( self ): return "->".join([str(lowerCamelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def A_ ( self ): return self.top is None def A_ ( self , lowerCamelCase ): snake_case__ = Node(lowerCamelCase ) if not self.is_empty(): snake_case__ = self.top snake_case__ = node def A_ ( self ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase ) snake_case__ = self.top snake_case__ = self.top.next return pop_node.data def A_ ( self ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def A_ ( self ): snake_case__ = None if __name__ == "__main__": from doctest import testmod testmod()
276
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Any =logging.get_logger(__name__) A__ : Tuple ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A__ : List[str] ={ 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } A__ : Optional[Any] ={'facebook/blenderbot-3B': 128} class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase =VOCAB_FILES_NAMES lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase =['''input_ids''', '''attention_mask'''] lowerCamelCase =BlenderbotTokenizer def __init__( self : str , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int=None , lowerCamelCase : Any="replace" , lowerCamelCase : List[Any]="<s>" , lowerCamelCase : int="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Union[str, Any]="<unk>" , lowerCamelCase : int="<pad>" , lowerCamelCase : List[str]="<mask>" , lowerCamelCase : Optional[int]=False , lowerCamelCase : Tuple=True , **lowerCamelCase : str , ): """simple docstring""" super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , **lowerCamelCase , ) __A : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase ) != add_prefix_space: __A : str = getattr(lowerCamelCase , pre_tok_state.pop("""type""" ) ) __A : Dict = add_prefix_space __A : Union[str, Any] = pre_tok_class(**lowerCamelCase ) __A : Optional[Any] = add_prefix_space __A : Any = """post_processor""" __A : str = getattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) if tokenizer_component_instance: __A : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __A : Any = tuple(state["""sep"""] ) if "cls" in state: __A : Tuple = tuple(state["""cls"""] ) __A : Union[str, Any] = False if state.get("""add_prefix_space""" , lowerCamelCase ) != add_prefix_space: __A : int = add_prefix_space __A : str = True if state.get("""trim_offsets""" , lowerCamelCase ) != trim_offsets: __A : List[Any] = trim_offsets __A : List[str] = True if changes_to_apply: __A : Any = getattr(lowerCamelCase , state.pop("""type""" ) ) __A : str = component_class(**lowerCamelCase ) setattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_( self : int ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase_( self : Optional[Any] , lowerCamelCase : Union[str, Any] ): """simple docstring""" __A : Optional[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else value __A : int = value def lowercase_( self : Optional[int] , *lowerCamelCase : Tuple , **lowerCamelCase : Union[str, Any] ): """simple docstring""" __A : Union[str, Any] = kwargs.get("""is_split_into_words""" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowercase_( self : str , *lowerCamelCase : List[Any] , **lowerCamelCase : List[Any] ): """simple docstring""" __A : Optional[int] = kwargs.get("""is_split_into_words""" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowercase_( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): """simple docstring""" __A : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def lowercase_( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" __A : int = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def lowercase_( self : Optional[Any] , lowerCamelCase : "Conversation" ): """simple docstring""" __A : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase ) __A : Optional[Any] = """ """.join(lowerCamelCase ) __A : List[str] = self.encode(lowerCamelCase ) if len(lowerCamelCase ) > self.model_max_length: __A : List[Any] = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
703
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" __A : Optional[int] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" __A : Tuple = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert("""RGB""" ) __A : Optional[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) __A : Optional[int] = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) return image def A_ ( __SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" if "visual_encoder" in key: __A : Dict = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __SCREAMING_SNAKE_CASE ) if "blocks" in key: __A : Dict = re.sub(R"""blocks""" , """layers""" , __SCREAMING_SNAKE_CASE ) if "attn" in key: __A : Union[str, Any] = re.sub(R"""attn""" , """self_attn""" , __SCREAMING_SNAKE_CASE ) if "norm1" in key: __A : str = re.sub(R"""norm1""" , """layer_norm1""" , __SCREAMING_SNAKE_CASE ) if "norm2" in key: __A : List[Any] = re.sub(R"""norm2""" , """layer_norm2""" , __SCREAMING_SNAKE_CASE ) if "encoder.norm" in key: __A : Optional[Any] = re.sub(R"""encoder.norm""" , """post_layernorm""" , __SCREAMING_SNAKE_CASE ) if "encoder.patch_embed.proj" in key: __A : Optional[int] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __SCREAMING_SNAKE_CASE ) if "encoder.pos_embed" in key: __A : Union[str, Any] = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , __SCREAMING_SNAKE_CASE ) if "encoder.cls_token" in key: __A : Tuple = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , __SCREAMING_SNAKE_CASE ) if "self_attn" in key: __A : Tuple = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , __SCREAMING_SNAKE_CASE ) return key @torch.no_grad() def A_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=None ) -> int: """simple docstring""" if config_path is not None: __A : Any = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __A : List[Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __A : List[Any] = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() __A : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" __A : List[str] = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=384 , vit="""base""" ) __A : List[str] = pt_model.eval() __A : int = pt_model.state_dict() for key in modified_state_dict.copy(): __A : Tuple = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __A : Dict = rename_key(__SCREAMING_SNAKE_CASE ) __A : Tuple = value hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __A : List[Any] = 384 __A : Dict = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device="""cpu""" ) __A : Dict = BertTokenizer.from_pretrained("""bert-base-uncased""" ) __A : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids __A : int = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __A : str = hf_model.generate(__SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __A : List[Any] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) __A : List[Any] = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="""base""" ) vqa_model.eval() __A : List[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): __A : List[Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __A : int = rename_key(__SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = value __A : Any = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE ) hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __A : Tuple = ["""How many dogs are in this image?"""] __A : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids __A : List[str] = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) __A : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" __A : List[str] = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="""base""" ) itm_model.eval() __A : List[str] = itm_model.state_dict() for key in modified_state_dict.copy(): __A : Optional[Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __A : str = rename_key(__SCREAMING_SNAKE_CASE ) __A : Any = value __A : List[Any] = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE ) __A : Tuple = ["""A picture of a woman with a dog sitting in a beach"""] __A : List[str] = tokenizer( __SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding="""max_length""" , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE ) hf_itm_model.eval() __A : Any = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) __A : Optional[Any] = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": A__ : Tuple =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : Any =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
499
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any]=13 , SCREAMING_SNAKE_CASE : Optional[int]=30 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : str=32 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : Any=37 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : str=10 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Dict=2 , ): _A : Dict = parent _A : Optional[Any] = batch_size _A : int = image_size _A : Tuple = patch_size _A : Dict = num_channels _A : Union[str, Any] = is_training _A : Optional[int] = use_labels _A : Optional[Any] = hidden_size _A : Dict = num_hidden_layers _A : Any = num_attention_heads _A : int = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : List[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Optional[Any] = scope _A : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : int = (image_size // patch_size) ** 2 _A : List[str] = num_patches + 1 def A ( self : Dict): _A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : List[Any] = self.get_config() return config, pixel_values, labels def A ( self : Union[str, Any]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int): _A : int = ViTModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Union[str, Any] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple): _A : int = ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _A : Any = 1 _A : Optional[Any] = ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : int = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A ( self : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict): _A : Union[str, Any] = self.type_sequence_label_size _A : int = ViTForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _A : Any = 1 _A : str = ViTForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : Any = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A ( self : str): _A : Dict = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ) : List[Any] = config_and_inputs _A : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) a = True a = False a = False a = False def A ( self : str): _A : Optional[int] = ViTModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Dict): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def A ( self : Optional[int]): pass def A ( self : Any): _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear)) def A ( self : Any): _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[str] = model_class(SCREAMING_SNAKE_CASE) _A : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : Dict): _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE) def A ( self : str): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( ): _A : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Tuple): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def A ( self : str): _A : Optional[int] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(SCREAMING_SNAKE_CASE) _A : List[str] = self.default_image_processor _A : List[str] = prepare_img() _A : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt').to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : str = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : int = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : int = torch.tensor([-0.2744, 0.8215, -0.0836]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def A ( self : str): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _A : int = ViTModel.from_pretrained('facebook/dino-vits8').to(SCREAMING_SNAKE_CASE) _A : Optional[Any] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480) _A : Union[str, Any] = prepare_img() _A : List[str] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt') _A : List[str] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : str = model(SCREAMING_SNAKE_CASE , interpolate_pos_encoding=SCREAMING_SNAKE_CASE) # verify the logits _A : Any = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE) _A : Optional[int] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def A ( self : str): _A : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') _A : List[str] = self.default_image_processor _A : Any = prepare_img() _A : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt') _A : Tuple = inputs.pixel_values.to(SCREAMING_SNAKE_CASE) # forward pass to make sure inference works in fp16 with torch.no_grad(): _A : Optional[int] = model(SCREAMING_SNAKE_CASE)
128
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def lowerCAmelCase__ ( lowerCamelCase : Callable[[int | float], int | float] ,lowerCamelCase : int | float ,lowerCamelCase : int | float ,lowerCamelCase : int = 100 ,): _A : Tuple = x_start _A : List[str] = fnc(lowerCamelCase ) _A : Dict = 0.0 for _ in range(lowerCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area _A : Tuple = (x_end - x_start) / steps + xa _A : Any = fnc(lowerCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _A : Optional[int] = xa _A : List[str] = fxa return area if __name__ == "__main__": def lowerCAmelCase__ ( lowerCamelCase : Any ): return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') A : Optional[Any] = 10 while i <= 100000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
128
1
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowercase__ =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( UpperCamelCase__ ): def __init__( self , *UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) a_ = eval_examples a_ = post_process_function a_ = quant_trainer_args a_ = 1_28 # default number of calibration samples def lowerCAmelCase__ ( self , UpperCAmelCase=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) a_ = calib_dataset if calib_dataset is not None else self.calib_dataset a_ = self._remove_unused_columns(UpperCAmelCase , description="""Calibration""" ) return DataLoader( UpperCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase , ) def lowerCAmelCase__ ( self , UpperCAmelCase=None ): a_ = self.train_dataset if calib_dataset is None else calib_dataset a_ = self.get_calib_dataloader(UpperCAmelCase ) a_ = self.model quant_trainer.configure_model(UpperCAmelCase , self.quant_trainer_args , calib=UpperCAmelCase ) model.eval() quant_trainer.enable_calibration(UpperCAmelCase ) logger.info("""***** Running calibration *****""" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(UpperCAmelCase ): # Prediction step a_ , a_ , a_ = self.prediction_step(UpperCAmelCase , UpperCAmelCase , prediction_loss_only=UpperCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCAmelCase , self.quant_trainer_args ) a_ = model def lowerCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = "eval" ): a_ = self.eval_dataset if eval_dataset is None else eval_dataset a_ = self.get_eval_dataloader(UpperCAmelCase ) a_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ = self.compute_metrics a_ = None a_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a_ = eval_loop( UpperCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase , ) finally: a_ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a_ = self.post_process_function(UpperCAmelCase , UpperCAmelCase , output.predictions ) a_ = self.compute_metrics(UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): a_ = metrics.pop(UpperCAmelCase ) self.log(UpperCAmelCase ) else: a_ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase ) return metrics def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase = "test" ): a_ = self.get_test_dataloader(UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. a_ = self.compute_metrics a_ = None a_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a_ = eval_loop( UpperCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase , ) finally: a_ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a_ = self.post_process_function(UpperCAmelCase , UpperCAmelCase , output.predictions , """predict""" ) a_ = self.compute_metrics(UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): a_ = metrics.pop(UpperCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase="./" ): a_ = self.eval_dataset a_ = self.get_eval_dataloader(UpperCAmelCase ) a_ = next(iter(UpperCAmelCase ) ) # saving device - to make it consistent a_ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple a_ = tuple(v.to(UpperCAmelCase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer a_ = True a_ = self.model.to(UpperCAmelCase ) model.eval() model.float() a_ = model.module if hasattr(UpperCAmelCase , """module""" ) else model quant_trainer.configure_model(UpperCAmelCase , self.quant_trainer_args ) a_ = os.path.join(UpperCAmelCase , """model.onnx""" ) logger.info(f'''exporting model to {output_model_file}''' ) a_ = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , export_params=UpperCAmelCase , opset_version=13 , do_constant_folding=UpperCAmelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=UpperCAmelCase , ) logger.info("""onnx export finished""" )
511
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowercase__ ={ 'roberta-base': 5_12, 'roberta-large': 5_12, 'roberta-large-mnli': 5_12, 'distilroberta-base': 5_12, 'roberta-base-openai-detector': 5_12, 'roberta-large-openai-detector': 5_12, } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase__ : Any = RobertaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) a_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) a_ = add_prefix_space a_ = pre_tok_class(**UpperCAmelCase ) a_ = add_prefix_space a_ = """post_processor""" a_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: a_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a_ = tuple(state["""sep"""] ) if "cls" in state: a_ = tuple(state["""cls"""] ) a_ = False if state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = add_prefix_space a_ = True if state.get("""trim_offsets""" , UpperCAmelCase ) != trim_offsets: a_ = trim_offsets a_ = True if changes_to_apply: a_ = getattr(UpperCAmelCase , state.pop("""type""" ) ) a_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def lowerCAmelCase__ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value a_ = value def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ): a_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
511
1
'''simple docstring''' from __future__ import annotations def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" # Checks if the entire collection has been sorted if len(__UpperCAmelCase ) <= 1 or n <= 1: return insert_next(__UpperCAmelCase , n - 1 ) rec_insertion_sort(__UpperCAmelCase , n - 1 ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" # Checks order between adjacent elements if index >= len(__UpperCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = ( collection[index], collection[index - 1], ) insert_next(__UpperCAmelCase , index + 1 ) if __name__ == "__main__": __lowerCamelCase : str = input("""Enter integers separated by spaces: """) __lowerCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
501
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt"""} __lowerCamelCase : str = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __lowerCamelCase : Optional[Any] = { """openbmb/cpm-ant-10b""": 1024, } def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = collections.OrderedDict() with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: lowerCamelCase_ : Tuple = reader.readlines() for index, token in enumerate(__UpperCAmelCase ): lowerCamelCase_ : str = token.rstrip('''\n''' ) lowerCamelCase_ : Any = index return vocab class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Dict=200 ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : List[Any] = unk_token lowerCamelCase_ : List[str] = max_input_chars_per_word def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[str] = list(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ : int = 0 lowerCamelCase_ : int = [] while start < len(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = len(UpperCamelCase_ ) lowerCamelCase_ : int = None while start < end: lowerCamelCase_ : Optional[int] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = end return sub_tokens class lowerCAmelCase__ ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] A = False def __init__( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]="<d>" , UpperCamelCase_ : Dict="</d>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : Tuple="</s>" , UpperCamelCase_ : Any="<pad>" , UpperCamelCase_ : Union[str, Any]="<unk>" , UpperCamelCase_ : Optional[Any]="</n>" , UpperCamelCase_ : str="</_>" , UpperCamelCase_ : str="left" , **UpperCamelCase_ : Dict , ) -> List[Any]: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=UpperCamelCase_ , eod_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , line_token=UpperCamelCase_ , space_token=UpperCamelCase_ , padding_side=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ : List[str] = bod_token lowerCamelCase_ : List[str] = eod_token lowerCamelCase_ : Any = load_vocab(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = self.encoder[space_token] lowerCamelCase_ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) lowerCamelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCamelCase_ : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self.encoder[self.bod_token] @property def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" return self.encoder[self.eod_token] @property def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return self.encoder["\n"] @property def __UpperCamelCase ( self : str ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = [] for x in jieba.cut(UpperCamelCase_ , cut_all=UpperCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase_ ) ) return output_tokens def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ : str = [i for i in token_ids if i >= 0] lowerCamelCase_ : Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> int: """simple docstring""" return token in self.encoder def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" return "".join(UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Any ) -> Dict: """simple docstring""" return self.decoder.get(UpperCamelCase_ , self.unk_token ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCamelCase_ : Optional[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCamelCase_ : Optional[Any] = 0 if " " in self.encoder: lowerCamelCase_ : Tuple = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ : List[str] = self.encoder['''\n'''] del self.encoder["\n"] lowerCamelCase_ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowerCamelCase_ : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) return [1] + ([0] * len(UpperCamelCase_ ))
501
1
__UpperCamelCase : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
"""simple docstring""" import os def __A ( ) -> Tuple: with open(os.path.dirname(a_) + '''/grid.txt''') as f: __a : Dict = [] # noqa: E741 for _ in range(20): l.append([int(a_) for x in f.readline().split()]) __a : int = 0 # right for i in range(20): for j in range(17): __a : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __a : Union[str, Any] = temp # down for i in range(17): for j in range(20): __a : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __a : Union[str, Any] = temp # diagonal 1 for i in range(17): for j in range(17): __a : Union[str, Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __a : List[str] = temp # diagonal 2 for i in range(17): for j in range(3 , 20): __a : int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __a : Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
52
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a : List[str] = random.Random() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if rng is None: lowercase__ : Optional[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=80 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase="hann_window" , lowerCamelCase=80 , lowerCamelCase=7600 , lowerCamelCase=1E-10 , lowerCamelCase=True , ) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[int] = max_seq_length lowercase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : List[Any] = feature_size lowercase__ : Union[str, Any] = padding_value lowercase__ : Dict = sampling_rate lowercase__ : int = do_normalize lowercase__ : Union[str, Any] = num_mel_bins lowercase__ : Optional[Any] = hop_length lowercase__ : Tuple = win_length lowercase__ : Any = win_function lowercase__ : Optional[Any] = fmin lowercase__ : str = fmax lowercase__ : Union[str, Any] = mel_floor lowercase__ : str = return_attention_mask def __a ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[str]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Dict = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> Optional[int]: """simple docstring""" if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : List[Any] = SpeechTaFeatureExtractor def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : str = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Optional[int] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : Optional[int] = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" ) lowercase__ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = range(800 , 1400 , 200 ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Tuple = ["longest", "max_length", "do_not_pad"] lowercase__ : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : List[str] = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase ) lowercase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) lowercase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="longest" , return_tensors="np" ) lowercase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Union[str, Any] = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=2000 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = np.random.rand(100 ).astype(np.floataa ) lowercase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ : str = feature_extractor(audio_target=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Optional[Any] = np.asarray(lowerCamelCase ) lowercase__ : List[Any] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Dict = feat_extract.model_input_names[0] lowercase__ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase__ : Optional[int] = feat_extract.num_mel_bins # hack! lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.feat_extract_dict lowercase__ : int = True lowercase__ : Optional[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = feat_extract.num_mel_bins # hack! lowercase__ : int = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.feat_extract_dict lowercase__ : Optional[int] = True lowercase__ : List[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = min(lowerCamelCase ) lowercase__ : List[str] = feat_extract.num_mel_bins # hack! lowercase__ : Dict = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : int = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : int = SpeechTaFeatureExtractor() lowercase__ : Tuple = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase , atol=1E-6 ) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase__ : Any = self._load_datasamples(1 ) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : int = feature_extractor(audio_target=lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
397
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __A : str = 5_0_0_0_0 __A : Optional[Any] = 5_0_0_0 __A : Union[str, Any] = os.path.split(__file__) __A : int = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __a ( A__ : datasets.Dataset , A__ : Union[str, Any] ): for i in range(A__ ): SCREAMING_SNAKE_CASE = dataset[i] @get_duration def __a ( A__ : datasets.Dataset , A__ : Optional[int] , A__ : Tuple ): for i in range(0 , len(A__ ) , A__ ): SCREAMING_SNAKE_CASE = dataset[i : i + batch_size] @get_duration def __a ( A__ : datasets.Dataset , A__ : List[Any] , A__ : str ): with dataset.formatted_as(type=A__ ): for i in range(A__ ): SCREAMING_SNAKE_CASE = dataset[i] @get_duration def __a ( A__ : datasets.Dataset , A__ : Optional[Any] , A__ : Optional[Any] , A__ : Union[str, Any] ): with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): SCREAMING_SNAKE_CASE = dataset[i : i + batch_size] def __a ( ): SCREAMING_SNAKE_CASE = {"num examples": SPEED_TEST_N_EXAMPLES} SCREAMING_SNAKE_CASE = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] SCREAMING_SNAKE_CASE = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) SCREAMING_SNAKE_CASE = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) SCREAMING_SNAKE_CASE = generate_example_dataset( os.path.join(A__ , "dataset.arrow" ) , A__ , num_examples=A__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) SCREAMING_SNAKE_CASE = func(A__ , **A__ ) print("shuffling dataset" ) SCREAMING_SNAKE_CASE = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(A__ ) ) SCREAMING_SNAKE_CASE = func( A__ , **A__ ) with open(A__ , "wb" ) as f: f.write(json.dumps(A__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
718
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a_ :Union[str, Any] = None a_ :str = logging.get_logger(__name__) a_ :str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a_ :Union[str, Any] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a_ :Optional[int] = { 't5-small': 5_12, 't5-base': 5_12, 't5-large': 5_12, 't5-3b': 5_12, 't5-11b': 5_12, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = ['''input_ids''', '''attention_mask'''] lowerCamelCase : Dict = TaTokenizer lowerCamelCase : List[int] = [] def __init__( self : Optional[int] , _lowercase : Any=None , _lowercase : List[Any]=None , _lowercase : Dict="</s>" , _lowercase : int="<unk>" , _lowercase : int="<pad>" , _lowercase : List[Any]=1_00 , _lowercase : Dict=None , **_lowercase : Tuple , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE__ : List[str] = [f"""<extra_id_{i}>""" for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(set(filter(lambda _lowercase : bool('''extra_id_''' in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _lowercase , tokenizer_file=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : int = vocab_file SCREAMING_SNAKE_CASE__ : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Tuple = extra_ids @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : str , _lowercase : Union[str, Any] ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowercase , ) return max_model_length def lowercase__ ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def lowercase__ ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE__ : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self : List[str] ): return list( set(filter(lambda _lowercase : bool(re.search(R'''<extra_id_\d+>''' , _lowercase ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self : List[str] ): return [self.convert_tokens_to_ids(_lowercase ) for token in self.get_sentinel_tokens()]
35
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Dict ="ClapFeatureExtractor" UpperCAmelCase_ : Union[str, Any] =("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = kwargs.pop("sampling_rate" , UpperCAmelCase ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: __snake_case : Optional[int] = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if audios is not None: __snake_case : int = self.feature_extractor( UpperCAmelCase , sampling_rate=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and audios is not None: __snake_case : str = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Tuple = self.tokenizer.model_input_names __snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
243
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase : Tuple = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" UpperCAmelCase : Any = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" UpperCAmelCase : Optional[int] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Tuple: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ = new_id # turn into Numpy arrays lowercase_ = np.array(__lowerCAmelCase ) lowercase_ = np.array(__lowerCAmelCase ) if reduce_labels: lowercase_ = 2_55 lowercase_ = label - 1 lowercase_ = 2_55 lowercase_ = label != ignore_index lowercase_ = np.not_equal(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = pred_label[mask] lowercase_ = np.array(__lowerCAmelCase )[mask] lowercase_ = pred_label[pred_label == label] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> List[str]: '''simple docstring''' lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = total_intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # compute metrics lowercase_ = {} lowercase_ = total_area_intersect.sum() / total_area_label.sum() lowercase_ = total_area_intersect / total_area_union lowercase_ = total_area_intersect / total_area_label lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = all_acc lowercase_ = iou lowercase_ = acc if nan_to_num is not None: lowercase_ = {metric: np.nan_to_num(__lowerCAmelCase , nan=__lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), }) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Dict[int, int]] = None , lowerCAmelCase_ : bool = False , ): """simple docstring""" lowercase_ = mean_iou( results=lowerCAmelCase_ , gt_seg_maps=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , ignore_index=lowerCAmelCase_ , nan_to_num=lowerCAmelCase_ , label_map=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ , ) return iou_result
712
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
100
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : """simple docstring""" def __init__( self , _snake_case , _snake_case ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : int = text, pattern _UpperCamelCase, _UpperCamelCase : List[Any] = len(_snake_case ), len(_snake_case ) def _lowercase ( self , _snake_case ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowercase ( self , _snake_case ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowercase ( self ) -> list[int]: # searches pattern in text and returns index positions _UpperCamelCase : List[str] = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCamelCase : Optional[Any] = self.mismatch_in_text(_snake_case ) if mismatch_index == -1: positions.append(_snake_case ) else: _UpperCamelCase : Tuple = self.match_in_pattern(self.text[mismatch_index] ) _UpperCamelCase : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCAmelCase : Optional[Any] = """ABAABA""" _UpperCAmelCase : int = """AB""" _UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) _UpperCAmelCase : str = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
683
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def snake_case__ ( UpperCamelCase=None ) -> Optional[int]: if subparsers is not None: _UpperCamelCase : Dict = subparsers.add_parser('''env''' ) else: _UpperCamelCase : Tuple = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' ,default=UpperCamelCase ,help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase ) return parser def snake_case__ ( UpperCamelCase ) -> Any: _UpperCamelCase : int = torch.__version__ _UpperCamelCase : int = torch.cuda.is_available() _UpperCamelCase : List[str] = is_xpu_available() _UpperCamelCase : Dict = is_npu_available() _UpperCamelCase : Optional[Any] = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCamelCase ): _UpperCamelCase : List[str] = load_config_from_file(args.config_file ).to_dict() _UpperCamelCase : List[Any] = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(UpperCamelCase ), '''PyTorch NPU available''': str(UpperCamelCase ), '''System RAM''': f'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: _UpperCamelCase : int = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) _UpperCamelCase : Union[str, Any] = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase ,UpperCamelCase ) else f'''\t{accelerate_config}''' ) print(UpperCamelCase ) _UpperCamelCase : str = accelerate_config return info def snake_case__ ( ) -> int: _UpperCamelCase : str = env_command_parser() _UpperCamelCase : Any = parser.parse_args() env_command(UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
683
1
def A ( _lowercase ): if n_term == "": return [] SCREAMING_SNAKE_CASE : Optional[int] = [] for temp in range(int(_UpperCamelCase ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": __UpperCamelCase : List[Any] = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
715
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Dict = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Union[str, Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = TaTokenizer UpperCamelCase_ = [] def __init__( self : str , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : Optional[Any]=100 , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : str , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE : List[str] = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE : int = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id_''' in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : int = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : str = extra_ids @staticmethod def __A ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE : List[str] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase__ , ) return max_model_length def __A ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Any = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def __A ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE : Tuple = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : List[Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
34
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowercase__ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = [label.strip() for label in labels.split(',') if label.strip()] return labels def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if len(_UpperCAmelCase) == 0 or len(_UpperCAmelCase) == 0: raise ValueError('You must include at least one label and at least one sequence.') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(_UpperCAmelCase)) if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [sequences] __A : Optional[int] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_UpperCAmelCase)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(a__ ) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase=ZeroShotClassificationArgumentHandler() , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = args_parser super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.') @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail'): return ind return -1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=TruncationStrategy.ONLY_FIRST , **_UpperCAmelCase): '''simple docstring''' __A : List[str] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`') __A : Any = self.tokenizer.eos_token try: __A : Dict = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , ) except Exception as e: if "too short" in str(_UpperCAmelCase): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __A : Optional[Any] = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' if kwargs.get('multi_class' , _UpperCAmelCase) is not None: __A : Union[str, Any] = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.') __A : List[Any] = {} if "candidate_labels" in kwargs: __A : Dict = self._args_parser._parse_labels(kwargs['candidate_labels']) if "hypothesis_template" in kwargs: __A : Optional[Any] = kwargs['hypothesis_template'] __A : Tuple = {} if "multi_label" in kwargs: __A : Dict = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase , ): '''simple docstring''' if len(_UpperCAmelCase) == 0: pass elif len(_UpperCAmelCase) == 1 and "candidate_labels" not in kwargs: __A : Dict = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}') return super().__call__(_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="This example is {}."): '''simple docstring''' __A ,__A : int = self._args_parser(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) for i, (candidate_label, sequence_pair) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase)): __A : Optional[int] = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_UpperCAmelCase) - 1, **model_input, } def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[str] = inputs['candidate_label'] __A : Any = inputs['sequence'] __A : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} __A : Optional[int] = self.model(**_UpperCAmelCase) __A : Optional[Any] = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[int] = [outputs['candidate_label'] for outputs in model_outputs] __A : List[Any] = [outputs['sequence'] for outputs in model_outputs] __A : int = np.concatenate([output['logits'].numpy() for output in model_outputs]) __A : Optional[Any] = logits.shape[0] __A : Optional[int] = len(_UpperCAmelCase) __A : Tuple = N // n __A : List[Any] = logits.reshape((num_sequences, n, -1)) if multi_label or len(_UpperCAmelCase) == 1: # softmax over the entailment vs. contradiction dim for each label independently __A : Any = self.entailment_id __A : List[Any] = -1 if entailment_id == 0 else 0 __A : Tuple = reshaped_outputs[..., [contradiction_id, entailment_id]] __A : str = np.exp(_UpperCAmelCase) / np.exp(_UpperCAmelCase).sum(-1 , keepdims=_UpperCAmelCase) __A : Any = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __A : List[str] = reshaped_outputs[..., self.entailment_id] __A : str = np.exp(_UpperCAmelCase) / np.exp(_UpperCAmelCase).sum(-1 , keepdims=_UpperCAmelCase) __A : Dict = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
8
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=True , UpperCAmelCase=1 / 255 , UpperCAmelCase=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _snake_case = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_pad def lowercase (self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase (self , UpperCAmelCase , UpperCAmelCase=False ) -> Any: if not batched: _snake_case = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): _snake_case, _snake_case = image.size else: _snake_case, _snake_case = image.shape[1], image.shape[2] if w < h: _snake_case = int(self.size["""shortest_edge"""] * h / w ) _snake_case = self.size["""shortest_edge"""] elif w > h: _snake_case = self.size["""shortest_edge"""] _snake_case = int(self.size["""shortest_edge"""] * w / h ) else: _snake_case = self.size["""shortest_edge"""] _snake_case = self.size["""shortest_edge"""] else: _snake_case = [] for image in image_inputs: _snake_case, _snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] _snake_case = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ConditionalDetrImageProcessor if is_vision_available() else None def lowercase (self ) -> int: _snake_case = ConditionalDetrImageProcessingTester(self ) @property def lowercase (self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowercase (self ) -> Optional[Any]: _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """size""" ) ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) _snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: pass def lowercase (self ) -> Union[str, Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _snake_case, _snake_case = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case, _snake_case = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) _snake_case = image_processing(UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase (self ) -> Optional[Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _snake_case, _snake_case = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(UpperCAmelCase , return_tensors="""pt""" ).pixel_values _snake_case, _snake_case = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase (self ) -> int: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _snake_case, _snake_case = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(UpperCAmelCase , return_tensors="""pt""" ).pixel_values _snake_case, _snake_case = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase (self ) -> List[str]: # prepare image and target _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _snake_case = json.loads(f.read() ) _snake_case = {"""image_id""": 39769, """annotations""": target} # encode them _snake_case = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) _snake_case = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="""pt""" ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area _snake_case = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase ) _snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id _snake_case = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase ) ) # verify class_labels _snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase ) ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase ) ) # verify size _snake_case = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase ) ) @slow def lowercase (self ) -> Tuple: # prepare image, target and masks_path _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _snake_case = json.loads(f.read() ) _snake_case = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} _snake_case = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _snake_case = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) _snake_case = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="""pt""" ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area _snake_case = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase ) _snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id _snake_case = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase ) ) # verify class_labels _snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase ) ) # verify masks _snake_case = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase ) ) # verify size _snake_case = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase ) )
585
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCamelCase__: str = flax_key_tuple[:-1] + ("""weight""",) lowerCamelCase__: Optional[Any] = torch.permute(_UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ): # linear layer lowerCamelCase__: Any = flax_key_tuple[:-1] + ("""weight""",) lowerCamelCase__: List[str] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase__: Optional[int] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' if "metadata" in layer: lowerCamelCase__: Dict = layer.split("""metadata""" ) lowerCamelCase__: Optional[int] = """""".join(split_layer[0] )[:-1] lowerCamelCase__: str = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: lowerCamelCase__: int = layer.split("""kvstore""" ) lowerCamelCase__: Optional[int] = """""".join(split_layer[0] )[:-1] lowerCamelCase__: Optional[int] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: lowerCamelCase__: List[Any] = layer.split("""/""" ) lowerCamelCase__: Optional[int] = """/""".join(split_layer[:-1] ) lowerCamelCase__: str = (split_layer[-1],) if "kvstore/path" in layer: lowerCamelCase__: Any = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: lowerCamelCase__: Dict = """file""" else: lowerCamelCase__: List[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' lowerCamelCase__: List[str] = rename_keys(_UpperCamelCase ) lowerCamelCase__: str = {} for k, v in current_block.items(): lowerCamelCase__: int = v lowerCamelCase__: Union[str, Any] = new_current_block torch.save(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = WEIGHTS_NAME ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] = convert_file_size_to_int(_UpperCamelCase ) lowerCamelCase__: int = [] lowerCamelCase__: str = {} lowerCamelCase__: Optional[int] = 0 lowerCamelCase__: List[Any] = 0 os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: lowerCamelCase__: Optional[int] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] lowerCamelCase__: List[str] = flatten_dict(_UpperCamelCase , sep="""/""" ) lowerCamelCase__: Optional[int] = {} for layer in checkpoint_info.keys(): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] = get_key_and_tensorstore_dict( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if curr_real_layer_name in all_layers: lowerCamelCase__: int = content else: lowerCamelCase__: Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCamelCase__: List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowerCamelCase__: Optional[int] = torch.tensor(_UpperCamelCase ) lowerCamelCase__: Any = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowerCamelCase__ , lowerCamelCase__: int = rename_base_flax_keys(tuple(key.split("""/""" ) ) , _UpperCamelCase ) lowerCamelCase__: Any = """/""".join(_UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCamelCase__: str = os.path.join( _UpperCamelCase , weights_name.replace(""".bin""" , f"""-{len(_UpperCamelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_UpperCamelCase , _UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block lowerCamelCase__: int = {} lowerCamelCase__: Dict = 0 lowerCamelCase__: Optional[int] = raw_weights.to(getattr(_UpperCamelCase , _UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowerCamelCase__: Dict = os.path.join(_UpperCamelCase , weights_name.replace(""".bin""" , f"""-{len(_UpperCamelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_UpperCamelCase , _UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCamelCase__: Tuple = {} lowerCamelCase__: List[Any] = {} for idx, shard in enumerate(_UpperCamelCase ): lowerCamelCase__: Any = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(_UpperCamelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} lowerCamelCase__: str = os.path.join(_UpperCamelCase , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) lowerCamelCase__: Tuple = shard for key in shard: lowerCamelCase__: List[str] = shard_file # Add the metadata lowerCamelCase__: str = {"""total_size""": total_size} lowerCamelCase__: Optional[int] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_UpperCamelCase , _UpperCamelCase ) , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__: Tuple = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + """\n""" f.write(_UpperCamelCase ) return metadata, index if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) _lowercase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __lowerCAmelCase ( ) -> str: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCamelCase__: Optional[int] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) lowerCamelCase__: Optional[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) lowerCamelCase__: List[str] = TaTokenizer.from_pretrained("""t5-small""" ) lowerCamelCase__: List[Any] = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" lowerCamelCase__: Optional[Any] = tokenizer(_UpperCamelCase , return_tensors="""pt""" ).input_ids lowerCamelCase__: int = model.generate(_UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
242
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCamelCase__ ( unittest.TestCase ): __lowerCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self : Dict , __a : Dict , __a : Any , __a : List[Any] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = TextaTextGenerationPipeline(model=__a , tokenizer=__a ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self : List[Any] , __a : List[str] , __a : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = generator("""Something there""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase__: Any = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], ] , ) lowerCamelCase__: Union[str, Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], ] , ) with self.assertRaises(__a ): generator(4 ) @require_torch def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: List[str] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase__: Dict = generator("""Something there""" , do_sample=__a ) self.assertEqual(__a , [{"""generated_text""": """"""}] ) lowerCamelCase__: int = 3 lowerCamelCase__: int = generator( """Something there""" , num_return_sequences=__a , num_beams=__a , ) lowerCamelCase__: Dict = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(__a , __a ) lowerCamelCase__: Optional[int] = generator("""This is a test""" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase__: Union[str, Any] = generator.model.config.eos_token_id lowerCamelCase__: Union[str, Any] = """<pad>""" lowerCamelCase__: Tuple = generator( ["""This is a test""", """This is a second test"""] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase__: Optional[Any] = generator("""Something there""" , do_sample=__a ) self.assertEqual(__a , [{"""generated_text""": """"""}] )
242
1